Sample records for sands development contributes

  1. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    PubMed Central

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  2. Application of SIR-B data for groundwater exploration in the Arabian shield and sand-drift monitoring in the AN Nafud and Al Jafurah fringe areas, Kingdom of Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Berlin, G. L.; Tarabzouni, M. A.; Munshi, Z. M. N.; Chavez, P. S., Jr.

    1984-01-01

    The primary objectives of the investigation are to determine fully the utility of Shuttle Imaging Radar-B (SIR-B) images for providing valuable surface indicators for ground-water prospecting in the Arabian shield and to identify and assess defining characteristics of sand sheets, sand streaks, and sand dunes in the fringe areas of An Nafud and Al Jafurah. Specific objectives include the determination of the incremental contribution of incidence angle to the total information that can be extracted from SIR-B standard and digitally-enhanced images in the AL Jafurah fringe area; the determination of the incremental contribution of digitally-registered multisensor images; and the development of a groundwater exploration plan for the Ha'il test area in the Arabian Shield.

  3. Approach to Assessing the Effects of Aerial Deposition on Water Quality in the Alberta Oil Sands Region.

    PubMed

    Dayyani, Shadi; Daly, Gillian; Vandenberg, Jerry

    2016-02-01

    Snow cover forms a porous medium that acts as a receptor for aerially deposited polycyclic aromatic hydrocarbons (PAHs) and metals. The snowpack, acting as a temporary storage reservoir, releases contaminants accumulating over the winter during a relatively short melt period. This process could result in elevated concentrations of contaminants in melt water. Recent studies in the Alberta oil sands region have documented increases in snowpack and lake sediment concentrations; however, no studies have addressed the fate and transport of contaminants during the snowmelt period. This study describes modelling approaches that were developed to assess potential effects of aerially deposited PAHs and metals to snowpack and snowmelt water concentrations. The contribution of snowmelt to freshwater PAH concentrations is assessed using a dynamic, multi-compartmental fate model, and the contribution to metal concentrations is estimated using a mass-balance approach. The modelling approaches described herein were applied to two watersheds in the Alberta oil sands region for two planned oil sands developments. Accumulation of PAHs in a lake within the deposition zone was also modelled for comparison to observed concentrations.

  4. Exchange of E. coli from the foreshore reservoir to surface waters during intensified wave conditions

    NASA Astrophysics Data System (ADS)

    Malott, S. S.; Vogel, L. J.; Edge, T.; O'Carroll, D. M.; Robinson, C. E.

    2014-12-01

    In recent years a number of studies have suggested that foreshore sand and porewater can act as a non-point source of microbial contamination to adjacent surface waters. Fecal indicator bacteria (FIB) can be released from the sand into the surface water through sand erosion or wave-induced porewater flows leading to FIB detachment. Although regression models often show that there is a strong correlation between wave events and high E. coli in surface waters, there is limited understanding of the mechanisms by which E. coli is transported from the subsurface foreshore reservoir (sand and porewater) to surface waters during wave events. An improved understanding of the transport mechanisms will facilitate the development of better water quality exceedences predictions. Detailed groundwater flow, sand level and E. coli measurements were conducted at Ipperwash Beach, Lake Huron (Ontario) for three wave events during the 2014 bathing season to evaluate the relative contribution of sand erosion and wave-induced pore water flow in transporting E. coli from the subsurface reservoir to the shallow waters. As expected, results indicate increased E. coli concentrations in ankle and waist deep surface water during periods of increased wave activity (wave height > 0.5m). Considerable sand erosion from the foreshore may have contributed to these increased surface water concentrations. The E. coli concentrations in the foreshore reservoir generally decreased as the wave height intensified, while E. coli concentrations in upshore sand and porewater locations increased.

  5. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania.

    PubMed

    Lestinova, Tereza; Rohousova, Iva; Sima, Michal; de Oliveira, Camila I; Volf, Petr

    2017-07-01

    Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.

  6. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  7. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  8. Environmental factors contributing to the accumulation of E. coli in the foreshore sand and porewater at freshwater beaches

    NASA Astrophysics Data System (ADS)

    Vogel, L. J.; Robinson, C. E.; Edge, T.; O'Carroll, D. M.

    2015-12-01

    E. coli concentrations in the foreshore sand and porewater (herein referred to as the foreshore reservoir) at beaches are often elevated relative to adjacent surface waters. There is limited understanding of the factors controlling the delivery and accumulation of E. coli in this reservoir. Understanding the buildup of E. coli, and related microbes, in the foreshore reservoir is important as it can act as a non-point source to surface waters and contribute a significant health risk to beach goers. Possible sources that contribute to high levels of E. coli in the foreshore reservoir include infiltration of lake water through wave runup, direct deposition of fecal sources (e.g. bird droppings), and shallow groundwater flow from inland sources (e.g. septic systems). The accumulation of E. coli in the foreshore reservoir is complex due to the dynamic interactions between the foreshore sand and porewater, and shallow waters. The objective of this study was to quantify the temporal variability of E. coli concentrations in the foreshore sand and porewater at freshwater beaches and to identify the environmental factors (e.g. temperature, rainfall, wind and wave conditions) controlling this variability. The temporal variability in E. coli concentrations in the foreshore reservoir was characterized by collecting samples (surface water, porewater, saturated and unsaturated foreshore sand) approximately once a week at three beaches along on the Great Lakes from May-October 2014 and 2015. These beaches had different sand types ranging from fine to coarse. More frequent sampling was also conducted in July-August 2015 with samples collected daily over a 40 day period at one beach. The data was analyzed to determine the relationships between the E. coli concentrations and environmental variables as well as changes in sand level profiles and groundwater level fluctuations. Insight into how and why E. coli accumulates in the foreshore reservoir is essential to develop effective strategies to reduce E. coli levels at beaches and to enable better prediction of beach water quality.

  9. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    NASA Astrophysics Data System (ADS)

    Patterson, Tyler

    By employing interpretive policy analysis this thesis aims to assess, measure, and explain policy capacity for government and non-government organizations involved in reclaiming Alberta's oil sands. Using this type of analysis to assess policy capacity is a novel approach for understanding reclamation policy; and therefore, this research will provide a unique contribution to the literature surrounding reclamation policy. The oil sands region in northeast Alberta, Canada is an area of interest for a few reasons; primarily because of the vast reserves of bitumen and the environmental cost associated with developing this resource. An increase in global oil demand has established incentive for industry to seek out and develop new reserves. Alberta's oil sands are one of the largest remaining reserves in the world, and there is significant interest in increasing production in this region. Furthermore, tensions in several oil exporting nations in the Middle East remain unresolved, and this has garnered additional support for a supply side solution to North American oil demands. This solution relies upon the development of reserves in both the United States and Canada. These compounding factors have contributed to the increased development in the oil sands of northeastern Alberta. Essentially, a rapid expansion of oil sands operations is ongoing, and is the source of significant disturbance across the region. This disturbance, and the promises of reclamation, is a source of contentious debates amongst stakeholders and continues to be highly visible in the media. If oil sands operations are to retain their social license to operate, it is critical that reclamation efforts be effective. One concern non-governmental organizations (NGOs) expressed criticizes the current monitoring and enforcement of regulatory programs in the oil sands. Alberta's NGOs have suggested the data made available to them originates from industrial sources, and is generally unchecked by government. In an effort to discern the overall status of reclamation in the oil sands this study explores several factors essential to policy capacity: work environment, training, employee attitudes, perceived capacity, policy tools, evidence based work, and networking. Data was collected through key informant interviews with senior policy professionals in government and non-government agencies in Alberta. The following are agencies of interest in this research: Canadian Association of Petroleum Producers (CAPP); Alberta Environment and Sustainable Resource Development (AESRD); Alberta Energy Regulator (AER); Cumulative Environmental Management Association (CEMA); Alberta Environment Monitoring, Evaluation, and Reporting Agency (AEMERA); Wood Buffalo Environmental Association (WBEA). The aim of this research is to explain how and why reclamation policy is conducted in Alberta's oil sands. This will illuminate government capacity, NGO capacity, and the interaction of these two agency typologies. In addition to answering research questions, another goal of this project is to show interpretive analysis of policy capacity can be used to measure and predict policy effectiveness. The oil sands of Alberta will be the focus of this project, however, future projects could focus on any government policy scenario utilizing evidence-based approaches.

  10. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China

    PubMed Central

    Li, Kaili; Chen, Huiying; Jiang, Jinjin; Li, Xiangyu; Xu, Jiannong; Ma, Yajun

    2016-01-01

    Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome. PMID:27819272

  11. A multiscale investigation of habitat use and within-river distribution of sympatric sand darter species

    USGS Publications Warehouse

    Thompson, Patricia A.; Welsh, Stuart A.; Strager, Michael P.; Rizzo, Austin A.

    2018-01-01

    The western sand darter Ammocrypta clara, and eastern sand darter Ammocrypta pellucida, are sand-dwelling fishes of conservation concern. Past research has emphasized the importance of studying individual populations of conservation concern, while recent research has revealed the importance of incorporating landscape scale processes that structure habitat mosaics and local populations. We examined habitat use and distributions of western and eastern sand darters in the lower Elk River of West Virginia. At the sandbar habitat use scale, western sand darters were detected in sandbars with greater area, higher proportions of coarse grain sand and faster bottom current velocity, while the eastern sand darter used a wider range of sandbar habitats. The landscape scale analysis revealed that contributing drainage area was an important predictor for both species, while sinuosity, which presumably represents valley type, also contributed to the western sand darter’s habitat suitability. Sandbar quality (area, grain size, and velocity) and fluvial geomorphic variables (drainage area and valley type) are likely key driving factors structuring sand darter distributions in the Elk River. This multiscale study of within-river species distribution and habitat use is unique, given that only a few sympatric populations are known of western and eastern sand darters.

  12. Biocompatible water softening system using cationic protein from moringa oleifera extract

    NASA Astrophysics Data System (ADS)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  13. Disturbance of beach sediment by off-road vehicles

    NASA Astrophysics Data System (ADS)

    Anders, Fred J.; Leatherman, Stephen P.

    1987-10-01

    A three-year investigation was undertaken to examine the effects of off-road vehicles (ORVs) on the beach at Fire Island, New York. Within the National Seashore over 45,000 vehicle trips per year are concentrated in the zone seaward of the dune toe. The experimental approach was adopted in order to assess the environmental effects of ORVs. Specially developed instrumentation was used to measure the direct displacement of sand by vehicles traversing the beach. Direct displacement data were reduced graphically and analyzed by stepwise linear regression. The results of 89 field experiments (788 cases) showed that slope, sand compaction, and number of vehicle passes in the same track were the principal factors controlling the measured net seaward displacement of sand. The data suggest that ORV use levels within the National Seashore could be contributing to the overall erosion rate by delivering large quantities of sand to the swash zone (max. of 119,300 m3/yr). However, with proper management downslope movement of sand could be reduced by an order of magnitude. While vehicular passage over the open beach displaces sand seaward, it is not known if such activity actually increases the amount of erosion, measured as net loss to the beach face.

  14. The effects of body properties on sand-swimming

    NASA Astrophysics Data System (ADS)

    Sharpe, Sarah; Kuckuk, Robyn; Koehler, Stephan; Goldman, Daniel

    2014-03-01

    Numerous animals locomote effectively within sand, yet few studies have investigated how body properties and kinematics contribute to subsurface performance. We compare the movement strategies of two desert dwelling subsurface sand-swimmers exhibiting disparate body forms: the long-slender limbless shovel-nosed snake (C. occipitalis) and the relatively shorter sandfish lizard (S. scincus). Both animals ``swim'' subsurface using a head-to-tail propagating wave of body curvature. We use a previously developed granular resistive force theory to successfully predict locomotion of performance of both animals; the agreement with theory implies that both animal's swim within a self-generated frictional fluid. We use theory to show that the snake's shape (body length to body radius ratio), low friction and undulatory gait are close to optimal for sand-swimming. In contrast, we find that the sandfish's shape and higher friction are farther from optimal and prevent the sandfish from achieving the same performance as the shovel-nosed snake during sand-swimming. However, the sandfish's kinematics allows it to operate at the highest performance possible given its body properties. NSF PoLS

  15. Holocene evolution of the merrimack embayment, northern massachusetts, interperted from shallow seismic stratigraphy

    USGS Publications Warehouse

    Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.A.

    2007-01-01

    Recent multi-beam, backscatter, and bottom sediment data demonstrate that a large sand sheet was formed in the inner shelf by the reworking of the Merrimack River lowstand delta and braid plain (12 kya) during the Holocene transgression. Seismic data reveal the presence of widespread channel cut-and-fill structures landward of the delta suggesting that much of the sand sheet consists of braided stream deposits. These features map into several sets of cut-and-fill structures, indicating the avulsion of the primary river channels, which creates the lobes of the paleo-delta. Truncations of these, cut-and-fill structures suggest that the braid plain deposits were probably reworked during the Holocene transgression and may have contributed sand to developing barriers that presently border the Merrimack Embayment.

  16. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG.

    PubMed

    Rogers, Matthew E; Ilg, Thomas; Nikolaev, Andrei V; Ferguson, Michael A J; Bates, Paul A

    2004-07-22

    Sand flies are the exclusive vectors of the protozoan parasite Leishmania, but the mechanism of transmission by fly bite has not been determined nor incorporated into experimental models of infection. In sand flies with mature Leishmania infections the anterior midgut is blocked by a gel of parasite origin, the promastigote secretory gel. Here we analyse the inocula from Leishmania mexicana-infected Lutzomyia longipalpis sand flies. Analysis revealed the size of the infectious dose, the underlying mechanism of parasite delivery by regurgitation, and the novel contribution made to infection by filamentous proteophosphoglycan (fPPG), a component of promastigote secretory gel found to accompany the parasites during transmission. Collectively these results have important implications for understanding the relationship between the parasite and its vector, the pathology of cutaneous leishmaniasis in humans and also the development of effective vaccines and drugs. These findings emphasize that to fully understand transmission of vector-borne diseases the interaction between the parasite, its vector and the mammalian host must be considered together.

  17. The Contribution of Oil Sands Industry Related Atmospheric THg and MeHg Deposition to Rivers of the Athabasca Oil Sands Region of Canada

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Cooke, C. A.; Kirk, J.; Chambers, P. A.; Alexander, A. C.; Rooney, R. C.

    2017-12-01

    Rapid development of Oil Sands deposits in northern Alberta (Canada) raises concerns about human health and environmental impacts. We present results from a three-year study of winter-time atmospheric deposition of total mercury (THg) and methylmercury (MeHg) in six tributary watersheds of the Athabasca River. Seasonal snowpack THg and MeHg concentrations were obtained from spring-time sampling throughout the oil sands region. Winter-time Hg loads were then modeled at watershed and sub-basin scales using ArcGIS geostatistical kriging. To determine the potential impacts of snowmelt on aquatic ecosystems, six rivers were sampled at high frequency over 2012 to 2014 ice-free seasons. Hydrologic year (HY) and first discharge peak loads were then calculated from linear extrapolation of measured concentrations and mean daily discharge. Results showed high THg and MeHg loads from atmospheric deposition around regional upgrading facilities with loads diminishing outwards. This reflects the large proportion of particle bound Hg with a short atmospheric residence time, and deposition close to emission sources. Snowpacks within the six watersheds contained substantial proportions of tributary river THg and MeHg loads. For example, HY2014 snowpacks contained 24 to 46 % of river MeHg loads. All rivers showed a large proportion of HY loads discharged, within a few weeks, in the spring first discharge peak. HY2014 snowpack MeHg loads were greater than river loads in the first discharge peak for all watersheds except the High Hills. This first discharge peak is important as it occurs during critical growth periods for aquatic life. Large differences in tributary river THg and MeHg loads suggest factors other than atmospheric deposition and watershed scale contributed to the load. Considerably higher THg and MeHg snowpack loads in the Muskeg Watershed relative to river export suggest substantial losses to catchment soils or wetlands during snowmelt. Evaluation of factors that could contribute to the large differences in watershed Hg discharge, include proportion of wetlands along with different wetland classes, scale of industrial development, and development hydrologic connectivity. The consequence of long-term Hg loading to wetland ecosystems has yet to be assessed.

  18. The contribution of Corynephorus canescens to the geodiversity of inland drift sands

    NASA Astrophysics Data System (ADS)

    Jungerius, Pieter Dirk; Riksen, Michel; van den Ancker, Hanneke; Kooistra, Maja

    2016-04-01

    Most dunes in the Netherlands are phytogenic, which means that plants are essential in their formation. This applies also to the dunes of the inland drift sand areas, which are nicknamed Atlantic deserts on account of their extreme climatic conditions. Daily temperatures on the bare sand surfaces may run up to 60° C on sunny summer days, dropping as low as below freezing point at night. Apart from blue and green algae, Corynephorus canescens, Grey hair-grass, it is the first conqueror of these active sands and plays an important role in the geomorphological development of the inland drift sands. C. canescens is a rapid colonizer and flourishes when it receives a regular supply of fresh sand, but is soon succeeded by competitor species. Like Ammophila arenaria (Marram grass), its vigour declines after some time, because its roots are affected. Therefore the plant requires a regular supply of fresh sand to outgrow the affected root zone. The growth of C. canescens is stimulated by two different geomorphological processes: aeolian and pluvial processes. Aboveground, the tussock architecture of the plant helps to trap sand and form small initial dunes. When formed by wind, these are called nabkahs; when formed by splash bush mounds. In a micro-morphological thin section both processes can often be recognized in one dune. The decline of C. canescens is caused by two soil-forming processes: reduction of permeability and accumulation of organic matter. Poor aeration and compaction restrict the growth of its roots. Increase in organic matter hampers the rate of root respiration and promotes conditions for the establishment of competitor species. In the nabkahs, thin slides show on the positive side for C. canescens there is little blown-in organic matter, but on the negative side that the grains upon aging develop a colourless organic coating formed by cyanobacteria (algae. For splashed sands on the positive side for Grey hairgrass there are few organic coatings, but on the negative side there are many organic fragments. So although different both sediments have the same effect. Under the present climate and level of air pollution, the phase of C. canescens is short-lived. Its disappearance marks the end of dune formation and after its decline slope development changes drastically. In conclusion, the interaction between Corynephorus canescens and the geomorphological and soil processes are important in the development and the geodiversity of inland drift sands.

  19. Impacts of Vegetation and Development on the Morphology of Coastal Sand Dunes Using Modern Geospatial Techniques: Jockey's Ridge Case Study

    NASA Astrophysics Data System (ADS)

    Weaver, K.; Mitasova, H.; Overton, M.

    2011-12-01

    LiDAR surveys acquired in the years 2007 and 2008, combined with previous LiDAR, topographic mapping and aerial imagery collected along the Outer Banks of North Carolina were used for comprehensive geospatial analysis of the largest sand dune on the eastern coast of the United States, Jockey's Ridge. The objective of the analysis was to evaluate whether the dune's evolution has continued as hypothesized in previous studies and whether an increase of development and vegetation has contributed to the dune's stabilization and overall loss of dune height. Geospatial analysis of the dune system evolution (1974 - 2008) was performed using time series of digital elevation models at one meter resolution. Image processing was conducted in order to analyze land cover change (1932 - 2009) using unsupervised classification to extract vegetation, development and sand in and around Jockey's Ridge State Park. The dune system evolution was then characterized using feature-based and raster-based metrics, including vertical and horizontal change of dune peaks, horizontal migration of dune crests, slip face geometry transformation and volume change analysis using the core and dynamic layer concept. Based on the evolutionary data studied, the volume of sand at Jockey's Ridge is consistent throughout time, composed of a stable core and a dynamically migrating layer that is not gaining or losing sand. Although the peak elevation of the Main Dune has decreased from 43m in 1953 to 22m in 2008, the analysis has shown that the sand is redistributed within the dune field. Today, the dune field peaks are increasing in elevation, and all of the dunes within the system are stabilizing at similar heights of 20-22m along with transformation of the dunes from unvegetated, crescentic to vegetated, parabolic dunes. The overall land cover trend indicates that since the 1930s vegetation and development have gradually increased over time, influencing the morphology of the dune field by stabilizing the area of sand that once fed the dunes, limiting aeolian sand transport and migration of the dune system. Not only are vegetation and development increasing around the Jockey's Ridge State Park, but vegetation is increasing inside the park boundaries with the majority of growth along the windward side of the dune system, blocking sand from feeding the dunes. Vegetation growth is also found to increase in front of the dune field, recently causing the migration of the dune to slow down.

  20. Thermofluid effect on energy storage in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  1. Observations of transport of bacterial-like microspheres through beach sand

    NASA Astrophysics Data System (ADS)

    Gast, Rebecca J.; Elgar, Steve; Raubenheimer, Britt

    2015-04-01

    Often, there is an order of magnitude more fecal indicator bacteria (enterococci) in beach sand than in nearby water. Consequently, sand is considered a reservoir for these bacteria, potentially contributing to poor water quality, and raising questions regarding the human health risks associated with sand exposure. An integral aspect of the distribution and persistence of sand-associated enterococci is the transport of bacteria introduced into the beach environment. Here, plastic microspheres are used as a proxy to examine the wave-induced movement of bacterial-like particles through sand on an ocean beach. Laboratory tests suggest microspheres and bacteria move similarly through sand columns, and have qualitatively similar short-term adsorption-to-sand behavior. Microspheres buried ~0.05 m below the sand surface on an ocean beach moved rapidly [O(10-3) m/s] away from their initial location, both vertically into the ground water below the sand and horizontally seaward within the sediment matrix in response to waves running up the beach face and percolating through the sand.

  2. Measuring and Modeling the Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand

    PubMed Central

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach. PMID:25383709

  3. 3-D seismic data for field development: Landslide field case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raeuchle, S.K.; Carr, T.R.; Tucker, R.D.

    1990-05-01

    The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottommore » hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.« less

  4. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis.

    PubMed

    de Menezes, Juliana Perrone; Saraiva, Elvira M; da Rocha-Azevedo, Bruno

    2016-05-04

    Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.

  5. Optimization the composition of sand-lime products modified of diabase aggregate

    NASA Astrophysics Data System (ADS)

    Komisarczyk, K.; Stępień, A.

    2017-10-01

    The problem of optimizing the composition of building materials is currently of great importance due to the increasing competitiveness and technological development in the construction industry. This phenomenon also applies to catalog sand-lime. The respective arrangement of individual components or their equivalents, and linking them with the main parameters of the composition of the mixture, i.e. The lime/sand/water should lead to the intended purpose. The introduction of sand-lime diabase aggregate is concluded with a positive effect of final products. The paper presents the results of optimization with the addition of diabase aggregate. The constant value was the amount of water, variable - the mass of the dry ingredients. The program of experimental studies was taken for 6 series of silicates made in industrial conditions. Final samples were tested for mechanical and physico-chemical expanding the analysis of the mercury intrusion porosimetry, SEM and XRD. The results show that, depending on the aggregate’s contribution, exhibit differences. The sample in an amount of 10% diabase aggregate the compressive strength was higher than in the case of reference sample, while modified samples absorbed less water.

  6. Aeolian sand transport over complex intertidal bar-trough beach topography

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  7. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    USGS Publications Warehouse

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves by minimizing in-channel sediment storage on the alluvial fans. The post-development annual sediment yield to the Whitewater and Mission Creek?Morongo Wash depositional areas are 3.5 and 1.5 million ft3/yr, respectively, covering each depositional area to a depth of 0.2 to 0.4 in. Given existing sand-transport rates, this material could be depleted by eolian processes in 8 to 16 months, a rate consistent with the presence of persistent sand dunes. However, these depletion times are likely minimum estimates, as some eolian sand is seen to persist in the immediate vicinity of depositional areas for longer time periods. Transport rates may be reduced by the presence of vegetation and other windbreaks. Because they are perpendicular to prevailing winds, the infiltration galleries on Whitewater River trap fluvial and eolian sediment, reducing sediment availability. Also, the presence of the railroad and Interstate 10 redirect eolian sand movement to the southeast along their corridors,potentially eliminating the Whitewater depositional area as a sand source for the Willow Hole Reserve. Using directional wind data, we discuss the potential for eolian sand transport from the Mission Creek?Morongo Wash depositional area to Willow Hole.

  8. Experimental studies about the impact of traction sand on urban road dust composition.

    PubMed

    Kupiainen, Kaarle; Tervahattu, Heikki; Räisänen, Mika

    2003-06-01

    Traffic causes enhanced PM(10) resuspension especially during spring in the US, Japan, Norway, Sweden and Finland, among other countries. The springtime PM(10) consists primarily of mineral matter from tyre-induced paved road surface wear and traction sand. In some countries, the majority of vehicles are equipped with studded tyres to enhance traction, which additionally increases road surface wear. Because the traction sand and the mineral matter from the pavement aggregate can have a similar mineralogical composition, it has been difficult to determine the source of the mineral fraction in the PM(10). In this study, homogenous traction sand and pavement aggregate with different mineralogical compositions were chosen to determine the sources of PM(10) particles by single particle analysis (SEM/EDX). This study was conducted in a test facility, which made it possible to rule out dust contributions from other sources. The ambient PM(10) concentrations were higher when traction sand was used, regardless of whether the tyres were studded or not. Surprisingly, the use of traction sand greatly increased the number of the particles originating from the pavement. It was concluded that sand must contribute to pavement wear. This phenomenon is called the sandpaper effect. An understanding of this is important to reduce harmful effects of springtime road dust in practical winter maintenance of urban roads

  9. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    NASA Astrophysics Data System (ADS)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  10. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  11. Acoustic Scattering from Sand Dollars (Dendraster excentricus): Modeling as High Aspect Ratio Oblate Objects and Comparison to Experiment

    DTIC Science & Technology

    2008-09-01

    2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of similar size were measured over a...Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the...effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster

  12. Use of microresistivity from the dipmeter to improve formation evaluation in thin sands, Northeast Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallee, J.E.; Wood, B.R.

    1984-09-01

    Estimation of reserves in lenticular reservoirs consisting of many thin-bedded sand/shale sequences is complicated by an overly pessimistic evaluation of sand count and hydrocarbon in place when conventional log interpretation techniques are used. It is probable that thin clean sand lenses have connected permeability. Their contribution to production should be considered in the estimation of reserves. An approach has been devised to improve the evaluation of thin clean sands by introducing accurate bed boundaries between sand and shale laminae as identified clearly on the dipmeter microresistivity curve processing presentation (GEODIP). Dipmeter data are integrated into conventional computer log analyses tomore » yield more realistic estimates of porosity and hydrocarbon saturation throughout the reservoir. The method and the results attained to date are described.« less

  13. Case history of Yakin Field: its development and sand control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawolo, N.; Krueger, R.F.; Maly, G.P.

    1982-01-01

    This study deals with the development of the Yakin Field in E. Kalimantan, Indonesia, with emphasis on the sand control methods used. Implementation of an effective sand control program insured the successful development of this field. Gravel packed wells had substantially lower production decline rates than the initial completions without gravel packs. Control of sand production also has been demonstrated by the lack of sand problems during the 4-1/2 yr since the sand control program was initiated. During this time there have been no failures of submersible pumps that were associated with sand production. The successful sand control program wasmore » achieved by a well coordinated and cooperative effort of drilling, reservoir engineering, production research, and service company personnel.« less

  14. Effects of Full-Scale Beach Renovation on Fecal Indicator Levels in Shoreline Sand and Water

    PubMed Central

    Hernandez, Rafael J.; Hernandez, Yasiel; Jimenez, Nasly H.; Piggot, Alan M.; Klaus, James S.; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M.

    2013-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3 to 72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8 CFU/g to 12 CFU/g) (p<0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 1011 CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 1011 CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm levels. More work is needed to evaluate the relationships between beach sand mineralogy, biofilm characteristics, and the retention of fecal indicator bacteria in sand. PMID:24183401

  15. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

    PubMed

    Hernandez, Rafael J; Hernandez, Yasiel; Jimenez, Nasly H; Piggot, Alan M; Klaus, James S; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M

    2014-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm levels. More work is needed to evaluate the relationships between beach sand mineralogy, biofilm characteristics, and the retention of fecal indicator bacteria in sand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Submarine sand ridges and sand waves in the eastern part of the China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  17. The influence of groundwater depth on coastal dune development at sand flats close to inlets

    NASA Astrophysics Data System (ADS)

    Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.

    2018-05-01

    A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.

  18. Chemical fingerprinting of naphthenic acids at an oil sands end pit lake by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS)

    NASA Astrophysics Data System (ADS)

    Bowman, D. T.; Arriaga, D.; Morris, P.; Risacher, F.; Warren, L. A.; McCarry, B. E.; Slater, G.

    2016-12-01

    Naphthenic acids (NAs) are naturally occurring in Athabasca oil sands and accumulate in tailings as a result of water-based extraction processes. NAs contribute to the toxicity of tailings and oil sands process-affected water (OSPW). NAs exist as a complex mixture, so the development of an analytical technique to characterize them has been an on-going challenge. The monitoring of individual NAs and their associated isomers through multidimensional chromatography has the potential to provide greater insight into the behavior of NAs in the environment. For NAs whose proportions do not change during environmental processing, NA ratios may provide a means to develop fingerprints characteristic of specific sources. Alternatively, relative changes in the proportions of NAs may provide a tracer of their occurrence and extent of removal. As yet, only a few studies have begun to explore these possibilities. In this study, comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry was used to monitor individual naphthenic acids in an end pit lake in Alberta, Canada. NA profiles from different depths and sampling locations were compared to evaluate the spatial variations at the site.

  19. Contribution to the physical-mechanical study of cement CRS basis of dune-sand powder and other minerals

    NASA Astrophysics Data System (ADS)

    Dahmani, Saci; Kriker, Abdelouahed

    2016-07-01

    The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.

  20. Block 25 field, Chandeleur Sound, St. Bernard Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woltz, D.

    1980-01-01

    Two pay sands occur on a subtle, east-west elongated, rollover structure situated on the downthrown side of a down-to-the-coast growth fault. The 4800 Ft sand has a total original hydrocarbons column of ca. 30 ft, and the 5200 ft or BB sand has a total, original hydrocarbon column of ca. 55 ft. and is the primary producer in the field. The down-to-the-coast fault which trends east-west and lies on the northern side of the field apparently has contributed to the trapping of hydrocarbons in the structure. The geometry of the BB sand suggests that it is a bar type deposit.more » Apparently, hydrocarbons present in the pay sands have not been derived from the sediments directly above or below the reservoirs. The oil accumulated in the sand reservoirs probably migrated into the block 25 structure from peripheral areas.« less

  1. Changes in denudation rates and erosion processes in the transition from a low-relief, arid orogen interior to a high-relief, humid mountain-front setting, Toro Basin, southern Central Andes

    NASA Astrophysics Data System (ADS)

    Tofelde, S.; Düsing, W.; Schildgen, T. F.; Wittmann, H.; Alonso, R. N.; Strecker, M. R.

    2017-12-01

    In tectonically active mountain belts positive correlations between denudation rates and hillslope angles are commonly observed, supporting the notion that landscape morphology may reflect tectonic forcing. However, this relationship generally breaks down at 30°, when hillslopes reach threshold angles. Beyond this threshold, faster denudation may occur by an increased contribution from mass-wasting processes. We test this idea in the 4000 km2 Toro Basin, a fault-bounded basin in the Eastern Cordillera of the southern Central Andes. This N-S oriented basin is located between low-relief, arid conditions in the orogen interior (N) and a high-relief, humid setting at its fluvial outlet (S). We measured in-situ produced 10Be concentration in fluvial sediments, which can be converted into basin-mean denudation rates, assuming a spatially uniform contribution of sediment from the catchment. However, in landslide-influenced areas, this assumption is often violated. Previous studies have suggested that clast-size material is mainly contributed by mass-wasting processes, whereas sand is derived from a broad range of erosional processes. Hence, a combination of clast and sand samples can reveal information about the basin-mean denudation rate as well as the contribution of mass-wasting processes. We sampled 13 pebble (1-3 cm) and sand (250-500 µm) pairs across the basin. The sand-derived denudation rates increase from N to S, ranging from 0.010 mm/yr to 1.337 mm/yr, and reveal a non-linear positive correlation with median basin slope. The clast/sand ratios also increase from N to S, indicating amplified mass-wasting processes with increasing slopes. To test if our ratios represent a real shift in erosional processes, we mapped different erosional processes in the study area (e.g. deep-seated landslides, scree erosion,.., diffusion). We assume that today's distribution of processes has not changed over the integration time of 10Be derived denudation rates. This detailed erosion inventory indicates a shift in the dominant erosional processes with increasing clast/sand ratios and thus with increasing slopes. We provide empirical data supporting the hypothesis that higher denudation rates can be achieved by an increased contribution of mass-wasting processes after threshold slopes have been reached.

  2. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing.

    PubMed

    Monteiro, Carolina Cunha; Villegas, Luis Eduardo Martinez; Campolina, Thais Bonifácio; Pires, Ana Clara Machado Araújo; Miranda, Jose Carlos; Pimenta, Paulo Filemon Paolucci; Secundino, Nagila Francinete Costa

    2016-08-31

    Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing the constituents of Lu. intermedia native microbiota contribute to the knowledge regarding the bacterial community in an important sand fly vector and allow for further studies to better understand how the microbiota interacts with vectors of human parasites and to develop tools for biological control.

  3. Solvent extraction of oil-sand components for determination of trace elements by neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, F.S.; Filby, R.H.

    Instrumental neutron activation analysis was used to measure the concentrations of 30 elements in Athabasca oil sands and oil-sand components. The oil sands were separated into solid residue, bitumen, and fines by Soxhlet extraction with toluene-bitumen extract. The mineral content of the extracted bitumen was dependent on the treatment of the oil sand prior to extraction. The geochemically important and organically associated trace element contents of the bitumen (and asphaltenes) were determined by subtracting the mineral contributions from the total measured concentrations. The method allows analysis of the bitumen without the necessity of ultracentrifugation or membrane filtration, which might removemore » geochemically important components of the bitumen. The method permits classification of trace elements into organic and inorganic combinations.« less

  4. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is broadly similar in composition to the active dune sands, with low dust, and elevated Mg and Ni. The compositional differences between sand bodies indicate the influence of ongoing eolian sorting processes. Further, the Cr enrichment (found in most Gale sediments, most notably the linear dunes off-crest sands) reinforces evidence of local contributions.

  5. Modeling of flood-deposited sand distributions in a reach of the Colorado River below the Little Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Wiele, S.M.

    1998-01-01

    A release from Glen Canyon Dam during March-April 1996 was designed to test the effectiveness with which the riparian environment could be renewed with discharges greatly in excess of the normal powerplant-restricted maximum. Of primary concern was the rebuilding of sand deposits along the channel sides that are important to the flora and fauna along the river corridor and that provide the only camp sites for riverside visitors to the Grand Canyon National Park. Analysis of the depositional processes with a model of flow, sand transport, and bed evolution shows that the sand deposits formed along the channel sides early during the high flow were affected only slightly by the decline in suspended-sand concentrations over the course of the controlled flood. Modeling results suggest that the removal of a large sand deposit over several hours was not a response to declining suspended-sand concentrations. Comparisons of the controlled-flood deposits with deposits formed during a flood in January 1993 on the Little Colorado River that contributed sufficient sand to raise the suspended-sand concentrations to predam levels in the main stem show that the depositional pattern as well as the magnitude is strongly influenced by the suspended-sand concentrations.

  6. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Notmore » limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less

  7. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis andmore » leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less

  8. Case history of Yakin field: its development and sand control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawolo, N.; Krueger, R.F.; Maly, G.P.

    1983-01-01

    This paper deals with the development of the Yakin field in East Kalimantan, Indonesia, with emphasis on the sand control methods used. Implementation of an effective sand control program ensured the successful development of this field. Gravel-packed wells had substantially lower production decline rates than the initial completions without gravel packs. Control of sand production also has been demonstrated by the lack of sand problems during the 4 1/2 years since the sand control program was initiated. During this time there have been no submersible pump failures associated with sand production. The successful sand control program was achieved by amore » well-coordinated and cooperative effort of drilling, reservoir engineering, production research, and service company personnel. Establishment of communication among all people involved, starting early in the planning process and continuing through the rig operations to the final production phase, coupled with intensive training at all levels of responsibility, on-site supervision, and quality control were important factors in the success of the development program.« less

  9. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    EPA Science Inventory

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  10. Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates)

    NASA Astrophysics Data System (ADS)

    Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui

    This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.

  11. Correlation between landscape fragmentation and sandy desertification: a case study in Horqin Sandy Land, China.

    PubMed

    Ge, Xiaodong; Dong, Kaikai; Luloff, A E; Wang, Luyao; Xiao, Jun; Wang, Shiying; Wang, Qian

    2016-01-01

    The exact roles of landscape fragmentation on sandy desertification are still not fully understood, especially with the impact of different land use types in spatial dimension. Taking patch size and shape into consideration, this paper selected the Ratio of Patch Size and the Fractal Dimension Index to establish a model that reveals the association between the area of bare sand land and the fragmentation of different land use types adjacent to bare sand land. Results indicated that (1) grass land and arable land contributed the most to landscape fragmentation processes in the regions adjacent to bare sand land during the period 1980 to 2010. Grass land occupied 54 % of the region adjacent to bare sand land in 1980. The Ratio of Patch Size of grass land decreased from 1980 to 2000 and increased after 2000. The Fractal Dimension Index of grass increased during the period 1980 to 1990 and decreased after 1990. Arable land expanded significantly during this period. The Ratio of Patch Size of arable land increased from 1980 to 1990 and decreased since 1990. The Fractal Dimension Index of arable land increased from 1990 to 2000 and decreased after 2000. (2) The Ratio of Patch Size and the Fractal Dimension Index were significantly related to the area of bare sand land. The role of landscape fragmentation was not linear to sandy desertification. There were both positive and negative effects of landscape fragmentation on sandy desertification. In 1980, the Ratio of Patch Size and the Fractal Dimension Index were negatively related to the area of bare sand land, showing that the landscape fragmentation and regularity of patches contributed to the expansion of sandy desertification. In 1990, 2000, and 2010, the Ratio of Patch Size and the Fractal Dimension Index were mostly positively related to the area of bare sand land, showing the landscape fragmentation and regularity of patches contributed to the reversion of sandy desertification in this phase. The absolute values of the coefficients were the highest for grass land in the regression models, so that grass land had the most important influence on sandy desertification.

  12. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    USGS Publications Warehouse

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  13. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.

  14. A bright intra-dune feature on Titan and its implications for sand formation and transport

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon; Barnes, Jason W.; Rodriguez, Sebastien; Cornet, Thomas; Brossier, Jeremy; Soderblom, Jason M.; Le Mouélic, Stephane; Sotin, Christophe; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger Nelson; Nicholson, Philip D.; Baines, Kevin

    2017-10-01

    Organic sands cover much of Titan’s equatorial belt, gathered into longitudinal dunes about a kilometer wide and hundreds of kilometers long. At the end of the Cassini era, questions of how such a vast volume of saltable material is or was created on Titan remain unanswered. At least two possible mechanisms suggested for forming sand-sized particles involve liquids: (1) evaporite deposition and erosion and (2) flocculation of material within a lake. Transporting sand from the lakes and seas of Titan’s poles to the equatorial belt is not strongly supported by Cassini observations: the equatorial belt sits higher than the poles and no sheets or corridors of travelling sand have been identified. Thus, previous sites of equatorial surface liquids may be of interest for understanding sand formation, such as the suggested paleoseas Tui and Hotei Regio. A newly identified feature in the VIMS data sits within the Fensal dune field but is distinct from the surrounding sand. We investigate this Bright Fensal Feature (BFF) using data from Cassini VIMS and RADAR. Specifically, we find spectral similarities between the BFF and both sand and Hotei Regio. The RADAR cross sectional backscatter is similar to neighboring dark areas, perhaps sand covered interdunes. We use this evidence to constrain the BFF’s formation history and discuss how this intra-dune feature may contribute to the processes of sand transport and supply.

  15. A multi-isotope approach for assessing industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn; Christopher S. Ross

    2013-01-01

    Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3-N and NH4-N open field and throughfall deposition rates were determined at various...

  16. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    NASA Astrophysics Data System (ADS)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer thickness (r2=0,35 i r3=0,35) become limiting factors to the plants development. The diversity of shoot age increases with the bars age (r=0,78), but the new emerging shoots are suckers rather than newly established seedlings. The removal of ash-leaved maple in the early development stage is ineffective as this is a period when high number of seedlings develop. The removal at the later stage leads to damage done to sensitive herbaceous vegetation which is developed by then. Management of the invasive ash-leaved maple should be held on sand bars older than 10 years, the moment the competition of other trees and shrubs reduces the establishment of new seedlings. Removal of trees of diameter bigger than 10 cm will impair the plants expansion with minimal damage done to the habitat.

  17. Spontaneous revegetation vs. forestry reclamation in post-mining sand pits.

    PubMed

    Šebelíková, Lenka; Řehounková, Klára; Prach, Karel

    2016-07-01

    Vegetation development of sites restored by two different methods, spontaneous revegetation and forestry reclamation, was compared in four sand pit mining complexes located in the southern part of the Czech Republic, central Europe. The space-for-time substitution method was applied to collect vegetation records in 13 differently aged and sufficiently large sites with known history. The restoration method, age (time since site abandonment/reclamation), groundwater table, slope, and aspect in all sampled plots were recorded in addition to the visual estimation of percentage cover of all present vascular plant species. Multivariate methods and GLM were used for the data elaboration. Restoration method was the major factor influencing species pattern. Both spontaneously revegetated and forestry reclaimed sites developed towards forest on a comparable timescale. Although the sites did not significantly differ in species richness (160 species in spontaneously revegetated vs. 111 in forestry reclaimed sites), spontaneously revegetated sites tended to be more diverse with more species of conservation potential (10 Red List species in spontaneous sites vs. 4 Red List species in forestry reclaimed sites). These results support the use of spontaneous revegetation as an effective and low-cost method of sand pit restoration and may contribute to implementation of this method in practice.

  18. Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador

    PubMed Central

    Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio

    2017-01-01

    Abstract The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador. The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and “Leishmania sp. siamensis”. Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. PMID:28981860

  19. Characterization and distribution of metal and nonmetal elements in the Alberta oil sands region of Canada.

    PubMed

    Huang, Rongfu; McPhedran, Kerry N; Yang, Lingling; El-Din, Mohamed Gamal

    2016-03-01

    This review covers the characterization and distribution of metals and nonmetals in the Alberta oil sands region (AOSR) of Canada. The development of the oil sands industry has resulted in the release of organic, metal and nonmetal contaminants via air and water to the AOSR. For air, studies have found that atmospheric deposition of metals in the AOSR decreased exponentially with distance from the industrial emission sources. For water, toxic metal concentrations often exceeded safe levels leading to the potential for negative impacts to the receiving aquatic environments. Interestingly, although atmospheric deposition, surface waters, fish tissues, and aquatic bird eggs exhibited increasing level of metals in the AOSR, reported results from river sediments showed no increases over time. This could be attributed to physical and/or chemical dynamics of the river system to transport metals to downstream. The monitoring of the airborne emissions of relevant nonmetals (nitrogen and sulphur species) was also considered over the AOSR. These species were found to be increasing along with the oil sands developments with the resultant depositions contributing to nitrogen and sulphur accumulations resulting in ecosystem acidification and eutrophication impacts. In addition to direct monitoring of metals/nonmetals, tracing of air emissions using isotopes was also discussed. Further investigation and characterization of metals/nonmetals emissions in the AOSR are needed to determine their impacts to the ecosystem and to assess the need for further treatment measures to limit their continued output into the receiving environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Identification of discontinuous sand pulses on the bed of the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Buscombe, D.; Topping, D. J.

    2017-12-01

    Decades of research on alluvial sandbars and sand transport on the Colorado River in Grand Canyon has contributed to in-depth understanding of the sand budget and lead to management actions designed to rebuild eroded sandbars. However, some basic, but difficult to address, questions about the processes and rates of sand movement through the system still limit our ability to predict geomorphic responses. The coarse fraction of the bed is heterogeneous and varies among boulders, cobble, gravel, and bedrock. Sand covers these substrates in patches of variable size and thickness, fills interstices to varying degrees, and forms mixed sand/coarse bed configurations such as linear stripes. Understanding the locations of sand accumulation, the quantities of sand contained in those locations, and the processes by which sand is exchanged among depositional locations is needed to predict the morphological response of sandbars to management actions, such as the controlled flood releases, and to predict whether sandbars are likely to increase or decrease in size over long (i.e. decadal) time periods. Here, we present evidence for the downstream translation of the sand component of tributary sediment inputs as discontinuous sand pulses. The silt and clay (mud) fraction of sediment introduced episodically by seasonal floods from tributary streams is transported entirely in suspension and moves through the 400 km series of canyons in a few days. The sand fraction of this sediment, which is transported on the bed and in suspension, moves downstream in sand pulses that we estimate range in length from a few km to tens of km. Owing to the complex geomorphic organization, the sand pulses are not detectable as coherent bed features; each individual sand pulse is comprised of many isolated storage locations, separated by rapids and riffles where sand cover is sparse. The presence of the sand pulses is inferred by the existence of alternating segments of sand accumulation and depletion computed from repeat maps of the channel. Improved understanding of the behavior of these sand pulses may be used to adjust the timing, magnitude, and duration of controlled floods to maximize potential for deposition on sandbars in different segments of the 450 km-long Grand Canyon.

  1. Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, México

    NASA Astrophysics Data System (ADS)

    Madhavaraju, J.; Tom, Milu; Lee, Yong IL; Balaram, V.; Ramasamy, S.; Carranza-Edwards, A.; Ramachandran, A.

    2016-11-01

    Textural, heavy minerals and geochemical (major, trace and rare earth elements) studies were undertaken on the sands from Puerto Peñasco, Desemboque and Bahia Kino beaches to determine the provenance and tectonic settings. Puerto Peñasco and Bahia Kino sands are coarse grained to fine grained, while Desemboque sands are fine grained. Geochemically, these sands are classified as arkose. The sands are depleted in most of the trace elements relative to upper continental crust (UCC), except for few trace elements (Sr, Rb and Ba), which are slightly enriched. High ΣREE content are observed in the Desemboque sands (94.43 ± 6.9) than in the Puerto Peñasco and Bahia Kino sands (51.58 ± 17.06; 72.38 ± 9.27; respectively). The chemical index of alteration (CIA) values of Puerto Peñasco, Desemboque and Bahia Kino sands (PP: 42 to 50; DE: 48 to 50; BK: 44 to 50: respectively) indicate the low intensity of chemical weathering in the source rocks. The tectonic discriminant-function-based multidimensional diagram shows arc and rift settings for Puerto Peñasco sands whereas rift setting for both Desemboque and Bahia Kino sands. The heavy mineral assemblage, immobile trace elements, REE patterns, elemental ratios such Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, Th/Co, and Cr/Th, various bivariate and ternary plots indicate the contribution of sediments from felsic composition. This interpretation is supported by the comparison of REE patterns of the Puerto Peñasco, Desemboque and Bahia Kino sands with the potential source rocks exposed nearby the study areas.

  2. Bedform development and morphodynamics in mixed cohesive sediment substrates: the importance of winnowing and flocculation

    NASA Astrophysics Data System (ADS)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2016-04-01

    There remains a lack of process-based knowledge of sediment dynamics within flows over bedforms generated in complex mixtures of cohesionless sand and biologically-active cohesive muds in natural estuarine flow systems. The work to be presented forms a part of the UK NERC "COHesive BEDforms (COHBED)" project which aims to fill this gap in knowledge. Herein results from a field survey in sub-tidal zone of Dee estuary (NW, England) and a set of large-scale laboratory experiments, conducted using mixtures of non-cohesive sands, cohesive muds and Xanthan gum (as a proxy for the biological stickiness of Extracellular Polymeric Substances (EPS)) will be presented. The results indicate the significance of biological-active cohesive sediments in controlling winnowing rates and flocculation dynamics, which contributes significantly to rates of bedform evolution.

  3. Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain

    PubMed Central

    Martín-Martín, Inés

    2013-01-01

    Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166

  4. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

    PubMed Central

    Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.

    2016-01-01

    Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR. PMID:27135946

  5. Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada.

    PubMed

    Huang, Rongfu; Chen, Yuan; Meshref, Mohamed N A; Chelme-Ayala, Pamela; Dong, Shimiao; Ibrahim, Mohamed D; Wang, Chengjin; Klamerth, Nikolaus; Hughes, Sarah A; Headley, John V; Peru, Kerry M; Brown, Christine; Mahaffey, Ashley; Gamal El-Din, Mohamed

    2018-01-01

    This work reports the monitoring and assessment of naphthenic acids (NAs) in oil sands process-affected water (OSPW), Pleistocene channel aquifer groundwater (PLCA), and oil sands basal aquifer groundwater (OSBA) from an active oil sands development in Alberta, Canada, using ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) analysis with internal standard (ISTD) and external standard (ESTD) calibration methods and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for compositional analysis. PLCA was collected at 45-51 m depth and OSBA was collected at 67-144 m depth. Results of O x -NA concentrations follow an order as OSPW > OSBA > PLCA, indicating that occurrences of NAs in OSBA were likely related to natural bitumen deposits instead of OSPW. Liquid-liquid extraction (LLE) was applied to avoid the matrix effect for the ESTD method. Reduced LLE efficiency accounted for the divergence of the ISTD and ESTD calibrated results for oxidized NAs. Principle component analysis results of O 2 and O 4 species could be employed for differentiation of water types, while classical NAs with C13-15 and Z (-4)-(-6) and aromatic O 2 -NAs with C16-18 and Z (-14)-(-16) could be measured as marker compounds to characterize water sources and potential temporal variations of samples, respectively. FTICR-MS results revealed that compositions of NA species varied greatly among OSPW, PLCA, and OSBA, because of NA transfer and transformation processes. This work contributed to the understanding of the concentration and composition of NAs in various types of water, and provided a useful combination of analytical and statistical tools for monitoring studies, in support of future safe discharge of treated OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sorted bedforms developed on sandy lobes fed by small ephemeral streams (Catalan continental shelf)

    NASA Astrophysics Data System (ADS)

    Durán, R.; Guillén, J.; Muñoz, A.; Guerrero, Q.

    2016-12-01

    The morphology and sedimentological characteristics of sorted bedforms identified in the Catalan continental shelf (NW Mediterranean Sea) have been characterized using multibeam echosounder data and sediment samples collected in 2013 within the FORMED project. Bathymetric data was compared with previous data gathered in 2004 within the ESPACE project to assess the decadal stability of these bedforms. The sorted bedforms were observed on the inner shelf at water depths from 10 to 40 m, along a coastal stretch of more than 3 km. They are associated with elongated patches of low backscatter, corresponding to fine sand. The fine-grained sediment patches are located off small bays fed by short, intermittent streams, extending down to 40 m water depth. The sorted bedforms exhibit elongated shapes with subtle relief (up to 1 m) and are oriented nearly perpendicular to the shoreline. In cross-section, the sorted bedforms display lateral symmetry in bathymetric relief and backscatter, with high backscatter corresponding to poorly sorted coarse sand (median size of 0.55-0.96 mm) centered on the bathymetric depression, and low backscatter consisting of well-sorted fine to medium sand (median sized of 0.22-0.35 mm) on the crest. The local input of well-sorted fine sand supplied by ephemeral streams over the coarse sand domain of the infralittoral prograding wedge contributes to the bed sediment heterogeneity (mixture of sediment), which is further reorganized into sorted bedforms. The sorted bedforms are better developed in deeper waters (20-40 m) than near the shoreline, probably due to stronger wave forcing in the shallower shelf that prevents the maintenance of these morphologies. At a decadal time scale, the morphological evolution of these bedforms indicates that they are persistent features, showing small changes in their boundaries, which is in agreement with previous observations and numerical simulations that highlighted the persistence and long-term stability of sorted bedforms at water depths greater than 15-20 m over annual or even decadal timescales.

  7. Desert Patterns

    NASA Image and Video Library

    2017-12-08

    Desert Patterns - April 13th, 2003 Description: Seen through the "eyes" of a satellite sensor, ribbons of Saharan sand dunes seem to glow in sunset colors. These patterned stripes are part of Erg Chech, a desolate sand sea in southwestern Algeria, Africa, where the prevailing winds create an endlessly shifting collage of large, linear sand dunes. The term "erg" is derived from an Arabic word for a field of sand dunes. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. [New records of phlebotomine sand flies (Diptera: Psychodidae) near the Amoya River in Chaparral, Tolima].

    PubMed

    Contreras, María Angélica; Vivero, Rafael José; Bejarano, Eduar Elías; Carrillo, Lina María; Vélez, Iván Darío

    2012-06-01

    In Colombia, the diversity of phlebotomine sand flies is high, with 162 recorded species, and which include vectors of Leishmania spp. To identify the sand fly species of medically importance in the area of influence from Amoyá River Hydroelectric Project, Colombia. Sand flies were collected with CDC light traps, Shannon traps and sticky traps, from 15 villages in Chaparral County,Tolima. A total of 1,077 adult sand fly specimens were collected. Thirteen species were found in the genus Lutzomyiaand one species in the genus Warileya.Among the Lutzomyia species, three species--Lutzomyia longiflocosa, Lutzomyia columbiana and Lutzomyia nuneztovari--are important for their epidemiological history.Lutzomyia suapiensis was a new record for Colombia, and Warileya rotundipennis was recorded for the first time in Tolima. This study contributed to an increased knowledge of Colombian sand flies in terms of (1) expanding the geographical distribution of members of the subfamily Phlebotominae, (2) gaining estimates of species-richness and species associations in central Colombia, and (3) providing a better understanding of epidemiology of leishmaniasis in the Chaparral area.

  9. Hydrology of the Jackson, Tennessee, area and delineation of areas contributing ground water to the Jackson well fields

    USGS Publications Warehouse

    Bailey, Z.C.

    1993-01-01

    A comprehensive hydrologic investigation of the Jackson area in Madison County, Tennessee, was conducted to provide information for the development of a wellhead-protection program for two municipal well fields. The136-square-mile study area is between the Middle Fork Forked Deer and South Fork Forked Deer Rivers and includes the city of Jackson. The formations that underlie and crop out in the study area, in descending order, are the Memphis Sand, Fort Pillow Sand, and Porters Creek Clay. The saturated thickness of the Memphis Sand ranges from 0 to 270 feet; the Fort Pillow Sand, from 0 to 180 feet. The Porters Creek Clay, which ranges from 130 to 320 feet thick, separates a deeper formation, the McNairy Sand, from the shallower units. Estimates by other investigators of hydraulic conductivity for the Memphis Sand range from 80 to 202 feet per day. Estimates of transmissivity of the Memphis Sand range from 2,700 to 33,000 feet squared per day. Estimates of hydraulic conductivity for the Fort Pillow Sand range from 68 to 167 feet per day, and estimates of transmissivity of that unit range from 6,700 to 10,050 feet squared per day. A finite-difference, ground-water flow model was calibrated to steady-state hydrologic conditions of April 1989, and was used to simulate hypothetical pumping plans for the North and South Well Fields. The aquifers were represented as three layers in the model to simulate the ground-water flow system. Layer 1 is the saturated part of the Memphis Sand; layer 2 is the upper half of the Fort Pillow Sand; and layer 3 is the lower half of the Fort Pillow Sand. The steady-state water budget of the simulated system showed that more than half of the inflow to the ground-water system is underflow from the model boundaries. Most of this inflow is discharged as seepage to the rivers and to pumping wells. Slightly less than half of the inflow is from areal recharge and recharge from streams. About 75 percent of the discharge from the system is into the streams, lakes, and out of the model area through a small quantity of ground-water underflow. The remaining 25 percent is discharge to pumping wells. The calibrated model was modified to simulate the effects on the ground-water system of three hypothetical pumping plans that increased pumping from the North Well Field to up to 20 million gallons per day, and from the South Well Field, to up to 15 million gallons per day. Maximum drawdown resulting from the 20 million-gallons-per-day rate of simulated pumping was 44.7 feet in a node containing a pumping well, and maximum drawdown over an extended area was about 38 feet. Up to 34 percent of ground-water seepage to streams in the calibrated model was intercepted by pumping in the simulations. A maximum of 9 percent more water was induced through model boundaries. A particle-tracking program, MODPATH, was used to delineate areas contributing water to the North and South Well Fields for the calibrated model and the three pumping simulations, and to estimate distances for different times-of-travel to the wells. The size of the area contributing water to the North Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.8 miles for the calibrated model and pumping plan 1. The size of the area for pumping plan 2 is 1.1 by 2.0 miles and, for pumping plan 3, 1.6 by 2.2 miles. The range of distance for l-year time-of-travel to individual wells is 200 to 800 feet for the calibrated model and plan 1, and 350 to 950 feet for plans 2 and 3. The size of the area contributing water to the South Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.4 miles for the calibrated model. The size of the area for pumping plans 1 and 3 is 1.6 by 2.2 miles and, for pumping plan 2, 1.1 by 1.7 miles. The range of distance for l-year time-of-travel to individual wells is 120 to 530 feet for the calibrated model, 670 to 1,300 feet for pumping plans 1 and 3, and 260 to 850 feet

  10. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica

    PubMed Central

    Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.

    2016-01-01

    Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591

  11. PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios.

    PubMed

    Evans, Marlene; Davies, Martin; Janzen, Kim; Muir, Derek; Hazewinkel, Rod; Kirk, Jane; de Boer, Dirk

    2016-06-01

    Oil sands activities north of Fort McMurray, Alberta, have intensified in recent years with a concomitant debate as to their environmental impacts. The Regional Aquatics Monitoring Program and its successor, the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM), are the primary aquatic programs monitoring this industry. Here we examine sediment data (collected by Ekman grabs) to investigate trends and sources of polycyclic aromatic hydrocarbons (PAHs), supplementing these data with sediment core studies. Total PAH (ΣPAH) concentrations were highest at Shipyard Lake (6038 ± 2679 ng/g) in the development center and lower at Isadore's Lake (1660 ± 777 ng/g) to the north; both lakes are in the Athabasca River Valley and lie below the developments. ΣPAH concentrations were lower (622-930 ng/g) in upland lakes (Kearl, McClelland) located further away from the developments. ΣPAH concentrations increased at Shipyard Lake (2001-2014) and the Ells River mouth (1998-2014) but decreased in nearshore areas at Kearl Lake (2001-2014) and a Muskeg River (2000-2014) site. Over the longer term, ΣPAH concentrations increased in Kearl (1934-2012) and Sharkbite (1928-2010) Lakes. Further (200 km) downstream in the Athabasca River delta, ΣPAH concentrations (1029 ± 671 ng/g) increased (1999-2014) when %sands were included in the regression model; however, 50 km to the east, concentrations declined (1926-2009) in Lake Athabasca. Ten diagnostic ratios based on anthracene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, indeno[123-cd]pyrene, dibenz[a,h]anthracene, dibenzothiophene and retene were examined to infer spatial and temporal trends in PAH sources (e.g., combustion versus petrogenic) and weathering. There was some evidence of increasing contributions of unprocessed oil sands and bitumen dust to Shipyard, Sharkbite, and Isadore's Lakes and increased combustion sources in the Athabasca River delta. Some CCME interim sediment quality guidelines were exceeded, primarily in Shipyard Lake and near presumed natural bitumen sources. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach.

    PubMed

    Whitman, Richard L; Nevers, Meredith B

    2003-09-01

    Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.

  13. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health

    PubMed Central

    Whitman, Richard; Harwood, Valerie J.; Edge, Thomas A.; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J.; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M.

    2014-01-01

    SUMMARY Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area. PMID:25383070

  14. Sand transportation and reverse patterns over leeward face of sand dune

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux decreases with height in the reversed direction. The height of 0.5 H is the height of vortex core in the reversed flow region. The vortex core is a critical point in the flow region where few particles are transited. In the reversed region, the reversed mass flux of sand particles is 25% of the mass flux in the flow direction. This research may contribute to scientific understanding of the mechanisms of sand motion and wind flow over leeward of dune and it is likely to be significant in desertification control.

  15. Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador.

    PubMed

    Quiroga, Cristina; Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio

    2017-11-07

    The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador.The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and "Leishmania sp. siamensis". Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    NASA Astrophysics Data System (ADS)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  17. Application of the target lipid model and passive samplers to characterize the toxicity of bioavailable organics in oil sands process-affected water.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; Butler, Josh David; Letinski, Daniel J; Frank, Richard A; Hewitt, L Mark; Bartlett, Adrienne J; Gillis, Patricia Leigh; Marentette, Julie R; Parrott, Joanne L; Hughes, Sarah A; Guest, Rodney; Bekele, Asfaw; Zhang, Kun; Morandi, Garrett; Wiseman, Steve B; Giesy, John P

    2018-06-14

    Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g. naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.

  18. Vertical distribution of heavy metals associated with the coarse and medium sand fraction in the forest soils of European Russia

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2015-04-01

    To accurately model metal behavior in soils, studies on possible geochemical changes occurring within a specific grain-size fraction during pedogenesis are needed. In the present study we analyze concentrations and vertical distributions of heavy metals associated with the coarse and medium sand fraction (1-0.25mm) for soils in the middle Protva basin, situated in the mixed forest zone of European Russia. Two soil types were analyzed: well-differentiated sod-podzolic soils (podzoluvisols) with AEBtC-profile, the major soil type in the study area occupying the interfluve's sub-horizontal surfaces and gentle slopes; and poorly differentiated soddy soils of subordinate positions: soddy soils, soddy gleyic soils and soddy soils with buried fluvial soil horizons. In total 27 samples, collected from 4 soil profiles, were analyzed for Fe, Ti, Mn, Cu, Ni, Co, Cr, Zn, Pb and Zr contents in the partitioned coarse and medium sand fraction. The median concentrations calculated are for Fe - 4%, for Mn - 760 ppm; for Ti - 980 ppm; for Zr - 130 ppm; for Zn - 30 ppm; and for Cu, Pb, Co, Cr, Ni - 67, 13, 11, 38, 33 ppm, respectively. The metal concentrations in total sample population vary differently, with the variation coefficients diminishing from Mn (171%) and Fe (112%) to Zr, Ni and Pb (53%). Comparing the chemical composition of coarse and medium sand fractions in the vertical sequence of horizons within a soil profile showed that in the sod-podzolic soil developed on mantle loam metals are enriched in the sand fraction of the upper A and AE horizons. The second but less distinct maximum levels for Cu, Ni, Fe, Cr, Mn and Co were found in the subsoil with gleyic features (Cg horizon). In soddy soils developed on diluvium on the steep section of the slope the studied sand fraction generally showed larger amounts of metals in A and AC horizons. In similar soils with gleyic features the concentrations of Fe, Cr, Co, Ni, Cu are the highest in the uppermost horizon, while the levels of Mn, Pb, Ti, Zr are higher in the ACg horizon. In the genetically heterogeneous soil profile combining horizons typical for contemporary soddy soils and buried fluvial soils the metal concentrations depend on the genesis of the sand fraction, with higher concentrations found in the contemporary soil horizons and lower concentrations in the buried fluvial soils. Thus, our results imply that during soil formation, under the influence of soil and geochemical processes conditioned by a humid temperate climate, the composition of the sand fraction in relation to metal contents changes. In most cases the enrichment of the sand fraction with a wide spectrum of metals was found in upper soil horizons of the studied soil types where humus accumulation, active biogeochemical processes and sand grain weathering takes place. Periodic saturation of the soils with water might also have contributed to metal accumulation in the sand fraction through the formation of iron and manganese compounds which can serve as sinks for metals.

  19. Short-term changes in mobile dunes at Port Alfred, South Africa

    NASA Astrophysics Data System (ADS)

    Lubke, Roy A.; Sugden, Jean

    1990-03-01

    Development along the western beachfront of Port Alfred, which is situated along a sandy shoreline, increased markedly in the 1960s as the coastal town became a popular holiday resort. This development included the removal of coastal vegetation, which resulted in the destabilization of dunes and migration of sand westerly onto the road, West Beach parking lot, and lawns of the cabanas. Sand traps were constructed to collect sand blowing across the dunes over set periods, and the net sand movement along the mobile dune belt was calculated using Hunter's equation. The dunes show an easterly movement of sand at a rate of 3.5 m/yr, which is comparable with figures recorded along other areas of this coastline. Considering the wind regime and amount of sand movement along this coast, it is inappropriate to clear vegetation and develop within the dune region.

  20. India National Gas Hydrate Program Expedition 02 Technical Contributions

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  1. Seismic reflection and vibracoring studies of the continental shelf offshore central and western Long Island, New York

    USGS Publications Warehouse

    Kelly, W.M.; Albanese, J.R.; Coch, N.K.; Harsch, A.A.

    1999-01-01

    The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughs is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic units identified are an upper, generally oxidized, nearshore facies, an underlying fine- to medium-sand and silty-clay unit considered to be an estuarine facies, and a lower, coarse-grained deeply oxidized, cross-laminated pre-Holocene unit. Grain-size analysis shows that medium- to fine-grained sand makes up most (68-99%) of the surficial sediments. Gravel exists in trace amounts up to 19%. Silt ranges between 3% and 42% and clay ranges from 1% to 10%.The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughts is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic un

  2. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  3. The microbiology of oil sands tailings: past, present, future.

    PubMed

    Foght, Julia M; Gieg, Lisa M; Siddique, Tariq

    2017-05-01

    Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Slithering on sand: kinematics and controls for success on granular media

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin E.; Zhang, Tingnan; Dai, Jin; Gong, Chaohui; Yu, Miao; Astley, Henry C.; Travers, Matthew; Choset, Howie; Goldman, Daniel I.

    Previously, we studied the subsurfacelocomotion of undulatory sand-swimming snakes and lizards; using empirical drag response of GM to subsurface intrusion of simple objects allowed us to develop a granular resistive force theory (RFT) to model the locomotion and predict optimal movement patterns. However, our knowledge of the physics of GM at the surface is limited; this makes it impossible to determine how the desert-dwelling snake C. occipitalis moves effectively (0.45 +/-0.04 bodylengths/sec) on the surface of sand .We combine organism biomechanics studies, GM drag experiments, RFT calculations and tests of a physical model (a snake-like robot), to reveal how multiple factors acting together contribute to slithering on sandy surfaces. These include the kinematics--targeting an ideal waveform which maximizes speed while minimizing joint-level torque, the ability to modulate ground interactions by lifting body segments, and the properties of the GM. Based on the sensitive nature of the relationship between these factors, we hypothesize that having an element of force-based control, where the waveform is modulated in response to the forces acting between the body and the environment, is necessary for successful locomotion on yielding substrates.

  5. Deep-water bedforms induced by refracting Internal Solitary Waves

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  6. The importance of sand in the formation of avulsion channels within experimental fans that develop from sediment mixtures of mud and sand

    NASA Astrophysics Data System (ADS)

    Iscen, N.; Strom, K.

    2017-12-01

    Autogenic channel migration and avulsion has long been recognized as important drivers of alluvial fan dynamics. In the literature, several field studies have documented that the presence and the amount of sand transport through a channel is important for channel incision in alluvial fans and deltas. In our experiments, we present the general autogenic avulsion cycle of experimental alluvial fans with mixtures of cohesive sediment and sand with a range of boundary conditions, and we detail the importance of mobile sand fraction in the development of channels that lead to avulsion. Experimental observations demonstrate that new channels form at topographically low regions within the floodplain providing that sand is transported to these topographic lows due to overbank flow or levee breaching. In addition to the sediment transported from upstream, erosion of a previous deposit and an ongoing backfilling nearby are observed as the possible sources of sand getting into the ghost channels. We explore whether the presence of sand is important for channel development because it increases abrasion of the channel or because it changes the roughness characteristics of the flow. We also examine the affect of sediment and water supply change on the newly described channelization process and link distinctive channel morphologies to different stages of described channel development and the avulsion process.

  7. The Potential Use of Forensic DNA Methods Applied to Sand Fly Blood Meal Analysis to Identify the Infection Reservoirs of Anthroponotic Visceral Leishmaniasis.

    PubMed

    Inbar, Ehud; Lawyer, Philip; Sacks, David; Podini, Daniele

    2016-05-01

    In the Indian sub-continent, visceral leishmaniasis (VL), also known as kala azar, is a fatal form of leishmaniasis caused by the kinetoplastid parasite Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. VL is prevalent in northeast India where it is believed to have an exclusive anthroponotic transmission cycle. There are four distinct cohorts of L. donovani exposed individuals who can potentially serve as infection reservoirs: patients with active disease, cured VL cases, patients with post kala azar dermal leishmaniasis (PKDL), and asymptomatic individuals. The relative contribution of each group to sustaining the transmission cycle of VL is not known. To answer this critical epidemiological question, we have addressed the feasibility of an approach that would use forensic DNA methods to recover human DNA profiles from the blood meals of infected sand flies that would then be matched to reference DNA sampled from individuals living or working in the vicinity of the sand fly collections. We found that the ability to obtain readable human DNA fingerprints from sand flies depended entirely on the size of the blood meal and the kinetics of its digestion. Useable profiles were obtained from most flies within the first 24 hours post blood meal (PBM), with a sharp decline at 48 hours and no readable profiles at 72 hours. This early time frame necessitated development of a sensitive, nested-PCR method compatible with detecting L. donovani within a fresh, 24 hours blood meal in flies fed on infected hamsters. Our findings establish the feasibility of the forensic DNA method to directly trace the human source of an infected blood meal, with constraints imposed by the requirement that the flies be recovered for analysis within 24 hours of their infective feed.

  8. Studies on the sand fly fauna (Diptera: Psychodidae) in high-transmission areas of cutaneous leishmaniasis in the Republic of Suriname

    PubMed Central

    2013-01-01

    Background Sand flies (Diptera: Psychodidae) are the vectors of Leishmania parasites, the causative agents of leishmaniasis. Cutaneous leishmaniasis is an increasing public health problem in the Republic of Suriname and is mainly caused by Leishmania (Vianna) guyanensis, but L. (V.) braziliensis, L. (L.) amazonensis, and L. (V.) naiffi also infect humans. Transmission occurs predominantly in the forested hinterland of the country. Information regarding the potential vectors of leishmaniasis in Suriname is limited. This study aims to broaden the knowledge about vectors involved in the transmission of cutaneous leishmaniasis in Suriname. For this purpose, sand flies were characterized in various foci of cutaneous leishmaniasis in the country, the districts of Para, Brokopondo, and Sipaliwini. Methods Sand flies were collected in areas around mining plots and villages using CDC light traps in the period between February 2011 and March 2013. They were categorized by examination of the spermathecea (females) and the external genitalia (males). Results A total of 2,743 sand fly specimens belonging to 34 different species were captured, including four species (Lutzomyia aragaoi, Lu. ayrozai, Lu. damascenoi, and Lu. sordellii) that had never before been described for Suriname. Five percent of the catch comprised Lu. squamiventris sensu lato, one female of which was positive with L. (V.) braziliensis and was captured in a gold mining area in Brokopondo. Other sand fly species found positive for Leishmania parasites were Lu. trichopyga, Lu. ininii, and Lu. umbratilis, comprising 32, 8, and 4%, respectively, of the catch. These were captured at gold mining areas in Brokopondo and Sipaliwini, but the Leishmania parasites they had ingested could not be identified due to insufficient amounts of DNA. Conclusions The sand fly fauna in Suriname is highly diverse and comprises Lutzomyia species capable of transmitting Leishmania parasites. Four new Lutzomyia species have been found, and four species - Lu. squamiventris (s.l.), Lu. trichopyga, Lu. ininii, and Lu. umbratilis - have been found to harbor Leishmania parasites. The latter were among the most abundant species captured. These observations may contribute to the understanding of leishmaniasis transmission and the development of control programs in Suriname. PMID:24499490

  9. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks.

    PubMed

    Hedegaard, Mathilde J; Arvin, Erik; Corfitzen, Charlotte B; Albrechtsen, Hans-Jørgen

    2014-11-15

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters--removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 μg/L to below the detection limit of 0.01 μg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and (14)C-labelled MCPP at an initial concentration of 0.2 μg/L. After 24 h, 79-86% of the initial concentration of MCPP was removed. Sorption removed 11-15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13-18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Altitude of the top of the Sparta Sand and Memphis Sand in three areas of Arkansas

    USGS Publications Warehouse

    Pugh, Aaron L.; Westerfield, Paul W.; Gonthier, Gerard; Poynter, David T.

    1998-01-01

    The Sparta Sand and Memphis Sand form the second most productive aquifer in Arkansas. The Sparta Sand and Memphis Sand range in thick- ness from 0 to 900 feet, consisting of fine- to medium-grained sands interbedded with layers of silt, clay, shale, and minor amounts of lignite. Within the three areas of interest, the top surface of the Sparta Sand and Memphis Sand dips regionally east and southeast towards the axis of the Mississippi Embayment syncline and Desha Basin. Local variations in the top surface may be attributed to a combination of continued development of structural features, differential compaction, localized faulting, and erosion of the surface prior to subsequent inundation and deposition of younger sediments.

  11. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    NASA Astrophysics Data System (ADS)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  12. Survival and replication of Mycoplasma species in recycled bedding sand and association with mastitis on dairy farms in Utah.

    PubMed

    Justice-Allen, A; Trujillo, J; Corbett, R; Harding, R; Goodell, G; Wilson, D

    2010-01-01

    Mycoplasma spp., usually Mycoplasma bovis, are important bovine pathogens that can cause mastitis, metritis, pneumonia, and arthritis. The currently documented routes of transmission of Mycoplasma spp. are through contaminated milking equipment and by direct animal contact. The existence of environmental sources for Mycoplasma spp. and their role in transmission and clinical disease is poorly characterized. Mycoplasma spp. (confirmed as M. bovis in 2 of 4 samples tested using PCR) was found in recycled bedding sand originating from a dairy experiencing an outbreak of clinical mycoplasma mastitis. Mycoplasma spp. were subsequently found in bedding sand from 2 other dairies whose bulk-tank milk was mycoplasma-positive. The association between the occurrence of Mycoplasma spp. in recycled bedding sand and mycoplasma mastitis in cows was further investigated using a pile of recycled sand from dairy 1. Study objectives included the determination of factors associated with the concentration of Mycoplasma spp. in recycled bedding sand and the duration of survival of mycoplasmas in the sand. We also evaluated the efficacy of 2 disinfectants at 2 different concentrations each for the elimination of Mycoplasma spp. from contaminated sand. Mycoplasma spp. survived in the sand pile for 8 mo. The concentration of Mycoplasma spp. within the sand pile was directly related to temperature and precipitation. It was also positively associated with the growth of gram-negative microorganisms, suggesting the possibility of the formation of a biofilm. Ideal temperatures for replication of Mycoplasma spp. occurred between 15 and 20 degrees C. Moisture in the sand and movement of the sand pile also appeared to play a role in replication of mycoplasmas. We found that 0.5% sodium hypochlorite or 2% chlorhexidine were efficacious in eliminating Mycoplasma spp. from contaminated bedding sand. Recycled bedding sand could be an environmental source of Mycoplasma spp., including M. bovis, infections in dairy cows. Future studies should investigate the contribution of this environmental source to the epidemiology of mycoplasma infections in dairy cattle. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Acoustic Scattering from Sand Dollars (Dendraster excentricus): Modeling as High Aspect Ratio Oblate Objects and Comparison to Experiment

    DTIC Science & Technology

    2008-09-01

    results. In Stanton and Chu (2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of...Oceanographic Institution Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low...grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor

  14. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  15. Critical State of Sand Matrix Soils

    PubMed Central

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  16. Has Alberta Oil Sands Development Altered Delivery of Polycyclic Aromatic Compounds to the Peace-Athabasca Delta?

    PubMed Central

    Hall, Roland I.; Wolfe, Brent B.; Wiklund, Johan A.; Edwards, Thomas W. D.; Farwell, Andrea J.; Dixon, D. George

    2012-01-01

    Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed. PMID:23049946

  17. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum.

    PubMed

    Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D; Ajami, Nadim J; Petrosino, Joseph F; Meneses, Claudio; Kirby, John R; Valenzuela, Jesus G; Kamhawi, Shaden; Wilson, Mary E

    2017-01-17

    The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans through the bite of the sand fly Lutzomyia longipalpis Development of the parasite to its virulent metacyclic state occurs in the sand fly gut. In this study, the microbiota within the Lu. longipalpis midgut was delineated by 16S ribosomal DNA (rDNA) sequencing, revealing a highly diverse community composition that lost diversity as parasites developed to their metacyclic state and increased in abundance in infected flies. Perturbing sand fly gut microbiota with an antibiotic cocktail, which alone had no effect on either the parasite or the fly, arrested both the development of virulent parasites and parasite expansion. These findings indicate the importance of bacterial commensals within the insect vector for the development of virulent pathogens, and raise the possibility that impairing the microbial composition within the vector might represent a novel approach to control of vector-borne diseases. Copyright © 2017 Kelly et al.

  18. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    NASA Astrophysics Data System (ADS)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  19. Hand-mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois

    USGS Publications Warehouse

    Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.

    2009-01-01

    Beach sand contains fecal indicator bacteria, often in densities greatly exceeding the adjacent swimming waters. We examined the transferability of Escherichia coli and F+ coliphage (MS2) from beach sand to hands in order to estimate the potential subsequent health risk. Sand with high initial E. coli concentrations was collected from a Chicago beach. Individuals manipulated the sand for 60 seconds, and rinse water was analysed for E. coli and coliphage. E. coli densities transferred were correlated with density in sand rather than surface area of an individual's hand, and the amount of coliphage transferred from seeded sand was different among individuals. In sequential rinsing, percentage reduction was 92% for E. coli and 98% for coliphage. Using dose-response estimates developed for swimming water, it was determined that the number of individuals per thousand that would develop gastrointestinal symptoms would be 11 if all E. coli on the fingertip were ingested or 33 if all E. coli on the hand were ingested. These results suggest that beach sand may be an important medium for microbial exposure; bacteria transfer is related to initial concentration in the sand; and rinsing may be effective in limiting oral exposure to sand-borne microbes of human concern.

  20. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.

    PubMed

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-09-01

    Nanoscale zero-valent iron (NZVI) particles can be used for in situ groundwater remediation. The spatial particle distribution plays a very important role in successful and efficient remediation, especially in heterogeneous systems. Initial sand permeability (k 0) influences on spatial particle distributions were investigated and quantified in homogeneous and heterogeneous systems within the presented study. Four homogeneously filled column experiments and a heterogeneously filled tank experiment, using different median sand grain diameters (d 50), were performed to determine if NZVI particles were transported into finer sand where contaminants could be trapped. More NZVI particle retention, less particle transport, and faster decrease in k were observed in the column studies using finer sands than in those using coarser sands, reflecting a function of k 0. In heterogeneous media, NZVI particles were initially transported and deposited in coarse sand areas. Increasing the retained NZVI mass (decreasing k in particle deposition areas) caused NZVI particles to also be transported into finer sand areas, forming an area with a relatively homogeneous particle distribution and converged k values despite the different grain sizes present. The deposited-particle surface area contribution to the increasing of the matrix surface area (θ) was one to two orders of magnitude higher for finer than coarser sand. The dependency of θ on d 50 presumably affects simulated k changes and NZVI distributions in numerical simulations of NZVI injections into heterogeneous aquifers. The results implied that NZVI can in principle also penetrate finer layers.

  1. Ocean Sand, Bahamas

    NASA Image and Video Library

    2011-04-20

    NASA image acquired January 17, 2001 Though the above image may resemble a new age painting straight out of an art gallery in Venice Beach, California, it is in fact a satellite image of the sands and seaweed in the Bahamas. The image was taken by the Enhanced Thematic Mapper plus (ETM+) instrument aboard the Landsat 7 satellite. Tides and ocean currents in the Bahamas sculpted the sand and seaweed beds into these multicolored, fluted patterns in much the same way that winds sculpted the vast sand dunes in the Sahara Desert. Image courtesy Serge Andrefouet, University of South Florida Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure

    NASA Astrophysics Data System (ADS)

    Talib, Z. A.

    2018-04-01

    The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material

  3. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  4. Conjunctive Management of Multi-Aquifer System for Saltwater Intrusion Mitigation

    NASA Astrophysics Data System (ADS)

    Tsai, F. T. C.; Pham, H. V.

    2015-12-01

    Due to excessive groundwater withdrawals, many water wells in Baton Rouge, Louisiana experience undesirable chloride concentration because of saltwater intrusion. The study goal is to develop a conjunctive management framework that takes advantage of the Baton Rouge multi-aquifer system to mitigate saltwater intrusion. The conjunctive management framework utilizes several hydraulic control techniques to mitigate saltwater encroachment. These hydraulic control approaches include pumping well relocation, freshwater injection, saltwater scavenging, and their combinations. Specific objectives of the study are: (1) constructing scientific geologic architectures of the "800-foot" sand, the "1,000-foot" sand, the "1,200-foot" sand, the "1,500-foot" sand, the "1,700-foot" sand, and the "2,000-foot" sand, (2) developing scientific saltwater intrusion models for these sands. (3) using connector wells to draw native groundwater from one sand and inject to another sand to create hydraulic barriers to halt saltwater intrusion, (4) using scavenger wells or well couples to impede saltwater intrusion progress and reduce chloride concentration in pumping wells, and (5) reducing cones of depression by relocating and dispersing pumping wells to different sands. The study utilizes optimization techniques and newest LSU high performance computing (HPC) facilities to derive solutions. The conjunctive management framework serves as a scientific tool to assist policy makers to solve the urgent saltwater encroachment issue in the Baton Rouge area. The research results will help water companies as well as industries in East Baton Rouge Parish and neighboring parishes by reducing their saltwater intrusion threats, which in turn would sustain Capital Area economic development.

  5. SWiFT Software Quality Assurance Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  6. Future developments in health care performance management

    PubMed Central

    Crema, Maria; Verbano, Chiara

    2013-01-01

    This paper highlights the challenges of performance management in health care, wherein multiple different objectives have to be pursued. The literature suggests starting with quality performance, following the sand cone theory, but considering a multidimensional concept of health care quality. Moreover, new managerial approaches coming from an industrial context and adapted to health care, such as lean management and risk management, can contribute to improving quality performance. Therefore, the opportunity to analyze them arises from studying their overlaps and links in order to identify possible synergies and to investigate the opportunity to develop an integrated methodology enabling improved performance. PMID:24255600

  7. Global sand trade is paving the way for a tragedy of the sand commons

    NASA Astrophysics Data System (ADS)

    Torres, A.; Brandt, J.; Lear, K.; Liu, J.

    2016-12-01

    In the first 40 years of the 21st century, planet Earth is highly likely to experience more urban land expansion than in all of history, an increase in transportation infrastructure by more than a third, and a great variety of land reclamation projects. While scientists are beginning to quantify the deep imprint of human infrastructure on biodiversity at large scales, its off-site impacts and linkages to sand mining and trade have been largely ignored. Sand is the most widely used building material in the world. With an ever-increasing demand for this resource, sand is being extracted at rates that far exceed its replenishment, and is becoming increasingly scarce. This has already led to conflicts around the world and will likely lead to a "tragedy of the sand commons" if sustainable sand mining and trade cannot be achieved. We investigate the environmental and socioeconomic interactions over large distances (telecouplings) of infrastructure development and sand mining and trade across diverse systems through transdisciplinary research and the recently proposed telecoupling framework. Our research is generating a thorough understanding of the telecouplings driven by an increasing demand for sand. In particular, we address three main research questions: 1) Where are the conflicts related to sand mining occurring?; 2) What are the major "sending" and "receiving" systems of sand?; and 3) What are the main components (e.g. causes, effects, agents, etc.) of telecoupled systems involving sand mining and trade? Our results highlight the role of global sand trade as a driver of environmental degradation that threatens the integrity of natural systems and their capacity to deliver key ecosystem services. In addition, infrastructure development and sand mining and trade have important implications for other sustainability challenges such as over-fishing and global warming. This knowledge will help to identify opportunities and tools to better promote a more sustainable use of sand, ultimately helping avoid a "tragedy of the sand commons".

  8. Efficient management of marine resources in conflict: an empirical study of marine sand mining, Korea.

    PubMed

    Kim, Tae-Goun

    2009-10-01

    This article develops a dynamic model of efficient use of exhaustible marine sand resources in the context of marine mining externalities. The classical Hotelling extraction model is applied to sand mining in Ongjin, Korea and extended to include the estimated marginal external costs that mining imposes on marine fisheries. The socially efficient sand extraction plan is compared with the extraction paths suggested by scientific research. If marginal environmental costs are correctly estimated, the developed efficient extraction plan considering the resource rent may increase the social welfare and reduce the conflicts among the marine sand resource users. The empirical results are interpreted with an emphasis on guidelines for coastal resource management policy.

  9. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    NASA Technical Reports Server (NTRS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  10. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait.

    PubMed

    Droghei, R; Falcini, F; Casalbore, D; Martorelli, E; Mosetti, R; Sannino, G; Santoleri, R; Chiocci, F L

    2016-11-03

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  11. 2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.

    2009-01-01

    Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.

  12. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  13. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models

    NASA Astrophysics Data System (ADS)

    Han, Young-Ji; Holsen, Thomas M.; Hopke, Philip K.; Cheong, Jang-Pyo; Kim, Ho; Yi, Seung-Muk

    2004-10-01

    Elemental dry deposition fluxes were measured using dry deposition plates from March to June 1998 in Seoul, Korea. During this spring sampling period several yellow-sand events characterized by long-range transport from China and Mongolia impacted the area. Understanding the impact of yellow-sand events on atmospheric dry deposition is critical to managing the heavy metal levels in the environment in Korea. In this study, the measured flux of a primarily crustal metal, Al and an anthropogenic metal, Pb was used with two hybrid receptor models, potential source contribution function (PSCF) and residence time weighted concentration (RTWC) for locating sources of heavy metals associated with atmospheric dry deposition fluxes during the yellow-sand events in Seoul, Korea. The PSCF using a criterion value of the 75th percentile of the measured dry deposition fluxes and RTWC results using the measured elemental dry deposition fluxes agreed well and consistently showed that there were large potential source areas in the Gobi Desert in China and Mongolia and industrial areas near Tianjin, Tangshan, and Shenyang in China. Major industrial areas of Shenyang, Fushun, and Anshan, the Central China loess plateau, the Gobi Desert, and the Alashan semi-desert in China were identified to be major source areas for the measured Pb flux in Seoul, Korea. For Al, the main industrial areas of Tangshan, Tianjin and Beijing, the Gobi Desert, the Alashan semi-desert, and the Central China loess plateau were found to be the major source areas. These results indicate that both anthropogenic sources such as industrial areas and natural sources such as deserts contribute to the high dry deposition fluxes of both Pb and Al in Seoul, Korea during yellow-sand events. RTWC resolved several high potential source areas. Modeling results indicated that the long-range transport of Al and Pb from China during yellow-sand events as well as non-yellow-sand spring daytimes increased atmospheric dry deposition of heavy metals in Korea.

  15. The geological record of prehistorical tsunami at a coastal area of Beppu Bay in eastern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Fujino, S.; Chiba, T.; Shinozaki, T.; Okuwaki, R.; Takeda, D.

    2015-12-01

    Tsunamis are typically generated by plate-boundary ruptures at subduction zones, but also vertical displacement associated with intraplate earthquakes. Historical written records documented that coasts of Beppu Bay, eastern Kyushu, Japan was devastated by a tsunami associated with the AD 1596 Keicho-Bungo earthquake (M7.0). It is considered that the earthquake occurred at submarine active faults in the bay. The aim of this study is to unravel the occurrence age and source of tsunamis that struck the coast of the bay in prehistorical ages. This study may also make a contribution to the understanding of tsunami-generating system at submarine active faults. We conducted a coring survey at paddy fields along the north coast of the bay. The 10 cm thick muddy sand layer with a few granules (hereinafter, sand layer), bounded by sharp contacts, was evident in the 1.7 m long sediment core taken at 700 m from the shoreline. Plant materials obtained from mud above the sand layer was dated to 1880-2000 cal. yr BP. Sharp contacts between sand and surrounding muds imply that the sand layer is formed by a sudden event. Existence of mud clast in the sand layer indicates erosion of surface mud. There were no brackish-marine diatoms in surrounding mud, but they accounted for 5-6% of the total within the sand layer, indicating that the sand grains were sourced at least in part from brackish-marine environment. Mean grain size/sorting of the sand layer and beach sand were 2.31/0.94 and 2.03/0.41 phi. The difference in sorting probably suggests that the sand layer partly contains the onshore sediments eroded in inundation process. Additional coring surveys would clarify the distribution of prehistorical tsunami deposits and source of past tsunamis.

  16. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand gradually expanded to the current limits of today's dune fields. The gradual but unsteady post-Byzantine demographic drop enabled reestablishment of natural vegetation and rapid regosol development. This drop occurred differentially along the coast due to governance and land-use practices. We suggest that dune construction mainly evolved around the 19th century from the existing sand sheets and low dunes that intermittently developed since 6-5 ka. Human (Bedouin grazing influx and ethnic settlements) destruction of vegetation, in conjuction with the rapid 19th-20th century population growth made the sand prone to "in situ" transverse and linear dune formation in response to powerful winds further supported by increased storminess at this time. Inland dune mobilization and the artificial establishment of vegetated foredunes along the coast in the 1930's-1940's partly scalped the sand deposits by the coast.

  17. Use of Natural and Nature-Based Features (NNBF) for Coastal Resilience

    DTIC Science & Technology

    2015-01-01

    Factors contributing to weathering and erosion of bluffs and low banks , exemplary of features found in Chesapeake and Delaware Bays. Some bluffs may be...of low banks and bluffs (typically less than 10 meters (m) high), marshes, short sand spits, beaches fronting the mainland (without ponds or marshes...and erosion of bluffs and low banks , exemplary of features found in Chesapeake and Delaware Bays. Some bluffs may be fronted with narrow sand beaches

  18. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquiremore » water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.« less

  19. Accumulated state assessment of the Peace-Athabasca-Slave River system.

    PubMed

    Dubé, Monique G; Wilson, Julie E

    2013-07-01

    Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p < 0.05), whereas summer peak flows (May-July) were significantly lower than before the dam showing that regulation has significantly altered seasonal flow regimes. During spring freshet and summer high flows, the Peace River strongly influenced the quality of the Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months. The transboundary nature of the Peace, Athabasca, and Slave River basins has resulted in fragmented monitoring and reporting of the state of these rivers, and a more consistent monitoring framework is recommended. Copyright © 2012 SETAC.

  20. Play in the Sandpit: A University and a Child-Care Center Collaborate in Facilitated-Action Research

    ERIC Educational Resources Information Center

    Jarrett, Olga; French-Lee, Stacey; Bulunuz, Nermin; Bulunuz, Mizrap

    2010-01-01

    Sand play commonly occupies children at preschools, child-development centers, and school and park playgrounds. The authors review the research on sand play and present a small study on outdoor sand play conducted at a university-based, child-development center using a method they call "facilitated-action research." This study had four…

  1. Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins).

    PubMed

    Hibino, Taku; Harada, Yoshito; Minokawa, Takuya; Nonaka, Masaru; Amemiya, Shonan

    2004-11-01

    The expression patterns of Brachyury (Bra) orthologs in the development of four species of sand dollars (order: Clypeasteroida), including a direct-developing species, and of a sea urchin species (order: Echinoida) were investigated during the period from blastula to the pluteus stage, with special attention paid to the relationship between the expression pattern and the mode of gastrulation. The sand dollar species shared two expression domains of the Bra orthologs with the Echinoida species, in the vegetal ring (the first domain) and the oral ectoderm (the second domain). The following heterotopic changes in the expression of the Bra genes were found among the sand dollar species and between the sand dollars and the Echinoida species. (1) The vegetal ring expressing Bra in the sand dollars was much wider and was located at a higher position along the AV axis, compared with that in the Echinoida species. The characteristic Bra expression in the vegetal ring of the sand dollar embryos was thought to be involved in the mode of gastrulation, in which involution continues from the beginning of invagination until the end of gastrulation. (2) Two of the three indirect-developing sand dollar species that were examined exhibited a third domain, in which Bra was expressed on the oral side of the archenteron. (3) In the direct-developing sand dollar embryos, Bra was expressed with an oral-aboral asymmetry in the vegetal ring and with a left-right asymmetry in the oral ectoderm. In the Echinoida species, Bra was expressed in the vestibule at the six-armed pluteus stage.

  2. Using normal ranges for interpreting results of monitoring and tiering to guide future work: A case study of increasing polycyclic aromatic compounds in lake sediments from the Cold Lake oil sands (Alberta, Canada) described in Korosi et al. (2016).

    PubMed

    Munkittrick, Kelly R; Arciszewski, Tim J

    2017-12-01

    Since the publishing of the Kelly et al. papers (2009, 2010) describing elevated contaminants in snow near the Alberta oil sands, there has been a significant expansion of monitoring efforts, enhanced by $50M a year contributed by industry to a regional Joint Oil Sands Monitoring (JOSM) program. In parallel to the intensification of research and monitoring efforts, including expansion of measured indicators, techniques for chemical analysis have also become more sensitive. Both factors contribute to the increased sensitivity and power, and improve our capacity to detect any change. The increase in capability requires a counterbalance to account for trivial change. This can be done using an interpretative approach that requires contextualization of differences to meaningfully inform environmental monitoring programs and provide focus for action. Experience obtained through 25 years of involvement with Canada's Environmental Effects Monitoring (EEM) program has shown that a tiered program informed by triggers can provide the context to make decisions about monitoring priorities. Here we provide a potential interpretation framework using a case study around the Korosi et al. (2016) study which found recent increases in alkylated polycyclic aromatic compounds (aPACs) in the Cold Lake in situ oil sands area. Public contaminant profiles from the JOSM studies in the oil sands region are used to evaluate the changes using an interpretation framework based on estimated normal ranges using existing data for site-specific, local and regional (distant) levels that was modelled after the tiered Canadian EEM design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less

  4. Mother doesn't always know best: Maternal wormlion choice of oviposition habitat does not match larval habitat choice.

    PubMed

    Adar, Shay; Dor, Roi

    2018-02-01

    Habitat choice is an important decision that influences animals' fitness. Insect larvae are less mobile than the adults. Consequently, the contribution of the maternal choice of habitat to the survival and development of the offspring is considered to be crucial. According to the "preference-performance hypothesis", ovipositing females are expected to choose habitats that will maximize the performance of their offspring. We tested this hypothesis in wormlions (Diptera: Vermileonidae), which are small sand-dwelling insects that dig pit-traps in sandy patches and ambush small arthropods. Larvae prefer relatively deep and obstacle-free sand, and here we tested the habitat preference of the ovipositing female. In contrast to our expectation, ovipositing females showed no clear preference for either a deep sand or obstacle-free habitat, in contrast to the larval choice. This suboptimal female choice led to smaller pits being constructed later by the larvae, which may reduce prey capture success of the larvae. We offer several explanations for this apparently suboptimal female behavior, related either to maximizing maternal rather than offspring fitness, or to constraints on the female's behavior. Female's ovipositing habitat choice may have weaker negative consequences than expected for the offspring, as larvae can partially correct suboptimal maternal choice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is characterized by basal silt- to sand-rich clay dominated stratigraphic units. The upper most debris flow at Site UBGH2-5 extends into the overlying gas hydrate stability zone and IR core scans indicate that this section contains some amount of gas hydrate. The UBGH2 LWD and coring program also confirmed the occurrence of numerous volcaniclastic and siliciclastic sand reservoirs that were deposited as part of local to basin-wide turbidite events. Gas hydrate saturations within the turbidite sands ranged between 60-80 percent. In 2009, the Gulf of Mexico (GOM) Joint Industry Project (JIP) drilled seven wells at three sites, finding gas hydrate at high concentration in sands in four wells, with suspected gas hydrate at low to moderate saturations in two other wells. In the northern GOM, high sedimentation rates in conjunction with salt tectonism, has promoted the formation of complex seafloor topography. As a result, coarse-grained deposition can occur as gravity-driven sedimentation traversing the slope within intra-slope "ponded" accommodation spaces.

  6. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  7. North American Oil Sands: History of Development, Prospects for the Future

    DTIC Science & Technology

    2008-01-17

    SAGD operations. Canada’s Oil Sands, May 2004. 43 Canada’s Oil Sands, June 2006 p. 4. 44 Canada’s Oil Sands, Opportunities and Challenges to 2015, An...Energy Market Assessment, May 2004, National Energy Board, Canada, p. 108. But a relatively new technology — steam-assisted gravity drainage ( SAGD ...has demonstrated that its operations can recover as much as 70% of the bitumen in- place. Using SAGD , steam is added to the oil sands using a

  8. Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed

    NASA Astrophysics Data System (ADS)

    Baas, Jaco H.; Davies, Alan G.; Malarkey, Jonathan

    2013-01-01

    The majority of subaqueous sediment on Earth consists of mixtures of cohesive clay and cohesionless sand and silt, but the role of cohesion on the development and stability of sedimentary bedforms is poorly understood. The results of new laboratory flume experiments on bedform development in cohesive, mixed sand-mud beds are compared with the results of previous experiments in which cohesive forces in high concentration clay flows dominated bedform development. Even though both series of mixed sand-mud experiments were conducted at similar flow velocities, the textural and structural properties of the bedforms were sufficiently different to permit the designation of key criteria for identifying bedform generation under cohesive flows against bedform generation on cohesive substrates. These criteria are essential for improving bedform size predictions in sediment transport modelling in modern sedimentary environments and for the reconstruction of depositional processes in the geological record. The current ripples developing on the cohesive, mixed sand-mud beds, with bed mud fractions of up to 18%, were significantly smaller than equivalent bedforms in noncohesive sand. Moreover, the bedform height showed a stronger inversely proportional relationship with initial bed mud fraction than the bedform wavelength. This is in contrast with the bedforms developing under the cohesive clay flows, which tend to increase in size with increasing suspended clay concentration until the flow turbulence is fully suppressed. Selective removal of clay from the mixed beds, i.e., clay winnowing, was found to be an important process, with 82-100% clay entrained into suspension after 2 h of bedform development. This winnowing process led to the development of a sand-rich armouring layer. This armouring layer is inferred to have protected the underlying mixed sand-mud from prolonged erosion, and in conjunction with strong cohesive forces in the bed may have caused the smaller size of the bedforms. Winnowing was less efficient for the bedforms developing under the cohesive clay flows, where bedforms consisting of muddy sand were more characteristic. The winnowed sand was also found to heal irregularly scoured topography, thus reestablishing classic quasitriangular bedform shapes. In cohesive flows, the bedforms had more variable shapes, and the healing process was confined to lower transitional plug flows in which strong turbulence is only present close to the sediment bed. Furthermore, the bedforms on the cohesive beds tended to form angle-of-repose cross lamination, whereas low angle cross lamination was more common in bedforms under cohesive flows. In general terms, erosional bedforms prevail when cohesive forces in the bed dominate bedform dynamics, whereas depositional bedforms prevail when cohesive forces in the flow dominate bedform dynamics. Empirical relationships between the proportion of cohesive mud in the mixed sand-mud bed and the development rate and size of the bedforms are defined for future use in field and laboratory studies.

  9. Onset and Dynamics of a Subaqueous Dune Field in a Tideless Erosional Deltaic Shoreface: an Analog for the Initial Development of Sand Ridges

    NASA Astrophysics Data System (ADS)

    Guerrero, Q.; Guillén, J.; Durán, R.; Urgeles, R.

    2016-12-01

    A subaqueous dune field located over a retreating deltaic lobe in the Ebro delta (NW Mediterranean) is morphodynamically characterized by analyzing three sets of co-located, multibeam bathymetric data acquired in 2004, 2013 and 2015, measurements of near-bottom currents and suspended sediment concentrations, high-resolution seismic profiles and aerial photographs. The dunes, made of fine sand, extend from 5 to 15 m water depth, have straight crestlines and maximum heights and wavelengths of 2.5 and 350 m, respectively (Fig. 1). Results suggest that the onset of dune field development is closely related to the contemporary evolution of the Ebro delta. A change in the main river channel in the 1940s led to the progressive abandonment of the former river mouth, severe coastal retreatment ( 37 m·y-1) and increased sediment availability. The characteristic NW winds of the region induce near-bottom currents flowing towards the SE which are able to rework and transport these sediments. The dune field developed over the shoreface of the abandoned river mouth and is currently active with mean SE migration rates of 10 m·y-1, most likely when high-energetic currents occur. The morphology of the dune field and crestline obliquity to shoreline orientation agree well with that observed in sand ridges of continental shelves worldwide. Mid-outer shelf sand ridges have been interpreted as sedimentary bodies formed in coastal waters and detached from the coast during sea level rise. The studied dune field could therefore be an example of the initial stages of sand ridges development when large amounts of sand are suddenly available. The field developed when the river mouth switched, favored by a pre-existing seafloor irregularity. Despite the time-scale for the genesis and evolution of shoreface sand ridges has been set in time-scales of hundreds/thousands of years, this study shows that shoreface sand ridges can develop during shorter time-scales (tens of years). Furthermore, it is discussed that, in absence of a rapid sea level rise, these sand ridges probably will vanish as a consequence of sediment scarcity and wave reworking.

  10. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are <-30 °C on successive days, mean freezing season air temperatures are ≤-17 °C, and snow cover is <0.15 m thick. In contrast, surface conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and subsidence of adjacent strata. Sand wedge development in seasonally frozen ground with limited surface sediment supply can result in stratigraphy similar to ice-wedge and composite-wedge pseudomorphs. Therefore, caution must be exercised when interpreting this suite of forms and inferring paleoenvironments.

  11. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2017-06-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  12. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément

    2016-04-01

    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  13. Applying the Analytic Hierarchy Process to Oil Sands Environmental Compliance Risk Management

    NASA Astrophysics Data System (ADS)

    Roux, Izak Johannes, III

    Oil companies in Alberta, Canada, invested $32 billion on new oil sands projects in 2013. Despite the size of this investment, there is a demonstrable deficiency in the uniformity and understanding of environmental legislation requirements that manifest into increased project compliance risks. This descriptive study developed 2 prioritized lists of environmental regulatory compliance risks and mitigation strategies and used multi-criteria decision theory for its theoretical framework. Information from compiled lists of environmental compliance risks and mitigation strategies was used to generate a specialized pairwise survey, which was piloted by 5 subject matter experts (SMEs). The survey was validated by a sample of 16 SMEs, after which the Analytic Hierarchy Process (AHP) was used to rank a total of 33 compliance risks and 12 mitigation strategy criteria. A key finding was that the AHP is a suitable tool for ranking of compliance risks and mitigation strategies. Several working hypotheses were also tested regarding how SMEs prioritized 1 compliance risk or mitigation strategy compared to another. The AHP showed that regulatory compliance, company reputation, environmental compliance, and economics ranked the highest and that a multi criteria mitigation strategy for environmental compliance ranked the highest. The study results will inform Alberta oil sands industry leaders about the ranking and utility of specific compliance risks and mitigations strategies, enabling them to focus on actions that will generate legislative and public trust. Oil sands leaders implementing a risk management program using the risks and mitigation strategies identified in this study will contribute to environmental conservation, economic growth, and positive social change.

  14. The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in Mississippi

    DTIC Science & Technology

    2016-03-01

    ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife

  15. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  16. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    PubMed Central

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-01-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. PMID:27808239

  17. Contribution of Sand-Associated Enterococci to Dry Weather Water Quality

    PubMed Central

    2015-01-01

    Culturable enterococci and a suite of environmental variables were collected during a predominantly dry summer at a beach impacted by nonpoint source pollution. These data were used to evaluate sands as a source of enterococci to nearshore waters, and to assess the relationship between environmental factors and dry-weather enterococci abundance. Best-fit multiple linear regressions used environmental variables to explain more than half of the observed variation in enterococci in water and dry sands. Notably, during dry weather the abundance of enterococci in dry sands at the mean high-tide line was significantly positively related to sand moisture content (ranging from <1–4%), and the daily mean ENT in water could be predicted by a linear regression with turbidity alone. Temperature was also positively correlated with ENT abundance in this study, which may indicate an important role of seasonal warming in temperate regions. Inundation by spring tides was the primary rewetting mechanism that sustained culturable enterococci populations in high-tide sands. Tidal forcing modulated the abundance of enterococci in the water, as both turbidity and enterococci were elevated during ebb and flood tides. The probability of samples violating the single-sample maximum was significantly greater when collected during periods with increased tidal range: spring ebb and flood tides. Tidal forcing also affected groundwater mixing zones, mobilizing enterococci from sand to water. These data show that routine monitoring programs using discrete enterococci measurements may be biased by tides and other environmental factors, providing a flawed basis for beach closure decisions. PMID:25479559

  18. Contribution of sand-associated enterococci to dry weather water quality.

    PubMed

    Halliday, Elizabeth; Ralston, David K; Gast, Rebecca J

    2015-01-06

    Culturable enterococci and a suite of environmental variables were collected during a predominantly dry summer at a beach impacted by nonpoint source pollution. These data were used to evaluate sands as a source of enterococci to nearshore waters, and to assess the relationship between environmental factors and dry-weather enterococci abundance. Best-fit multiple linear regressions used environmental variables to explain more than half of the observed variation in enterococci in water and dry sands. Notably, during dry weather the abundance of enterococci in dry sands at the mean high-tide line was significantly positively related to sand moisture content (ranging from <1-4%), and the daily mean ENT in water could be predicted by a linear regression with turbidity alone. Temperature was also positively correlated with ENT abundance in this study, which may indicate an important role of seasonal warming in temperate regions. Inundation by spring tides was the primary rewetting mechanism that sustained culturable enterococci populations in high-tide sands. Tidal forcing modulated the abundance of enterococci in the water, as both turbidity and enterococci were elevated during ebb and flood tides. The probability of samples violating the single-sample maximum was significantly greater when collected during periods with increased tidal range: spring ebb and flood tides. Tidal forcing also affected groundwater mixing zones, mobilizing enterococci from sand to water. These data show that routine monitoring programs using discrete enterococci measurements may be biased by tides and other environmental factors, providing a flawed basis for beach closure decisions.

  19. Documenting the global impacts of beach sand mining

    NASA Astrophysics Data System (ADS)

    Young, R.; Griffith, A.

    2009-04-01

    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and Beachcare.org have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a significant rise in global sea level over the coming decades. Most governments recognize the local impacts of sand mining and mining activities are illegal in many localities. However, enforcement of these protections has been problematic and there has been little pressure to stop the practice from local or international environmental groups. In many cases, addressing the issue of sand mining requires addressing the local issues that allow it to persist. This includes poverty, corruption, and unregulated development. In areas where beach sand mining significantly supports the local economy, care needs to be given that local workers are given alternative means of income, and builders are provided an affordable substitute for the sand (e.g. crushed rock). Regardless, it is time for both academics and NGOs to address the cumulative environmental impacts of the direct destruction of the world's beaches through mining activities.

  20. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    PubMed

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.

  1. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    NASA Astrophysics Data System (ADS)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.

  2. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  3. The physics of wind-blown sand and dust

    NASA Astrophysics Data System (ADS)

    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  4. Standing crop and sediment production of reef-dwelling foraminifera on O'ahu, Hawai'i

    USGS Publications Warehouse

    Harney, J.N.; Hallock, P.; Fletcher, C. H.; Richmond, B.M.

    1999-01-01

    Most of O'ahu's nearshore and beach sands are highly calcareous and of biogenic origin. The pale-colored constituent grains are the eroded remains of carbonate shells and skeletons produced by marine organisms living atop the island's fringing reefs and in the shallow waters near shore. Previous studies have shown that the tests of symbiont-bearing benthic foraminifera compose a substantial portion (up to one-fourth) of these organically produced sands. We sampled a variety of reef flat and slope habitats to obtain standing-crop data and production estimates for several sand-producing genera of reef-dwelling foraminifera. We found that modern communities of these shelled protists occur in dense numbers islandwide, reaching densities up to 105 individuals per square meter of suitable substrate in the more productive habitats. Further research on the contribution of foraminifera to beach, nearshore, and offshore sands is planned for O'ahu and neighboring islands to describe their roles in the sediment budget more completely.

  5. Effect of Polyphosphate-accumulating Organisms on Phosphorus Mobility in Variably Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.

  6. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    NASA Astrophysics Data System (ADS)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  7. Tales from a distant swamp: Petrological and paleobotanical clues for the origin of the sand coal lithotype (Mississippian, Valley Fields, Virginia)

    USGS Publications Warehouse

    Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.

    2008-01-01

    Tournasian (Mississippian) Price Formation semianthracites (Rmax = 2.40%) in the Valley Fields of southwestern Virginia contain a lithotype described in an early-20th-century report as a "sand" coal. The Center for Applied Energy Research inherited a collection of coals containing sand coal specimens, making it possible to study the lithotype from the long-closed mines. The sand coal consists of rounded quartz sand and maceral assemblages (secretinite, corpogelinite, and rounded collotelinite) along with banded collotelinite, vitrodetrinite, and inertodetrinite assemblages. The association of rounded macerals and similar-size quartz grains suggests transport. Oxidation rims surrounding the rounded collotelinite provides further evidence for transport. Due to the semianthracite rank, palynology could not be performed. Stratigraphic evidence indicates that the Lepidodendropsis flora would have been the dominant mire vegetation. Pteridosperms in this assemblage could have contributed resin rodlets, subsequently metamorphosed to collogelinite or secretinite. While a resin rodlet origin is an intriguing possibility for the origin of the rounded macerals (at least some of the rounded maceral, the rounded collotelinite clearly has a different origin), we cannot definitively prove this origin. ?? 2008 Elsevier B.V. All rights reserved.

  8. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    PubMed

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  9. Reservoir properties of submarine- fan facies: Great Valley sequence, California.

    USGS Publications Warehouse

    McLean, H.

    1981-01-01

    Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author

  10. Texture and composition of the Rosa Marina beach sands (Adriatic coast, southern Italy): a sedimentological/ecological approach

    NASA Astrophysics Data System (ADS)

    Moretti, Massimo; Tropeano, Marcello; Loon, A. J. (Tom) van; Acquafredda, Pasquale; Baldacconi, Rossella; Festa, Vincenzo; Lisco, Stefania; Mastronuzzi, Giuseppe; Moretti, Vincenzo; Scotti, Rosa

    2016-06-01

    Beach sands from the Rosa Marina locality (Adriatic coast, southern Italy) were analysed mainly microscopically in order to trace the source areas of their lithoclastic and bioclastic components. The main cropping out sedimentary units were also studied with the objective to identify the potential source areas of lithoclasts. This allowed to establish how the various rock units contribute to the formation of beach sands. The analysis of the bioclastic components allows to estimate the actual role of organisms regarding the supply of this material to the beach. Identification of taxa that are present in the beach sands as shell fragments or other remains was carried out at the genus or family level. Ecological investigation of the same beach and the recognition of sub-environments (mainly distinguished on the basis of the nature of the substrate and of the water depth) was the key topic that allowed to establish the actual source areas of bioclasts in the Rosa Marina beach sands. The sedimentological analysis (including a physical study of the beach and the calculation of some statistical parameters concerning the grain-size curves) shows that the Rosa Marina beach is nowadays subject to erosion.

  11. Regional transport of a chemically distinctive dust: Gypsum from White Sands, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    White, Warren H.; Hyslop, Nicole P.; Trzepla, Krystyna; Yatkin, Sinan; Rarig, Randy S.; Gill, Thomas E.; Jin, Lixin

    2015-03-01

    The White Sands complex, a National Monument and adjoining Missile Range in southern New Mexico, occupies the dry bed of an ice-age lake where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the east and northeast. The IMPROVE network (Interagency Monitoring of PROtected Visual Environments) operates long-term aerosol samplers at two sites east of the Sacramento range. In recent years a spring pulse of sulfate aerosol has appeared at these sites, eclipsing the regional summer peak resulting from atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with much of the sulfur in coarse particles and concentrations of calcium and strontium above regional levels. The increase in these gypsiferous species coincides with a drought following a period of above-average precipitation. White Sands and the IMPROVE samplers together provide a natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiable at long-term observatories 100-200 km downwind.

  12. Land Desertification and it’s Control in Gonghe Basin of Qinghai Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Gao, S.; Lu, R.

    2009-12-01

    Land desertification is an important environmental and social-economic problems that threatening people’s living conditions and impacting social sustainable development. The Gonghe basin in Qinghai Plateau is a fragile cold alpine area which is one of the places seriously threatened by desertification in China. This paper selected Gonghe basin as a study area to study land sandy desertification and its controlling measures. The engineering measures for sandy desertification control include setting clay sand barrier, Salix cheilophila sand barrier, Tamarix sand barrier, Artemisia sand barrier and straw-checker sand-barriers to fix dunes; the biological measures include closure for natural vegetation recovery, direct seeding forestation, transplanting seedlings, and so on. The combination of engineering and biologic measures can fix dunes 2~3 years earlier than the common single measure; and the costs were basically identical. A synthesized evaluation system established based on experimental results and experience in recent years indicated that the effectiveness of the four kinds of sand barrier for prevention and control of sand in study area were: Tamarix sand barrier > Artemisia sand barrier > clay sand barrier > straw-checker sand-barriers. In addition, different optimized management model can be selected according to local material and geographical place. New plants such as Salix cheilophila and Tamarix, which are available in study area, can change from dead sand barrier to live one set in proper seasons, changing engineering measure to biological one directly speeds the progress of forestation and dunes fixation. In addition, we developed new technique of deep planting Salix cheilophila and Tamarix with their long stem, which can effectively resist drought. We found that it had lower cost and higher live rate, and has a better sand prevention effect than deep planting of Poplar. Finally we choose the optimize management model as follows: Artemisia direct seeding > Caragana direct seeding, Tamarix cutting and seedling > Salix cheilophila deep planting, Sea-buckthorn seedling > Tamarix deep planting > Tamarix seedling > Poplar deep planting > Salix cheilophila seedling > Poplar seedling. It has resolved the key problem of control sand flow speed and low efficiency, sand burying and wind erosion and low conservation rate for forestation in the sandy area.

  13. Spatial patterns in heavy-mineral concentrations along the Curonian Spit coast, southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Ryabchuk, Daria; Jarmalavičius, Darius; Žilinskas, Gintautas; Fedorovič, Julija; Kovaleva, Olga; Sergeev, Alexander; Cichoń-Pupienis, Anna

    2017-08-01

    The 98-km-long Curonian Spit is fronted by beaches mainly composed of quartz sand with minor high-density fractions. In this study heavy-mineral concentration (HMC) trends and grain-size statistical parameters were used to assess their role as indicators of natural processes, human activities, and patterns of longshore transport. A total of 92 surface sand samples were collected at 1 km intervals from the middle of the beach along the Baltic Sea shoreline of the spit between Klaipėda strait in Lithuania and Zelenogradsk in Russia. HMC contribution was assessed in the laboratory using bulk low-field magnetic susceptibility (MS) as a proxy for ferrimagnetic and paramagnetic mineral content. Quartz-dominated (background) sand is generally characterized by low MS values of κ < 50 μSI, whereas higher values κ > 150 μSI are typical for heavy-mineral-rich sand. The greatest MS values along the middle of the beach occur in the southern part of the spit and are 40 times higher than in the northern sector. This pattern suggests the existence of a longshore particle flux with HMC distribution having the potential as a useful tracer of longshore sediment transport. Local anomalously high MS excursions are associated with contribution of iron-rich materials from adjacent man-made structures. Therefore, temporally constrained HMC distribution along the middle of the beach reflects the cumulative effect of antecedent geologic framework, longshore sediment transfer, erosional and accretionary processes, wave and wind climate, and local coastal protective structures.

  14. Intertidal sand body migration along a megatidal coast, Kachemak Bay, Alaska

    USGS Publications Warehouse

    Adams, P.N.; Ruggiero, P.; Schoch, G.C.; Gelfenbaum, G.

    2007-01-01

    Using a digital video-based Argus Beach Monitoring System (ABMS) on the north shore of Kachemak Bay in south central Alaska, we document the timing and magnitude of alongshore migration of intertidal sand bed forms over a cobble substrate during a 22-month observation period. Two separate sediment packages (sand bodies) of 1-2 m amplitude and ???200 m wavelength, consisting of well-sorted sand, were observed to travel along shore at annually averaged rates of 278 m/yr (0.76 m/d) and 250 m/ yr (0.68 m/d), respectively. Strong seasonality in migration rates was shown by the contrast of rapid winter and slow summer transport. Though set in a megatidal environment, data indicate that sand body migration is driven by eastward propagating wind waves as opposed to net westward directed tidal currents. Greatest weekly averaged rates of movement, exceeding 6 m/d, coincided with wave heights exceeding 2 m suggesting a correlation of wave height and sand body migration. Because Kachemak Bay is partially enclosed, waves responsible for sediment entrainment and transport are locally generated by winds that blow across lower Cook Inlet from the southwest, the direction of greatest fetch. Our estimates of sand body migration translate to a littoral transport rate between 4,400-6,300 m3/yr. Assuming an enclosed littoral cell, minimal riverine sediment contributions, and a sea cliff sedimentary fraction of 0.05, we estimate long-term local sea cliff retreat rates of 9-14 cm/yr. Applying a numerical model of wave energy dissipation to the temporally variable beach morphology suggests that sand bodies are responsible for enhancing wave energy dissipation by ???13% offering protection from sea cliff retreat. Copyright 2007 by the American Geophysical Union.

  15. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.

    PubMed

    Basnet, Mohan; Di Tommaso, Caroline; Ghoshal, Subhasis; Tufenkji, Nathalie

    2015-01-01

    Direct in situ injection of palladium-doped nanosized zero valent iron (Pd-NZVI) particles can contribute to remediation of various environmental contaminants. A major challenge encountered is rapid aggregation of Pd-NZVI and hence very limited mobility. To reduce aggregation and concurrently improve particle mobility, the surface of bare Pd-NZVI can be modified with stabilizing surface modifiers. Selected surface-modified Pd-NZVI has shown dramatically improved stability and transport. However, little is known regarding the effects of aquifer grain geochemical heterogeneity on the transport and deposition behavior of surface-modified Pd-NZVI. Herein, the mobility of surface stabilized Pd-NZVI in two granular matrices representative of model ground water environments (quartz sand and loamy sand) was assessed over a wide range of environmentally relevant ionic strengths (IS). Carboxymethyl cellulose (CMC), soybean flour and rhamnolipid biosurfactant were used as Pd-NZVI surface modifiers. Our results show that, both in quartz sand and loamy sand, an increase in solution IS results in reduced Pd-NZVI transport. Moreover, at a given water chemistry, Pd-NZVI transport is notably attenuated in loamy sand implying that geochemical heterogeneity associated with loamy sand is a key factor influencing Pd-NZVI transport potential. Experiments conducted at a higher Pd-NZVI particle concentration, to be more representative of field conditions, show that rhamnolipid and CMC are effective stabilizing agents even when 1 g/L Pd-NZVI is injected into quartz sand. Overall, this study emphasizes the extent to which variation in groundwater chemistry, coupled with changes in aquifer geochemistry, could dramatically alter the transport potential of Pd-NZVI in the subsurface environment.

  16. Modeling of fugitive dust emission for construction sand and gravel processing plant.

    PubMed

    Lee, C H; Tang, L W; Chang, C T

    2001-05-15

    Due to rapid economic development in Taiwan, a large quantity of construction sand and gravel is needed to support domestic civil construction projects. However, a construction sand and gravel processing plant is often a major source of air pollution, due to its associated fugitive dust emission. To predict the amount of fugitive dust emitted from this kind of processing plant, a semiempirical model was developed in this study. This model was developed on the basis of the actual dust emission data (i.e., total suspended particulate, TSP) and four on-site operating parameters (i.e., wind speed (u), soil moisture (M), soil silt content (s), and number (N) of trucks) measured at a construction sand and gravel processing plant. On the basis of the on-site measured data and an SAS nonlinear regression program, the expression of this model is E = 0.011.u2.653.M-1.875.s0.060.N0.896, where E is the amount (kg/ton) of dust emitted during the production of each ton of gravel and sand. This model can serve as a facile tool for predicting the fugitive dust emission from a construction sand and gravel processing plant.

  17. The growth-defense trade-off and habitat specialization by plants in Amazonian forests.

    PubMed

    Fine, Paul V A; Miller, Zachariah J; Mesones, Italo; Irazuzta, Sebastian; Appel, Heidi M; Stevens, M Henry H; Sääksjärvi, Ilari; Schultz, Jack C; Coley, Phyllis D

    2006-07-01

    Tropical forests include a diversity of habitats, which has led to specialization in plants. Near Iquitos, in the Peruvian Amazon, nutrient-rich clay forests surround nutrient-poor white-sand forests, each harboring a unique composition of habitat specialist trees. We tested the hypothesis that the combination of impoverished soils and herbivory creates strong natural selection for plant defenses in white-sand forest, while rapid growth is favored in clay forests. Recently, we reported evidence from a reciprocal-transplant experiment that manipulated the presence of herbivores and involved 20 species from six genera, including phylogenetically independent pairs of closely related white-sand and clay specialists. When protected from herbivores, clay specialists exhibited faster growth rates than white-sand specialists in both habitats. But, when unprotected, white-sand specialists outperformed clay specialists in white-sand habitat, and clay specialists outperformed white-sand specialists in clay habitat. Here we test further the hypothesis that the growth defense trade-off contributes to habitat specialization by comparing patterns of growth, herbivory, and defensive traits in these same six genera of white-sand and clay specialists. While the probability of herbivore attack did not differ between the two habitats, an artificial defoliation experiment showed that the impact of herbivory on plant mortality was significantly greater in white-sand forests. We quantified the amount of terpenes, phenolics, leaf toughness, and available foliar protein for the plants in the experiment. Different genera invested in different defensive strategies, and we found strong evidence for phylogenetic constraint in defense type. Overall, however, we found significantly higher total defense investment for white-sand specialists, relative to their clay specialist congeners. Furthermore, herbivore resistance consistently exhibited a significant trade-off against growth rate in each of the six phylogenetically independent species-pairs. These results confirm theoretical predictions that a trade-off exists between growth rate and defense investment, causing white-sand and clay specialists to evolve divergent strategies. We propose that the growth-defense trade-off is universal and provides an important mechanism by which herbivores govern plant distribution patterns across resource gradients.

  18. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-01-01

    Martian sand dunes have the potential to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step towards understanding the present as well as past aeolian systems, and by proxy, climatic conditions on Mars. Dunes studied in detail in Viking 1 and 2 Orbiter images have been classified as barchan, barchanoid, transverse, and complex. Regionally, they are concentrated in four locations: The North and South Polar regions, in intra crater dune fields and in troughs and valleys. Here we present the results of a morphometric analysis of barchan dunes in two of these locations: the North Polar Sand Sea (NPSS) and intra-crater dunes.

  19. Microstructural characteristics of natural gas hydrates hosted in various sand sediments.

    PubMed

    Zhao, Jiafei; Yang, Lei; Liu, Yu; Song, Yongchen

    2015-09-21

    Natural gas hydrates have aroused worldwide interest due to their energy potential and possible impact on climate. The occurrence of natural gas hydrates hosted in the pores of sediments governs the seismic exploration, resource assessment, stability of deposits, and gas production from natural gas hydrate reserves. In order to investigate the microstructure of natural gas hydrates occurring in pores, natural gas hydrate-bearing sediments were visualized using microfocus X-ray computed tomography (CT). Various types of sands with different grain sizes and wettability were used to study the effect of porous materials on the occurrence of natural gas hydrates. Spatial distributions of methane gas, natural gas hydrates, water, and sands were directly identified. This work indicates that natural gas hydrates tend to reside mainly within pore spaces and do not come in contact with adjacent sands. Such an occurring model of natural gas hydrates is termed the floating model. Furthermore, natural gas hydrates were observed to nucleate at gas-water interfaces as lens-shaped clusters. Smaller sand grain sizes contribute to higher hydrate saturation. The wetting behavior of various sands had little effect on the occurrence of natural gas hydrates within pores. Additionally, geometric properties of the sediments were collected through CT image reconstructions. These findings will be instructive for understanding the microstructure of natural gas hydrates within major global reserves and for future resource utilization of natural gas hydrates.

  20. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z

    2007-06-01

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.

  1. The formation of low-angle eolian stratification through the migration of protodunes

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Phillips, J. D.; Weymer, B. A.; Barrineaux, P.; Bowling, R.; Nittrouer, J. A.

    2017-12-01

    Protodunes are low-relief, slipfaceless migrating bed forms that represent the emergent form of eolian sand dunes. Protodunes develop as cm-scale topography out of a flat bed of sand and evolve spatially and temporally into dunes with angle-of-repose slipfaces. Protodunes at White Sands Dune Field in New Mexico form at the upwind, trailing margin of the field, on dune stoss slopes, and in interdune areas. Here we analyze protodunes at the upwind margin of White Sands by coupling 200 mHz ground penetrating radar (GPR) with time-series high-resolution topography to characterize the origin and evolution of protodune stratification and the stratigraphic transition into fully developed dunes. We surveyed a 780m transect in the resultant transport direction of the dune field from SW to NE from sand patches through protodunes and into the first dune. We used airborne lidar surveys and structure-from-motion photogrammetry from 2007, 2008, 2009, 2010, 2015, and 2016. We find that protodune stratification forms at angles between 0-10 degrees by protodune migration. Dip angles increase as protodune amplitude increases along the transect. Accumulation of low-angle stratification increases across the first 650m and ranges from none to subcritical. Nearly aggradational accumulation of low-angle stratification occurs over the last 100m and is a precursor to angle-of-repose slipface formation. The origins of the aggradation and slipface development appear to be linked to protodune merging, dune interactions, and possibly to the development of a dune field-scale boundary layer. Protodunes and the formation of low-angle stratification at the upwind margin of White Sands are a good analog to the initiation of dune field development from sand sheets and the formation of low-angle stratification found at the base of eolian successions in the stratigraphic record.

  2. Holocene sand shoals offshore of the Mississippi River delta plain

    USGS Publications Warehouse

    Penland, Shea; Suter, John R.; McBride, Randolph A.; Williams, S. Jeffress; Kindinger, Jack G.; Boyd, Ron

    1989-01-01

    Collectively, these sand shoals represent a large potential source of aggregate for shoreline restoration and erosion control as well as possible hard mineral resources. Scientifically, these shoals provide insight into the processes which control coastal evolution and shelf sand development under the condition of relative sea level rise.

  3. The Geodiversity in Drift Sand Landscapes of The Netherlands

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2 metres high. They are common near villages. They originated through sand blown from fallow agricultural fields and local overgrazing. They vary in age from prehistoric to modern time and are now mostly planted with forests. Third are the linear drift sand areas with one to three metre high ridges that align old roads and originated through dust whirled up by horses and carriages over many centuries. They also occurs within drift sands of the first system. In the re-stabilization of reactivated drift sands, differences in geodiversity on a still more detailed scale are important (Ancker, Jungerius et al. 2013). Even a small change in slope can cause primary dunes to develop and stop wind erosion. Gradually the geodiversity aspects are recognized as relevant for the management of active and fossil drift sands, and also is becoming a management issue in itself. An important future research issue is the completion of the Drift Sand Atlas, a project that describes the geodiversity aspects of all drift sand areas of The Netherlands. This project has been retarded by lack of means. Knowledge of the geodiversity also is important for correct sampling of C14 and luminescence data. Other future research includes the processes that caused the formation of 'randwallen' (rim walls), rates of water and wind erosion and soil formation and links between flora, fauna and Natura 2000 species. References

  4. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  6. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua J.

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  7. Coastal eolian sand-ramp development related to paleo-sea-level changes during the Latest Pleistocene and Holocene (21–0 ka) in San Miguel Island, California, U.S.A.

    USGS Publications Warehouse

    Peterson, Curt D.; Erlandson, Jon M.; Stock, Errol; Hostetler, Steven W.; Price, David M.

    2017-01-01

    Coastal eolian sand ramps (5–130 m elevation) on the northern slope (windward) side of the small San Miguel Island (13 km in W-E length) range in age from late Pleistocene to modern time, though a major hiatus in sand-ramp growth occurred during the early Holocene marine transgression (16–9 ka). The Holocene sand ramps (1–5 m measured thicknesses) currently lack large dune forms, thereby representing deflated erosional remnants, locally covering thicker late Pleistocene sand-ramp deposits. The ramp sand was initially supplied from the adjacent island-shelf platform, extending about 20 km north of the present coastline. The sand-ramp deposits and interbedded loess soils were 14C dated using 112 samples from 32 archaeological sites and other geologic sections. Latest Pleistocene sand ramps (66–18 ka) were derived from across-shelf eolian sand transport during marine low stands. Shoreward wave transport supplied remobilized late Pleistocene sand from the inner shelf to Holocene beaches, where dominant NW winds supplied sand to the sand ramps. The onset dates of the sand-ramp deposition in San Miguel are 7.2 ± 1.5 ka (sample n = 14). The internal strata dates in the vertically accreting sand ramps are 3.4 ± 1.7 ka (n = 34). The sand ramps in San Miguel show wide-scale termination of sand supply in the latest Holocene time. The sand-ramp top dates or burial dates are 1.7 ± 0.9 ka (n = 28). The latest Holocene sand ramps are truncated along most of the island's northern coastline, indicating recent losses of nearshore sand reserves to onshore, alongshore, and, possibly, offshore sand sinks. The truncated sand ramps in San Miguel Island and in other sand-depleted marine coastlines provide warnings about future beach erosion and/or shoreline retreat from accelerated sea-level rise accompanying predicted global warming.

  8. Overview of the technology and status of oil sands development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, R.J.

    1981-01-01

    In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.

  9. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  10. 75 FR 56080 - Intent To Prepare a Draft Programmatic Environmental Impact Statement (PEIS) for the Development...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ..., beneficial use dredging projects/ opportunities, FEMA reimbursement projects, and other potential sand placement or beach maintenance activities (beach bulldozing, etc.). Potential sand source locations to be... associated with using inlets as a sand source. d. Potential impacts to public lands, such as adjacent State...

  11. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum

    PubMed Central

    Kelly, Patrick H.; Bahr, Sarah M.; Serafim, Tiago D.; Ajami, Nadim J.; Petrosino, Joseph F.; Meneses, Claudio; Kirby, John R.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2017-01-01

    ABSTRACT The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. PMID:28096483

  12. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the quartz, higher content of feldspar and unstable heavy mineral assemblage dominated by augite and hypersthene suggest both a fast transport from Andean sources with fine sediment bypass over foreland areas.

  13. Temporal distribution and behaviour of sand flies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus of the Kani Tribe settlements in the Western Ghats, India.

    PubMed

    Srinivasan, R; Jambulingam, P; Kumar, N Pradeep; Selvakumar, M; Edwin, B; Kumar, T Dilip

    2015-08-01

    The temporal distribution of sand flies in relation to environmental factors was studied in the Kani tribe settlements located on the southernmost part of the Western Ghats, Kerala, India, between June 2012 and May 2013. This area is known for occurrence of cutaneous leishmaniasis (CL) cases. Employing hand-held aspirator, light trap and sticky-trap collection methods, a total of 7874 sand fly specimens, comprising 19 species was collected. Sergentomyia baghdadis was predominant species, followed by Phlebotomus argentipes. Sand fly abundance was significantly higher indoors (χ(2)=9241.8; p=0.0001) than outdoors. Mean density of P. argentipes in human dwellings, cattle sheds and outdoors was 7.2±2.9, 27.33±21.1 and 0.64±0.2 females/per man-hour (MHR), respectively. No sand fly species other than P. argentipes was obtained from cattle sheds. Although, sand fly populations were prevalent throughout the year, their abundance fluctuated with seasonal changes. Multiple regression analysis with backward elimination indicated that the increase in precipitation and relative humidity contributed to a significant positive association with the increase in sand fly abundance, while the increase in temperature showed no association. Fully engorged female sand flies tested for blood meal source showed multiple host-blood feeding. Analysis of resting populations of sand flies collected from human shelters indicated that the populations were found maximum on interior walls at 6-8 and >8 ft height, including ceiling during summer (F=83.7, df=6, p=0.001) and at the lower half of the wall at 0 and 0-2 ft height, during monsoon season (F=41.4, df=6, p=0.001). In cooler months, no preference to any height level (F=1.67, df=6, p=0.2) was observed. Proportion of females sand flies with Sella's classification of abdominal stages, namely full-fed, half-gravid and gravid females did not vary significantly (t=1.98, p=0.13827) indoors, confirming their endophilic behaviour. Risk of CL transmission in these tribal settlements is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  15. Algerian Abstract

    NASA Image and Video Library

    2017-12-08

    Algerian Abstract - April 8th, 1985 Description: What look like pale yellow paint streaks slashing through a mosaic of mottled colors are ridges of wind-blown sand that make up Erg Iguidi, an area of ever-shifting sand dunes extending from Algeria into Mauritania in northwestern Africa. Erg Iguidi is one of several Saharan ergs, or sand seas, where individual dunes often surpass 500 meters-nearly a third of a mile-in both width and height. Credit: USGS/NASA/Landsat 5 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. Optimization of permeability for quality improvement by using factorial design

    NASA Astrophysics Data System (ADS)

    Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad

    2017-05-01

    Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.

  17. Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    PubMed Central

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Huq, Md. R.; Mey, Jacob; Feighery, John E.; Culligan, Patricia J.; Mailloux, Brian J.; Zhuang, Jie; Escamilla, Veronica; Emch, Michael; Perfect, Edmund; Sayler, Gary S.; Ahmed, Kazi M.; van Geen, Alexander

    2012-01-01

    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log10/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater. PMID:22191430

  18. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  19. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  20. White Sands, Carrizozo Lava Beds, NM

    NASA Image and Video Library

    1982-03-30

    STS003-10-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA

  1. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands

    NASA Astrophysics Data System (ADS)

    Arens, Sebastiaan M.; Mulder, Jan P. M.; Slings, Quirinus L.; Geelen, Luc H. W. T.; Damsma, Petra

    2013-10-01

    This paper discusses and compares results of management interventions to remobilise dunes and obtain more autonomous changes in foredunes resulting from a change in coastal defence policy. In recent decades, nature conservation managers tried to restore aeolian dynamics and dune mobility landward of foredunes to maintain threatened, rare pioneer species. Results indicate that destabilisation activities yielded an important increase of blowing sand and its effects on ecology but with a limited effect on the desired integral remobilization of dunes. Roots remaining in the sand after removal of vegetation and soil is one of the main problems. Follow up removal of roots for 3 to 5 years seems to be essential, but it is not clear whether the dunes will remain mobile in the long term. In 1990 the Dutch government decided to maintain the position of the coastline by artificial sand nourishment. An intensive management of the foredunes was no longer required. Consequently, natural processes in the foredunes revived, and the sediment budget of the beach-dune system changed. Two main types of responses are visible. In some areas, increased input of sand resulted in the development of embryonic dunes seaward of the former foredunes, leading to increased stabilisation of the former foredunes. In other areas, development of embryonic dunes was insignificant despite the increased sand input, but wind erosion features developed in the foredunes, and the environment was more dynamic. The reasons for the differences are not clear, and the interaction between shoreface, beach and dunes is still poorly understood. Until now, attempts to mobilise the inner dunes were independent of changes made to the foredunes. We argue that an integrated, dynamic approach to coastal management, taking account of all relevant functions (including safety and natural values) and the dune-beach system as a whole, may provide new and durable solutions. An integrated approach would ideally provide fresh sand to the system by sand nourishment; define a wide safety zone, which enables the transition zone of beach to foredunes to develop freely; reserve space for natural processes without restrictions; and stimulate natural redistribution of sand within the system and restore inland transport of sand by removing vegetation behind the foredunes. A long time scale (several decades) is needed for this approach to be successful.

  2. Sedimentation and lithofacies relations in the Holocene Pahang Delta Complex, East Coast Malay Peninsula, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farshori, M.Z.; Jantan, A.

    1994-07-01

    A detailed study of the Pahang River Delta was undertaken in order to understand the development, architecture, geometrical characteristics, and structural sequential organization of the sand bodies on the east coast of the Malay Peninsula. The present delta indicates that although marine wave regimes are dominant, as exhibited by the cuspate-shaped delta, fluvial and tidal influences are substantial, as evident from the bedforms and sand bars morphology. The Pahang Delta system provides a unique case study for a tropical fluvio-marine windwave-dominated delta, which was profoundly influenced by seasonal storms. The deltaic sand is coarse and moderately sorted, and contains abundantmore » clay clasts. The southern coastline of the Pahang Delta is continuously modified by the erosive attack of the storm waves. The delta is subjected to extremely high-energy storm waves and fluvially formed sand bodies, such as channel mouth bars, dominant in other types of deltas that have been replaced by strand plains, sand bars and sand flats. The combination of high wave energy and strong littoral drift along the east coast of the Malay Peninsula results in changing the orientation of the sand bodies in the Pahang Delta. No modern wind-dominated delta is comparable to the Pahang Delta system. However, some modern deltas show many similarities in general morphology and sand distribution. The authors have developed a comprehensive sedimentological model of fluvio-marine sand-body variability in tropical wind-dominated deltas. The results of the studies will enlarge the applicability of geometrical studies to subsurface exploration of hydrocarbons.« less

  3. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  4. Description of Lutzomyia (Trichophoromyia) nautaensis n. sp. (Diptera: Psychodidae) from the Peruvian Amazon Basin

    PubMed Central

    Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin

    2015-01-01

    A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. PMID:26335468

  5. Intermittent flux from a sand filter for household wastewater and integrated solute transfer to the vadose zone.

    PubMed

    Nasri, Behzad; Fouché, Olivier

    2018-02-24

    Depending on the actual number of soil-based on-site wastewater treatment system (OWTS) in an area, on-site sanitation may be a significant source of pollutants and a threat to groundwater. Even in the case of a system functioning correctly, here, a sand filter substituted for the in-situ soil, as the treated effluent may reach to the water table, it is necessary evaluating in situ how much the sand and underneath soil respectively contribute to pollutant removal. On the plot of a household in a small rural community, the functioning of a real scale OWTS was monitored for 1.5 years. This system, composed of a septic tank connected to a 5 × 5 m 2 and 0.7-m thick aerobic sand filter was equipped with soil hydrodynamic probes (water content and matrix potential) during construction. By using the instantaneous profile method of water content, the intermittent infiltrated flux was determined across the sand-pack according to position and time. Treated water infiltrates into underneath soil acting as post-treatment. Quality of interstitial liquid from the sand and the soil was analysed each month on a 12-h pumping sample obtained through porous plates. Results of water fluxes and concentrations provide an estimate of the annual flux to the vadose zone and groundwater of metals, nutrients and some organic micro-pollutants (parabens and triclosan) through the OWTS and subsoil.

  6. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  7. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  8. Statistical Analysis of Streambed Sediment Grain Size Distributions: Implications for Environmental Management and Regulatory Policy

    Treesearch

    Brenda Rosser; Matt O' Connor

    2007-01-01

    Fish habitat in cold water streams in many northwestern California watersheds has been declared degraded under provisions of the Federal Clean Water Act, contributing to listings of anadromous fish species under the Endangered Species Act. It is believed that past and present land management activities induce erosion that contributes excess sand-size and finer sediment...

  9. Simple stochastic cellular automaton model for starved beds and implications about formation of sand topographic features in terms of sand flux

    NASA Astrophysics Data System (ADS)

    Endo, Noritaka

    2016-12-01

    A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.

  10. Nonlinear dynamics of Aeolian sand ripples.

    PubMed

    Prigozhin, L

    1999-07-01

    We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.

  11. Geodiversity and biodiversity interactions in the sand landscapes of the Netherlands on 19th and early 20th century landscape paintings

    NASA Astrophysics Data System (ADS)

    Jungerius, Pieter; van den Ancker, Hanneke

    2014-05-01

    Sand landscapes occupy about half of the territory of the Netherlands. Apart from an insignificant amount of Tertiary deposits, these sands are of Pleistocene and Holocene age. They include Saalian push moraines, Weichselian cover sands and Holocene drift sands. To these geological landscapes, cultural variants should be added such as the essen, i.e. a landscape with plaggen soils, and reclaimed lands (e.g. former moors). Not included are the coastal sands, which we dealt with in an earlier EGU contribution (van den Ancker & Jungerius 2012). Nature and man created a wide variety of sceneries that inspired painters in the 19th and early 20th century (Jungerius et al. 2012). Painter communities on the sandy soils flourished in Oosterbeek/Wolfheze, Laren/Blaricum, Nijkerk, Nunspeet/Elspeet, Hattem and Heeze. Many of the landscape paintings are found in the database of Simonis en Buunk that can be freely consulted on line (http//www.simonis&buunk.com). For this presentation we selected specimens that show geodiversity-biodiversity relationships, some of which have changed since. Painters of push moraines were attracted by the rolling terrain, the dry valleys and occasionally the colourful podzol soil profiles. Popular themes in the cover sands were the undulating relief and heathlands with herds of sheep, sandy footpaths and country roads with erosion phenomena. The dynamics of erosion captivated the painters of Holocene drift sand scenery, as did the bare fields of cultivated lands. Their paintings show the rural areas that since the beginning of the 20th century lost their traditional charm in large-scale re-allotment schemes and artificial nature-building project, that changed geodiversity-biodiversity relationships. Changes in the sandy terrains that can be inferred from the paintings are on a landscape scale, the scale of the landform and vegetation type, and are illustrated by changes in colour, pattern, structure and texture. Examples are: · active drift sands with erosional phenomena, most vanished as a result of afforestation and eutrophic precipitation; · wetland heath habitats, that largely disappeared due to reclamation and regional lowering of the groundwater table; · grazing of herded sheep of local breed on geo-structured heathlands, that is recently re-introduced for nature mangement purposes; · smaller agricultural plots on undulating 'essen' with crops such as buckwheat and wheat, now replaced by level terrain and maize monocultures; · monumental old trees on the oldest landscape paintings, often on river banks, are notably absent on later paintings. References Jungerius P, van den Ancker H, Wevers N 2012. The contribution of Dutch landscape painters to the conservation of geoheritage. Geology Today 28,3. Hanneke van den Ancker & Pieter Dirk Jungerius, 2012. Landscape paintings, a tool for research, planning and management of the coastal zone. Presentation General Assembly European Geosciences Union EGU - SSS, Vienna.

  12. Provenance and recycling of Arabian desert sand

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid; Al-Juboury, Ali

    2013-04-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al-Batin fossil alluvial fan or even from Mesozoic sandstones of the Arabian margin accreted to the Cenozoic Zagros orogen. Due to extensive recycling and the fact that zircon is so resistant to weathering and erosion, the U-Pb age signatures are much less powerful a tracer of sedimentary provenance than framework petrography and heavy minerals. Actualistic provenance studies of dune fields at subcontinental scale shed light on the generation and homogenization of aeolian sand, and allow us to trace complex pathways of multistep sediment transport, thus providing crucial independent information for accurate palaeogeographic and palaeoclimatic reconstructions.

  13. Provenance and recycling of Arabian desert sand

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid A.; Al-Juboury, Ali I. A.

    2013-05-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al-Batin fossil alluvial fan or even from Mesozoic sandstones of the Arabian margin accreted to the Cenozoic Zagros orogen. Due to extensive recycling and the fact that zircon is so resistant to weathering and erosion, the U-Pb age signatures are much less powerful a tracer of sedimentary provenance than framework petrography and heavy minerals. Actualistic provenance studies of dune fields at subcontinental scale shed light on the generation and homogenization of aeolian sand, and allow us to trace complex pathways of multistep sediment transport, thus providing crucial independent information for accurate palaeogeographic and palaeoclimatic reconstructions.

  14. The role of sand, marble chips and Typha latifolia in domestic wastewater treatment - a column study on constructed wetlands.

    PubMed

    Kadaverugu, Rakesh; Shingare, Rita P; Raghunathan, Karthik; Juwarkar, Asha A; Thawale, Prashant R; Singh, Sanjeev K

    2016-10-01

    The relative importance of sand, marble chips and wetland plant Typha latifolia is evaluated in constructed wetlands (CWs) for the treatment of domestic wastewater intended for reuse in agriculture. The prototype CWs for the experiments are realized in polyvinyl chloride columns, which are grouped into four treatments, viz. sand (<2 mm) + Typha latifolia (cattail), sand, marble chips (5-20 mm) + cattail and marble chips. The removal percentage of organic and nutritional pollutants from the wastewater is measured at varying hydraulic retention time in the columns. The statistical analysis suggests that the main effects of sand and cattail are found to be significant (p < .05) for the removal of biological oxygen demand and chemical oxygen demand from the wastewater. The presence of cattail significantly (p < .01) contributes to the conversion of total nitrogen in wastewater into [Formula: see text] by fostering the growth of favorable microbes for the nitrification. The removal of [Formula: see text] and turbidity from the wastewater is significantly (p < .01) influenced by sand than the presence of cattail. The maximum [Formula: see text] adsorption capacity of the sand is estimated to be 2.5 mg/g. Marble chips have significantly (p < .01) influenced the removal of [Formula: see text]and its maximum removal capacity is estimated to be 9.3 mg/g. The negative correlation between the filter media biofilm and column hydraulic conductivity is also reported for all the treatments. Thus, the findings of this study elucidate the role of low-cost and easily available filter media and it will guide the environmental practitioners in designing cost-effective CWs for wastewater treatment.

  15. Connecting onshore and offshore near-surface geology: Delaware's sand inventory project

    USGS Publications Warehouse

    Ramsey, K.W.; Jordan, R.R.; Talley, J.H.

    1999-01-01

    Beginning in 1988, the Delaware Geological Survey began a program to inventory on-land sand resources suitable for beach nourishment. The inventory included an assessment of the native beach textures using existing data and developing parameters of what would be considered suitable sand textures for Delaware's Atlantic beaches. An assessment of the economics of on-land sand resources was also conducted, and it was determined that the cost of the sand was competitive with offshore dredging costs. In addition, the sand resources were put into a geologic context for purposes of predicting which depositional environments and lithostratigraphic units were most likely to produce suitable sand resources. The results of the work identified several suitable on-land sand resource areas in the Omar and Beaverdam formations that were deposited in barrier-tidal delta and fluvial-estuarine environments, respectively. The identified on-land resources areas have not been utilized due to difficulties of truck transport and development pressures in the resource areas. The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from Cape Henlopen to Fenwick. This cross section identified the geologic units and potential sand resource bodies as found immediately along the coast. These units and resources are currently being extended offshore and tied to known and potential sand resources as part of the continuing cooperative effort between the Delaware Geological Survey and the Minerals Management Service's INTERMAR office as sand resources are identified in federal waters off Delaware. Offshore sand resources are found in the Pliocene Beaverdam Formation offshore where overlying Quaternary units have been stripped, in the tidal delta complexes of several Quaternary units likely equivalent to the onshore Omar Formation, and in late Pleistocene- and Holocene-age shoal complexes. Onshore lithostratigraphic units can be traced offshore and show another reason for continued geologic mapping both onshore and offshore.The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from cape Henlopen to Fenwick.

  16. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.

  17. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  18. Land Use and River Degradation Impact of Sand and Gravel Mining

    NASA Astrophysics Data System (ADS)

    Syah, Putra Rizal Ichsan; Hartuti, Purnaweni

    2018-02-01

    Sand and gravel mining is aimed at providing materials for infrastructure development, as well as providing economical source to the miners. However, the impacts of sand and gravel mining could also cause disturbances to ecological balance, since it is closely related to land use change and river degradation, besides causing conflicts in the miners, the government, and the private relationship. Therefore the government regulation and proper supervision are needed to preserve the ecological balance and decreasing the negative impacts of this mining, and therefore guarantee sustainable development.

  19. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  20. Connecting Brabant's cover sand landscapes through landscape history

    NASA Astrophysics Data System (ADS)

    Heskes, Erik; van den Ancker, Hanneke; Jungerius, Pieter Dirk; Harthoorn, Jaap; Maes, Bert; Leenders, Karel; de Jongh, Piet; Kluiving, Sjoerd; van den Oetelaar, Ger

    2015-04-01

    Noord-Brabant has the largest variety of cover sand landscapes in The Netherlands, and probably in Western Europe. During the Last Ice Age the area was not covered by land ice and a polar desert developed in which sand dunes buried the existing river landscapes. Some of these polar dune landscapes experienced a geomorphological and soil development that remained virtually untouched up to the present day, such as the low parabolic dunes of the Strabrechtse Heide or the later and higher dunes of the Oisterwijkse Vennen. As Noord-Brabant lies on the fringe of a tectonic basin, the thickness of cover sand deposits in the Centrale Slenk, part of a rift through Europe, amounts up to 20 metres. Cover sand deposits along the fault lines cause the special phenomenon of 'wijst' to develop, in which the higher grounds are wetter than the boarding lower grounds. Since 4000 BC humans settled in these cover sand landscapes and made use of its small-scale variety. An example are the prehistoric finds on the flanks and the historic towns on top of the 'donken' in northwest Noord-Brabant, where the cover sand landscapes are buried by river and marine deposits and only the peaks of the dunes protrude as donken. Or the church of Handel that is built beside a 'wijst' source and a site of pilgrimage since living memory. Or the 'essen' and plaggen agriculture that developed along the stream valleys of Noord-Brabant from 1300 AD onwards, giving rise to geomorphological features as 'randwallen' and plaggen soils of more than a metre thickness. Each region of Brabant each has its own approach in attracting tourists and has not yet used this common landscape history to connect, manage and promote their territories. We propose a landscape-historical approach to develop a national or European Geopark Brabants' cover sand landscapes, in which each region focuses on a specific part of the landscape history of Brabant, that stretches from the Late Weichselian polar desert when the dune landscapes were formed, through prehistoric, Roman and medieval times up to the post-modern nature building projects aimed at restoring biodiversity. A brochure was developed to raise awareness and promote interest for a landscape historical concept, in which each region profits from being part of a quality history.

  1. Anatomy of a shoreface sand ridge revisited using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, M.M.; McBride, R.A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf ???5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  2. Anatomy of a shoreface sand ridge revisted using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, Marci M.; McBride, Randolph A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf not, vert, ~5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  3. How Darcy's Law sparked various fields of subsurface hydrology.

    NASA Astrophysics Data System (ADS)

    de Rooij, Gerrit H.

    2016-04-01

    Henry Darcy built the drinking water supply system of the French city of Dijon in the mid-19th century. In doing so, he developed an interest in the flow of water through sands, and, experimented with water flow in a vertical cylinder filled with different sands. He found Darcy's Law in this way, and until this day it is the cornerstone of the theory of water flow in porous media. Darcy's Law was quickly adopted for calculating groundwater flow, which blossomed after the introduction of a few very useful simplifying assumptions that permitted a host of analytical solutions to groundwater problems, including flows toward pumped drinking water wells and toward drain tubes. In soil hydrology, Darcy's Law itself required modification to facilitate its application for different soil water contents. The understanding of the relationship between the potential energy of soil water and the soil water content emerged early in the 20th century. The mathematical formalization of the consequences for the flow rate and storage change of soil water was established in the 1930s, but only after the 1970s did computers become powerful enough to tackle unsaturated flows head-on. In combination with crop growth models, this allowed Darcy-based models to aid in the setup of irrigation practices and to optimize drainage designs. In the past decades, spatial variation of the hydraulic properties of aquifers and soils has been shown to affect the transfer of solutes from soils to groundwater and from groundwater to surface water. All this emerged from a law derived from a few experiments on a cylinder filled with sand in the 1850s. The poster tracks this development of groundwater hydrology and soil water hydrology through seminal contributions over the past 160 years.

  4. Frac sand in the United States: a geological and industry overview

    USGS Publications Warehouse

    Benson, Mary Ellen; Wilson, Anna B.; Bleiwas, Donald I.

    2015-01-01

    More than 40 United States industry operators are involved in the mining, processing, transportation, and distribution of frac sand to a robust market that is fast-growing in the United States and throughout the world. In addition to the abrupt rise in frac sand mining and distribution, a new industry has emerged from the production of alternative proppants, such as coated sand and synthetic beads. Alternative proppants, developed through new technologies, are competing with supplies of natural frac sand. In the long term, the vitality of both industries will be tied to the future of hydraulic fracturing of tight oil and gas reservoirs, which will be driven by the anticipated increases in global energy consumption.

  5. Shallow gas reservoir in a Pleistocene transgressive sand sheet developed during the drowning of retrograde delta lobes, Louisiana continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flakes, L.G.; Fillon, R.H.

    1996-12-31

    A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand`s pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less

  6. Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia

    PubMed Central

    Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C.; Zhioua, Elyes

    2016-01-01

    The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL. PMID:26999176

  7. Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia.

    PubMed

    Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C; Zhioua, Elyes

    2016-03-16

    The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL.

  8. Stand-yield prediction for managed Ocala sand pine

    Treesearch

    D.L. Rockwood; B. Yang; K.W. Outcalt

    1997-01-01

    Sand pine is a very important species in Florida, producing significant quantities of fiber. The purpose of this study was to develop the site index and stand-level growth and yield equations managers need to make informed decisions. Data were collected from 35 seeded plots of Ocala sand pine covering a range of site indexes, ages, and densities in 1982-83. These plots...

  9. Design of dry sand soil stratified sampler

    NASA Astrophysics Data System (ADS)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  10. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    NASA Astrophysics Data System (ADS)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in gas-sand, water-sand and viscous liquid-sand flows with high accuracy. Furthermore, in order to gain a better understanding of the erosion mechanism, a comprehensive experimental study was conducted to investigate the important factors influencing the erosion rate in gas-sand and slurry flows. The wear pattern and total erosion ratio were measured in a direct impingement jet geometry (for both dry impact and submerged impingement jets). The effects of fluid viscosity, abrasive particle size, particle impact speed, jet inclination angle, standoff distance, sand concentration, and exposure time were investigated. Also, the eroded samples were studied with Scanning Electron Microscopy (SEM) to understand the erosion micro-structure. Also, the sand particle impact speed and angle were measured using a Particle Image Velocimetry (PIV) system. The measurements were conducted in two types of erosion testers (gas-solid and liquid-solid impinging jets). The Particle Tracking Velocimetry (PTV) technique was utilized which is capable of tracking individual small particles. Moreover, CFD modeling was performed to predict the particle impact data. Very good agreement between the CFD results and PTV measurements was observed.

  11. The evolution of volcanic material on Mars: Preliminary results of sand-lavas relationships from the analogy with sandy lavas in Iceland

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Baratoux, D.; Arnalds, O.; Grégoire, M.; Platevoët, B.; Bardintzeff, J. M.; Chevrier, V.; Pinet, P.; Mathé, P. E.; Rochette, P.

    2004-12-01

    The surface of Mars is covered by volcanic rocks from few tens of millions years to 3.5 by old. The presence of water and atmosphere can strongly affect these rocks, by both chemical and mechanical erosion and transport. The interpretation of multispectral and hyperspectral data of Mars requires a better comprehension of these surface processes in order to understand if the spectral data still corresponds to the volcanic composition at the time of formation. Volcanic material in Iceland is a good analog for the studies of possible landforms resulting from the formation, transport and deposition of basaltic sand on Mars. Iceland is amongst the unique places on Earth with a cold environment, abundant basaltic rocks and sands, and the presence of palagonite, a possible typical constituent of the Martian soil. A first field campaign has been achieved in fall 2003, with the objectives of sites selection and chemical analysis of sands and lavas in order to establish the sources of sands, and the mineralogical and chemical evolution from lava to sands. The first site is close to Skjalbreidur volcano, south of Langjokull and is composed of weathered lava blocks, sands and gravels. The second sampling site is close to Eldborgir volcano, also south of Langjokull, weathered lava flows and sands are observed here. The third sampling site is around Hekla volcano. The results of the chemical analysis indicate different situations for the origin of sands. For the first two sites, major, minor and traces elements are correlated and indicate that the sands, which are basaltic in composition, are genetically related to the surrounding lava. The sands at Hekla volcano, andesitic in composition, indicate a contamination of material eroded from basaltic lava flow by a more silicic component erupted from Hekla. Sands coming from different sources, of possibly different chemical and mineralogical composition, and of different nature of eruption can easily mix each other which has implications for the interpretation of infra-red data of the surface of Mars. A second result concerns the evolution of the mineralogical composition of basaltic sand compared to the lava. We observed a higher concentration of MgO and Ni in Skjalbreidur and Eldborgir sands than in the surrounding lava taken as a reference. Together, these observations indicate a higher concentration of olivine in the sands which may be due to its higher strength (compared to feldspaths and pyroxene) and sorting by wind from different grain size. On the other hand, the contribution of weathering seems not have destructed these olivine grains. Indeed, magnetic results show that magnetic phases such as titanomagnetite are poorly weathered despite being at the surface since 9000 years. The weathering by the wet climate is likely slow down by the cold temperatures all the year long. The detection of olivine at the surface of Mars is thus not a simple tool to conclude that the weather did not involve liquid water.

  12. Evolutionary modification of T-brain (tbr) expression patterns in sand dollar.

    PubMed

    Minemura, Keiko; Yamaguchi, Masaaki; Minokawa, Takuya

    2009-10-01

    The sand dollars are a group of irregular echinoids that diverged from other regular sea urchins approximately 200 million years ago. We isolated two orthologs of T-brain (tbr), Smtbr and Pjtbr, from the indirect developing sand dollar Scaphechinus mirabilis and the direct developing sand dollar Peronella japonica, respectively. The expression patterns of Smtbr and Pjtbr during early development were examined by whole mount in situ hybridization. The expression of Smtbr was first detected in micromere descendants in early blastula stage, similar to tbr expression in regular sea urchins. However, unlike in regular sea urchin, Smtbr expression in middle blastula stage was detected in micromere-descendent cells and a subset of macromere-descendant cells. At gastrula stage, expression of Smtbr was detected in part of the archenteron as well as primary mesenchyme cells. A similar pattern of tbr expression was observed in early Peronella embryos. A comparison of tbr expression patterns between sand dollars and other echinoderm species suggested that broader expression in the endomesoderm is an ancestral character of echinoderms. In addition to the endomesoderm, Pjtbr expression was detected in the apical organ, the animal-most part of the ectoderm.

  13. Ecology and demographics of Pacific sand lance, Ammodytes hexapterus Pallas, in Lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Robards, Martin D.; Piatt, John F.

    2000-01-01

    Distinct sand lance populations occur within the relatively small geographic area of Lower Cook Inlet, Alaska. Marked meso-scale differences in abundance, growth, and mortality exist as a consequence of differing oceanographic regimes. Growth rate within populations (between years) was positively correlated with temperature. However, this did not extend to inter-population comparisons where differing growth rates were better correlated to marine productivity. Most sand lance reached maturity in their second year. Field observations and indices of maturity, gonad development, and ova-size distribution all indicated that sand lance spawn once each year. Sand lance spawned intertidally in late September and October on fine gravel/sandy beaches. Embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures. Mean dry-weight energy value of sand lance cycles seasonally, peaking in spring and early summer (20.91 kJg-1 for males, 21.08 kJg-1 for females), and subsequently declining by about 25% during late summer and fall (15.91 kJg-1 for males, 15.74 kJg-1 for females). Sand lance enter the winter with close to their minimum whole body energy content. Dry weight energy densities of juveniles increased from a minimum 16.67 kJg-1 to a maximum of 19.68 kJg-1 and are higher than adults in late summer.

  14. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China].

    PubMed

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping

    2016-01-01

    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  15. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    NASA Astrophysics Data System (ADS)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  16. Mass spectrometric characterization of naphthenic acids in environmental samples: a review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2009-01-01

    There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by C(n)H(2n+z)O(2) where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and co-elutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components.

  17. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  18. Chenier Development within a Prograding Strandplain Complex

    NASA Astrophysics Data System (ADS)

    FitzGerald, D.; Hein, C. J.; Georgiou, I. Y.

    2017-12-01

    Strandplains dominate the southern coast of Brazil due to abundant shelf and local sediment and falling sea-level (2-4 m) during the past 6 ka. These plains are composed chiefly of swash-aligned sandy beach and dune ridges deposited in bedrock-framed embayments 2-5 km wide and 3-10 km long. The Tijucas Strandplain developed in a more sheltered and deeply embayed setting fronted by long peninsulas and bedrock islands, which reduce ocean wave energy. The Tijucas River bisects the plain and has provided the primary source of sediment to produce a Holocene basinal fill composed of a seaward-thickening bay mud sequence (10-16 m thick). Long-term gradual shoaling of the basin and attendant lessening wave energy produced upper strandplain foreshore and beach units that transition from landward 8-m thick sand sections to a 3-4-m thick mud unit along the present-day shoreline. The gradual lateral change of the morpho-sedimentary character of the plain is likely a product of climate-induced changes in sediment composition and supply and/or wave regime. For example, the mid-plain is defined by a series of abrupt alterations between sand-dominated beach ridges and mixed sand-and-mud cheniers. This area contains at least four chenier complexes consisting of closely spaced (25-40 m apart) 50-75 m wide ridges composed of 3-4 m thick shelly sand underlain and separated by a cohesive basin-fill clay. The seaward portion of the plain has two sandy chenier ridges each 1 m high and <3 m thick, separated by 100 m of consolidated mud with rare sand beds. Ground-penetrating radar sections show ridges contain numerous seaward-sloping beds having variable dips and multiple truncations, resulting from repeated erosional and depositional events. Expansive, thin (<50 cm) sand sheets composed of flat-lying to shallowly landward-dipping internal radar reflections extend landward from most chenier ridges that overtop inter-ridge mud. The present beach comprises the most current developing chenier. Recent storm-induced landward transport of a thin, sandy overwash fan mimics the proposed mechanism for earlier ridge-swale development. Finally, a future chenier is forming 1 km offshore where breaking waves concentrate sand. Between these two sand deposits is a shallow (< 3 m) muddy region where cores and surface samples indicate an absence of sand.

  19. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea

    USGS Publications Warehouse

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.

    2001-01-01

    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and thick beds, can be validated in deviated wells with thin beds. Sand thickness models constrained by this logand core-based petrophysical analysis were used to build impedance seismic synthetic sections from which seismic attributes could be extracted and calibrated. The model-based attribute calibration was then applied to the seismic impedance 3-D cube permitting sand thickness to be mapped and reservoir geology to be modeled with significantly more detail than previously possible. These results will guide the field''s reservoir management and assist in the delineation of new targets.

  20. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    NASA Astrophysics Data System (ADS)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.

  1. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  2. Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber

    NASA Astrophysics Data System (ADS)

    Mekhermeche, A.; Kriker, A.; Dahmani, S.

    2016-07-01

    The Saharan regions of Algeria are characterized by a hot and dry climate. The most used cement materials such as theconcrete or the mortar blocks have bad thermal characteristic. However, these regions have several local materials: clay, dune sand and some natural fibers, which are formerly proved their thermal efficiency. The price of construction material used therefore depends on the international market constantly destabilized by theeconomic crisis coupled with the energy crisis in recent times. To produce a framework of life at a lower cost, it is important, therefore, to circumvent the influence of the cost of energy by upgrading the local materials of construction. In order to improve thermal performances in Saharan building materials this study was lanced. The aim of this research isthen to fabricate some bricks using three local materials: namely the clay, sand dune and the fibers of date palm. The percentage of sand and fibers varies from 0% to 40% and 0% to 3% by mass respectively. A sand dune of Ain El Beida of Ouargla of Algeria was used. Clay was extracted from Beldet Amer of Touggourt Ouargla Algérie. The fibers used in this study were vegetable fibers from date palm of Ouargla Algeria. The results showed that increasing in the mass fraction of sand and of fiber were beneficial for improving thermal properties. As function of increasing the percentage of sand dune and fibers there were: A decrease in: thermal conductivity, specific heat, heat capacity, thermal effusivity and thermal diffusivity and there were an increase in the thermal resistance.

  3. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    USGS Publications Warehouse

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  4. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)« less

  5. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    NASA Astrophysics Data System (ADS)

    Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode

    2018-03-01

    River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  6. Bend-scale geomorphic classification and assessment of the Lower Missouri River from Sioux City, Iowa, to the Mississippi River for application to pallid sturgeon management

    USGS Publications Warehouse

    Jacobson, Robert B.; Colvin, Michael E.; Bulliner, Edward A.; Pickard, Darcy; Elliott, Caroline M.

    2018-06-07

    Management actions intended to increase growth and survival of pallid sturgeon (Scaphirhynchus albus) age-0 larvae on the Lower Missouri River require a comprehensive understanding of the geomorphic habitat template of the river. The study described here had two objectives relating to where channel-reconfiguration projects should be located to optimize effectiveness. The first objective was to develop a bend-scale (that is, at the scale of individual bends, defined as “cross-over to cross-over”) geomorphic classification of the Lower Missouri River to help in the design of monitoring and evaluation of such projects. The second objective was to explore whether geomorphic variables could provide insight into varying capacities of bends to intercept drifting larvae. The bend-scale classification was based on geomorphic and engineering variables for 257 bends from Sioux City, Iowa, to the confluence with the Mississippi River near St. Louis, Missouri. We used k-means clustering to identify groupings of bends that shared the same characteristics. Separate 3-, 4-, and 6-cluster classifications were developed and mapped. The three classifications are nested in a hierarchical structure. We also explored capacities of bends to intercept larvae through evaluation of linear models that predicted persistent sand area or catch per unit effort (CPUE) of age-0 sturgeon as a function of the same geomorphic variables used in the classification. All highly ranked models that predict persistent sand area contained mean channel width and standard deviation of channel width as significant variables. Some top-ranked models also included contributions of channel sinuosity and density of navigation structures. The sand-area prediction models have r-squared values of 0.648–0.674. In contrast, the highest-ranking CPUE models have r-squared values of 0.011–0.170, indicating much more uncertainty for the biological response variable. Whereas the persistent sand model documents that physical processes of transport and accumulation are systematic and predictable, the poor performance of the CPUE models indicate that additional processes will need to be considered to predict biological transport and accumulation.

  7. Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.

    2000-01-01

    To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.

  8. The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.

    2018-07-01

    Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.

  9. The White Nile as a source for Nile sediments: Assessment using U-Pb geochronology of detrital rutile and monazite

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Avigad, Dov; Gerdes, Axel

    2018-04-01

    Basement terranes exposed at the headwaters of the White Nile include Archean-Paleoproterozoic rocks of the Congo Craton, whose northern sectors were severely reworked during Neoproterozoic orogeny. New U-Pb analyses of detrital rutile and monazite from early Quaternary to Recent coastal quartz sands of Israel, at the northeast extension of the Nile sedimentary system, yield mostly late Neoproterozoic ages, with a dominant peak at ca. 600 Ma. While derivation from the reworked sectors of the Craton cannot be negated, the absence of pre-Neoproterozoic rutile and monazite indicates that the detrital contribution from the Congo cratonic nuclei into the main Nile was insignificant. The near absence of White Nile basement-derived heavy minerals from the Nile sands arriving at the Eastern Mediterranean may be explained by a number of factors such as relatively minor erosion of the Cratonic basement nuclei during the Quaternary, late connection of the White Nile to the main Nile system with a possibility that northern segments connected prior to more southerly ones, and a long-term effective sediment blockage mechanism at the mouth of White Nile. Likewise, our previous study demonstrated that Nile sands display a detrital zircon U-Pb-Hf pattern consistent with significant recycling of NE African Paleozoic sediments. It is thus plausible that any detrital contribution from White Nile basement rocks was thoroughly diluted by eroded Paleozoic sediments, or their recycled products, which were likely the greatest sand reservoir in the region. This study adds to previous studies showing the advantage of a multi mineral U-Pb geochronology strategy in constraining sediment provenance patterns.

  10. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    USGS Publications Warehouse

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western contributions of generated oil to the oil sands, the amount generated by the Jurassic source rocks within the study area was 475 BCM (2990 billion bbl). Copyright ?? 2009. The American Association of Petroleum Geologists. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound mannermore » using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.« less

  12. Aeolian system dynamics derived from thermal infrared data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a new application. Supporting data from AERONET and other orbital data enabled study of net radiative forcing.

  13. The effects of Fe-oxidizing microorganisms on post-biostimulation permeability reduction and oxidative processes at the Rifle IFRC site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Clara Sze-Yue

    2015-07-02

    Fe oxidation and biomineral formation is important in aquifers because the highly-reactive oxides can control the mobility of nutrients (e.g. phosphate, C) and metals (e.g. arsenic, uranium). Mineral formation also has the potential to affect hydrology, depending on the volume and distribution in pore spaces. In this exploratory study, we sought to understand how microbial Fe-oxidizers and their biominerals affect, and are affected by groundwater flow. As part of work at the Rifle aquifer in Colorado, we initially hypothesized that Fe-oxidizers were contributing to aquifer clogging problems associated with enhanced bioremediation. To demonstrate the presence of Fe-oxidizers in the Riflemore » aquifer, we enriched FeOM from groundwater samples, and isolated two novel chemolithotrophic, microaerophilic Fe-oxidizing Betaproteobacteria, Hydrogenophaga sp. P101 and Curvibacter sp. CD03. To image cells and biominerals in the context of pores, we developed a “micro-aquifer,” a sand-filled flow-through culture chamber that allows for imaging of sediment pore space with multiphoton confocal microscopy. Fe oxide biofilms formed on sand grains, demonstrating that FeOM produce Fe oxide sand coatings. Fe coatings are common on aquifer sands, and tend to sequester contaminants; however, it has never previously been shown that microbes are responsible for their formation. In contrast to our original hypothesis, the biominerals did not clog the mini-aquifer. Instead, Fe biofilm distribution was dynamic: they grew as coatings, then periodically sloughed off sand grains, with some flocs later caught in pore throats. This has implications for physical hydrology, including pore scale architecture, and element transport. The sloughing of coatings likely prevents the biominerals from clogging wells and aquifers, at least initially. Although attached biomineral coatings sequester Fe-associated elements (e.g. P, As, C, U), when biominerals detach, these elements are transported as particles through the aquifer. Our work shows that microbial mineralization impacts in aquifers are dynamic, and that the fate and transport of biomineral-associated elements depend not only on geochemical conditions, but also physical pore-scale processes.« less

  14. Shallow gas reservoir in a Pleistocene transgressive sand sheet developed during the drowning of retrograde delta lobes, Louisiana continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flakes, L.G.; Fillon, R.H.

    1996-01-01

    A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand's pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less

  15. White Sands, Carrizozo Lava Beds, NM

    NASA Image and Video Library

    1973-06-22

    SL2-04-288 (22 June 1973) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast New Mexico (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Photo credit: NASA

  16. Bioprocess for treating coproduced oily sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munnecke, D.M.; Ireland, J.

    1996-12-31

    The production of oil from certain oil fields creates significant amounts of oily sand which in many regulatory jurisdictions is regulated as a hazardous material, thus disposal costs can be significant. Environmental BioTechnologies, Inc. (San Carlos, CA) has developed a physical/biological treatment process that is able to economically treat these coproduced sands and produce a product that contains less than 2,000 ppm total petroleum hydrocarbons.

  17. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  18. Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert

    NASA Astrophysics Data System (ADS)

    Jia, Rongliang; Zhao, Yun; Gao, Yanhong; Hui, Rong; Yang, Haotian; Wang, Zenru; Li, Yixuan

    2018-02-01

    Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.

  19. An-integrated seismic approach to de-risk hydrocarbon accumulation for Pliocene deep marine slope channels, offshore West Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Othman, Adel A. A.; Bakr, Ali; Maher, Ali

    2017-12-01

    The Nile Delta basin is a hydrocarbon rich province that has hydrocarbon accumulations generated from biogenic and thermogenic source rocks and trapped in a clastic channel reservoirs ranging in age from Pliocene to Early Cretaceous. Currently, the offshore Nile Delta is the most active exploration and development province in Egypt. The main challenge of the studied area is that we have only one well in a channel system exceeds fifteen km length, where seismic reservoir characterization is used to de-risk development scenarios for the field by discriminating between gas sand, water sand and shale. Extracting the gas-charged geobody from the seismic data is magnificent input for 3D reservoir static modelling. Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition analysis unravels the seismic signal into its initial constituent frequencies. Frequency decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness, geologic discontinuities and channel connectivity. Inversion feasibility study using crossplot between P-wave impedance (Ip) and S-wave impedance (Is) which derived from well logs (P-wave velocity, S-wave velocity and density) is applied to investigate which inversion type would be sufficient enough to discriminate between gas sand, water sand and shale. Integration between spectral analysis, inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which used to extract gas sand and water sand geobodies, which is extremely wonderful for constructing facies depositional static model in area with unknown facies distribution and sand connectivity. Therefore de-risking hydrocarbon accumulation and GIIP estimation for the field became more confident for drilling new development wells.

  20. Holocene reworking of a sand sheet in the Merrimack Embayment, Western Gulf of Maine

    USGS Publications Warehouse

    Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.

    2007-01-01

    Recent bathymetric, backscatter, and seafloor sediment samples demonstrate that a large sand sheet was formed in the inner shelf by the reworking of the Merrimack River lowstand delta (deposited 12 kya; currently at 45 m depth) and braid plain during the Holocene transgression. Asymmetric bedforms and distinct grain size distributions suggest the sand sheet is actively being reworked by inner-shelf processes. Bottom sediments range from silty sand at the submerged delta to coarse sand and fine gravel in the innermost shelf (depth: 10-50 m). Coarse-grained sand comprises an expansive (32 km2 ) featureless sand sheet centered off the Merrimack River. Fine-grained sand discontinuously overlies this sand sheet in many locations and forms long wavelength (100 – 800 m), low amplitude (1-2 m), asymmetrical bedforms. Sets of these bedforms are oriented from slightly oblique offshore to onshore; several bedform sets are located within 1 km and oriented orthogonally to one another. Along the paleo-delta front north-northwest oriented bedforms are dominant. Inshore of these features, the bedforms become more closely spaced and have orientations to the west and westsouthwest. Preliminary data suggest that the combined forcings of instantaneous storm-wave generated shear stress and storm-induced currents associated with high energy northeast storm events may be responsible for sand sheet reworking and bedform development.

  1. Geologic and paleoecologic studies of the Nebraska Sand Hills

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We interpret these as transverse-ridge dunes that were generally moving to the south. Further, our measurements indicate that dunes in the western part of the Sand Hills did not develop in response to present-day effective wind regimes. The presence of 'transverse' and en echelon barchan dunes in the Sand Hills corresponds to a developmental sequence of barchan to linear dunes proposed by Tsoar (1978). Dune and interdune deposits of the Sand Hills are subfeldsarenites to feldsarenites. Sand grains are commonly coated with montmorillonitic clay, which may be the local source of the clay concentrated in the dissipation structures. Textures of sand samples taken from adjacent layers within a dune were as dissimilar as textures of samples taken from widely separated dunes. This common occurrence indicates that textural data must be used carefully and in combination with other data to recognize ancient rocks of eolian origin. Organic material derived from a variety of flora and fauna that inhabit the interdunes (chapters B and C) generated both oil and gas upon heating. Thus, interdune sediments may be an indigenous hydrocarbon source if buried in eolianites. The twofold stratigraphy of loess and correlative dune deposits in the Sand Hills proposed by Reed and Dreeszen (1965) could not be confirmed by the present study. Rather, available data indicate that the dunes represent a single formation as suggested by Lugn (1935). PART B: Three assemblages of nonmarine Mollusca from paleointerdune deposits in the Nebraska Sand Hills inhabited shallow, quiet, vegetated, subpermanent or temporary, freshwater interdune ponds and adjacent terrestrial habitats. Analysis of factors affecting the taxonomic composition, diversity, and abundance of species in living assemblages of mollusks support this interpretation. The mollusks have long biostratigraphic ranges and broad biogeographic distributions. They fail to establish precise age relations of the faunas othe

  2. Wind-blown sand movement periods on the Nyírség alluvial fan, Hungary

    NASA Astrophysics Data System (ADS)

    Buró, Botond; Lóki, József; Sipos, György; Négyesi, Gábor; Andrási, Bence; Jakab, Attila; Félegyházi, Enikő; Molnár, Mihály

    2017-04-01

    Wind-blown sand movement periods on the Nyírség alluvial fan, Hungary The Nyírség is an alluvial fan, was built by rivers, which were flown down from the NE Carpathians. When the weather was dry, wind-blown sand was blowed out and the wind started to develop the aeolian landforms. The first significant sand movements in the Nyírség was in the Upper plenniglacial and the Late glacial. The main landforms of the Nyírség were developed at this time. The aeolic transformation of the land was not completed in the Nyírség at the end of the Pleistocene. In the Holocene the sand moved within small area, mainly by anthropogenic impact. Our aim is clarify the age of the wind-blown sand movements period, with different absolute (Radiocarbon dating method, OSL), and relative (Archaeological finds, Pollen analyses) dating methods. We have collected for the age determining charcoal from many sand quarry (Gégény, Kántorjánosi, Nyíradony, Nagyvarsány, Máriapócs and Lövőpetri) which contain fossil soil layer. For the OSL measurements samples were collected from Baktalórántháza, Gégény and Kántorjánosi sand quarries. We collected samples from 5 places for the pollen analyses (Nyírtanya, Máriapócs, Nyírbéltek-Nyírlúgos, Nyírábrány, Vámospércs), and also from an archaeological excavation (Nyíregyháza- Oros). The new age dates show us, that in the Nyírség the first significant sand movements were in the cold and drier period of the Upper pleniglacial and Late glacial (Baktalórántháza, Nyírtanya, Vámospércs). At the end of the Pleistocene the sand movements not competed in the Nyírség (Gégény, Kántorjánosi, Nyírábrány). In the Holocene there were many little sand movement periods, mainly caused by anthropogenic impact (Nyíradony, Nyíregyháza-Oros). The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 'ICER'. Furthermore, this research was supported by the OTKA PD115803.

  3. The reproductive morphology and physiological age grading of the female Salvinia Weevil, Cyrtobagous salviniae Calder and Sands

    USDA-ARS?s Scientific Manuscript database

    The morphology of female Cyrtobagous salviniae Calder and Sands reproductive system is similar to other weevil species being meroistic and telotrophic and composed of two ovaries each with two tube-like ovarioles where the follicles develop and mature. A physiological age-grading system was develop...

  4. Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia

    USGS Publications Warehouse

    Brown, Donald L.; Silvey, William Dudley

    1977-01-01

    Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)

  5. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India.

    PubMed

    Rao, Subramanya; Chan, Yuki; Bugler-Lacap, Donnabella C; Bhatnagar, Ashish; Bhatnagar, Monica; Pointing, Stephen B

    2016-03-01

    A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.

  6. The contribution of forensic geology and other trace evidence analysis to the investigation of the killing of Italian Prime Minister Aldo Moro.

    PubMed

    Lombardi, G

    1999-05-01

    In May 1978 the body of the kidnapped Italian Prime Minister, murdered by the Red Brigades, was found in a car parked in the center of Rome. This paper discusses the findings from the investigations conducted on the evidence found on Mr. Moro's clothes, shoes (beach sand, bitumen, vegetals and polyester fragments), and on the car. To get a comprehensive picture of the characteristics of the various pieces of evidence, use was made of a multiple-technique approach. The sand was identified as coming from the seashore close to Rome. A tract of shore with a limited number of roads leading to the beach was defined as compatible with the textural and compositional characteristics of the sand. The study of the vegetal fragmenta suggested that they had been picked up in a period of time close to the killing. Thermosetting polyester, of the type used in boat manufacturing was found under the fenders, in the tires and inside the car, as well as under Mr. Moro's shoes, supporting proximity of a beach. Pollen analysis showed that adhesion of volcanic soil to the car fenders antedated adhesion of the sand.

  7. Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes.

    PubMed

    Nakata, Hidewo; Minokawa, Takuya

    2009-03-01

    Two wnt8 orthologs, Smwnt8 and Pjwnt8, were isolated from an indirect developing sand dollar, Scaphechinus mirabilis, and a direct developing sand dollar, Peronella japonica, respectively. The expression patterns of two genes during early development were examined by whole mount in situ hybridization. The expression of Smwnt8 was initiated in the micromeres at the late 16-cell stage and expanded at the 64-cell stage to the whole vegetal hemisphere, including the presumptive endomesodermal regions. The timing of the initiation of Pjwnt8 transcription in the presumptive endomesoderm region was delayed by 2-3 cell cycles compared to that of Smwnt8. The delay, or molecular heterochrony, of Pjwnt8 transcription strongly suggests the existence of a substantial evolutionary change in the early endomesodermal specification of P. japonica. In addition to the endomesodermal expression during early embryogenesis, bilateral expressions were observed commonly in the ectoderm of two sand dollar species during larval stages.

  8. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  9. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per second occurred in the study reach and was accompanied by net aggradation in the managed area. These observations illustrate the high sediment transport capacity of the river channel both at lower flows, when the sand was added, and during higher flow events. This field experiment also serves as a practical example of the dynamic response of a Platte River channel to a relatively small-scale sand augmentation project directed toward enhancing in-channel habitat for avian species.

  10. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    Computer graphics and visualization techniques continue to provide untapped research opportunities, particularly when working with earth science disciplines. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs we are developing new techniques for simulating sand. In addition, through collaboration with the Oregon Space Grant, we’ve been communicating with the Jet Propulsion Laboratory (JPL) to exchange ideas and gain feedback on our work. More specifically, JPL’s DARTS Laboratory specializes in planetary vehicle simulation, such as the Mars rovers. This simulation utilizes a virtual "sand box" to test how planetary rovers respond to different terrains while traversing them. Unfortunately, this simulation is unable to fully mimic the harsh, sandy environments of those found on Mars. Ideally, these simulations should allow a rover to interact with the sand beneath it, particularly for different sand granularities and densities. In particular, there may be situations where a rover may become stuck in sand due to lack of friction between the sand and wheels. In fact, in May 2009, the Spirit rover became stuck in the Martian sand and has provided additional motivation for this research. In order to develop a new sand simulation model, high performance computing will play a very important role in this work. More specifically, graphics processing units (GPUs) are useful due to their ability to run general purpose algorithms and ability to perform massively parallel computations. In prior research, simulating vast quantities of sand has been difficult to compute in real-time due to the computational complexity of many colliding particles. With the use of GPUs however, each particle collision will be parallelized, allowing for a dramatic performance increase. In addition, spatial partitioning will also provide a speed boost as this will help limit the number of particle collision calculations. However, since the goal of this research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  11. Risk zones of human Leishmaniases in the Western Mediterranean basin: correlations between vector sand flies, bioclimatology and phytosociology.

    PubMed

    Rispail, Philippe; Dereure, Jacques; Jarry, Daniel

    2002-06-01

    Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical distribution of these diseases in the Western Mediterranean basin and contributes to the determination, in a rational manner, of the high risk zones.

  12. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-12-20

    ISS018-E-014770 (20 Dec. 2008) --- Sand dunes in the Marzuq Sand Sea, southwest Libya are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This detailed view, taken from low Earth orbit, shows classic large and small sand masses of the Central Sahara where wind is a more powerful land-forming agent than water. ?Draa? dunes (from the Arabic for ?arm?) are very large masses of sand and appear here as the broad network of yellow-orange sand masses (the image covers a region approximately 9.4 kilometers wide), with smooth-floored, almost sand-free basins between them. These sand masses lie in the western part of Libya?s vast Marzuq Sand Sea (greater than 60,000 square kilometers, centered at 24.5N 12W). Geologists think that the draa of the Marzuq have probably been formed by winds different from the dominant north/northeast winds of today. Numerous smaller dunes can be seen developed on the backs of the draa. Three distinct dune types can be identified: longitudinal dunes (formed essentially parallel with formative winds from the north); transverse dunes, usually more curved, formed at right angles to the formative wind; and star dunes, in which several linear arms converge towards a single peak. The upwind side of the sand masses appears smoother than the more rippled downwind side. Wind is moving sand grains almost all the time. This means that the draa and the dunes are all moving -- as sand is added on the upwind side and blown off the downwind side. It is well known that small sand masses move much faster than large sand masses. This means that the draa are almost stationary, but that the smaller dunes are moving relatively quickly across their backs. When the dunes reach the downwind side of the draa they are obliterated, their sand being blown across the basins as individual grains.

  13. Chlorine residuals and haloacetic acid reduction in rapid sand filtration.

    PubMed

    Chuang, Yi-Hsueh; Wang, Gen-Shuch; Tung, Hsin-hsin

    2011-11-01

    It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. OSL age and stratigraphy of the Strauss sand sheet in New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Goble, Ronald J.

    2015-07-01

    The Strauss sand sheet occurs in south-central New Mexico, USA, and northern Chihuahua, Mexico, covering an area of about 4740 km2. Its chronology is determined by 19 OSL ages. The sand sheet formed primarily during three phases of eolian deflation and deposition, each phase with a separate sand source and under different climatic and environmental circumstances. The first phase of eolian sedimentation occurred 45 to 15 ka with the deposition of unit 1. The sand source for the first phase was beach-related features along the eastern shoreline of pluvial Lake Palomas in Mexico. The glacial-age climate was cool, wet, and windy because of the southern path of the jet stream at that time. After 15 ka, with the onset of warmer conditions of the Bølling-Allerød, the shutting down of the Palomas sand source, and wet conditions of the Younger Dryas, the sand sheet stabilized with weak soil development in unit 1. By 11 ka, the climate shifted to Holocene drying conditions and the second phase of sand accumulation began, forming unit 2; the sand source was the local deflation of the previously deposited unit 1 sand. The sand sheet stabilized again by 1.9 ka with slightly wetter late Holocene climate; a weak soil formed in unit 2 sand. About A.D. 1500 and extending to about A.D. 1850 or later, an A horizon formed on the sand sheet, probably in response to a desert grassland vegetation during the period of wet climate of the Little Ice Age. In an anthropogenic third phase of eolian activity, after A.D. 1850, the vegetation was likely disturbed by overgrazing; and the unit 2 and A horizon (unit 3) sands were deflated, resulting in the deposition of a thin layer of massive eolian sand (unit 4) across the sand sheet. By about A.D. 1900 mesquite shrubs had increased in abundance; and deflated sand, largely from unit 2, began to accumulate around the shrubs, forming coppice dunes (unit 5). Mesquite coppice dunes continued to increase in number and volume during the twentieth century and at present dominate most of the sand sheet. This third phase of eolian deflation-deposition is ongoing today.

  15. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2014-04-01

    Surtsey and Mount St. Helens are celebrated but very different volcanoes. Permanent plots allow for comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors, and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, we found several common themes. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  16. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2013-12-01

    Surtsey and Mount St. Helens are celebrated, but very different volcanoes. Permanent plots allow comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, common themes were revealed. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  17. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)

    PubMed Central

    Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr

    2017-01-01

    Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377

  18. The geomorphic and ecological effectiveness of habitat rehabilitation works: Continuous measurement of scour and fill around large logs in sand-bed streams

    NASA Astrophysics Data System (ADS)

    Borg, Dan; Rutherfurd, Ian; Stewardson, Mike

    2007-09-01

    Geomorphologists, ecologists and engineers have all contributed to stream rehabilitation projects by predicting the physical effect of habitat restoration structures. In this study we report the results of a stream rehabilitation project on the Snowy River, SE Australia; that aims to improve fish habitat and facilitate migration associated with scour holes around large wood in the streambed. Whilst engineering models allow us to predict maximum scour, the key management issue here was not the maximum scour depth but whether the holes persisted at a range of flows, and if they were present when fish actually required them. This led to the development of a new method to continuously monitor scour in a sand-bed, using a buried pressure transducer. In this study we monitored fluctuations in the bed level below three large logs (1 m diameter) on the Snowy River. Each log had a different scour mechanism: a plunge pool, a horseshoe vortex (analogous to a bridge pier), and a submerged jet beneath the log. The continuous monitoring demonstrated a complex relationship between discharge and pool scour. The horseshoe vortex pool maintained a constant level, whilst, contrary to expectations, both the plunge pool and the submerged jet pool gradually filled over the 12 months. Filling was associated with the average rise in flows in winter, and occurred despite several freshes and discharge spikes. The plunge pool showed the most variation, with bed levels fluctuating by over 1 m. A key factor in pool scour here may not be the local water depth at the log, but the position of the log in relation to larger scale movements of sand-waves in the stream. These results question assumptions on the relative importance of small floods or channel-maintenance flows that lead to beneficial scour around large wood in sand-bed streams. Further, the continuous measurement of scour and fill around the logs suggested the presence of pool scour holes would have met critical requirements for Australian bass ( Macquaria novemaculeata) during the migration period, whereas less-frequent monitoring typical of rehabilitation trials would have suggested the contrary. The results of this study have demonstrated that geomorphic effectiveness is not always synonymous with biological effectiveness. Whilst physical models emphasise extreme changes, such as maximum scour, the key biological issue is whether scour occurs at the critical time of the life cycle. Continuous measurement of sand levels is an example of a geomorphic technique that will help to develop models that predict biologically meaningful processes, not just extremes.

  19. Gravel and sand resources of the New England-New York region

    USGS Publications Warehouse

    Currier, Louis W.

    1955-01-01

    Deposits of sand and gravel are widespread in the New England-New York regions and constitute one of its principal mineral resources. Most of the pits are operated intermittently to supply local needs. Because of the great number and variety of known deposits, and because they have been worked at countless points it is impracticable to describe in detail either the deposits or the individual pits. On the other hand, a broad description of the geologic modes of occurrence with relation to the regional geology will serve adequately to indicate the importance of the resource in the regional economy and development. Except for some special sands, such as "glass sand", certain molding and foundry sands, et. al., for which restrictive textural, compositional and physical properties are required, sand and gravel are used chiefly for local construction and are not commonly transported for long distances. Sand and gravel deposits of the region fall into four principal genetic categories - e.g., glacial, alluvial, marine, and aeolian. Of these, deposits of glacial origin are by far the most widespread and important.

  20. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.

  1. Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria.

    PubMed

    Ghosh, P; Mandal, S; Pal, S; Bandyopadhyaya, G; Chattopadhyay, B D

    2006-04-01

    In the biosphere, bacteria can function as geo-chemical agents, promoting the dispersion, fractionation and/or concentration of materials. Microbial mineral precipitation is resulted from metabolic activities of microorganisms. Based on this biomineralogy concept, an attempt has been made to develop bioconcrete material incorporating of an enrichment culture of thermophilic and anaerobic bacteria within cement-sand mortar/concrete. The results showed a significant increase in compressive strength of both cement-sand mortar and concrete due to the development of filler material within the pores of cement sand matrix. Maximum strength was observed at concentration 10(5)cell/ml of water used in mortar/concrete. Addition of Escherichia coil or media composition on mortar showed no such improvement in strength.

  2. Ecological parameters of the (S)-9-methylgermacrene-B population of the Lutzomyia longipalpis complex in a visceral leishmaniasis area in São Paulo state, Brazil.

    PubMed

    Galvis-Ovallos, Fredy; Casanova, Claudio; Sevá, Anaiá da Paixão; Galati, Eunice Aparecida Bianchi

    2017-05-30

    Visceral leishmaniasis (VL) is an important public health challenge in Brazil because of the high number of human and canine cases reported annually. Leishmania infantum is the etiological agent of VL and Lutzomyia longipalpis is its main vector. However, evidence suggests that this taxon constitutes a species complex. In Sao Paulo state, there are two populations of Lu. longipalpis, each secreting distinct pheromones, (S)-9-methylgermacrene-B and Cembrene 1; both have been associated with different patterns of VL transmission. The aim of the present study was to investigate the temporal distribution and natural infection of the (S)-9-methylgermacrene-B population of the Lu. longipalpis complex in a highly VL endemic area of Sao Paulo state to obtain information that may contribute to the surveillance of this zoonosis and to the planning of preventive and control measures. The study was carried out in Panorama municipality, Sao Paulo State. Captures were made during 24 months in seven domiciles. The relation between sand fly abundance and climatic variables, temperature and humidity, was analyzed and natural infection by Leishmania spp. in sand fly females was investigated by nested PCR. A total of 4120 sand flies, with predominance of Lu. longipalpis (97.2%) were captured. The highest averages of sand flies/night/trap occurred in the rainy season (November-March) and a positive, significant correlation between sand fly abundance and the temperature and humidity 20 days before the capture days was found. Leishmania infantum DNA was detected in three out of 250 pools of females analyzed, giving an estimated minimum infection rate of 1.2%. The identification of the climatic association between the high abundance of the vector in this highly endemic VL focus constitutes a fundamental point for evaluating future vector and dog control measures and this information increases the data of VL foci in Sao Paulo state that could contribute to the public health authorities in planning prevention and control measures. The identification of natural infection by Le. infantum in Lu. longipalpis specimens reinforces the importance of entomological surveillance activities in this municipality.

  3. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid Seismic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obermeier, S.F.; Jacobson, R.B.; Smoot, J.P.

    1990-01-01

    In both coastal South Carolina and the New Madrid seismic zone, the earthquake-induced liquefaction features generally originated in clean sand deposits that contain no or few intercalated silt- or clay-rich strata. The local geologic setting is a major influence on both development and surface expression of sand blows. Major factors controlling sand-blow formation include the thickness and physical properties of the deposits above the source sands, and these relationships are illustrated by comparing sand blows found in coastal South Carolina (in marine deposits) with sand blows found in the New Madrid seismic zone (in fluvial deposits). In coastal South Carolina,more » the surface stratum is typically a thin (about 1 m) soil that is weakly cemented with humate, and the sand blows are expressed as craters surrounded by a thin sheet of sand; in the New Madrid seismic zone the surface stratum generally is a clay-rich deposit ranging in thickness from 2 to 10 m, in which case sand blows characteristically are expressed as sand mounded above the original ground surface. Recognition of the various features described in this paper, and identification of the most probable origin for each, provides a set of important tools for understanding paleoseismicity in areas such as the Central and Eastern US where faults are not exposed for study and strong seismic activity is infrequent.« less

  4. Geology and hydrology of the Claiborne Group in western Tennessee

    USGS Publications Warehouse

    Moore, Gerald K.

    1965-01-01

    The area of western Tennessee underlain by the Claiborne Group is about 7,200 square miles and lies on the east flank of the syncline that forms the Mississippi embayment. It includes the Mississippi Alluvial Plain and part of a dissected upland plateau. The Claiborne Group dips to the northwest at 10-25 feet per mile and ranges in altitude from 600 feet above mean sea level in the outcrop area to 900 feet below mean sea level near the embayment axis. The Claiborne Group is tentatively subdivided into five units including, in ascending order, the Meridian Sand Member of the Tallahatta Formation, the Basic City Shale Member of the Tallahatta Formation, the Sparta Sand, an unnamed clay unit, and an unnamed sand unit. The two major aquifers in the Claiborne Group are the '500-foot' sand and the unnamed sand unit. The top of the '500-foot' sand is correlated with the top of the Sparta Sand; and the base, with the base of the Claiborne Group. The '500-foot' sand ranges in thickness from 200 to 750 feet and consists mainly of very fine to coarse sand or gravel. It also contains layers of white to blue, pink, gray, or brown clay, which constitute only a small percentage of the total thickness. The unnamed sand unit ranges from 0 to 210 feet in thickness and consists mostly of white, gray, or brown fine-grained lignitic sand. An estimated 75 percent of the ground water withdrawn in western Tennessee (west of the northward-flowing segment of the Tennessee River) is taken from the '500-foot' sand and the unnamed sand unit. The quantities of water available to wells from the '500-foot' sand are currently adequate for all municipal and industrial needs. The permeability of this aquifer is about 570 gallons per day per square foot. An estimated 155 mgd (million gallons per day) is pumped from the '500-foot' sand, about 140 mgd is discharged from the aquifer as the base flow of surface streams, and about 40 mgd is discharged from the report area as underflow. Water from the '500-foot' sand contains objectionable quantities of iron in the western half of the report area. Otherwise the quality of the water is suitable for most needs. Quantities of water adequate for domestic use and for small municipal systems can be obtained from the unnamed sand unit in most of the report area. The field permeability of this aquifer is probably about 270 gallons per day per square foot. About 8 mgd is discharged into adjacent formations, and about 2 mgd is withdrawn by pumping. Water from the unnamed sand unit contains objectionable quantities of iron in the western half of the report area. Otherwise the water from this aquifer is of good quality. Ground-water supplies in both the '500-foot' sand and the unnamed sand unit will be adequate for the predicted rate of municipal growth and economic development for many years to come. If the hydraulic gradient in the '500-foot' sand were increased to 19 feet per mile, the average dip of the top of the aquifer, about 578 mgd would be transmitted downdip. Similarly, the unnamed sand unit would transmit about 34 mgd downdip under a hydraulic gradient of 10 feet per mile. Furthermore, additional amounts of water could be induced into the report area as underflow from adjacent States. The anticipated effects of additional large scale development are (1) a drop in local and regional water levels in proportion to the increase in pumpage, (2) an increase in the net inflow of ground water from adjacent States, and (3) an increase of recharge to the aquifers at the expense of streamflow.

  5. Petrogenic organic carbon and PAHs in snow deposited on Athabasca oil sands region lakes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.; Gammon, P. R.; Savard, M. M.

    2017-12-01

    Fugitive dust associated with surface mining activities is one of the principal vectors for transport of airborne contaminants in Canada's Athabasca oil sands (AOS) region. The two main sources for mining-related dust - unprocessed oil sand and petroleum coke (petcoke) - contain high levels of bitumen-derived organic contaminants such as polycyclic aromatic hydrocarbons (PAHs). Here, we report the radiocarbon (14C) contents of solvent-extractable organics in snow particulates deposited during the winter of 2016-17 on fourteen lakes across the AOS region to quantify the contribution of anthropogenic dust transported directly to these ecosystems. Concentrations of parent and alkylated PAHs were determined in both dissolved and particulate fractions of snow. Radiocarbon isotope ratios (Δ14C) ranged from -805 to -177‰, indicating a significant contribution of petrogenic or fossil (i.e., Δ14C = -1000‰) carbon in snowpack dust at some sites. More negative Δ14C values were generally found in samples containing higher levels of particulate matter and at lakes closer to the geographic center of AOS mining operations. Concentrations of PAHs > 2 rings were significantly higher in the particulate phase and in samples with the largest petrogenic carbon components. Relatively high levels of PAHs at some distal sites associated with less negative Δ14C values pointed to an important modern carbon contribution, potentially ash originating from the 1.5 million acre 2016 Fort McMurray wildfire. As demonstrated here, fugitive dust in snow covering AOS region lakes can contain significant petrogenic organic carbon and high levels of PAHs, particularly in areas close (i.e., < 25 km) to the center of AOS mining operations. The spring snowmelt thus provides a direct pathway for mining-related contaminants to lake sediments.

  6. Surfactant-Modified Soil Amendments Reduce Nitrogen and Phosphorus Leaching in a Sand-Based Rootzone.

    PubMed

    Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B

    2016-09-01

    United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Crater relaxation on Titan aided by low thermal conductivity sand infill

    NASA Astrophysics Data System (ADS)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  8. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    NASA Astrophysics Data System (ADS)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat ( Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly ( p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  9. The phlebotomine sand flies fauna in Parque Estadual do Rio Doce, Minas Gerais, Brazil.

    PubMed

    de Souza, Cristian Ferreira; Brazil, Reginaldo Peçanha; Bevilacqua, Paula Dias; Andrade Filho, Jose Dilermando

    2015-12-02

    Phlebotomine sand flies are dipterans of the family Psychodidae. They are very important to veterinary medicine because some species are vectors of infective forms of Leishmania spp., the etiological agents of leishmaniasis. The Parque Estadual do Rio Doce is located in an area with constant reports of cases of leishmaniasis. In order to better understanding the phlebotamine sand fly fauna of the park, the present work was undertaken with the goal of analyzing phlebotomine sand flies collected there, verifying their seasonality and correlating their presence with forest and/or anthropic areas. To analyze the fauna of phlebotomine sand flies, HP-type, model CDC light traps were distributed along the Juquita trail of PERD. Twelve traps were installed between September 2012 and February 2014, and captured specimens were identified to species. A total of 1993 phlebotomine sand flies of 30 species were captured. The most abundant species were Pressatia choti, Psychodopygus davisi and Nyssomyia intermedia. The high number of Nyssomyia intermedia captured drew attention because they are considered one of the vectors of the infective Leishmania braziliensis present at PERD. No seasonality was observed in the occurrence of phlebotomine sand flies captured at PERD. The number of captured specimens of vector species, and the distance of traps from the forest boarder, were negatively correlated, showing that these vectors (Nyssomyia intermedia, Nyssomyia whitmani and Migonemyia migonei) were less common inside the forest area and that attention should be drawn to other potential vector species in the forest. These results can contribute to leishmaniasis prevention strategies directed at the visitors and professionals at or near PERD. The finding of the presence of Leishmania vectors in the park area must be given attention, since disease transmission can threaten people who visit PERD and its surroundings. Therefore, information on the prevention of leishmaniasis needs to be provided to all people who go there.

  10. Conley Field, Hardemen County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, J.C.

    1964-01-01

    The Conley Oil Field is in E-central Hardeman County, 1 mile east of Lake Pauline. Anticlinal structure on Ellenburger, Mississippian, and Pennsylvanian horizons appears to trend in a slightly NW-SE direction. A variation in porosity developement occurs in the Palo Pinto limestone and Ellenburger dolomite. The Osage section appears to thicken on the flanks. The Chester sand is a very calcareous, fine-grained sand that grades into a limestone in the northern part of the field. Porosity development seems to be the controlling factor in oil accumulation within this sand bed. It is possible that minor pre-Pennsylvanian faulting exists along themore » NW side of the field.« less

  11. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  12. Land and water impacts of oil sands production in Alberta.

    PubMed

    Jordaan, Sarah M

    2012-04-03

    Expansion of oil sands development results not only in the release of greenhouse gas emissions, but also impacts land and water resources. Though less discussed internationally due to to their inherently local nature, land and water impacts can be severe. Research in key areas is needed to manage oil sands operations effectively; including improved monitoring of ground and surface water quality. The resulting information gap means that such impacts are not well understood. Improved analyses of oil sands products are required that compare land and water use with other transportation fuel pathways and use a regional perspective so local effects can be considered and mitigated.

  13. Annual water resources review, White Sands Missile Range, New Mexico, 1980

    USGS Publications Warehouse

    Cruz, R.R.

    1981-01-01

    Ground-water data were collected in 1980 at White Sands Missile Range in south-central New Mexico. The total water pumped at White Sands Missile Range in 1980 was 725,053,000 gallons, which was 32.5 million gallons more than in 1979. The Post Headquarters well field, which produces more than 98 percent of the water used at White Sands Missile Range, pumped 712,909,000 gallons, which was 31.1 million gallons more in 1980 than in 1979. Data were collected for specific Range areas north of the Post Headquarters area that might have potential for future water-supply development. (USGS)

  14. The provenance of Taklamakan desert sand

    NASA Astrophysics Data System (ADS)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run-off and wind intensity are strongly seasonal, their respective transport strength and opposing directions maintain the Taklamakan in its position and topography.

  15. Predicting Impact of Biochar Addition on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Nakhli, S. A. A.; Yudi, Y.; Imhoff, P. T.

    2017-12-01

    Biochar has been proposed as a soil amendment to improve soil hydraulic properties, including water retention and saturated and unsaturated hydraulic conductivity, for agricultural and environmental applications. However, its effect on hydraulic properties is difficult to predict and often with mixed results: in some cases biochar enhances soil hydraulic properties, while in other cases it degrades them. Despite several published observational studies, there are no models that can reliably predict biochar's impact on soil hydraulic properties. In this project we developed models to describe the effect of addition of a commercial wood biochar pyrolyzed at 550° on soil hydraulic properties in laboratory-scale experiments. The effects of biochar addition at 2% and 6% (w/w) on water retention and saturated and unsaturated hydraulic conductivity were evaluated for silt loam, sandy loam, and loamy sand. The addition of 6% (w/w) biochar increased the available water content of silt loam, sandy loam and loamy sand by 25, 20 and 70%, respectively. The impact of biochar addition on water retention was predicted reasonably well using information on the intra particle pore volume of biochar (mercury porosimetry, N2 and CO2 sorption) and the particle size distribution of the soil/biochar mixture. When amended with 6% biochar, saturated hydraulic conductivity increased 17% for loamy sand, but decreased 30% and 54% for silt loam and sandy loam, respectively. The Kozeny-Carman equation modified to account for changes in inter pore volume predicted saturated hydraulic conductivities of the biochar-amended soils reasonably well, with RMSE ranging from 0.06 to 5.06 cm h-1 for silt loam and loamy sand, respectively. While intra particle pore volume of biochar contributed significantly to higher water retention, changes in hydraulic conductivity were correlated instead with changes in inter pore volume - the large pores between biochar and soil particles.

  16. Regressive and transgressive barrier islands on the North-Central Gulf Coast — Contrasts in evolution, sediment delivery, and island vulnerability

    NASA Astrophysics Data System (ADS)

    Otvos, Ervin G.; Carter, Gregory A.

    2013-09-01

    Basic differences between non-deltaic regressive and deltaic transgressive barrier islands reflect major contrasts in geological settings and sediment sources. Two island groups on the N. Gulf of Mexico provide unique perspectives of genetic and geomorphic contrasts applicable in a worldwide context. The near-extinction of the deltaic transgressive Chandeleur barriers and reduction of the sturdier prograded Mississippi-Alabama (MS-AL) chain are related to differences in sediment sources, storm, and anthropogenic impact. 160 years of documentary evidence points to contrasting geological settings, development history, sediment sources, and island morphology as responsible for different island erodibility and life spans. The non-deltaic chain received larger volumes of coarser, less erodible medium sand from the NE Gulf coast. Onshore sand flux from reworked delta deposits received from the retreating delta shoreface initiated the fragile, thin, and isolated transgressive Chandeleur islands. Fine-grained sand from unconsolidated muds of abandoned Mississippi-St. Bernard delta lobes maintained two distinct transgressive barrier island categories. In the absence of quantitative data on cross-shore transport, discrepancies between estimated littoral drift volumes and sand reserves for nourishment remain unexplained. Medium-sandy MS-AL barriers have resisted storm events far better than delta barriers. However, even the former chain did undergo 26 to 53% area reduction since 1848. Anthropogenic intervention stymied island growth. Emerging intertidal berm-basins formed on sandy shoal platforms in storm-eliminated sectors have contributed to partial island recovery. Delta attrition by wave erosion, tectonic, and compactional subsidence had accelerated delta lobe and barrier island decay. Intensive storm erosion culminating in and following Hurricane Katrina came close to eradicate the highly vulnerable Chandeleur barrier chain. Lacking adequate nourishment, after devastating cyclones only small islands reemerge and persist temporarily from the shoal belt. A four-stage barrier evolution model, globally applicable to transgressive deltaic barriers, is based on documented changes in late Holocene Mississippi sub-deltas.

  17. The shallow stratigraphy and sand resources offshore from Cat Island, Mississippi

    USGS Publications Warehouse

    Kindinger, Jack G.; Miselis, Jennifer L.; Buster, Noreen A.

    2014-01-01

    In collaboration with the U.S. Army Corps of Engineers, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center collected over 487 line kilometers (> 300 miles) of high-resolution geophysical data around Cat Island, Mississippi, to improve understanding of the island's geologic evolution and identify potential sand resources for coastal restoration. In addition, 40 vibracores were collected on and around the island, generating more than 350 samples for grain-size analysis. The results indicate that the geologic evolution of Cat Island has been influenced by deltaic, lagoonal/estuarine, tidal, and oceanographic processes, resulting in a stratigraphic record that is quite complex. The region north of the island is dominated by lagoonal/estuarine deposition, whereas the region south of the island is dominated by deltaic and tidal deposition. In general, the veneer of modern sediment surrounding the island is composed of newly deposited sediment and highly reworked relict sediments. The region east of the island shows the interplay of antecedent barrier-island change with delta development despite a significant ravinement of sediments. The data show from little to no modern sediment east of the island, exposing relict sediments at the seafloor. Finally, the data reveal four subaqueous sand units around the island. Two of the units are northwest of the modern island and one is southwest. Given the dominant, westward, longshore transport along the Mississippi and Alabama barrier islands, the geographic location of these three units suggests that they do not contribute to the modern sediment budget of Cat Island. The last unit is directly east of the island and represents the antecedent island platform that has supplied sand over geologic time for creation of the spits that form the eastern shoreline. Because of its location east of the island, the antecedent island unit may still supply sediment to the island today.

  18. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes.

    PubMed

    Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann

    2018-03-27

    Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with previous reports in that pockets of genetic differentiation exists between populations of this widely dispersed species but, overall, the species remains relatively homogeneous.

  19. PREFACE: WMO/GEO Expert Meeting On An International Sand And Dust Storm Warning System

    NASA Astrophysics Data System (ADS)

    Pérez, C.; Baldasano, J. M.

    2009-03-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System hosted by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación in Barcelona (Spain) on 7-9 November 2007 (http://www.bsc.es/wmo). A sand and dust storm (SDS) is a meteorological phenomenon common in arid and semi-arid regions and arises when a gust front passes or when the wind force exceeds the threshold value where loose sand and dust are removed from the dry surface. After aeolian uptake, SDS reduce visibility to a few meters in and near source regions, and dust plumes are transported over distances as long as thousands of kilometres. Aeolian dust is unique among aerosol phenomena: (1) with the possible exception of sea-salt aerosol, it is globally the most abundant of all aerosol species, (2) it appears as the dominating component of atmospheric aerosol over large areas of the Earth, (3) it represents a serious hazard for life, health, property, environment and economy (occasionally reaching the grade of disaster or catastrophic event) and (4) its influence, impacts, complex interactions and feedbacks within the Earth System span a wide range of spatial and temporal scales. From a political and societal point of view, the concern for SDS and the need for international cooperation were reflected after a survey conducted in 2005 by the World Meteorological Organization (WMO) in which more than forty WMO Member countries expressed their interest for creating or improving capacities for SDS warning advisory and assessment. In this context, recent major advances in research - including, for example, the development and implementation of advanced observing systems, the theoretical understanding of the mechanisms responsible for sand and dust storm generation and the development of global and regional dust models - represent the basis for developing applications focusing on societal benefit and risk reduction. However, at present there are interdisciplinary research challenges to overwhelm current uncertainties in order to reach full potential. Furthermore, the community of practice for SDS observations, forecasts and analyses is mainly scientifically based and rather disconnected from potential users. This requires the development of interfaces with operational communities at international and national levels, strongly focusing on the needs of people and factors at risk. The WMO has taken the lead with international partners to develop and implement a Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The history of the WMO SDS-WAS development is as follows. On 12-14 September 2004, an International Symposium on Sand and Dust Storms was held in Beijing at the China Meteorological Agency followed by a WMO Experts Workshop on Sand and Dust Storms. The recommendations of that workshop led to a proposal to create a WMO Sand and Dust Storm Project coordinated jointly with the Global Atmosphere Watch (GAW). This was approved by the steering body of the World Weather Research Programme (WWRP) in 2005. Responding to a WMO survey conducted in 2005, more than forty WMO Member countries expressed interest in participating in activities to improve capacities for more reliable sand and dust storm monitoring, forecasting and assessment. On 31 October to 1 November 2006 in Shanghai, the steering committee of the Sand and Dust Storm Project proposed the development and implementation of a Sand and Dust Storm Warning, Advisory and Assessment System (SDS-WAS). The WMO Secretariat in Geneva formed an ad-hoc Internal Group on SDS-WAS consisting of scientific officers representing WMO research, observations, operational prediction, service delivery and applications programmes such as aviation and agriculture. In May 2007, the 14th WMO Congress endorsed the launching of the SDS-WAS. It also welcomed the strong support of Spain to host a regional centre for the European/African/Middle East node of SDS-WAS and to play a lead role in implementation. In August 2007, the Korean Meteorological Administration hosted the 2nd International Workshop on Sand and Dust Storms highlighting Korean SDS-WAS activities as well as those of Asian regional partners. From 7-9 November 2007, Spain hosted the WMO/GEO Expert Meeting on SDS-WAS at the Barcelona Supercomputing Center. This consultation meeting brought 100 international experts together from research, observation, forecasting and user countries especially in Africa and the Middle East to discuss the way forward in SDS-WAS implementation. The general objective of the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System was to discuss and recommend actions needed to develop a global routine SDS-WAS based on integrating numerical SDS prediction and observing systems, and on establishing effective cooperation between data producers and user communities in order to provide SDS-WAS products capable of contributing to the reduction of risks from SDS. The specific objectives were: to identify, present and suggest future real-time observations for forecast verification and dust surveillance: satellite, ground-based remote sensing (passive and active) and in-situ monitoring to present ongoing forecasting activities to discuss and identify user needs: health, air quality, air transport operations, ocean, and others to identify and discuss dust research issues relevant for operational forecast applications to present the concept of SDS-WAS and Regional Centers The meeting was organised around invited presentations and discussions on observations, modelling and users of the SDS-WAS. C Pérez and J M Baldasano Editors INTERNATIONAL STEERING COMMITTEE José María Baldasano (Chairman) - Barcelona Supercomputing Center, Spain Emilio Cuevas - Instituto Nacional de Meteorología, Spain Leonard A Barrie - World Meteorological Organisation, Switzerland Young J Kim - Gwangju Institute of Science and Technology, Korea Menas Kafatos - George Mason University, USA Xiaoye Zhang - Chinese Meteorology Administration, China Slobodan Nickovic - World Meteorological Organisation, Switzerland Carlos Pérez - Barcelona Supercomputing Center, Spain William A Sprigg - University of Arizona, USA Stéphane Alfaro - Université de Paris Val de Marne, France Ina Tegen - Leibniz Institute for Tropospheric Research, Germany Mohamed Mahmoud Eissa - Under-secretary of State for Researches, Egypt Sunling Gong - Environment Canada, Canada Emily Firth - GEO Secretariat, Switzerland LOCAL ORGANISING COMMITTEE José María Baldasano - Barcelona Supercomputing Center, Spain Carlos Pérez - Barcelona Supercomputing Center, Spain Renata Giménez - Barcelona Supercomputing Center, Spain Emilio Cuevas - Instituto Nacional de Meteorología, Spain Slobodan Nickovic - World Meteorological Organisation, Switzerland J M Marcos - Instituto Nacional de Meteorología, Spain Manuel Palomares - Instituto Nacional de Meteorología, Spain Xavier Querol - Consejo Superior de Investigaciones Científicas, Spain Conference photograph

  20. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  1. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public-supply wells encompass about 0.09 square miles and consist of elongate areas to the east of the well field.

  2. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil.

    PubMed

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; McLaughlin, Gregory; Lednev, Igor K

    2013-09-01

    Body fluid traces recovered at crime scenes are among the most common and important types of forensic evidence. However, the ability to characterize a biological stain at a crime scene nondestructively has not yet been demonstrated. Here, we expand the Raman spectroscopic approach for the identification of dry traces of pure body fluids to address the problem of heterogeneous contamination, which can impair the performance of conventional methods. The concept of multidimensional Raman signatures was utilized for the identification of blood in dry traces contaminated with sand, dust, and soil. Multiple Raman spectra were acquired from the samples via automatic scanning, and the contribution of blood was evaluated through the fitting quality using spectroscopic signature components. The spatial mapping technique allowed for detection of "hot spots" dominated by blood contribution. The proposed method has great potential for blood identification in highly contaminated samples. © 2013 American Academy of Forensic Sciences.

  3. The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).

    PubMed

    Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L

    2017-10-01

    Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments containing PAH/alkylated PAH mixtures on walleye development and survival. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Geologic assessments and characterization of marine sand resources - Gulf of Mexico region

    USGS Publications Warehouse

    Williams, S. Jeffress; Cichon, Helana A.

    1993-01-01

    The U.S. Geological Survey conducts geologic surveys and research in marine areas of the United States and its territories and possessions. An objective in some of the investigations is locating and evaluating marine sand and gravel resources and interpretation of the origins of the sand body deposits. Results from such studies over the past 30 years show that many extremely large deposits are located close to expanding metropolitan areas, which have a need for aggregate materials for construction, and near-developed coastal areas, where beach replenishment may be used to mitigate coastal erosion. The Gulf of Mexico continental shelf from the Florida Peninsula to the Mexico border is an enormous area, but little attention has been directed on sand and gravel resources. Based on limited surveys, the total sand and gravel resources for the entire Gulf of Mexico is estimated to be 269 billion cubic meters. However, the sand tends to be fine-grained and is often mixed with mud; gravel deposits, except for shell, are mostly nonexistent.

  5. Evidence for liquefaction identified in peeled slices of Holocene deposits along the Lower Columbia River, Washington

    USGS Publications Warehouse

    Takada, K.; Atwater, B.F.

    2004-01-01

    Peels made from 10 geoslices beneath a riverbank at Washington's Hunting Island, 45 km inland from the Pacific coast, aid in identifying sand that liquefied during prehistoric earthquakes of estimated magnitude 8-9 at the Cascadia subduction zone. Each slice was obtained by driving sheetpile and a shutter plate to depths of 6-8 m. The resulting sample, as long as 8 m, had a trapezoidal cross section 42-55 cm by 8 cm. The slicing created few artifacts other than bending and smearing at slice edges. Each slice is dominated by well-stratified sand and mud deposited by the tidal Columbia River. Nearly 90% of the sand is distinctly laminated. The sand contains mud beds as thick as 0.5 m and at least 20 m long, and it is capped by a mud bed that contains a buried soil that marks the 1700 Cascadia earthquake of estimated magnitude 9. Every slice intersected sills and dikes of fluidized sand, and many slices show folds and faults as well. Sills, which outnumber dikes, mostly follow and locally invade the undersides of mud beds. The mud beds probably impeded diffuse upward flow of water expelled from liquefied sand. Trapped beneath mud beds, this water flowed laterally, destroyed bedding by entraining (fluidizing) sand, and locally scoured the overlying mud. Horizontal zones of folded sand extend at least 10 or 20 m, and some contain low-angle faults. Many of the folds probably formed while sand was weakened by liquefaction. The low-angle faults may mark the soles of river-bottom slumps or lateral spreads. As many as four great Cascadia earthquakes in the past 2000 yr contributed to the intrusions, folds, and faults. This subsurface evidence for fluid escape and deformation casts doubt on maximum accelerations that were previously inferred from local absence of liquefaction features at the ground surface along the Columbia River. The geosliced evidence for liquefaction abounds not only beneath banks riddled with dikes but also beneath banks in which dikes are absent. Such dike-free banks of the Columbia River, if interpreted without study of postdepositional structures in deposits beneath them, provide insufficient basis for setting upper bounds on the strength of shaking from great Cascadia earthquakes. Online material: Data from outcrop surveys, vibracores, and penetrometer tests; tabular summary of depositional and postdepositional features in geoslices.

  6. Composite Overwrapped Pressure Vessels: Database Extension Task 3.0 and Impact Damage Effects Control Task 8.0

    NASA Technical Reports Server (NTRS)

    Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.

    2002-01-01

    This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.

  7. Successful prediction and performance in waterflooding Wesson Hogg Sand Unit, Ouachita County, Arkansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clanton, H.W.

    1966-01-01

    By unitization and waterflooding, the Hogg Sand reservoir will increase ultimate recovery by 21,500,000 bbl. The predicted ultimate recovery of 1,103 bbl per acre-ft is considered well above average for waterflood projects. Predicted reservoir performance has closely paralleled actual performance in many areas of investigation, viz., recovery in bbl per acre-ft, flood pattern, water percent at depletion, and attaining a reservoir pressure which would sustain production by natural flow. A departure from the generally accepted practices utilized in waterflooding has not been a detriment in successfully flooding the Hogg Sand reservoir. The major factors contributing to the high degree ofmore » success can be found in the excellent reservoir characteristics. Operating costs of $0.2429 per bbl, including amortization, is approximately 1/4 of that normally expected in waterfloods. Remaining oil after flooding is indicated to be 49% of the oil in place and clearly indicates a need for concentrated efforts in the field of tertiary recovery.« less

  8. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  9. Parametric study of the impact of waste pollutants on groundwater: the case of Abidjan District (Ivory Coast)

    NASA Astrophysics Data System (ADS)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Tacher, Laurent; Derron, Marc-Henri; Franz, Martin

    2015-04-01

    Abidjan like numerous African cities is experiencing a significant and uncontrolled population growth. The annual growth rate is estimated at 3.99% by the National Institute of Statistics. This rapid population growth also generates growing needs in general and especially for drinking water and economic activities. In the District of Abidjan, groundwater comes from the Mio-Pliocene age aquifer called "Continental Terminal". This unconfined aquifer is the main source of water supply. Its lithology consists of four levels. Actually only the two upper levels outcrop and constitute the main part of the Continental Terminal aquifer. Some recent studies report a potential overexploitation and pollution of Abidjan groundwater (Jourda, 1986, Kouame 2007, Deh, 2013). This deterioration in water quality could be due to the release of domestic and industrial waste water, pesticide and fertilizer from crops and toxic waste sites containing high doses of organochlorines, of hydrogen sulfide and sulfides. This risk is also linked to the economic activities such as car workshops, gas stations and the sand exploitation in the lagoon. To observe the likely evolution of such contaminants in the subsurface and we developed hydrogeological models that couple groundwater flow and transport with FEFLOW software. The model is composed of a sandy layer where two constant hydraulic heads of 55 m and 0.2 m are imposed on the north and the south respectively. We carried out grain size analysis of some samples (E2, E3, E4, E5, and E6) which shows particle size ranging between 0.0001 mm and 8 mm. This grain size analysis performed by sieving underwater and laser indicates that these five soils are: loamy sand with traces of clay and gravel for E2 and E5; Sandy loam with traces of clay for E3; Sand with traces of clay and gravel for E4 and Sand with traces of silt and clay for E6. Their porosity and average values of permeability coefficient K measured in the laboratory range from 0.2 to 0.4 and 2.9E-8 and 2.48E-5 m/s, respectively. These values of permeability are low. They were therefore multiplied by 10 in order to calibrate the model. This suggests that the environment of deposition of the sands is heterogeneous with coarse sand channels in places as it can be expected in such lagoon environment. The result of the model simulation in steady state indicates the groundwater flow direction (North-South) and the approach of pollutants plumes to some well fields after 20 years. References: Deh S. K. (2013). Contributions de l'évaluation de la vulnérabilité spécifique aux nitrates et d'un modèle de transport des organochlorés a la protection des eaux souterraines du district d'Abidjan (sud de la Côte d'Ivoire) 230p. Jourda J. P. (1987). Contribution à l'étude géologique et hydrogéologique de la région du Grand Abidjan (Côte d'Ivoire). Thèse de doctorat de 3ème cycle, Université scientifique, technique et médicale de Grenoble, 319p. Kouamé K. J. (2007). Contribution à la Gestion Intégrée des Ressources en Eaux (GIRE) du District d'Abidjan (Sud de la Côte d'Ivoire) : Outils d'aide à la décision pour la prévention et la protection des eaux souterraines contre la pollution, Thèse de doctorat unique de l'Université de Cocody, 229p.

  10. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E.

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control productionmore » costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.« less

  11. Controls on late Holocene drift-sand dynamics: the role of people and climate on inland aeolian activity in the Netherlands

    NASA Astrophysics Data System (ADS)

    Pierik, Harm Jan; Van Lanen, Rowin; Gouw-Bouman, Marjolein; Groenewoudt, Bert; Wallinga, Jakob; Hoek, Wim

    2017-04-01

    Holocene drift-sand activity is commonly linked directly to either population pressure (via agricultural activity) or to climate change (e.g. storminess). In the Pleistocene sand areas of the Netherlands small-scale Holocene aeolian activity occurred since the Neolithic, whereas large scale drift-sand activity started during the Middle Ages (especially after AD 1000. This last phase coincides with the intensification of farming and demographic pressure, but is also commonly associated with a colder climate and enhanced storminess. This raises the question to what extent drift-sand activity can be attributed to human activities or to natural forcing factors. In this study we compare the spatial and chronological patterns of drift-sand occurrence for four characteristic Pleistocene sand regions in the Netherlands. For this, we compiled a new supra-regional overview of dates related to drift-sand activity (14C, OSL, archaeological and historical), that we compared with existing national soil maps, historical-route networks, and vegetation and climate reconstructions. Results show a steady occurrence of aeolian activity between 1000 BC and AD 1000, interrupted by remarkable dip in aeolian activity around 2000 BP, probably caused by changing land-use practices or by lower storminess. It is evident that human pressure on the landscape was most influential on initiating sand drifting: this is supported by more frequent occurrence close to routes and the uninterrupted increase in drift-sand activity after ca AD 1000 during periods of high population density and large-scale deforestation. Once triggered by human activities, the drift-sand development was probably further enhanced several centuries later during the cold and more stormy Little Ice Age (AD 1570-1900).

  12. Description of Lutzomyia (Trichophoromyia) nautaensis n. sp. (Diptera: Psychodidae) from the Peruvian Amazon Basin.

    PubMed

    Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin

    2015-07-01

    A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  13. Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.

  14. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    PubMed

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  15. Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off west-central Florida

    USGS Publications Warehouse

    Harrison, S.E.; Locker, S.D.; Hine, A.C.; Edwards, J.H.; Naar, D.F.; Twichell, D.C.; Mallinson, D.J.

    2003-01-01

    High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (< 1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N-S reversing currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW-SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform. ?? 2003 Elsevier B.V. All rights reserved.

  16. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems

    PubMed Central

    Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Evans, Marlene S.; Smol, John P.

    2013-01-01

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4–alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5–23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  17. Professional commitment of home science college teachers in India, its relationship to personal and professional characteristics and to organizational climate

    NASA Astrophysics Data System (ADS)

    Rana, Ansuya U.

    The rapidly expanding oil sands of western Canada, the third largest reserves in the world, are creating serious challenges, such as ecological harm, labour shortages, and extensive natural gas consumption. This thesis develops three practical real options models to evaluate the feasibility of oil sands projects and to estimate the optimal rate of oil sands expansion, while accounting for the stated concerns. (Abstract shortened by UMI.).

  18. WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS): Research Implementation Status

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Barrie, Leonard

    2010-05-01

    Strong winds cause lifting of large amounts of sand and dust from bare, dry soils into the atmosphere. For countries in and downwind of arid regions, airborne sand and dust presents serious risks to the environment, property and human health. Impacts on health include respiratory and cardio-vascular problems, eye infections and in some regions, diseases such as meningitis and valley fever. Dust can efficiently carry irritating spores, bacteria, viruses and persistent organic pollutants. It can also efficiently transport nutrients to parts of the world oceans and affect marine biomass production. Other impacts include negative effects on the ground transport, aviation, agriculture and visibility. The Inter-governmental Panel on Climate Change (IPCC) recognizes dust as a major component of the atmospheric aerosol that is an essential climate variable. Dust aerosol has important effects on weather through feedback on atmospheric dynamics, clouds and precipitation formation. Approximately 15 centres around the world provide sand and dust research operational forecasts. Many are operated by national meteorological services of the World Meteorological Organization (WMO). Sand and dust storm models can substantially reduce risk by providing dust concentration predictions for several days in advance. Numerical weather prediction systems that drive these models use complex parameterizations and assimilation of satellite, and surface-based observations to predict winds, clouds, precipitation and dust mobilization, transport, and removal from the atmosphere. Sand and dust forecast products contribute to the mitigation and reduction of risk through research based advances in understanding and forecasting products. Observations of sand and dust are made by many agencies and some of them are being coordinated globally through the WMO Global Atmosphere Watch (GAW) programme. In 2006, WMO and partners initiated the implementation of the Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) in order to improve the capabilities of countries affected by dust to reduce risks associated with airborne sand and dust. This project is in response to the desire of more than 40 WMO member countries to improve capabilities for more reliable sand and dust storm forecasts. The project has strong crosscutting features: it relies on real-time delivery of products; it integrates research communities (modelling, observation groups, and effects) and communities of practice (e.g. medical, aeronautical, agricultural users). There are two already established SDS-WAS nodes (Asian and North-Africa-Europe-Middle East) that coordinate implementation of the project objectives at regional levels. This presentation will review current status and future steps in the project implementation.

  19. Supply-Limited Bedforms in a Gravel-Sand Transition

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Nittrouer, J. A.; Humphries, R. P.; Allison, M. A.

    2009-12-01

    Rivers often exhibit an abrupt transition from gravel to sand-bedded conditions as river channel slopes decrease. A distinct suite of bedforms has been observed through these reaches where sand supply to the bed is limited. The suite of bedforms includes a sequence of sand ribbons, barchans, and channel spanning dunes as sediment supply increases in the downstream direction. While these bedforms have been extensively documented in laboratory channels, there are relatively few observations of this sequence of supply-limited bedforms from large natural channels. Here we examine the sequence through the gravel-sand transition of the Fraser River in Southwestern British Columbia. We mapped the bed using multi-beam swath-bathymetry (Reson 8101 Seabat) at high flow (~9,000 m3s-1) immediately following a high peak flow of 11,800 m3s-1 in June 2007 The bed material grades from >70% gravel to entirely sand through the reach. The bedforms follow the expected sequence where sand ribbons and barchanoid forms cover the bed where it is primarily gravel. Channel spanning dunes form as the sand bed coverage increases. Bedform dimensions (height and length) increase moving downstream as the sand moving on the bed increases. Supply-unlimited bedforms typically scale with the flow depth where the height is 1/5 the flow depth. The bedforms developed over the gravel are undersized by this criterion. Downstream, where the bed is dominantly sand, bedforms do scale with flow depth. These data highlight the dominant role sediment supply can play in bedform morphology and scaling, confirming patterns observed in laboratory data.

  20. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification.

    PubMed

    Pompei, Caroline M E; Ciric, Lena; Canales, Melisa; Karu, Kersti; Vieira, Eny M; Campos, Luiza C

    2017-03-01

    Removal of pharmaceuticals and personal care products (PPCPs) from drinking water is usually enhanced by advanced oxidation which is not affordable in low income countries. Slow sand filtration has been found to be capable of removing anti-inflammatory compounds, and its low maintenance costs and easy operation make it an attractive technology for treating drinking water in many parts of the world. In addition, slow sand filters can be used at both large and household scales. The biofilm (i.e. schmutzdecke) developed on the top of the sand and within the upper layers of the sand is acknowledged to be responsible for the water purification. However, it is possible that the PPCPs may affect the schmutzdecke development and microbial community within the filters, and consequently the performance of the filter. This study investigated two household slow sand filters (for water purification) operated intermittently with and without contamination by six PPCPs. Eleven parameters were monitored in the affluent and effluent water, including bacterial species present and schmutzdecke biomass development. Results demonstrated that the household slow sand filter performance was not affected by the 2μgL -1 of PPCPs in the water. There was no significant difference between filters for total coliforms and E. coli removal, but there was considerable difference between sampling times. Biomass considerably increased with the number of filtrations in both filters and there was no significant difference between filter biomass. However, it was found that more bacterial species were present in the period with no contamination than during the contamination period. Bacillus anthracis and Exiguobacterium sp. showed to be resistant to the effects of the PPCPs. These suggest there are effects of PPCPs on bacterial species within the filter. However, the effect of the PPCPs on biomass was not conclusive in this study and needs to be further investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.

  2. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, D.; Kullen, D.; Gierek, L.

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sandsmore » leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.« less

  3. Thermal diffusivity of peat, sand and their mixtures at different water contents

    NASA Astrophysics Data System (ADS)

    Gvozdkova, Anna; Arkhangelskaya, Tatiana

    2014-05-01

    Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001

  4. Complexities within distal sheet turbidite deposits: case study 160,000ka Icod Turbidite, Moroccan Turbidite System

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell

    2010-05-01

    The Icod landslide from the northern flank of Tenerife not only generated a debris avalanche phase (Watts & Masson, 1995; Masson et al. 2002), but produced a volcaniclastic turbidite that spans three interconnected basins. The Icod turbidite (160,000ka) was reported and correlated during work in the Madeira Abyssal Plain (Pearce & Jarvis, 1992; Rothwell, Pearce & Weaver, 1992). Here it forms a series of vertically stacked sand bodies accumulating into a single event bed. However, the Madeira Abyssal Plain is fed from the Agadir Basin by a series of channels, thus invoking a level of complexity to the deposit with the flow exiting channels at different times. The Icod turbidite can be found deposited more proximally to source in the Agadir Basin as a 0.3-0.6m stacked sand with accompanying 0.2-1.5m mudcap. With this stacked sand facies present here a number of other mechanisms can still be viable: (1) multistage retrogressive landslide failure, (2) flow reflection and (3) internal waves. Geochemical methodologies including ICP-AES, ICP-MS, XRF, ITRAX micro-XRF, SEM EDS and laser-diffraction grain-size analysis have been employed here to investigate the potential of a retrogressive failure at source being the driver of this facies. Evidence suggests that this stacked sand facies in this case is derived from the failure mechanism at source. Five vertical sand packages have been identified and correlated through the Agadir Basin, with the initial basal package representing the thickest. However, this amalgamated sand displays degrees of complexity with correlated internal erosional surfaces marked by sand-sand grain-size breaks. There are also sand-sand grain-size breaks found at the transition between facies associated with flow properties i.e. Bouma Tb parallel laminations and Bouma Tc ripple laminations. Each of the stacked sand intervals also has a sand-mud grain-size break present at the top of the package. This sand-mud break could possibly indicate (1) bypass of coarse silt or (2) removal of previously deposited silt by erosion of a post-depositional mudflow associated with mudcap remobilisation. Further to the stacked subunit facies and grain-size breaks, there are additional complexities to the deposit. An omission of a typical Bouma Ta facies is observed, replaced with a thick well-developed banded Bouma Tb, representing density sorting and flow fractionation of dense basaltic clasts and >100μm foraminifera. Above developing ripple laminations associated with Bouma Tc development is a 0.2-0.5m thick convolute laminated sand. This convoluted sand represents increasing shear stress across developing ripples. Grain-size analysis and ITRAX x-radiographs highlighted an additional process within the mudcaps of the Icod turbidite within the Agadir Basin. The mudcap thickens towards the base of incline from the Agadir Basin to the Selvage Islands. Within the cores with an over-thickened mudcap, the mudcap contained silt contortions. X-radiographs using ITRAX further displayed these contorted silts in the mudcaps. Grain-size analysis was used to confirm the presence of silt and poor sorting through the regions of contortions. These contorted muds have a debritic fabric, and could represent post-depositional remobilisation of the accumulative suspended clay fraction as a mudflow, as it was settling on a gradient and destabilising. This presentation will show the complexities present in even distal sheet turbidites, and that detailed multidisciplinary studies are required to unravel the mechanisms at work during their deposition. Pearce, T.J., & Jarvis I. 1992. Composition and provenance of turbidite sands: Late Quaternary, Madeira Abyssal Plain. Rothwell, R.G., Pearce, I., & Weaver, P.P.E. 1992. Late Quaternary evolution of the Madeira Abyssal Plain, Canary Basin, NE Atlantic. Basin Research, vol.4, no.2, p.103-131. Watts, A.B., & Masson, D.G. 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, vol.100, no.B12, p.24,487-24,498. Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P., & Canals, M. 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57, p.1-35.

  5. Study on shear properties of coral sand under cyclic simple shear condition

    NASA Astrophysics Data System (ADS)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  6. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    USGS Publications Warehouse

    Flocks, James G.; Kindinger, Jack G.; Kelso, Kyle W.

    2015-01-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  7. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Flocks, James G.; Kindinger, Jack L.; Kelso, Kyle W.

    2015-06-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  8. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  9. Seabed Gradient Controlling Onshore Transport Rates of Surf Sand during Beach Retreat by Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Lee, Hee Jun; Yi, Hi-Il

    2018-03-01

    A simple relationship is proposed for the onshore transport rates of surf-zone sand to evaluate the beach retreat caused by sea level rise. It suggests that the preservation potential of surf sand is proportional inversely to the seabed gradient during beach retreat. According to this relationship, the erosional remnants of surf sand would be more readily developed on a gentler shelf collectively as transgressive sand sheets. This finding may explain the previous studies regarding the Korean shelves that proposed that the Holocene transgressive sand sheets (HTSS) occur not in the steep eastern shelf but in the gentle western shelf. In line with such presence/absence of the HTSS are the results from some coastal seismic profiles obtained in the present study. The profiles indicate that sand deposits are restricted within the nearshore in the eastern coast, whereas they are persistently traceable to the offshore HTSS in the western coast. Tide is proven to have a negligible influence on the total duration of surf-zone processes. This study may be useful in predicting the consequences of the beach retreat that takes place worldwide as sea levels rise as a result of global warming.

  10. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples.

    PubMed

    Hughes, Sarah A; Huang, Rongfu; Mahaffey, Ashley; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Meshref, Mohamed N A; Ibrahim, Mohamed D; Brown, Christine; Peru, Kerry M; Headley, John V; Gamal El-Din, Mohamed

    2017-11-01

    There are several established methods for the determination of naphthenic acids (NAs) in waters associated with oil sands mining operations. Due to their highly complex nature, measured concentration and composition of NAs vary depending on the method used. This study compared different common sample preparation techniques, analytical instrument methods, and analytical standards to measure NAs in groundwater and process water samples collected from an active oil sands operation. In general, the high- and ultrahigh-resolution methods, namely high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and Orbitrap mass spectrometry (Orbitrap-MS), were within an order of magnitude of the Fourier transform infrared spectroscopy (FTIR) methods. The gas chromatography mass spectrometry (GC-MS) methods consistently had the highest NA concentrations and greatest standard error. Total NAs concentration was not statistically different between sample preparation of solid phase extraction and liquid-liquid extraction. Calibration standards influenced quantitation results. This work provided a comprehensive understanding of the inherent differences in the various techniques available to measure NAs and hence the potential differences in measured amounts of NAs in samples. Results from this study will contribute to the analytical method standardization for NA analysis in oil sands related water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characteristics of Iron Sand Magnetic Material from Bugel Beach, Kulon Progo, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Fahmiati; Nuryono; Suyanta

    2017-02-01

    Magnetic material (MM) of iron sands from Bugel Beach, Kulon Progo, Yogyakarta has been prepared and characterized. Magnetic material was separated from iron sands using a permanent magnet followed by treating with sodium hydroxide (NaOH) solution. The magnetic material product was characterized with X-ray Fluorescence, X-ray Diffraction, Fourrier Transform Infrared spectrophotometry, and Vibrating Sample Magnetometer to determine the chemical composition, crystallinity, presence of functional groups and the magnetization, respectively. Results showed that the investigated iron sand contained magnetic materials up to 89.47% (w/w). The main composition of MM included Fe2O3, TiO2, and SiO2, with percentages of 72.6, 7.0, and 10.0%, respectively, and the functional groups of material was dominated with Fe-OH and Fe-O. Treatment with NaOH 4M and NaOH 8M increased the content of Fe2O3 and TiO2, otherwise reduced the concentration of SiO2 and contributed to the improvement of the magnetization from 42.1 to 44.3 emu/g (with 4 M NaOH) and 64.0 emu/g (with 8 M NaOH). Additionally, MM was dominated with mineral of magnetite and contained functional groups of Fe-OH and Fe-O.

  12. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  13. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takayuki, E-mail: sasaki@nucleng.kyoto-u.ac.jp; Rajib, Mohammad; Akiyoshi, Masafumi

    2015-06-15

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of {sup 40}K. The maximum values of {sup 232}Th and {sup 238}U, estimated from the radioactivity of {supmore » 208}Tl and {sup 234}Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.« less

  14. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery.

    PubMed

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-02-01

    A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modeling surficial sand and gravel deposits

    USGS Publications Warehouse

    Bliss, J.D.; Page, N.J.

    1994-01-01

    Mineral-deposit models are an integral part of quantitative mineral-resource assessment. As the focus of mineral-deposit modeling has moved from metals to industrial minerals, procedure has been modified and may be sufficient to model surficial sand and gravel deposits. Sand and gravel models are needed to assess resource-supply analyses for planning future development and renewal of infrastructure. Successful modeling of sand and gravel deposits must address (1) deposit volumes and geometries, (2) sizes of fragments within the deposits, (3) physical characteristics of the material, and (4) chemical composition and chemical reactivity of the material. Several models of sand and gravel volumes and geometries have been prepared and suggest the following: Sand and gravel deposits in alluvial fans have a median volume of 35 million m3. Deposits in all other geologic settings have a median volume of 5.4 million m3, a median area of 120 ha, and a median thickness of 4 m. The area of a sand and gravel deposit can be predicted from volume using a regression model (log [area (ha)] =1.47+0.79 log [volume (million m3)]). In similar fashion, the volume of a sand and gravel deposit can be predicted from area using the regression (log [volume (million m3)]=-1.45+1.07 log [area (ha)]). Classifying deposits by fragment size can be done using models of the percentage of sand, gravel, and silt within deposits. A classification scheme based on fragment size is sufficiently general to be applied anywhere. ?? 1994 Oxford University Press.

  16. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  17. Transport and sources of sediment in the Missouri River between Garrison Dam and the headwaters of Lake Oahe, North Dakota, May 1988 through April 1991

    USGS Publications Warehouse

    Berkas, Wayne R.

    1995-01-01

    Sediment data were collected on and along the Missouri River downstream from Garrison Dam during May 1988, May 1989, and April 1991 to characterize sediment transport in the river. Specific study objectives were to (1) identify erosional and depositional reaches during two steady-state low-flow periods and one steady-state high-flow period; (2) determine if the reaches are consistently eroding or depositing, regardless of streamflow; and (3) determine the sources of suspended sediment in the river. Erosional and depositional reaches differed between the two low-flow periods, indicating that slight changes in the channel configuration between the two periods caused changes in erosional and depositional patterns. Erosional and depositional reaches also differed between the low-flow periods and the high-flow period, indicating that channel changes and increased streamflow velocities affect erosional and depositional reaches. The significant sources of suspended sediment in the Missouri River are the riverbed and riverbanks. The riverbed contributes to the silt and sand load in the river, and the riverbanks contribute to the clay, silt, and sand load. The contribution from tributaries to the suspendedsediment load in the Missouri River usually is small. Occasionally, during low-flow periods on the Missouri River, the Knife River can contribute significantly to the suspended-sediment load in the Missouri River.

  18. sts003-010-613

    NASA Image and Video Library

    2009-06-24

    STS003-010-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA

  19. Observations of Kindergarten and First Grade Children's Development of Oral Language, Concepts about Print, and Reading Readiness.

    ERIC Educational Resources Information Center

    Day, Kaaren C.; Day, H. D.

    A study originally involving 56 children from four schools was undertaken to observe the development of children's oral language and concepts of print during the kindergarten year using the Record of Oral Language (ROL) and the Concepts about Print (Sand) tests. In addition, the Sand test was administered early in the first grade to the available…

  20. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms a long and narrow trough between nebkhas by the "funnelling effect". This process forces sand towards lee slopes, which transform from concave (original barchans) into convex, ultimately resulting in the formation of palmate parabolic dunes.

  1. Aspects of tar sands development in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adewusi, V.A.

    1992-07-01

    Development of Nigerian massive reserves of crude bitumen and associated heavy oil is imminent in view of the impacts that the huge importation of these materials and their products have on the nation's economy, coupled with the depleting reserves of Nigeria and highlights the appropriate production technology options and their environmental implications. The utilization potentials of these resources are also enumerated, as well as the government's role in achieving accelerated, long-term tar sands development in the country.

  2. Identification of Radar Facies and Linked Process-Based Palaeo-environmental Interpretations, Cooloola Sand Mass, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Gontz, A. M.; McCallum, A. B.; Moss, P. T.; Shulmeister, J.

    2015-12-01

    During 2015 and 2014, nearly 60 km of high-resolution ground penetrating radar data were acquired on the Cooloola Sand Mass (CSM) in southeastern coastal Queensland. The CSM is part of the world's largest downdrift sand system. It contains three of the world's largest sand islands, several National Parks, a UNESCO World Heritage Site and covers 500 km of the eastern Australian coastline in northern New South Wales and southern Queensland. The large (>200 m) composite dunes of the CSM exhibit multiple activation phases, coastally eroding bluffs and dune development is not obvious from surficial exposures. This provides an ideal environment for ground penetrating radar. The dune sequences have been provisionally dated to the mid Quaternary through present and represent the potential for a large palaeo-environmental proxy dataset. GPR imagery was collected using a MALA GeoSciences Ground Explorer (GX) system with 160 and 450 MHz antennae from the numerous physiographic and ecological provinces as well as mapped surficial soil units at the CSM. These data were used to determine the subsurface architecture, identify radar facies and develop environmental interpretations. In the clean, aeolian quartz-rich sands, radar wave penetration exceeded 30 m (radar velocity = 0.07 m/ns) with the 160 MHz antenna. From the interpreted environmental units including palaeosol, dune slip face, dune stoss face, sand blow, beach, estuarine and fluvial, we are developing maps to relate the units and focus a detailed sampling regime that includes OSL, sediment geochemistry and sedimentology, The interpreted units, stratigraphic correlation and spatial distribution of the facies is the first step in a broader project to unravel the Quaternary environmental and climate records that are archived within the sediments of the CSM.

  3. Irrigation in the arid regions of Tunisia impacts the abundance and apparent density of sand fly vectors of Leishmania infantum

    PubMed Central

    Barhoumi, Walid; Qualls, Whitney A.; Archer, Reginald; Fuller, Douglas O.; Chelbi, Ifhem; Cherni, Saifedine; Derbali, Mohamed; Arheart, Kristopher L.; Zhioua, Elyes; Beier, John C.

    2015-01-01

    The distribution expansion of important human visceral leishmaniasis (HVL) and sporadic cutaneous leishmaniasis (SCL) vector species, Phlebotomus perfiliewi and P. perniciosus, throughout central Tunisia is a major public health concern. This study was designed to investigate if the expansion of irrigation influences the abundance of sand fly species potentially involved in the transmission of HVL and SCL located in arid bioclimatic regions. Geographic and remote sensing approaches were used to predict the density of visceral leishmaniasis vectors in Tunisia. Entomological investigations were performed in the governorate of Sidi Bouzid, located in the arid bioclimatic region of Tunisia. In 2012, sand flies were collected by CDC light traps located at nine irrigated and nine non-irrigated sites to determine species abundance. Eight species in two genera were collected. Among sand flies of the subgenus Larroussius, P. perfiliewi was the only species collected significantly more in irrigated areas. Trap data were then used to develop Poisson regression models to map the apparent density of important sand fly species as a function of different environmental covariates including climate and vegetation density. The density of P. perfiliewi is predicted to be moderately high in the arid regions. These results highlight that the abundance of P. perfiliewi is associated with the development of irrigated areas and suggests that the expansion of this species will continue to more arid areas of the country as irrigation sites continue to be developed in the region. The continued increase in irrigated areas in the Middle East and North Africa region deserves attention, as it is associated with the spread of L. infantum vector P. perfiliewi. Integrated vector management strategies targeting irrigation structures to reduce sand fly vector populations should be evaluated in light of these findings. PMID:25447265

  4. Assessment of sand encroachment in Kuwait using GIS

    NASA Astrophysics Data System (ADS)

    Al-Helal, Anwar B.; Al-Awadhi, Jasem M.

    2006-04-01

    Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques, in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors, depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy; (2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships. Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides with the northwesterly dominant wind direction.

  5. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    NASA Astrophysics Data System (ADS)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  6. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-03-01

    Contrasting wind, sediment and frost precipitation regimes contribute to different dune scale and form on Mars. Isolated barchans in the NPSS are smaller but assume a classic barchan form. Intra-crater barchans are larger and more variable in form.

  7. The effects of psammophilous plants on sand dune dynamics

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Ashkenazy, Yosef

    2014-07-01

    Mathematical models of sand dune dynamics have considered different types of sand dune cover. However, despite the important role of psammophilous plants (plants that flourish in moving-sand environments) in dune dynamics, the incorporation of their effects into mathematical models of sand dunes remains a challenging task. Here we propose a nonlinear physical model for the role of psammophilous plants in the stabilization and destabilization of sand dunes. There are two main mechanisms by which the wind affects these plants: (i) sand drift results in the burial and exposure of plants, a process that is known to result in an enhanced growth rate, and (ii) strong winds remove shoots and rhizomes and seed them in nearby locations, enhancing their growth rate. Our model describes the temporal evolution of the fractions of surface cover of regular vegetation, biogenic soil crust, and psammophilous plants. The latter reach their optimal growth under either (i) specific sand drift or (ii) specific wind power. The model exhibits complex bifurcation diagrams and dynamics, which explain observed phenomena, and it predicts new dune stabilization scenarios. Depending on the climatological conditions, it is possible to obtain one, two, or, predicted here for the first time, three stable dune states. Our model shows that the development of the different cover types depends on the precipitation rate and the wind power and that the psammophilous plants are not always the first to grow and stabilize the dunes.

  8. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.

  9. Late Pleistocene sediments and fossils near the mouth of Mad River, Humboldt County, California: Facies analysis, sequence development, and possible age correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, E.W.

    Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less

  10. Evaluating Rotavirus and Norovirus transport processes in standardised and natural soil-water columns experiments

    NASA Astrophysics Data System (ADS)

    Gamazo, Pablo; Schijven, Jack; Victoria, Matias; Alvareda, Elena; López Tort, Fernando; Ramos, Julián; Lizasoain, Andrés; Sapriza, Gonzalo; Castells, Matias; Colina, Rodney

    2017-04-01

    In Uruguay, as in many developed and developing countries, rotavirus and norovirus are major causes of diarrhea and others symptoms of acute gastroenteritis. In some areas of Uruguay, groundwater is the only source of water for human consumption. In the rural area of the Salto district, virus contamination has been detected in several groundwater wells. Because sewer coverage is low, the most probable sources of contamination are nearby septic systems. This work aims to evaluate the transport of rotavirus and norovirus from clinic samples in two sets of column experiments under saturated conditions: 6.7-cm columns with quartz sand (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes onto the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both rotavirus and norovirus were removed two orders in magnitude. In the Salto sand column, rotavirus was removed 2 log10 as well, but norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for rotavirus in the Salto sand column. These results are consistent with the field observation where only rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent were measured for both viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.

  11. Experimental Study on Clogging of Fine Particles in Sand Sediments

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.

    2015-12-01

    In the methane hydrate development from the sand sediment beneath the seafloor, it is anticipated that the migrating fine particles may block the pore and consequently reduces the permeability near the production well. Although this phenomenon is known as skin formation, its microscopic mechanism is still unknown. As a part of a Japanese National hydrate research program (MH21, funded by METI), we carried out an experiment on the clogging of fine particles in sand sediments. A transparent core holder was newly developed to directly visualize the behavior of fine particles in the pore of frame sands and formation of skin. It was observed that there seems to be an induction time before the clogging starts to occur. Once clogging occurs, the upstream fine particles cannot move downstream anymore and the skin is formed. It was found that the rate of skin formation is related to the total volume of injected fine particles while the flow velocity has something to do with the length of the induction time.

  12. The gravel sand transition in a disturbed catchment

    NASA Astrophysics Data System (ADS)

    Knighton, A. David

    1999-03-01

    More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.

  13. Petroleum geology of East Dykesville field, Smackover C sand, Claiborne and Webster Parishes, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartor, C.L.; Howard, S.R.

    1984-09-01

    The discovery in 1980 of gas production in the Smackover C sand in the East Dykesville field of Claiborne and Webster Parishes, Louisiana, extended the productive limits of this reservoir 6 mi (10 km) south of the production in the Haynesville field. The development of East Dykesville field has revealed three productive fault blocks within an area 6 mi (10 km) by 3 mi (5 km). The Smackover C and B sand of East Dykesville are present 700 ft (213 m) above the Louann Salt as a portion of a more or less continuous sand body covering an area 9more » mi (15 km) from east to west. This sand body extends southward from the Arkansas-Louisiana state line for more than 10 mi (16 km), and also produces at the Haynesville field. Production has been encountered in the C sand at East Dykesville from 10,912 ft (3326 m) subsea down to 11,605 ft (3536 m) subsea, an interval of 693 ft (211 m). The source of the sediments which constitute the Smackover C sand appears to be north of the sand body, as it thickens to more than 100 ft (31 m) in the Red Rock-Haynesville area and thins southward. The sand also thins both to the east toward Haynesville and to the west toward Shongaloo. The C sand is 60 ft (18 m) thick in the north portion of East Dykesville field and thins to 20 ft (6 m) in the most southern wells. Isopach studies suggest a submarine-fan depositional environment on a stable shelf.« less

  14. Routine screening of harmful microorganisms in beach sands: implications to public health

    USGS Publications Warehouse

    Sabino, Raquel; Rodrigues, R.; Costa, I.; Carneiro, Carlos; Cunha, M.; Duarte, A.; Faria, N.; Ferriera, F.C.; Gargate, M.J.; Julio, C.; Martins, M.L.; Nevers, Meredith; Oleastro, M.; Solo-Gabriele, H.; Verissimo, C.; Viegas, C.; Whitman, Richard L.; Brandao, J.

    2014-01-01

    Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the “Microareias 2012” workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.

  15. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling across a high resolution LIDAR surface of the dunes and beach we have isolated key areas of wind direction and velocity patterns which are important in aeolian transport budgets. Results are particularly important in post-storm recovery of foredunes damaged under wave action as offshore winds can initiate significant onshore transport, re-supplying the backbeach and foredune zones.

  16. Sand petrology and focused erosion in collision orogens: the Brahmaputra case

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; France-Lanord, Christian; Singh, Sunil K.; Foster, Gavin

    2004-03-01

    The high-relief and tectonically active Himalayan range, characterized by markedly varying climate but relatively homogeneous geology along strike, is a unique natural laboratory in which to investigate several of the factors controlling the composition of orogenic sediments. Coupling of surface and tectonic processes is most evident in the eastern Namche Barwa syntaxis, where the Tsangpo-Siang-Brahmaputra River, draining a large elevated area in south Tibet, plunges down the deepest gorge on Earth. Here composition of river sands changes drastically from lithic to quartzofeldspathic. After confluence with the Lohit River, draining the Transhimalayan-equivalent Mishmi arc batholiths, sediment composition remains remarkably constant across Assam, indicating subordinate contributions from Himalayan tributaries. Independent calculations based on petrographical, mineralogical, and geochemical data indicate that the syntaxis, representing only ∼4% of total basin area, contributes 35±6% to the total Brahmaputra sediment flux, and ∼20% of total detritus reaching the Bay of Bengal. Such huge anomalies in erosion patterns have major effects on composition of orogenic sediments, which are recorded as far as the Bengal Fan. In the Brahmaputra basin, in spite of very fast erosion and detrital evacuation, chemical weathering is not negligible. Sand-sized carbonate grains are dissolved partially in mountain reaches and completely in monsoon-drenched Assam plains, where clinopyroxenes are selectively altered. Plagioclase, instead, is preferentially weathered only in detritus from the Shillong Plateau, which is markedly enriched in microcline. Most difficult to assess is the effect of hydraulic sorting in Bangladesh, where quartz, garnet and epidote tend to be sequestered in the bedload and trapped on the coastal plain, whereas cleavable feldspars and amphiboles are concentrated in the suspended load and eventually deposited in the deep sea. High-resolution petrographic and dense-mineral studies of fluvial sands provide a basis for calculating sediment budgets, for tracing patterns of erosion in mountain belts, and for better understanding the complex dynamic feedback between surface processes and crustal-scale tectonics.

  17. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    USGS Publications Warehouse

    Whitney, John W.; Breit, George N.; Buckingham, S.E.; Reynolds, Richard L.; Bogle, Rian C.; Luo, Lifeng; Goldstein, Harland L.; Vogel, John M.

    2015-01-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977–1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5–10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind-eroded landforms persist several decades to a century before eroding away or being buried by younger sands. On Mesquite Lake playa the climatic history of alternating PDO phases of multi-decadal drought and wetness is recorded twice by the presence of yardangs formed nearly a century apart.

  18. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.

  19. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.

    PubMed

    Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren

    2016-01-01

    This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. First comparative transcriptomic analysis of wild adult male and female Lutzomyia longipalpis, vector of visceral leishmaniasis.

    PubMed

    McCarthy, Christina B; Santini, María Soledad; Pimenta, Paulo F P; Diambra, Luis A

    2013-01-01

    Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).

  1. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    NASA Astrophysics Data System (ADS)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  2. First Comparative Transcriptomic Analysis of Wild Adult Male and Female Lutzomyia longipalpis, Vector of Visceral Leishmaniasis

    PubMed Central

    McCarthy, Christina B.; Santini, María Soledad; Pimenta, Paulo F. P.; Diambra, Luis A.

    2013-01-01

    Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi). PMID:23554910

  3. Effects of sand fences on coastal dune vegetation distribution

    NASA Astrophysics Data System (ADS)

    Grafals-Soto, Rosana

    2012-04-01

    Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.

  4. Chapter J: Issues and challenges in the application of geostatistics and spatial-data analysis to the characterization of sand-and-gravel resources

    USGS Publications Warehouse

    Hack, Daniel R.

    2005-01-01

    Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors as common drilling methods jeopardizing the accuracy of the size-distribution curve, the application of formal geostatistical principles has other limitations. Many of the variables used in evaluating gravel deposits, including such sedimentologic parameters as sorting and such United Soil Classification System parameters as gradation coefficient, are nonadditive. Also, uniform sampling methods, such as drilling, are relatively uncommon, and sampling is generally accomplished by a combination of boreholes, water-well logs, test pits, trenches, stratigraphic columns from exposures, and, possibly, some geophysical cross sections. When evaluated in consideration of the fact that uniform mining blocks are also uncommon in practice, subsequent complexities in establishment of the volume/variance relation are inevitable. Several approaches exist to confront the limitations of geostatistical methods in evaluating sand-and-gravel deposits. Initially, we must acknowledge the practical requirements of the aggregate industry, as well as the limitations of the data collected by that industry, as a function of what the industry requires at the practical level, and consider that broader acceptance of formal geostatistics may require modifications of typical exploration and sampling protocols. Future investigations should utilize data from the full spectrum of sand-and-gravel deposits (flood plain, glacial, catastrophic flood, and marine), integrate such other disci plines as sedimentology and geophysics into the research, develop commodity-specific approaches to nonadditive variables, and include the results of comparative drilling.

  5. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection.

    PubMed

    Nzelu, Chukwunonso O; Gomez, Eduardo A; Cáceres, Abraham G; Sakurai, Tatsuya; Martini-Robles, Luiggi; Uezato, Hiroshi; Mimori, Tatsuyuki; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2014-04-01

    Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Gravbox - The First Augmented Reality Sandbox for Gravitational Dynamics

    NASA Astrophysics Data System (ADS)

    Isbell, Jacob; Deam, Sophie; Reed, Mason; Bettis, Wyatt; Lu, Jianbo; Luppen, Zachary; Maier, Erin; McCurdy, Ross; Moore, Sadie; Fu, Hai

    2018-01-01

    Gravitational effects are an overarching theme in astronomy education, yet existing classroom demonstrations are insufficient in elucidating complex gravitational interactions. Inspired by the augmented reality (AR) sandbox developed by geologists, we have developed Gravbox, the first AR sandbox to demonstrate gravitational dynamics. The arbitrary topography of the sand surface represents the mass distribution of a two-dimensional universe. The computer reads the topography with a Kinect camera, calculates the orbit of a test particle with user-defined position and velocity, and projects the topography contour map and orbit animation with an overhead projector, all within a duty cycle of one second. This creates an interactive and intuitive tool to help students at all levels understand gravitational effects. In this contribution, we will describe the development of the Gravbox prototype and show its current capabilities. The Gravbox software will be publicly available along with a building tutorial.

  7. Repeatability of Sugarcane Selection on Sand and Organic Soils

    USDA-ARS?s Scientific Manuscript database

    The Canal Point (CP) Sugarcane Cultivar Development Program (a cooperative program between the USDA-ARS, the University of Florida and the Florida Sugarcane League) has been more successful at breeding for cultivars adapted to organic soils (muck) than for those adapted to sand soils. Currently, onl...

  8. Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations.

    PubMed

    Belkacemi, Louiza; Selselet-Attou, Ghalem; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J

    2010-11-01

    This study deals with the effects of daily intermittent fasting for 15 h upon the development of diabetes in sand rats exposed to a hypercaloric diet. The same pattern of daily intermittent fasting was imposed on sand rats maintained on a purely vegetal diet (control animals). Over the last 30 days of the present experiments, non-fasting animals gained weight, whilst intermittently fasting sand rats lost weight. In this respect, there was no significant difference between control animals and either diabetic or non-diabetic sand rats exposed to the hypercaloric diet. The postprandial glycemia remained fairly stable in the control animals. During a 3-week transition period from a purely vegetal to a hypercaloric diet, the post-prandial glycemia increased by 5.95 ± 1.26 mM (n=6) in diabetic sand rats, as distinct from an increase of only 0.45 ± 0.56 mM (n=6) in the non-diabetic animals. During the intermittent fasting period, the postprandial glycemia decreased significantly in the diabetic animals, but not so in the non-diabetic sand rats. Before the switch in food intake, the peak glycemia at the 30th min of an intraperitoneal glucose tolerance test was already higher in the diabetic than non-diabetic rats. In both the non-diabetic and diabetic sand rats, intermittent fasting prevented the progressive deterioration of glucose tolerance otherwise observed in non-fasting animals. These findings reveal that, at least in sand rats, intermittent daily fasting prevents the progressive deterioration of glucose tolerance otherwise taking place when these animals are exposed to a hypercaloric diet.

  9. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  10. The effect of luminous intensity on the attraction of phlebotomine sand flies to light traps.

    PubMed

    Lima-Neto, Abdias R; Costa-Neta, Benedita M; da Silva, Apoliana Araújo; Brito, Jefferson M; Aguiar, João V C; Ponte, Islana S; Silva, Francinaldo S

    2018-05-04

    To improve the efficiency of light traps in collecting phlebotomine sand flies, the potential effects of luminous intensity on the attraction of these insects to traps were evaluated. Sand flies were collected with Hooper Pugedo (HP) light traps fitted with 5-mm light-emitting diodes (LED) bulbs: green (520 nm wavelength-10,000, 15,000 and 20,000 millicandela (mcd) and blue (470 nm-4,000, 12,000 and 15,000 mcd). A total of 3,264 sand flies comprising 13 species were collected. The collected species were Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) (52.48%), Evandromyia evandroi (Costa Lima & Antunes, 1939) (Diptera: Psychodidae) (32.90%) and Micropygomyia goiana (Martins, Falcão, & Silva) (Diptera: Psychodidae) (9.76%). An increase in luminous intensity of the LEDs increased the size of the sand fly catch. The lower luminous intensity of green (10,000 mcd) attracted an average of 13.7 ± 2.8 sand flies/trap per night and the other luminous intensities accounted for a mean of 24.1 ± 4.0 (15,000 mcd) and 28.2 ± 5.0 (20,000 mcd) sand flies/trap per night. Regarding the blue wavelength, the lower luminous intensity (4,000 mcd) attracted an average of 27.4 ± 4.1 sand flies/trap per night, followed by 12,000 mcd (37.6 ± 8.7) and 15,000 mcd (40.5 ± 7.3). Based on our data, the luminous intensity of light traps should be considered when developing light traps for monitoring or controlling phlebotomine sand flies.

  11. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-05

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  12. On the origin and age of the Great Sand Dunes, Colorado

    USGS Publications Warehouse

    Madole, R.F.; Romig, J.H.; Aleinikoff, J.N.; VanSistine, D.P.; Yacob, E.Y.

    2008-01-01

    Over the past 100??yr, several hypotheses have been proposed for the origin and age of the Great Sand Dunes. These hypotheses differ widely in the descriptions of dune morphometry, the immediate source of eolian sand, and when sand transport occurred. The primary purpose of this paper is to evaluate these hypotheses and, where warranted, to present new ideas about the origin and age of the Great Sand Dunes. To evaluate the previous hypotheses, we had to develop more detailed information about the surficial geology of the northern San Luis Valley. Thus, we mapped the surficial geology of an area extending several tens of kilometers north, south, and west of the Great Sand Dunes and examined subsurface stratigraphy in more than 200 wells and borings. In addition, we used relative-dating criteria and several radiocarbon and OSL ages to establish the chronology of surficial deposits, and we determined the U-Pb ages of detrital zircons to obtain information about the sources of the sand in the Great Sand Dunes. The first principal finding of this study is that the lower part of the closed basin north of the Rio Grande, referred to here as the sump, is the immediate source of the sand in the Great Sand Dunes, rather than the late Pleistocene flood plain of the Rio Grande (the most widely accepted hypothesis). A second principal finding is that the Great Sand Dunes are older than late Pleistocene. They postdate the draining of Lake Alamosa, which began ??? 440??ka, and predate the time when streams draining the west flank of the Sangre de Cristo Mountains were deflected by incipient dunes that formed near the mountain front. Geomorphic and stratigraphic evidence indicate that this deflection occurred prior to the end of the next to last glaciation (Bull Lake), i.e., prior to ??? 130??ka.

  13. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid seismic zone

    USGS Publications Warehouse

    Obermeier, S.F.; Jacobson, R.B.; Smoot, J.P.; Weems, R.E.; Gohn, G.S.; Monroe, J.E.; Powars, D.S.

    1990-01-01

    Many types of liquefaction-related features (sand blows, fissures, lateral spreads, dikes, and sills) have been induced by earthquakes in coastal South Carolina and in the New Madrid seismic zone in the Central United States. In addition, abundant features of unknown and nonseismic origin are present. Geologic criteria for interpreting an earthquake origin in these areas are illustrated in practical applications; these criteria can be used to determine the origin of liquefaction features in many other geographic and geologic settings. In both coastal South Carolina and the New Madrid seismic zone, the earthquake-induced liquefaction features generally originated in clean sand deposits that contain no or few intercalated silt or clay-rich strata. The local geologic setting is a major influence on both development and surface expression of sand blows. Major factors controlling sand-blow formation include the thickness and physical properties of the deposits above the source sands, and these relationships are illustrated by comparing sand blows found in coastal South Carolina (in marine deposits) with sand blows found in the New Madrid seismic zone (in fluvial deposits). In coastal South Carolina, the surface stratum is typically a thin (about 1 m) soil that is weakly cemented with humate, and the sand blows are expressed as craters surrounded by a thin sheet of sand; in the New Madrid seismic zone the surface stratum generally is a clay-rich deposit ranging in thickness from 2 to 10 m, in which case sand blows characteristically are expressed as sand mounded above the original ground surface. Recognition of the various features described in this paper, and identification of the most probable origin for each, provides a set of important tools for understanding paleoseismicity in areas such as the Central and Eastern United States where faults are not exposed for study and strong seismic activity is infrequent.

  14. Risk factors for faecal sand excretion in Icelandic horses.

    PubMed

    Husted, L; Andersen, M S; Borggaard, O K; Houe, H; Olsen, S N

    2005-07-01

    Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.

  15. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water.

    PubMed

    Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao

    2016-01-01

    Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases weremore » based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.« less

  17. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    PubMed

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  18. Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Liggio, John; Moussa, Samar G.; Wentzell, Jeremy; Darlington, Andrea; Liu, Peter; Leithead, Amy; Hayden, Katherine; O'Brien, Jason; Mittermeier, Richard L.; Staebler, Ralf; Wolde, Mengistu; Li, Shao-Meng

    2017-07-01

    Organic acids are known to be emitted from combustion processes and are key photochemical products of biogenic and anthropogenic precursors. Despite their multiple environmental impacts, such as on acid deposition and human-ecosystem health, little is known regarding their emission magnitudes or detailed chemical formation mechanisms. In the current work, airborne measurements of 18 gas-phase low-molecular-weight organic acids were made in the summer of 2013 over the oil sands region of Alberta, Canada, an area of intense unconventional oil extraction. The data from these measurements were used in conjunction with emission retrieval algorithms to derive the total and speciated primary organic acid emission rates, as well as secondary formation rates downwind of oil sands operations. The results of the analysis indicate that approximately 12 t day-1 of low-molecular-weight organic acids, dominated by C1-C5 acids, were emitted directly from off-road diesel vehicles within open pit mines. Although there are no specific reporting requirements for primary organic acids, the measured emissions were similar in magnitude to primary oxygenated hydrocarbon emissions, for which there are reporting thresholds, measured previously ( ≈ 20 t day-1). Conversely, photochemical production of gaseous organic acids significantly exceeded the primary sources, with formation rates of up to ≈ 184 t day-1 downwind of the oil sands facilities. The formation and evolution of organic acids from a Lagrangian flight were modelled with a box model, incorporating a detailed hydrocarbon reaction mechanism extracted from the Master Chemical Mechanism (v3.3). Despite evidence of significant secondary organic acid formation, the explicit chemical box model largely underestimated their formation in the oil sands plumes, accounting for 39, 46, 26, and 23 % of the measured formic, acetic, acrylic, and propionic acids respectively and with little contributions from biogenic VOC precursors. The model results, together with an examination of the carbon mass balance between the organic acids formed and the primary VOCs emitted from oil sands operations, suggest the existence of significant missing secondary sources and precursor emissions related to oil sands and/or an incomplete mechanistic and quantitative understanding of how they are processed in the atmosphere.

  19. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that reclamation layers for oil sands mining sites in Alberta, Canada have the potential to oxidize on-site produced methane emissions to the less harmful greenhouse gas carbon dioxide. Such oxidation might mitigate impacts of methane production from these sites.

  20. The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2014-08-01

    The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.

  1. Optical image modulation above the submarine bottom topography: a case study on the Taiwan Banks, China

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Jianyu; Li, Jing; Fu, Bin; Ma, Liming

    2003-05-01

    A possible mechanism to explain the correlation between submarine topography and the direct sunlight specially reflected from the sea surface with variable roughness caused by the bottom-current effect was suggested fifteen years ago by Henning et al. in International Journal of Remote Sensing, 9, 45-67, after comparing radar satellite image and Skylab satellite photograph of the North American east coast (Nantucket Shoals) with submarine relief features. A case study is carried out in the famous sand waves field located at the Taiwan banks of Taiwan Strait in August 1998. The TM images, either visible bands (TM1, TM2, TM3) or near infrared bands (TM4, TM5, TM7), shows submarine relief features for sand waves, with wavelength of 300 to 2000 meters, riding on the lager scale sand ridges and channel system. Sea truth data including 660 nm beam attenuation coefficient profiles were conducted in the same period. We compare signals of TM images, attenuation coefficient profiles, and sounding maps of the Taiwan Bands. The subsurface upwelling signals with contributions of the water column and the bottom, either estimated by single or quasi-single-scattering theory or revealed by the TM images after removing the contribution of direct sunlight reflected signals from sea surface, were too weak to distinguish the ridges and troughs of bedforms especially for red and near infrared bands. However, the direct sunlight specially reflected signals from the sea surface, approximately at same level in water-leaving reflectance not only for visible bands (TM1, TM2, TM3) but also for near infrared bands (TM4, TM5, TM7), was the major submarine bottom topography signals especially for those pixels towards the direction of the sun azimuth. Following a physical description for the lee waves appeared on free surface when the current flows round an underwater obstacle, the direct sunlight reflected signals related wave face slope, is dominated by the height and depth of sand waves and sand ridges, and current speed of the flows over those bedforms. The direct sunlight reflected signals from the sea surface could be regarded as a powerful tool to detect bedforms and other underwater obstacles.

  2. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    USGS Publications Warehouse

    Reppe, Thomas H.C.

    2005-01-01

    On the basis of data and methods presented to evaluate ground-water availability, the Otter Tail and Pineland Sands surficial aquifers and Pelican River sand-plain aquifer have the greatest potential for additional development of ground-water resources in the study area.

  3. Fracturing Behavior of Methane-Hydrate-Bearing Sediment

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Jin, Y.; Yoneda, J.; Uchiumi, T.; Shinjou, K.; Nagao, J.

    2016-12-01

    As a part of a Japanese national hydrate research program (MH21, funded by the Ministry of Economy, Trade, and Industry), we performed laboratory experiments of hydraulic fracturing in methane-hydrate-bearing sediment. Distilled water was injected into methane-hydrate-bearing sand which was artificially made in a tri-axial pressure cell. X-ray computed tomography revealed that tensile failure was occurred after a rapid drop in the injection pressure. It was found that generated fractures cause a significant increase in the effective water permeability of hydrate-bearing sand. The result contributes fundamental understanding of the accumulation mechanism of gas hydrates in sediments and shows that hydraulic fracturing is one of promising enhanced recovery methods for low-permeable gas hydrate reservoirs.

  4. Constraints on aeolian sediment transport to foredunes within an undeveloped backshore enclave on a developed coast

    NASA Astrophysics Data System (ADS)

    Kaplan, Kayla L.; Nordstrom, Karl F.; Jackson, Nancy L.

    2016-10-01

    Landforms present in undeveloped beach enclaves located between properties developed with houses and infrastructure are often left to evolve naturally but are influenced by the human structures near them. This field study evaluates how buildings and sand-trapping fences change the direction of wind approach, reduce wind speed, and restrict fetch distances for sediment entrainment, thereby reducing the potential for aeolian transport and development of dunes in enclaves. Field data were gathered in an 80 m long, 44 m deep beach enclave on the ocean shoreline of New Jersey, USA. Comparison of wind characteristics in the enclave with a site unaffected by buildings revealed that offshore winds in the enclave are reduced in strength and altered in direction by landward houses, increasing the relative importance of longshore winds. Vertical arrays of anemometers on the foredune crest, foredune toe and berm crest in the enclave revealed increasing wind speed with distance offshore, with strongest winds on the berm crest. Vertical cylindrical traps on the foredune crest, foredune toe, mid-backshore, berm crest and upper foreshore revealed the greatest rate of sediment transport on the berm crest. Sediment samples from the beach and from traps revealed limited potential for aeolian transport because of coarse grain sizes. Strong oblique onshore winds are common in this region and are normally important for transporting sand to dunes. The length of an enclave and the setback distance on its landward side determine the degree to which sediment delivered by oblique winds contributes to dune growth. The landward edge of the enclave (defined by a sand fence near the dune toe) is sheltered along its entire length from winds blowing at an angle to the shoreline of 25° or less. A foredune set back this distance in an enclave the length of an individual lot (about 20 m) would be sheltered at an angle of 57° or less, reducing the opportunity for dune building by onshore winds. Reduced potential for aeolian transport in enclaves implies that human actions may be required to build dunes artificially to protect buildings and roads from storm overwash.

  5. Effects of porous media preparation on bacteria transport through laboratory columns.

    PubMed

    Brown, Derick G; Stencel, Joseph R; Jaffé, Peter R

    2002-01-01

    Bacterial and colloid transport experiments related to environmental systems are typically performed in the laboratory, with sand often used as the porous media. In order to prepare the sand, mechanical sieving is frequently used to tighten the sand grain size distribution. However, mechanical sieving has been reported to provide insufficient repeatability between identical colloidal transport experiments. This work examined the deficiencies of mechanical sieving with respect to bacterial transport through sand columns. It was found that sieving with standard brass sieves (1) contaminates the sand with copper and zinc as a linear function of sieving time and (2) inefficiently sizes sand grains below 300 microm (the largest size examined in this study) due to rapid clogging of the sieves. A procedure was developed that allows utilization of brass sieves for sizing the sand grains and removes the metal contamination introduced from the sieves. Bacterial transport experiments utilizing this column preparation procedure gave repeatable breakthrough curves. Further examination of the effects of these treatments on bacterial transport showed interesting results. First, it was found that the metal contamination did not affect the clean-bed bacterial transport. Second. it was found that variations of the column flushing procedure did not alter the clean-bed breakthrough of the bacteria, but did alter the inter-particle blocking. Finally, it was found that the shape of the sand grains (oblong vs. rounded) significantly alters the bacterial transport. with the transport being dominated by the smallest dimension of the oblong grains.

  6. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Workers sign the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  7. Predicted Distribution of Visceral Leishmaniasis Vectors (Diptera: Psychodidae; Phlebotominae) in Iran: A Niche Model Study.

    PubMed

    Hanafi-Bojd, A A; Rassi, Y; Yaghoobi-Ershadi, M R; Haghdoost, A A; Akhavan, A A; Charrahy, Z; Karimi, A

    2015-12-01

    Visceral leishmaniasis (VL) is an important vector-borne disease in Iran. Till now, Leishmania infantum has been detected from five species of sand flies in the country including Phlebotomus kandelakii, Phlebotomus major s.l., Phlebotomus perfiliewi, Phlebotomus alexandri and Phlebotomus tobbi. Also, Phlebotomus keshishiani was found to be infected with Leishmania parasites. This study aimed at predicting the probable niches and distribution of vectors of visceral leishmaniasis in Iran. Data on spatial distribution studies of sand flies were obtained from Iranian database on sand flies. Sample points were included in data from faunistic studies on sand flies conducted during 1995-2013. MaxEnt software was used to predict the appropriate ecological niches for given species, using climatic and topographical data. Distribution maps were prepared and classified in ArcGIS to find main ecological niches of the vectors and hot spots for VL transmission in Iran. Phlebotomus kandelakii, Ph. major s.l. and Ph. alexandri seem to have played a more important role in VL transmission in Iran, so this study focuses on them. Representations of MaxEnt model for probability of distribution of the studied sand flies showed high contribution of climatological and topographical variables to predict the potential distribution of three vector species. Isothermality was found to be an environmental variable with the highest gain when used in isolation for Ph. kandelakii and Ph. major s.l., while for Ph. alexandri, the most effective variable was precipitation of the coldest quarter. The results of this study present the first prediction on distribution of sand fly vectors of VL in Iran. The predicted distributions were matched with the disease-endemic areas in the country, while it was found that there were some unaffected areas with the potential transmission. More comprehensive studies are recommended on the ecology and vector competence of VL vectors in the country. © 2015 Blackwell Verlag GmbH.

  8. Trends in Gypsiferous Aerosol Downwind of White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    White, W. H.; Trzepla, K.; Yatkin, S.; Gill, T. E.; Jin, L.

    2013-12-01

    White Sands is a known 'hotspot' of dust emissions in southwestern North America where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the northeast. The U.S. Forest Service operates an aerosol sampler at White Mountain in the lee of the Sacramento range as part of the IMPROVE network (Interagency Monitoring of PROtected Visual Environments). In recent years a spring pulse of sulfate aerosol has appeared at White Mountain, eclipsing the regional summer peak attributed to atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with clearly increased concentrations of calcium, strontium, and chloride. The increase in these species coincides with a drought following a period of above-average precipitation. White Sands and White Mountain thus provide an unusually well-defined natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiably distinct at a long-term observatory ~100 km downwind. This paper examines the routine PM2.5 (fine-particle, Dp < 2.5 um) composition data available from White Mountain and other regional IMPROVE sites (e.g. Bosque del Apache), supplemented by some elemental analysis of collocated PM10 samples. The ambient data are compared with chemical analyses of surface samples from White Sands, bulk dry dustfall and soil surface composition at White Mountain, satellite observations of dust plumes, and available meteorological records. Together, the observations document significant, episodic aeolian transport of gypsum and other salts across the Sacramento Mountains. Figure 1. Left: Monthly average concentrations of every-third-day 24h samples. Top right: MODIS image, 2/28/2012, http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=77294). Bottom right: Correlation (r) matrix for 2011 daily elemental data from White Mountain (n = 105).

  9. The impact of particle shape on friction angle and resulting critical shear stress: an example from a coarse-grained, steep, megatidal beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2013-12-01

    The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.

  10. Effect of basicity on beneficiated chromite sand smelting process using submerged arc furnace

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Subandrio, S.; Ferdian, D.; Suharno, Bambang

    2018-05-01

    Ferrochrome is an important alloy in stainless steel making due to its contribution to high strength and corrosion resistance. In this present study, ferrochrome was derived from Indonesian chromite sand with low-grade Cr/Fe ratio. In order to improve the ratio, beneficiation process such as pre-magnetic separation and reduction process at 1000°C for 60 minutes was required. The process followed by another magnetic separation, thus the Cr/Fe ratio was increased from 0.9 to 1.6. The reduction process used coconut shell charcoal as reductant and limestone as an additive. The beneficiated sand chromite was briquette using bentonite as a binder in 2 wt.% before it was smelted in a submerged electric arc furnace to produce ferrochrome. Basicity was controlled by the addition of limestone and it was varied from 0.4-1.6. Furthermore, the composition of ferrochrome was analyzed by using X-Ray Fluorescence. From this experiment, the result showed that chromium recovery and specific energy was decreased with the increasing of slag basicity.

  11. Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand

    NASA Technical Reports Server (NTRS)

    Anderson J. L. B.; Cintala, M. J.; Siebenaler, S. A.; Barnouin-Jha, O. S.

    2007-01-01

    One of the most promising means of learning how initial impact conditions are related to the processes leading to the formation of a planetary-scale crater is through scaling relationships.1,2,3 The first phase of deriving such relationships has led to great insight into the cratering process and has yielded predictive capabilities that are mathematically rigorous and internally consistent. Such derivations typically have treated targets as continuous media; in many, cases, however, planetary materials represent irregular and discontinuous targets, the effects of which on the scaling relationships are still poorly understood.4,5 We continue to examine the effects of varying impact conditions on the excavation and final dimensions of craters formed in sand. Along with the more commonly treated variables such as impact speed, projectile size and material, and impact angle,6 such experiments also permit the study of changing granularity and friction angle of the target materials. This contribution presents some of the data collected during and after the impact of glass spheres into a medium-grained sand.

  12. Temperature dependency of virus and nanoparticle transport and retention in saturated porous media

    USDA-ARS?s Scientific Manuscript database

    The influence of temperature (4 and 20 °C) on virus and nanoparticle attachment in columns packed with quartz sand was studied under various physiochemical conditions. Fitted values of the attachment rate coefficient (katt) and the solid fraction that contributed to attachment (Sf) were found to be...

  13. CADMIUM EFFECTS ON THE NITROGEN FIXATION SYSTEM OF RED ALDER

    EPA Science Inventory

    Red alder (Alnus rubra) was grown in sand culture in the greenhouse to obtain data on the effects of cadmium (Cd) on a symbiotic nitrogen (N) fixation system which contributes to the fertility of forest soils. Treatment of red alder seedlings for 11 weeks with 0.545 to 136 microm...

  14. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  15. Separability studies of construction and demolition waste recycled sand.

    PubMed

    Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C

    2013-03-01

    The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Target identification using Zernike moments and neural networks

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, Mahmood R.; Jamshidi, Arta A.; Nevis, Andrew J.

    2001-10-01

    The development of an underwater target identification algorithm capable of identifying various types of underwater targets, such as mines, under different environmental conditions pose many technical problems. Some of the contributing factors are: targets have diverse sizes, shapes and reflectivity properties. Target emplacement environment is variable; targets may be proud or partially buried. Environmental properties vary significantly from one location to another. Bottom features such as sand, rocks, corals, and vegetation can conceal a target whether it is partially buried or proud. Competing clutter with responses that closely resemble those of the targets may lead to false positives. All the problems mentioned above contribute to overly difficult and challenging conditions that could lead to unreliable algorithm performance with existing methods. In this paper, we developed and tested a shape-dependent feature extraction scheme that provides features invariant to rotation, size scaling and translation; properties that are extremely useful for any target classification problem. The developed schemes were tested on an electro-optical imagery data set collected under different environmental conditions with variable background, range and target types. The electro-optic data set was collected using a Laser Line Scan (LLS) sensor by the Coastal Systems Station (CSS), located in Panama City, Florida. The performance of the developed scheme and its robustness to distortion, rotation, scaling and translation was also studied.

  17. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    NASA Astrophysics Data System (ADS)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  18. Mixed-sediment transport modelling in Scheldt estuary with a physics-based bottom friction law

    NASA Astrophysics Data System (ADS)

    Bi, Qilong; Toorman, Erik A.

    2015-04-01

    In this study, the main object is to investigate the performance of a few new physics-based process models by implementation into a numerical model for the simulation of the flow and morphodynamics in the Western Scheldt estuary. In order to deal with the complexity within the research domain, and improve the prediction accuracy, a 2D depth-averaged model has been set up as realistic as possible, i.e. including two-way hydrodynamic-sediment transport coupling, mixed sand-mud sediment transport (bedload transport as well as suspended load in the water column) and a dynamic non-uniform bed composition. A newly developed bottom friction law, based on a generalised mixing-length (GML) theory, is implemented, with which the new bed shear stress closure is constructed as the superposition of the turbulent and the laminar contribution. It allows the simulation of all turbulence conditions (fully developed turbulence, from hydraulic rough to hydraulic smooth, transient and laminar), and the drying and wetting of intertidal flats can now be modelled without specifying an inundation threshold. The benefit is that intertidal morphodynamics can now be modelled with great detail for the first time. Erosion and deposition in these areas can now be estimated with much higher accuracy, as well as their contribution to the overall net fluxes. Furthermore, Krone's deposition law has been adapted to sand-mud mixtures, and the critical stresses for deposition are computed from suspension capacity theory, instead of being tuned. The model has been calibrated and results show considerable differences in sediment fluxes, compared to a traditional approach and the analysis also reveals that the concentration effects play a very important role. The new bottom friction law with concentration effects can considerably alter the total sediment flux in the estuary not only in terms of magnitude but also in terms of erosion and deposition patterns.

  19. First report of Phlebotomine sand flies (Diptera: Psychodidae) in Kansas and Missouri, and a PCR method to distinguish Lutzomyia shannoni from Lutzomyia vexator

    PubMed Central

    Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo

    2012-01-01

    Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from SW MO, only a single specimen was trapped in SE KS. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a PCR protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416bp fragment from the cytochrome oxidase I gene. PMID:23270176

  20. First report of phlebotomine sand flies (Diptera: Psychodidae) in Kansas and Missouri, and a PCR method to distinguish Lutzomyia shannoni from Lutzomyia vexator.

    PubMed

    Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo

    2012-11-01

    Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected, 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from southwest Missouri, only a single specimen was trapped in southeast Kansas. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a polymerase chain reaction protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416 bp fragment from the cytochrome oxidase c subunit 1 gene.

  1. Comparing different methods for fast screening of microbiological quality of beach sand aimed at rapid-response remediation.

    PubMed

    Testolin, Renan C; Almeida, Tito C M; Polette, Marcus; Branco, Joaquim O; Fischer, Larissa L; Niero, Guilherme; Poyer-Radetski, Gabriel; Silva, Valéria C; Somensi, Cleder A; Corrêa, Albertina X R; Corrêa, Rogério; Rörig, Leonardo R; Itokazu, Ana Gabriela; Férard, Jean-François; Cotelle, Sylvie; Radetski, Claudemir M

    2017-05-15

    There is scientific evidence that beach sands are a significant contributor to the pathogen load to which visitors are exposed. To develop beach quality guidelines all beach zones must be included in microbiological evaluations, but monitoring methods for beach sand quality are relatively longstanding, expensive, laborious and require moderate laboratory infrastructure. This paper aimed to evaluate the microorganism activity in different beach zones applying and comparing a classical method of membrane filtration (MF) with two colorimetric screening methods based on fluorescein (FDA) and tetrazolium (TTC) salt biotransformation to evaluate a new rapid and low-cost method for beach sand microbiological contamination assessments. The colorimetric results can help beach managers to evaluate rapidly and at low cost the microbiological quality of different beach zones in order to decide whether remedial actions need to be adopted to prevent exposure of the public to microbes due to beach sand and/or water contamination. Copyright © 2017. Published by Elsevier Ltd.

  2. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.

  3. Fluvial particle characterization using artificial neural network and spectral image processing

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  4. Soil aggregate stability and wind erodible fraction in a semi-arid environment of White Nile State, Sudan

    NASA Astrophysics Data System (ADS)

    Elhaja, Mohamed Eltom; Ibrahim, Ibrahim Saeed; Adam, Hassan Elnour; Csaplovics, Elmar

    2014-11-01

    One of the most important recent issues facing White Nile State, Sudan, as well as Sub Saharan Africa, is the threat of continued land degradation and desertification as a result of climatic factors and human activities. Remote sensing and satellites imageries with multi-temporal and spectral and GIS capability, plays a major role in developing a global and local operational capability for monitoring land degradation and desertification in dry lands, as well as in White Nile State. The process of desertification in form of sand encroachment in White Nile State has increased rapidly, and much effort has been devoted to define and study its causes and impacts. This study depicts the capability afforded by remote sensing and GIS to analyze and map the aggregate stability as indicator for the ability of soil to wind erosion process in White Nile State by using Geo-statistical techniques. Cloud-free subset Landsat; Enhance Thematic Mapper plus (ETM +) scenes covering the study area dated 2008 was selected in order to identify the different features covering the study area as well as to make the soil sampling map. Wet-sieving method was applied to determine the aggregate stability. The geo-statistical methods in EARDAS 9.1 software was used for mapping the aggregate stability. The results showed that the percentage of aggregate stability ranged from (0 to 61%) in the study area, which emphasized the phenomena of sand encroachment from the western part (North Kordofan) to the eastern part (White Nile State), following the wind direction. The study comes out with some valuable recommendations and comments, which could contribute positively in reducing sand encroachments

  5. Microtox(TM) characterization of foundry sand residuals

    USGS Publications Warehouse

    Bastian, K.C.; Alleman, J.E.

    1998-01-01

    Although foundry residuals, consisting mostly of waste Sands, represent a potentially attractive, high-volume resource for beneficial reuse applications (e.g. highway embankment construction), prospective end users are understandably concerned about unforeseen liabilities stemming from the use of these residuals. This paper, therefore, focuses on the innovative use of a microbial bioassay as a means of developing a characterization of environmental suitability extending beyond the analytical coverage already provided by mandated chemical-specific tests (i.e., TCLP, etc.). Microtox(TM) bioassays were conducted on leachates derived from residuals obtained at a wide range of facilities, including: 11 gray and ductile iron foundries plus one each steel and aluminum foundries. In addition, virgin sand samples were used to establish a relative 'natural' benchmark against which the waste foundry sands could then be compared in terms of their apparent quality. These bioassay tests were able to effectively 'fingerprint' those residuals whose bioassay behavior was comparable to that of virgin materials. In fact, the majority of gray and ductile iron foundry residuals tested during this reported study elicited Microtox(TM) response levels which fell within or below the virgin sand response range, consequently providing another quantifiable layer of Support for this industry's claim that their sands are 'cleaner than dirt.' However, negative Microtox(TM) responses beyond that of the virgin sands were observed with a number of foundry samples (i.e. four of the 11 gray or ductile iron sands plus both non-iron sands). Therefore, the latter results would suggest that these latter residuals be excluded from beneficial reuse for the immediate future, at least until the cause and nature of this negative response has been further identified.

  6. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  7. Leishmania, microbiota and sand fly immunity.

    PubMed

    Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria

    2018-06-20

    In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.

  8. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  9. Sand effects on thermal barrier coatings for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin

    Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.

  10. Slow-sand water filter: Design, implementation, accessibility and sustainability in developing countries

    PubMed Central

    Clark, Peter A.; Pinedo, Catalina Arango; Fadus, Matthew; Capuzzi, Stephen

    2012-01-01

    Summary The need for clean water has risen exponentially over the globe. Millions of people are affected daily by a lack of clean water, especially women and children, as much of their day is dedicated to collecting water. The global water crisis not only has severe medical implications, but social, political, and economic consequences as well. The Institute of Catholic Bioethics at Saint Joseph’s University has recognized this, and has designed a slow-sand water filter that is accessible, cost-effective, and sustainable. Through the implementation of the Institute’s slow-sand water filter and the utilization of microfinancing services, developing countries will not only have access to clean, drinkable water, but will also have the opportunity to break out of a devastating cycle of poverty. PMID:22739748

  11. Sugarcane Leaf Photosynthesis and Growth Characters during Development of Water-Deficit Stress

    USDA-ARS?s Scientific Manuscript database

    Yield and profitability of sugarcane grown on sand soils are much lower than on organic soils in Florida due to biotic and abiotic stresses. A greenhouse study was conducted using a sand soil to identify effects of water deficit stress (WS) during sugarcane early growth on leaf photosynthetic compon...

  12. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.

    PubMed

    Sundar, K; Sadiq, I Mohammed; Mukherjee, Amitava; Chandrasekaran, N

    2011-11-30

    Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30°C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand>pebbles>glass beads (4.8 × 10(7), 4.5 × 10(7) and 3.5 × 10(5)CFU/cm(2)), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis.

    PubMed

    Alvarez-González, C A; Moyano-López, F J; Civera-Cerecedo, R; Carrasco-Chávez, V; Ortiz-Galindo, J L; Dumas, S

    2008-12-01

    Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.

  14. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  15. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  16. Assessment of Pollutant Removal Efficiency and Drainage Capacity in Stormwater Biofilters

    NASA Astrophysics Data System (ADS)

    Carroll, S. J.; Mills, H.; Reagan, A.; Triassi, M.; Bauer, S.; Matiasek, S. J.; Libby, R.; Meddings, C.

    2016-12-01

    Urban stormwater runoff contributes to flooding and impacts water quality with increased sediment and pollutant loads. Biofilters are vegetated filtration systems designed to mitigate stormwater by enhancing infiltration, sedimentation, contaminant sorption and uptake. Despite the rapid implementation of biofilters as stormwater management solutions, their performance is mainly evaluated in terms of flood reduction while their pollutant removal efficiency is rarely assessed. We investigated the effect of biofilter composition on drainage capacity and individual pollutant removal in test columns. Triplicate columns consisted of layers of pebbles, fine sand, filtration mix (test variable), mulch, lava rock and Santa Barbara sedges. The filtration mix was one of five combinations of coarse sand and local loam soil ranging from 100% sand to 100% soil. Consistent with differences in pore size distribution, hydraulic conductivity values were lowest in 100% soil biofilters (3.0 ± 0.6 mm/h) and highest in the 100% sand biofilters (22.7 ± 4.2 mm/h). A synthetic mixture of nutrients, metals, and salts in proportions representative of stormwater composition was applied to the test columns. Biofilters removed over 98% of dissolved copper, nickel, and zinc, and at least 67% of dissolved lead, even when applying synthetic runoff with metal concentrations three orders of magnitude larger than in actual stormwater. In addition, biofilters oxygenated, neutralized, and decreased the turbidity of stormwater. Ammonium was quantitatively removed from synthetic runoff (97-100%), while nitrate and phosphate were poorly retained (48-64%) or even leached from sand biofilters. This study demonstrated that, while decreasing drainage capacity, adding even a small proportion of native soil to the filtration media significantly increases pollutant removal of biofilters. With proper consideration of the filtration mixture, biofiltration systems can effectively remediate urban stormwater.

  17. Application of granulated lead-zinc slag in concrete as an opportunity to save natural resources

    NASA Astrophysics Data System (ADS)

    Alwaeli, Mohamed

    2013-02-01

    The last decades marked a period of growth and prosperity in construction industry which involves the use of natural resources. This growth is jeopardized by the lack of natural resources that are available. On the other hand there has been rapid increase in the industrial waste production. Most of the waste do not find any effective use and cause a waste disposal crisis, thereby contributing to health and environmental problems. Recycling of industrial waste as aggregate is thus a logical option to manage this problem. The paper reports on some experimental results obtained from the production of concretes containing granulated slag of lead and zinc industry as sand replacement mixed in different proportions. Granulated slag is substituted for raw sand, partly or totally. Ratios of 25%, 50%, 75% and 100% by weight of sand are used. The effects of granulated lead-zinc slag (GLZS) as sand replacement material on the compressive strength and gamma radiation attenuation properties of concrete are investigated and analyzed. Then, these properties are compared with those of ordinary concrete. The results showed that replacement material have some effects on the compressive strength and gamma radiation properties of the concrete. The experimental results indicate that, the concrete mixed with GLZS as a sand replacement have better strength. Concerning the absorption properties for gamma radiation the data show that the addition of GLZS resulted in an increase of the attenuation of gamma radiation. Consequently, these concretes could be used for construction of shields protecting personnel who work in laboratories where radiation is used. Additionally, the thickness of the concrete with GLZS was calculated and compared with ordinary concrete.

  18. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    PubMed

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  19. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  20. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    A liquid oxygen test tank was completed in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. A banner signing event marked the successful delivery of the tank called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  1. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  2. Integrated Metagenomic and Physiochemical Analyses to Evaluate the Potential Role of Microbes in the Sand Filter of a Drinking Water Treatment System

    PubMed Central

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ∼1011 prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn2+ and As3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water. PMID:23593378

  3. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value.

  4. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    PubMed

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11) prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+) and As(3+), might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  5. Effects of biotic and abiotic factors on the oxygen content of green sea turtle nests during embryogenesis.

    PubMed

    Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn

    2010-10-01

    Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.

  6. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  7. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    USGS Publications Warehouse

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  8. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  9. Comparison of Rotavirus and Norovirus transport in standardised and natural soil-water systems

    NASA Astrophysics Data System (ADS)

    Gamazo, P. A.; Schijven, J. F.; Victoria, M.; Alvareda, E.; Lopez, F.; Ramos, J.; Lizasoain, A.; Sapriza-Azuri, G.; Castells, M.; Colina, R.

    2016-12-01

    Rotavirus and Norovirus are waterborne viruses that are major causes of diarrhea and others symptoms of acute gastroenteritis. An important pathway of these viruses is groundwater. In Uruguay, as in many developed and developing countries, there are areas where the only source of water for human consumption is groundwater. In the rural area of the Salto district, groundwater is commonly used without any treatment, as it is traditionally considered as a safe source. However, virus contamination have been detected in several wells in the area. The most probable source of contamination are nearby septic systems, since the sewer coverage is scarce. This work aims to evaluate and compare the virus transport processes for a standardised soil-water systems and for the Salto aquifer system. For this, the transport of Rotavirus and Norovirus from clinic samples was studied in two sets of column experiments: 6.7 cm columns with quartz sand under saturated conditions (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes on the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both Rotavirus and Norovirus were removed two orders in magnitude. In the Salto sand column, Rotavirus was removed 2 log10 as well, but Norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for Rotavirus in the Salto sand column. These results are consistent with field observation where only Rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent was measured for these two viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.

  10. Ranking methodology for determining the relative favorability for commercial development of US tar-sand deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aamodt, P.L.; Freiwald, J.G.

    1983-03-01

    As a part of the DOE's program to stimulate petroleum production from unconventional sources, the Los Alamos National Laboratory has developed a methodology to compare and rank tar sand deposits, based on their suitability for commercial development. Major categories influencing favorability were identified and evaluated to determine their individual and collective impacts. To facilitate their evaluation, deposit characteristics, extraction technologies, environmental controls, and institutional constraints were broken down into their elements. The elements were assessed singly and in interactive groups to determine their influence on favorability for commercial development. A numerical value was assigned each element to signify its estimatedmore » importance relative to the other elements. Eight tar sand deposits were evaluated using only one major category, deposit characteristics. This initial, and only partial favorability assessment, was solely a test of the methodology, and it was considered successful. Because only one of the four major categories was used for this initial favorability ranking, and also because the available deposit characteristic data were barely adequate for the test, these first results should be used only as an example of how the methodology is to be applied when more complete data are available. The eight deposits and their relative favorability rankings for commercial development, based only on the deposit characteristics, are Sunnyside, Utah; Asphalt Ridge, Utah; Edna, California; Santa Rosa, New Mexico; Tar Sand Triangle, Utah; PR Spring, Utah; Uvalde, Texas; and circle cliffs, Utah.« less

  11. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will decrease comparing to DI water. At higher concentration DES solution (>80%DES), the amount of decrease can be up to 80-90%. In lower concentration, at about 50% decrease was observed. The results provide fundamental insights into the mechanism of bitumen separation from oil sands. The reduction of adhesion force between bitumen and minerals (silica) in DES media is the main reason which facilitates the separation between them, which by means existence of DES will favor bitumen and minerals separation. Comparing to other techniques, DES based separation is environmentally compatible and economically viable. The separation can easily happen at room temperature. Choline chloride and urea are biodegradable, environmentally compatible, accessible in large scale and easily prepared by mixing and heating (<80 °C). Further improvement is needed regarding to separation quality and efficiency, either in the direction of developing better separation techniques or by looking for chemical additives which can improve separation and reduce environmental side-effects.

  12. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B; Spink, David

    2016-05-01

    Environmental exposure to volatile organic compounds (VOCs) in ambient air is one of a number of concerns that the First Nation Community of Fort McKay, Alberta has related to development of Canada's oil sands. An in-depth investigation of trends in ambient air VOC levels in Fort McKay was undertaken to better understand the role and possible significance of emissions from Alberta's oil sands development. A non-parametric trend detection method was used to investigate trends in emissions and ambient VOC concentrations over a 12-year (2001-2012) period. Relationships between ambient VOC concentrations and production indicators of oil sands operations around Fort McKay were also examined. A weak upward trend (significant at 90% confidence level) was found for ambient concentrations of total VOCs based on sixteen detected species with an annual increase of 0.64μg/m(3) (7.2%) per year (7.7μg/m(3) increase per decade). Indicators of production (i.e., annual bitumen production and mined oil sands quantities) were correlated with ambient total VOC concentrations. Only one of 29 VOC species evaluated (1-butene) showed a statistically significant upward trend (p=0.05). Observed geometric (arithmetic) mean and maximum ambient concentrations of selected VOCs of public health concern for most recent three years of the study period (2010-2012) were below chronic and acute health risk screening criteria of the U.S. Agency for Toxic Substances and Disease Registry and U.S. Environmental Protection Agency. Thirty-two VOCs are recommended for tracking in future air quality investigations in the community to better understand whether changes are occurring over time in relation to oil sands development activities and to inform policy makers about whether or not these changes warrant additional attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form.

    PubMed

    Yao, Chaoqun; Wilson, Mary E

    2016-04-12

    The Leishmania spp. protozoa, the causative agents of the "neglected" tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections.

  14. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river

    USGS Publications Warehouse

    Kinzel, P.J.; Wright, C.W.; Nelson, J.M.; Burman, A.R.

    2007-01-01

    Reaches of a shallow (<1.0m), braided, sand-bedded river were surveyed in 2002 and 2005 with the National Aeronautics and Space Administration's Experimental Advanced Airborne Research LiDAR (EAARL) and concurrently with conventional survey-grade, real-time kinematic, global positioning system technology. The laser pulses transmitted by the EAARL instrument and the return backscatter waveforms from exposed sand and submerged sand targets in the river were completely digitized and stored for postflight processing. The vertical mapping accuracy of the EAARL was evaluated by comparing the ellipsoidal heights computed from ranging measurements made using an EAARL terrestrial algorithm to nearby (<0.5m apart) ground-truth ellipsoidal heights. After correcting for apparent systematic bias in the surveys, the root mean square error of these heights with the terrestrial algorithm in the 2002 survey was 0.11m for the 26 measurements taken on exposed sand and 0.18m for the 59 measurements taken on submerged sand. In the 2005 survey, the root mean square error was 0.18m for 92 measurements taken on exposed sand and 0.24m for 434 measurements on submerged sand. In submerged areas the waveforms were complicated by reflections from the surface, water column entrained turbidity, and potentially the riverbed. When applied to these waveforms, especially in depths greater than 0.4m, the terrestrial algorithm calculated the range above the riverbed. A bathymetric algorithm has been developed to approximate the position of the riverbed in these convolved waveforms and preliminary results are encouraging. ?? 2007 ASCE.

  15. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  16. Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand

    PubMed Central

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

  17. Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina

    NASA Astrophysics Data System (ADS)

    Montes, Alejandro; Rodríguez, Silvana Soledad; Domínguez, Carlos Eduardo

    2017-10-01

    Patagonia is the only continental territory exposed to the southern westerlies. The speed and frequency of these westerly winds generate a landscape strongly influenced by aeolian processes. This research shows a characterization of depositional and erosive aeolian landforms developed in dunefields associated to Lake Colhué Huapi, in the Extra-Andean Patagonia. Dunefields are located at 45°-46°S and moved in west-east direction due to the southern westerlies. We identified two big groups of active dunefields, one migrating through the dry lakebed of Colhué Huapi and the other migrating eastwards from the lakeshore. The dunefields mainly consist of transverse dunes, barchans, sand shadows and sand sheets. Yardangs, desert pavements, exhumed roots and decapitated soils were recognized in interdune areas. Longitudinal sand ridges, parallel to the prevailing wind direction, often remain preserved after the dunefields have passed. This allows to recognize the path of the dunes in the past. Sand ridges are recognized up to 28 km east from the present coast of the lake and evidenced former dunefields development. We describe the geomorphology context, landforms and sediments supply of dunefields related to the lake dynamics subject to clear tendency to desiccation.

  18. Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert.

    PubMed

    Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen

    2013-10-01

    Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F < F0.05 ). Specifically, the values were higher in the middle and base of dunes than the top part of dunes and hardened flat sand, but all values for dunes were higher than for drift sand. Bacteria was dominant in the soil microbial community (>84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experiment Investigation of the Influencing Factors on Bed Agglomeration During Fluidized-Bed Gasification of Biomass Fuels

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.

    With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.

  20. Evaluation of two working methods for screed floor layers on musculoskeletal complaints, work demands and workload.

    PubMed

    Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; van Holland, Berry J; Frings-Dresen, Monique H W

    2013-01-01

    Screed floors are bound by sand-cement (SF) or by anhydrite (AF). Sand-cement floors are levelled manually and anhydrite floors are self-levelling and therefore differences in work demands and prevalences of musculoskeletal complaints might occur. The objective was to assess among SF layers and AF layers (1) the prevalence of musculoskeletal complaints and (2) the physical work demands, energetic workload, perceived workload and discomfort. A questionnaire survey and an observational field study were performed. Compared with AF layers (n = 35), SF layers (n = 203) had higher, however, not statistically significant different, prevalences of neck (20% vs. 7%), shoulder (27% vs. 13%), low back (39% vs. 26%) and ankles/feet (9% vs. 0%) complaints. Sand-cement-bound screed floor layers (n = 18) bent and kneeled significantly longer (Δ77 min and Δ94 min; respectively), whereas AF layers (n = 18) stood significantly longer (Δ60 min). The work demands of SF layers exceeded exposure criteria for low back and knee complaints and therefore new working measures should be developed and implemented. In comparison with anhydrite-bound screed floor layers, sand-cement-bound screed floor layers exceeded exposure criteria for work-related low back and knee complaints. New working methods and measures for sand-cement-bound screed floor layers should be developed and implemented to reduce the risk for work-related musculoskeletal complaints.

  1. High-frequency measurements of aeolian saltation flux: Field-based methodology and applications

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.

    2018-02-01

    Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.

  2. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    NASA Astrophysics Data System (ADS)

    Gaylord, David R.; Dawson, Paul J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (<20°) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  3. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and MeHg results that will be used to assess the evolution of mercury dynamics in the fen as the hydrology and vegetation become established, we are investigating the composition of dissolved organic matter (DOM) using optical techniques in the water flowing through the fen peat and underlying tailing sand aquifer. During 2013, continuous in situ measurements of chromophoric DOM fluorescence (FDOM) were measured at the fen outlet to identify sources of C and their relative contribution to discharge waters. We compare these field measurements to laboratory measurements of FDOM on discrete water samples using a benchtop spectrofluorometer to develop relationships between FDOM, DOC and filtered THg and MeHg. The use of continuous in situ FDOM measurements as a proxy for DOC and mercury concentrations will improve our understanding of the effects of hydrologic management and natural seasonal variations in fen hydrology on DOC and Hg fluxes from different soil layers in the constructed system. Furthermore, we expect that the modeling of excitation-emission matrices using parallel factor analysis on discrete water samples will provide important information on the sources and reactivity of organic carbon being transported through different soil compartments in the fen.

  4. Moving sands along a headland-embayed beach system (Algarve, Southern Portugal)

    NASA Astrophysics Data System (ADS)

    Oliveira, Sónia; Horta, João; Nascimento, Ana; Gomes, Ana; Veiga-Pires, Cristina; Moura, Delminda

    2015-04-01

    Resilience of embayed and pocket beaches located at the southernmost coast of Portugal is currently a major question to coastal management of this region. In fact, several among those beaches have been artificially fed aiming to increase the width of the beach allowing people to maintain a safe distance to the unstable rocky cliffs. The sand is dredged from the offshore (ca. 2 miles from the shoreline) representing high costs for the Portuguese government. For how long will the artificial feeding solve the problem? Which beaches are worth being nourished taking into account the morphosedimentary processes? The present work is the result of a field experiment aiming to study the efficiency of the alongshore sedimentary transport between successive embayed beaches. The experiment was performed in the very indented rocky coast of the Algarve region (Southern Portugal) and comprised two field campaigns, both in 2014, during spring tides in March and November. The Algarve coast experiences a semi-diurnal meso-tidal regime ranging from 1.3 m during neap tides to 3.5 m at spring tides and the waves approach from WSW (232°) during 72% of observations along the year, almost normal to the study area shoreline. The wave and current characteristics (significant height-Hs and Period-T for waves, velocity and direction for currents) were measured during three and six tidal cycles respectively for the first and second campaign, using two pressure transducers and one electromagnetic current meter. We used sand painted with orange fluorescent dye (100 kg in March and 200 kg in November) as tracer to track the movement of the sand along the coast. The marked sand was placed on the beach face of the westernmost beach of the study area during the first low tide of each campaign. Following, hundreds of sediment samples were collected during low tide, through the monitored period, in the nodes of a georeferenced square mesh of 10 x 20 m covering three embayed beaches. Later in the laboratory, sediment was characterized concerning the grain size distribution and the marked grains (MG) which were identified and counted with the use of a black light. After statistical analysis, several maps were developed in a Geographical Information System in order to quantify and interpret the direction and velocity of the movement of the sand induced by the observed waves and currents. The results of this work showed that: (i) when the existing shore platforms between adjacent embayed beaches are exposed, their surface is topographically higher than the beach face and strongly dissected by channels (e.g., joints) and karstic cavities, and thus the transference of sand between the adjacent beaches is almost nil, (ii) when a topographic continuity was observed between the beach face and the surface of the shore platforms, the transference of sand between adjacent cells is effective. The two reported situations depend on the beach morphosedimentary processes driven by the angle between the waves and the shoreline. This work is a contribution to the PTDC/GEO-GEO/3981/2012 funded by the Portuguese Foundation for Science and Technology. The authors would like to thank the collaborators of the November campaign: A. Rosa; A. Portugal; A. Silva; C. Correia, J. Cunha e L. Castilho.

  5. Electrical conductivity of lab-formed methane hydrate + sand mixtures; technical developments and new results

    NASA Astrophysics Data System (ADS)

    Stern, L.; Du Frane, W. L.; Weitemeyer, K. A.; Constable, S.; Roberts, J. J.

    2012-12-01

    Electromagnetic (EM) measurement techniques used in permafrost and marine wells show that electrical conductivity (σ) of gas-hydrate-bearing zones is typically lower than that of surrounding sediments. However, while σ has been measured on analogue materials, it has seldom been studied on methane hydrate, the most common gas hydrate in the shallow geosphere. Additional petrophysical information - such as mixing relations and/or compositions of individual components - is also needed to more accurately relate σ to quantitative estimates of gas hydrate in EM-surveyed regions. To help address these needs, we first quantified the electrical properties of lab-formed methane hydrate at geologically relevant temperatures and pressures (Du Frane et al. GRL, 2011; also AGU 2011). A high-pressure cell was constructed to form hydrate from melting granular ice (made from distilled-deionized water) in the presence of pressurized CH4 gas, while measuring frequency-dependent impedance (Z) and σ. Final samples were pure, polycrystalline methane hydrate with excess CH4 gas but no excess H2O. The hydrate was then either quenched for grain-scale assessment by cryogenic SEM imaging, or dissociated in situ for further Z and σ measurement. Du Frane et al. [GRL, 2011] reported σ of methane hydrate to range from 10-5 to 10-4 S/m between -15 and 15°C, with activation energy (Ea) of 30.6 kJ/mol. In comparison, σ of the dissociated ice byproduct was ~400% higher with ~50% higher Ea. Measurements were then performed on methane hydrate mixed with known amounts of a standard quartz sand (Oklahoma #1, ~125 μm grain size) or similarly-sized silica glass beads in proportions ranging 10 to 90 vol. % relative to the hydrate phase. Several samples were dissociated at temperatures below -3°C for Z and σ measurement of the resulting ice/sand mixtures, and all samples were imaged for phase distribution. Adding sand complicated Z spectra for frequencies < 1 kHz and > 1MHz. However, the impedance at the frequency associated with the highest phase angle (typically 100 kHz) could be used to effectively isolate the electrical response of the sample from system contributions, enabling determination of σ. Surprisingly, the addition of sand, a nominal insulator, served to increase the overall σ of mixtures with sand fractions up through ~50 vol. % (i.e. those samples with well-connected methane hydrate), while Ea significantly decreased relative to single-phase methane hydrate. The reduced Ea suggests that a separate conduction mechanism operates when sand is present. One possible explanation is that ionic impurities from sand surfaces chemically diffuse into the hydrate grains, increasing their concentration of mobile charge-carrying defects. The fact that the addition of glass beads did not produce the same results supports this hypothesis. Geometrical mixing laws alone may therefore not sufficiently describe complicated mixing relationships between gas hydrate and sediment. Further tests are needed to resolve the competing effects, particularly if results are to be applied to systems that are not dominated by the presence of seawater. Work was performed under the auspices of U.S. DOE contracts DE-NT0005668 and DE-AC52-07NA27344, and DOE/USGS Interagency Agreement DE-NT0006147.

  6. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of Leishmania transmission in Colombia.

    PubMed

    Vivero, Rafael José; Torres-Gutierrez, Carolina; Bejarano, Eduar E; Peña, Horacio Cadena; Estrada, Luis Gregorio; Florez, Fernando; Ortega, Edgar; Aparicio, Yamileth; Muskus, Carlos E

    2015-02-22

    The location of the microhabitats where immature phlebotomine sand flies of the genus Lutzomyia develop is one of the least-known aspects of this group of medically important insects. For this reason strategies of source reduction approach for their control have not been possible in contrast to other insect vectors (such as mosquitoes), because their juvenile stages in terrestrial microhabitats is difficult to detect. Direct examination of soil samples, incubation of substrates and the use of emergence traps were the methods used to identify juvenile stages in 160 soil samples from urban and forest habitats within the foci of Leishmania transmission in Colombia. Immatures collected were identified subsequent from the rearing and emergence of adults using taxonomic keys or the analysis of the mitochondrial marker cytochrome oxidase I. Plant species associated with the natural breeding sites were identified and physicochemical properties of the soils were analyzed. A total of 38 (23.7%) sampling sites were identified as breeding sites, 142 phlebotomine sand flies were identified, belonging to 13 species of the genus Lutzomyia and two of Brumptomyia. The greatest numbers of immature were found within the tabular roots (51 immature sand flies from eight positive sites) and bases of trees (35 immature sand flies from 11 sites). The characterization and presence of the tree species (mainly Ceiba pentadra, Anacardium excelsum, Pseudosamanea guachapale) and the physicochemical properties (relative humidity and carbon/nitrogen ratio) of the soils associated with these breeding sites are significant factors in explaining the diversity and abundance of phlebotomine sand flies. Immature phlebotomine sand flies of the genus Lutzomyia in Colombia can be found in a wide variety of breeding sites rich in organic matter, high relative humidity and are associated with a typical vegetation of each locality. These results provide new perspectives for the study of the ecology of the genus Lutzomyia in Colombia and the development of vector control strategies.

  8. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the Iron Age onwards, drift sand activity only started in the mid- to late 14th century. The two active phases appear to correspond with active phases in the coastal dune systems and are probably the combined result of anthropogenic land use and climatic changes.

  9. In situ Fe-sulfide coating for arsenic removal under reducing conditions

    NASA Astrophysics Data System (ADS)

    Xie, Xianjun; Liu, Yaqing; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Duan, Mengyu; Wang, Yanxin

    2016-03-01

    An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O2-free water and S2- can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction between As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S2- was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S2- was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S2- produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S2-. This result indicated that alternate injection of Fe(II) and S2- approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.

  10. In situ Fe-sulfide coating for arsenic removal under reducing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xianjun; Liu, Yaqing; Pi, Kunfu

    2016-03-01

    An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O 2-free water and S 2$-$ can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS 2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction betweenmore » As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S 2$-$ was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S 2$-$ was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S 2$-$ produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S 2$-$. This result indicated that alternate injection of Fe(II) and S 2$-$ approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.« less

  11. The ULTRAPETALA1 trxG factor contributes to patterning the Arabidopsis adaxial-abaxial leaf polarity axis

    USDA-ARS?s Scientific Manuscript database

    The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcripti...

  12. A Pleasurable Path to Literacy: Can Steiner Contribute to the Literacy Debate?

    ERIC Educational Resources Information Center

    Burnett, John

    2007-01-01

    Although the recent publication of the Rose Report appears to draw a line in the sand that privileges synthetic phonics over other methods in the UK, history indicates a pendulum swing of preference between whole-word and phonics since the advent of mass education. Suggesting that the current "victory" for exponents of synthetic phonics…

  13. Predicted soil management and climate change effects on SOC in South Carolina

    USDA-ARS?s Scientific Manuscript database

    Extensive use of inversion tillage has contributed to the loss of soil organic carbon (SOC) and degraded soil health in the southeast U.S.A. Our objective was to predict changes in SOC in a Norfolk loamy sand in Florence, SC under several crop rotations (corn (Zea mays L.)-cotton (Gossypium ssp.), C...

  14. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  15. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  16. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    NASA Astrophysics Data System (ADS)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available. Given current information, it is inconclusive whether unconventional oil would require more or less consumptive fresh water use than U.S. domestic crude oil production. It depends on the water conservative strategy applied in each process. Increasing import of SCO derived from Canadian oil sands and U.S. oil shale would slightly increase life cycle GHG emissions of the U.S. petroleum status quo. The expected additional 2 million bpd of Canadian SCO from oil sands and U.S. oil shale would increase life cycle GHG emissions of the U.S. petroleum status quo on average only 10 and 40 kg CO2 equiv/bbl, or about 7.5 and 29 million tons CO2 equiv/year. However this increase represents less than 1 and 5% of U.S. transportation emissions in 2007. Because U.S. oil shale resources are located in areas experiencing water scarcity, methods to manage the issue were explored. The result also shows that trading water rights between Upper and Lower Colorado River basin and transporting synthetic crude shale oil to refinery elsewhere is the best scenario for life cycle GHG emissions and consumptive water use of U.S. oil shale production. GHG emissions and costs of water supply system contribute only 1-2% of life cycle GHG emissions and 1-6% of total levelized costs. The levelized costs of using SCO from oil shale as feedstock are greater than SCO from oil sands, and CTL. The levelized costs of producing liquid fuel (gasoline and diesel) using SCO derived from Canadian oil sands as feedstock are approximately 0.80-1.00/gal of liquid fuel. The levelized costs of SCO derived from oil shale are 1.6-4.5/gal of liquid fuel (oil shale surface mining process) and 1.6-5.2/gal of liquid fuel (oil shale in-situ process). From an energy security perspective, increasing the use of Canadian oil sands, U.S. oil shale, and CTL may be preferable to increasing Middle East imports. However, oil shale and CTL has the advantage security wise over Canadian oil sands because oil shale and coal are abundant U.S. resources. From a GHG emissions and consumptive water use perspective, CTL requires less consumptive water use than oil shale in-situ process but produces more GHG emissions than oil shale in-situ and surface mining process, unless CTL plant performs CCS and renewable electricity.

  17. A New Sand-Culture Apparatus for Tree Nutrition Research

    Treesearch

    B. G. Blackmon; N. E. Linnartz

    1970-01-01

    Research in tree nutrition often necessitates the use of rather large-scale installations of sand-culture equipment. The apparatus described below was developed during the course of experiments at Louisiana State University and provided daily irrigation to 102 culture units of loblolly pine (Pinus taeda L.) for a period of 10 months. This apparatus is a modification of...

  18. Moral Education through Play Therapy

    ERIC Educational Resources Information Center

    Mahalle, Salwa; Zakaria, Gamal Abdul Nasir; Nawi, Aliff

    2014-01-01

    This paper will discuss on how sand therapy (as one type of play therapies) can be applied as an additional technique or approach in counseling. The research questions for this study are to see what are the development, challenges faced by the therapist during the sessions given and how sand therapy can aid to the progress of the client. It is a…

  19. Repeatability and Genotype x Environment Interaction of Intermediate Stage Sugarcane Selection Conducted on Sand and Organic soils

    USDA-ARS?s Scientific Manuscript database

    The Florida cooperative sugarcane cultivar development program conducts all of its early selection stages on muck (organic) soils at the USDA-ARS Sugarcane Field Station in Canal Point. About 25% of the locations in the final two stages (Stages 3 and 4) are conducted on sand soils, after a reduction...

  20. Using Sieving and Unknown Sand Samples for a Sedimentation-Stratigraphy Class Project with Linkage to Introductory Courses

    ERIC Educational Resources Information Center

    Videtich, Patricia E.; Neal, William J.

    2012-01-01

    Using sieving and sample "unknowns" for instructional grain-size analysis and interpretation of sands in undergraduate sedimentology courses has advantages over other techniques. Students (1) learn to calculate and use statistics; (2) visually observe differences in the grain-size fractions, thereby developing a sense of specific size…

  1. Rain Rate Statistics in Southern New Mexico

    NASA Technical Reports Server (NTRS)

    Paulic, Frank J., Jr.; Horan, Stephen

    1997-01-01

    The methodology used in determining empirical rain-rate distributions for Southern New Mexico in the vicinity of White Sands APT site is discussed. The hardware and the software developed to extract rain rate from the rain accumulation data collected at White Sands APT site are described. The accuracy of Crane's Global Model for rain rate predictions is analyzed.

  2. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  3. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    PubMed

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Exploration and stratigraphy of Red Snapper Sink--A submarine karst collapse on the continental shelf, northeast Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.L.; Spechler, R.M.

    1993-03-01

    Red Snapper Sink is located on the continental shelf, 26 nautical miles east of Crescent Beach, Florida. In 1991, advanced technical-diving techniques enabled divers to explore the bottom of the sink for the first time. The opening of the sink at a depth of 88 feet is approximately 400 feet in diameter. From 88 to 134 feet, the sloping sides of the sink are developed on loose Quaternary shelly sand and Pleistocene clayey sand. Below 134 feet, Red Snapper Sink is a vertical shaft measuring about 150--170 feet in diameter. From 134 to 206 feet, the shaft transects weakly-cemented Pliocenemore » sand and silty sand. From 206 to 335 feet, the walls of the shaft are developed in clayey sands of the Upper Hawthorn Formation (Miocene). From 335 to 380 feet, the lower Hawthorn consists of a layer of dolostone containing phosphate pebbles and carbonate interclasts with phosphatic rims. The top of the Ocala Limestone (Eocene) occurs at 380 feet, and below this depth, the walls of the shaft are undercut. Two dives were made to the bottom of the sink. A sand floor was encountered at a depth of 434 feet on the south side of the shaft and at 460 feet on the northwest side. On the northwest side, the floor slopes to a depth of approximately 495 feet. During a dive to 482 feet, sea water was observed flowing into small caverns at the base of the wall. Seismic profiles indicate that Red Snapper Sink is the surficial expression of a karst breccia pipe originating at a depth of approximately 2,000 feet in Upper Cretaceous and Paleocene rocks.« less

  5. Investigation of quaternary ammonium silane-coated sand filter for the removal of bacteria and viruses from drinking water.

    PubMed

    Torkelson, A A; da Silva, A K; Love, D C; Kim, J Y; Alper, J P; Coox, B; Dahm, J; Kozodoy, P; Maboudian, R; Nelson, K L

    2012-11-01

    To develop an anti-microbial filter media using an attached quaternary ammonium compound (QAC) and evaluate its performance under conditions relevant to household drinking water treatment in developing countries. Silica sand was coated with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride via covalent silane chemistry. Filter columns packed with coated media were challenged with micro-organisms under different water quality conditions. The anti-bacterial properties were investigated by visualizing Escherichia coli (E. coli) attachment to coated media under fluorescence microscopy combined with a live/dead stain. A 9-cm columns with a filtration velocity of 18 m h(-1) achieved log(10) removals of 1·7 for E. coli, 1·8 for MS2 coliphage, 1·9 for Poliovirus type 3 and 0·36 for Adenovirus type 2, compared to 0·1-0·3 log(10) removals of E. coli and MS2 by uncoated sand. Removal scaled linearly with column length and decreased with increasing ionic strength, flow velocity, filtration time and humic acid presence. Escherichia coli attached to QAC-coated sand were observed to be membrane-permeable, providing evidence of inactivation. Filtration with QAC-coated sand provided higher removal of bacteria and viruses than filtration with uncoated sand. However, major limitations included rapid fouling by micro-organisms and natural organic matter and low removal of viruses PRD1 and Adenovirus 2. QAC-coated media may be promising for household water treatment. However, more research is needed on long-term performance, options to reduce fouling and inactivation mechanisms. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.

    PubMed

    Heyland, Andreas; Hodin, Jason

    2004-03-01

    Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.

  7. Seismic stochastic inversion identify river channel sand body

    NASA Astrophysics Data System (ADS)

    He, Z.

    2015-12-01

    The technology of seismic inversion is regarded as one of the most important part of geophysics. By using the technology of seismic inversion and the theory of stochastic simulation, the concept of seismic stochastic inversion is proposed.Seismic stochastic inversion can play an significant role in the identifying river channel sand body. Accurate sand body description is a crucial parameter to measure oilfield development and oilfield stimulation during the middle and later periods. Besides, rational well spacing density is an essential condition for efficient production. Based on the geological knowledge of a certain oilfield, in line with the use of seismic stochastic inversion, the river channel sand body in the work area is identified. In this paper, firstly, the single river channel body from the composite river channel body is subdivided. Secondly, the distribution of river channel body is ascertained in order to ascertain the direction of rivers. Morever, the superimposed relationship among the sand body is analyzed, especially among the inter-well sand body. The last but not at the least, via the analysis of inversion results of first vacuating the wells and continuous infilling later, it is meeted the most needs well spacing density that can obtain the optimal inversion result. It would serve effective guidance for oilfield stimulation.

  8. Construction of a test embankment using a sand-tire shred mixture as fill material.

    PubMed

    Yoon, Sungmin; Prezzi, Monica; Siddiki, Nayyar Zia; Kim, Bumjoo

    2006-01-01

    Use of tire shreds in construction projects, such as highway embankments, is becoming an accepted way of beneficially recycling scrap tires. However, in the last decade there was a decline in the use of pure tire shreds as fill materials in embankment construction, as they are susceptible to fire hazards due to the development of exothermic reactions. Tire shred-sand mixtures, on the other hand, were found to be effective in inhibiting exothermic reactions. When compared with pure tire shreds, tire shred-sand mixtures are less compressible and have higher shear strength. However, the literature contains limited information on the use of tire shred-soil mixtures as a fill material. The objectives of this paper are to discuss and evaluate the feasibility of using tire shred-sand mixtures as a fill material in embankment construction. A test embankment constructed using a 50/50 mixture, by volume, of tire shreds and sand was instrumented and monitored to: (a) determine total and differential settlements; (b) evaluate the environmental impact of the embankment construction on the groundwater quality due to leaching of fill material; and (c) study the temperature variation inside the embankment. The findings in this research indicate that mixtures of tire shreds and sand are viable materials for embankment construction.

  9. Maturation, fecundity, and intertidal spawning of Pacific sand lance in the northern Gulf of Alaska

    USGS Publications Warehouse

    Robards, Martin D.; Piatt, John F.; Rose, G.A.

    1999-01-01

    Pacific sand lance Ammodytes hexapterus in Kachemak Bay, Alaska, showed no sexual dimorphism in length-to-weight (gonad-free) ratio or length-at-age relationship. Most matured in their second year, males earlier in the season than females, but females (31%) attained a higher gonadosomatic index than males (21%). Sand lance spawned intertidally once each year in late September and October on fine gravel or sandy beaches soon after the seasonal peak in water temperatures. Sand lance in Cook Inlet and Prince William Sound displayed similar maturation schedules. Schools were dominated 2: 1 by males as they approached the intertidal zone at a site where spawning has taken place for decades. Sand lance spawned vigorously in dense formations, leaving scoured pits in beach sediments. Fecundity of females (93–199 mm) was proportional to length, ranging from 1468 to 16 081 ova per female. About half of the overall spawning school fecundity was derived from age group 1 females (55% of the school by number). Spawned eggs were 1·02 mm in diameter, demersal, slightly adhesive, and deposited in the intertidal just below the waterline. Sand lance embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures.

  10. Inland aeolian deposits of the Iberian Peninsula: Sand dunes and clay dunes of the Duero Basin and the Manchega Plain. Palaeoclimatic considerations

    NASA Astrophysics Data System (ADS)

    Bernat Rebollal, M.; Pérez-González, A.

    2008-12-01

    This paper describes the latest research on the geomorphological characteristics, formation environment and chronology of the main inland aeolian deposits from the south-eastern Duero Basin (DB) and the Manchega Plain (MP) of the Iberian Peninsula. Similarities and differences between the aeolian deposits of these two locations are summarised. Wind deflation from the Guadiana and Júcar alluvial systems created the aeolian deposits of the MP. These deposits are mainly composed of quartz sands. However, in the San Juan alluvial plain (MP) there is a large extent of clay dunes formed by exposure to prevalent winds of seasonal playa-lakes with salt and clay sediments. In the DB, wind remobilisation of the small particles from Quaternary terraces and Tertiary arkosic sediments left aeolian deposits of quartz-feldspar sands. Textural parameters of the aeolian deposits show large variations depending on the location and the original deposit. Thus, in the DB the aeolian sands derived from the deflation of fluvial sediments are better sorted and smaller in grain size than those created by the deflation of arkosic sediments. Morphologically, simple and compound parabolic dunes (U-V forms, hemicyclic, lobate and elongate), crescentic and linear dunes, climbing dunes and blowout dunes have been recognized at both sites. Barchan and dome dunes are present only in the DB while "lunette lunette-clay dunes" are found only in the MP. In both locations, the large extent of aeolian sand sheets and the predominance of simple and compound parabolic dunes indicates the active role of sparse vegetation cover in the formation of this aeolian system. In the DB, dunes were formed by southwest and west winds, while in the MP the aeolian morphologies indicate that the prevalent winds were west and northwest. The chronology of the dune deposits is being determined with luminescence (TL-OSL) dating and Mass Spectrometry Analysis ( 14C-AMS). In this way, the aeolian activity and stabilisation stages can be established, the latter well marked in the DB through soil A horizon development. Thus, the main sand dune formation in the DB and the eastern regions of the MP occurred between 13.5 and 7 ka BP, during the cold and arid Younger Dryas episode and the Early Holocene. The clay dunes of the MP accumulated mainly from 29 to 19 ka BP that corresponds with Heinrich events HE-3 and HE-2 and the Last Glacial Maximum. However, clay dunes were also formed between 13.5 and 7 ka BP. In both locations, there have been reactivations of some sand deposits in the recent Holocene, with maximum activity around 5-2 ka BP and 0.5-0.2 ka BP. On the other hand, three marked stages of stabilisation of the DB aeolian system have been established with 14C-AMS, around 10.2, 6.2 and 1.2 ka BP. Finally, the main winds contributing to dune construction were also responsible for the deflation processes with the formation of erosional depressions.

  11. Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides

    NASA Astrophysics Data System (ADS)

    Fukuoka, H.; Tsukui, A.

    2010-12-01

    In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the methane hydrates in laboratories because no explosion protection facility is required. In order to prevent rapid gasification, the specimen was prepared without water. Applied total normal stress was 200 kPa and initial normal stress was maintained at about 70 kPa by slightly opening the drainage valve to vent pressured CO2 gas. When the sample was sheared at 30 cm/s, the stress path reached failure line of friction angle of about 37 degrees immediately. However, excess pore air pressure increased soon after and the stress path moved to the origin along the failure line. This means rapid shearing generates frictional heat and it accelerates the gasification of dry ice quickly. On the other hand, crushing of pellets may contribute to increase the total surface area of dry ice and to acceleration of gasification, to some extent. Authors are conducting to examine the velocity weakening characteristics of the samples and upcoming results will give more detail of the mechanism. But this sliding-surface-liquefaction in the mixture supports the possibility of similar accelerating displacement in the sand-MH mixture or boundaries between MH and sand layer induced by certain strong ground motion under sea floor.

  12. Deformation localization forming and destruction over a decompression zone.

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Kondratyev, Viktor

    2017-04-01

    Development of a hydrocarbon field is accompanied by deformation processes in the surrounding rocks. In particular, a subsidence of oil strata cap above a decompression zone near producing wells causes changes in the stress-strain state of the upper rocks. It was shown previously, that the stress spatial changes form a kind of arch structures. The shear displacements along the arch surfaces can occur, and these displacements can cause a collapse of casing or even man-made earthquakes. We present here the results of laboratory simulation of such a phenomenon. A laboratory setup was made in the form of narrow box 30x30x5 cm3 in size with a hole (0.6 cm in diameter) in its bottom. As a model of porous strata, a foam-rubber layer of 4.0 -10.5cm in thick was used, which was saturated with water. The foam was sealed to the bottom of the box; the upper part of the box was filled by the dry sand. The sand was separated from the foam by thin polyethylene film to prevent the sand wetting. For visualization the sand deformations, the front wall of the box was made transparent and the sand was marked by horizontal strips of the colored sand. In the experiments, the water was pumped out the foam layer through the bottom hole. After pumping-out 50 ml of the water, the localization of sand deformations above the sink hole became noticeable; after pumping-out 100 ml of the water, the localized deformation forms an arch. At the same time, there was no displacement on the upper surface of the sand. To amplify the localization effect, the foam was additionally squeezed locally. In this case, three surfaces of the localized deformation appeared in the sand. The vertical displacements decreased essentially with height, but they reached the upper layers of the sand. An influence of vibration on arches forming was investigated. Several types of vibrators were used, they were placed inside the sand or on the front side of the box. Resulting accelerations were measured by the accelerometers placed into the sand. It was found, that if the amplitudes of the accelerations are equal or greater than 0.37g, the localized deformation did not appear near the vibrator location, but arose at some distance from it. If the vibration amplitudes exceed the threshold value 0.39g everywhere in the sand, the deformation localization did not occur. When the vibrator is displaced from the center of the model, the localization vanished near its position.

  13. [Ecology-economy harmonious development based on the ecological services value change in Yanqi Basin, Northwest China].

    PubMed

    Mamat, Zulpiya; Halik, Umut; Aji, Rouzi; Nurmemet, Ilyas; Anwar, Mirigul; Keyimu, Maierdang

    2015-03-01

    In this paper, we used land use/cover ecosystem service value estimation model and ecological economic coordination degree model to analyze the changes of the ecosystem service value by the land use/cover changes during 1985, 1990, 1996, 2000, 2005 and 2011 in Yanqi Basin, Xin-jiang. Then we evaluated the ecology-economy harmony and the regional differences. The results showed that during 1985-2011, there was an increasing trend in the areas of waters, wetland, sand, cultivated land and construction land in Yanqi Basin. In contrast, that of the saline-alkali land, grassland and woodland areas exhibited a decreasing trend. The ecosystem service value in Yanqi Basin during this period presented an increasing trend, among which the waters and cultivated land contributed most to the total value of ecosystem services, while the grassland and the woodland had obviously declined contribution to the total value of ecosystem services. The research showed that the development of ecological economy in the study area was at a low conflict and low coordination level. So, taking reasonable and effective use of the regional waters and soil resources is the key element to maintain the ecosystem service function and sustainable and harmonious development of economy in Yanqi Basin.

  14. Development and Validation of the Subjective Awareness of Neuropsychological Deficits Questionnaire for Children (SAND-C)

    PubMed Central

    HUFFORD, BRADLEY J.; FASTENAU, PHILIP S.

    2009-01-01

    Although lowered awareness of abilities has been associated with poorer outcome in adults with neurological compromise, a dearth of research exists examining whether lowered awareness exists in younger populations. Using findings from recent literature and expert opinion, a 47-item Subjective Awareness of Neuropsychological Deficits Questionnaire for Children (SAND-C) was created to assess awareness of cognitive functioning in 6 domains (attention, psychomotor, visual-spatial, language, memory, and executive functioning). Confirmatory factor analysis (CFA) of the SAND-C was conducted on a sample consisting of 365 healthy children and 48 children with epilepsy. The SAND-C was found to have strong reliability. Factor analysis confirmed the a priori 6 factor model, but the 6-factor model was only marginally better than a more parsimonious 1-factor solution. Post-hoc exploratory factor analyses indicate that the SAND-C may measure more constructs for adolescents than for younger children. The difference between younger and older children may reflect developmental changes in metacognitive awareness and abstraction about their own abilities. PMID:15969352

  15. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.

    PubMed

    Xie, Shiwei; Yuan, Songhu; Liao, Peng; Tong, Man; Gan, Yiqun; Wang, Yanxin

    2017-01-17

    Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.

  16. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  17. Evaluation of submarine strain-gage systems for monitoring coastal sediment migration

    NASA Technical Reports Server (NTRS)

    Shideler, G. L.; Mcgrath, D. G.

    1973-01-01

    Single and multiple strain-gage systems were respectively evaluated as in situ point and areal sensors for monitoring sand-height variations in coastal environments. Static loading tests indicate that gage response pressure is linear for sand heights up to 24 inches. Response pressures are a function of both sand height and aggregate density, with density being influenced by both sediment texture and degree of compaction. Poorer sediment sorting and greater compaction result in higher response pressures. Field tests in a beach foreshore environment indicate that the gage systems are effective qualitative instruments for monitoring long-period migration trends of beach sediments; whereas, short-period responses are not sufficiently reliable. The durability and compactness of the gage systems must be substantially increased for effective field operations. It is recommended that the systems' qualitative potentials be further developed, whereas their development as quantitative instruments be terminated. Further development should emphasize the construction of remote recording systems designed for semipermanent installation.

  18. Sand fences in the coastal zone: intended and unintended effects.

    PubMed

    Grafals-Soto, Rosana; Nordstrom, Karl

    2009-09-01

    Sand-trapping fences modify the character of the coastal landscape and change its spatial structure, image, and meaning. This paper examines the relationship between these changes and fence usage at the municipal level, where most decisions about fence deployment are made. Use of fences in 29 municipalities on the developed coast of New Jersey is examined over a 6-year period. Interviews with municipal officers indicate that wooden slat sand-trapping fences are used primarily to build dunes to provide protection against wave uprush and flooding, but they are also used to control pedestrian traffic and demarcate territory. These uses result in changes in landforms and habitats. An aerial video inventory of fences taken in 2002 indicates that 82% of the shoreline had fences and 72% had dunes. Single and double straight fence rows are the most commonly used. Fences are often built to accomplish a specific primary purpose, but they can cause many different and often unanticipated changes to the landscape. The effects of a sand fence change through time as the initial structure traps sand, creates a dune that is colonized by vegetation, and becomes integrated into the environment by increasing topographic variability and aesthetic and habitat value. Sand fences can be made more compatible with natural processes by not placing them in locations where sources of wind blown sand are restricted or in unnatural shore perpendicular orientations. Symbolic fences are less expensive, are easy to replace when damaged, are less visually intrusive, and can be used for controlling pedestrian access.

  19. Al Eskan disease: Persian Gulf syndrome.

    PubMed

    Korényi-Both, A L; Korényi-Both, A L; Juncer, D J

    1997-01-01

    This article examines the potential relationship between Al Eskan disease and the Persian Gulf syndrome. Al Eskan disease, reported in Military Medicine in 1992, is a novel and previously unreported condition triggered by the exceptionally fine sand dust of the Central and Eastern Saudi Arabian peninsula. We repeat our study of the pathogenesis of Al Eskan disease to include the ultrastructural and microanalytical study of the sand, aerobiological studies of the Kingdom of Saudi Arabia, and the etiology, symptoms, and prevalence of the disease. We conclude that immunodepression resulting from the continued presence of sand particles less than 1 micron in diameter in the lungs and bodies of Persian Gulf veterans explains not only the symptoms of the hyperegic lung condition of phase I and the symptoms of phase II of Al Eskan disease, but also provides an important clue to a common factor in most cases of Persian Gulf illnesses. We include a discussion of most of the commonly suspected agents in the Persian Gulf syndrome. In this case, we conclude that each of these factors, such as oil well fires, old-world diseases, or depleted uranium, are probably adjuvant or contributing causes. The only common exposure that would lead to recognition of the Persian Gulf syndrome as a single medical condition, rather than a catch-all phrase for unrelated conditions, appears to be exposure to the ubiquitous, fine sand of the area, and a resulting immunosuppression that is aggravated by opportunistic infections and other nonmicrobial ailments.

  20. Arsenic(V) Removal in Wetland Filters Treating Drinking Water with Different Substrates and Plants.

    PubMed

    Wu, Min; Li, Qingyun; Tang, Xianqiang; Huang, Zhuo; Lin, Li; Scholz, Miklas

    2014-05-01

    Constructed wetlands are an attractive choice for removing arsenic (As) within water resources used for drinking water production. The role of substrate and vegetation in As removal processes is still poorly understood. In this study, gravel, zeolite (microporous aluminosilicate mineral), ceramsite (lightweight expanded clay aggregate) and manganese sand were tested as prospective substrates while aquatic Juncus effuses (Soft Rush or Common Rush) and terrestrial Pteris vittata L. (Chinese Ladder Brake; known as As hyperaccumulator) were tested as potential wetland plants. Indoor batch adsorption experiments combined with outdoor column experiments were conducted to assess the As removal performances and process mechanisms. Batch adsorption results indicated that manganese sand had the maximum As(V) adsorption rate of 4.55 h -1 and an adsorption capacity of 42.37 μg/g compared to the other three aggregates. The adsorption process followed the pseudo-first-order kinetic model and Freundlich isotherm equations better than other kinetic and isotherm models. Film-diffusion was the rate-limiting step. Mean adsorption energy calculation results indicated that chemical forces, particle diffusion and physical processes dominated As adsorption to manganese sand, zeolite and gravel, respectively. During the whole running period, manganese sand-packed wetland filters were associated with constantly 90% higher As(V) reduction of approximate 500 μg/L influent loads regardless if planted or not. The presence of P. vittata contributed to no more than 13.5% of the total As removal. In contrast, J. effuses was associated with a 24% As removal efficiency.

  1. Petroleum coke and soft tailings sediment in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic invertebrates.

    PubMed

    Baker, Leanne F; Ciborowski, Jan J H; MacKinnon, Michael D

    2012-01-01

    The fate of trace metals in pore water collected from wetland sediments and organisms exposed to petroleum coke were evaluated within in situ aquatic microcosms. Oil sands operators of Fort McMurray, Alberta, Canada produced 60 million tonnes of petroleum coke by 2008, containing elevated concentrations of sulphur and several trace metals commonly seen in oil sands materials. This material may be included in the construction of reclaimed wetlands. Microcosms were filled with a surface layer of petroleum coke over mine-waste sediments and embedded in a constructed wetland for three years to determine how these materials would affect the metal concentrations in the sediment pore water, colonizing wetland plants and benthic invertebrates. Petroleum coke treatments produced significantly elevated levels of Ni. We also found unexpectedly higher concentrations of metals in "consolidated tailings" waste materials, potentially due to the use of oil sands-produced gypsum, and higher background concentration of elements in the sediment used in the controls. A trend of higher concentrations of V, Ni, La, and Y was present in the tissues of the colonizing macrophytic alga Chara spp. Aeshnid dragonflies may also be accumulating V. These results indicate that the trace metals present in some oil sands waste materials could be taken up by aquatic macro-algae and some wetland invertebrates if these materials are included in reclaimed wetlands. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A study of global sand seas

    USGS Publications Warehouse

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems associated with eolian hydrocarbon reservoirs. The final chapters present a discussion of the morphology and distribution of dunes as determined largely from Landsat images.Chapter K of the publication is devoted to descriptions of major sand seas based largely on thematic maps derived from Landsat (ERTS) mosaics. Although inclusion herein of the actual mosaics proved to be impractical, the maps derived from them do show the distribution and abundance of various dune types and the relations of these types to certain associated features, such as bedrock, water bodies, and juxtaposed dunes. Furthermore, sand roses included with each of these maps enable the user to draw conclusions on the probable relations of wind strength and direction to dune type in a particular area.Regional studies (chapter K) were a team effort. Analysis of the Landsat (ERTS) mosaics and mapping boundaries of individual dune types were by Carol Breed. Synthesis of the rather voluminous literature and preparation of abstracts covering it was by Camilla MacCauley. Actual preparation of maps was by Franci Lennartz and later by Sarah Andrews. The gathering of data on wind, the calculation of wind roses, and the interpretation of their relations to sand bodies were by Steven Fryberger, assisted by Gary Dean.

  3. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    NASA Astrophysics Data System (ADS)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related seedbank or resprouting density. Image classification did not identify any new blowout features except where fires were not the primary cause. Results suggest that fires are not presently contributing to the destabilisation of coastal dunes in south-west WA.

  4. Assessment of Mud-Capped Dredge Pit Evolution Offshore Louisiana: Implications to Sand Excavation and Coastal Restoration

    NASA Astrophysics Data System (ADS)

    Xu, K.; Miner, M. D.; Bentley, S. J.; Li, C.; Obelcz, J.; O'Connor, M. C.

    2016-02-01

    The shelf offshore Louisiana is characterized by a dominantly muddy seafloor with a paucity of restoration-quality sand proximal to shore. Discrete sand deposits associated with ancient rivers that incised the shelf during lower sea-level positions occur close to shore. These shelf channel sands have been targeted for coastal restoration projects resulting in significant cost savings over more distal deposits. Several recent projects targeted shelf paleo-fluvial deposits comprising relatively deep (10 m) channel sands underlying a muddy overburden. Because of contrasting characteristics of cohesive mud vs. non-cohesive sand and potential modern fluvial mud supply from the Mississippi and Atchafalaya Rivers, long term pit evolution is poorly understood relative to their more common sand-only counterparts. Alterations to seafloor topography from dredging shelf sediment resources can potentially affect oil and gas infrastructure or other resources of concern (i.e. historic shipwrecks) located proximal to dredge pits. Site-specific data required to make accurate predictions and empirical measurements to test and validate predictive models were only available for Peveto Channel offshore Holly Beach, Louisiana. Here we present new geophysical and geological data (bathymetry, sidescan, subbottom, and radionuclide of sediment cores) and physical oceanographic observations (hydrodynamics and sediment dynamics) collected at Raccoon Island (dredged in 2013) dredge pit in Louisiana. These field data collections along with pre-existing data provide a time-series to capture evolution at Raccoon Island post-excavation. Conceptual morphological models will be developed for dredge pit evolution and testing effectiveness of setback buffers protecting pipelines, habitats, and cultural resources. Our results will increase decision making ability regarding safety and protecting environmental and cultural resources, and better management of valuable sand resources.

  5. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  6. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    NASA Astrophysics Data System (ADS)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( < 10-5 SI). An increase of both phase peak and relaxation time was found with increasing grain size of the sorted Fe-sand. Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  7. Sand ramps as palaeoenvironmental archives: Integrating general principles and regional contexts through reanalysis of the Klipkraal Sands, South Africa

    NASA Astrophysics Data System (ADS)

    Rowell, Alexandra L. K.; Thomas, David S. G.; Bailey, Richard M.; Holmes, Peter J.

    2018-06-01

    Sand ramps occur on a continuum of topographically-controlled landforms, ranging from purely aeolian features (climbing/falling dunes) to talus cones and alluvial fans. Sand ramps have been identified as potentially important palaeoenvironmental archives in dryland regions that possess relatively few Quaternary proxy records. Their utility however requires not only good age control of depositional phases but clear identification of process regimes, determined through morphological and sedimentological analyses, with several recent studies indicating the complexities of palaeoenvironmental interpretations and the controls of ramp development (Bateman et al., 2012; Rowell et al., 2018). Klipkraal Sands is a sand ramp on the north-eastern margin of the semi-arid Karoo that has been important for inferences of the extent of southern African Late Quaternary aeolian activity (Thomas et al., 2002). We reanalyse this feature, in the light of both its significance and other recent studies that have inferred extensive southern African LGM aeolian activity (Telfer et al., 2012, 2014). New sedimentological data and twelve OSL dates indicate the Klipkraal Sands formed episodically between 100-0.14 ka, rather than accumulating rapidly, while sedimentological data question the aeolian affinities of the bulk of the feature. Therefore, Klipkraal is reinterpreted as showing no particular affinity to the LGM, with sediments locally sourced with a significant colluvial component. Only the upper historical sediments can be clearly interpreted as aeolian deposits. A complex interplay of processes is suggested, for which a meaningful palaeoenvironmental interpretation cannot be easily defined. This implies that the local geomorphic processes and controls operating on sand ramps need to be established before they can be fully utilised as palaeoenvironmental archives, with implications for their interpretation worldwide.

  8. Development of a grazing monitoring program for Great Sand Dunes National Park, Colorado

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Schoenecker, Kathryn A.

    2015-08-07

    National parks in the United States face the difficult task of managing natural resources within park boundaries that are influenced to a large degree by historical land uses or by forces outside of the park’s protection and mandate. Among the many challenges faced by parks is management of wildlife populations that occupy larger landscapes than individual park units but that concentrate within park lands both seasonally and opportunistically. Great Sand Dunes National Park and Preserve in south-central Colorado is currently developing an Ungulate Management Plan to address management of elk and bison populations within the park. Execution of the Ungulate Management Plan will require monitoring and assessment of habitat conditions in areas that appear sensitive to ungulate use or heavily used by elk and bison. Several sources of information on the various habitats within the park and their use and response to foraging elk and bison exist from recent and on-going research in Great Sand Dunes National Park and Preserve as well as from studies in other regions of the Intermountain West. All of this data can be used to inform the planning process. This report provides background on vegetation types that make up the primary bison and elk ranges in Great Sand Dunes National Park and Preserve and on the potential effects of ungulate grazing and browsing in these specific vegetation communities (both locally and regionally). The report also provides a review of the elements necessary to develop a long-term monitoring program for Great Sand Dunes National Park and Preserve that addresses both the responses to ungulate herbivory seen in important habitats in the park and the amount and patterns of ungulate habitat use.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipolla, C.L.; Mayerhofer, M.

    The paper details the acquisition of detailed core and pressure data and the subsequent reservoir modeling in the Ozona Gas Field, Crockett County, Texas. The Canyon formation is the focus of the study and consists of complex turbidite sands characterized by numerous lenticular gas bearing members. The sands cannot be characterized using indirect measurements (logs) and no reliable porosity-permeability relationship could be developed. The reservoir simulation results illustrate the problems associated with interpreting typical pressure and production data in tight gas sands and details procedures to identify incremental reserves. Reservoir layering was represented by five model layers and layer permeabilitiesmore » were estimated based on statistical distributions from core measurements.« less

  10. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.

    PubMed

    Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K

    1998-06-01

    The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.

  11. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    PubMed

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  12. Fuel and weather influence wildfires in sand pine forests

    Treesearch

    W. A. Hough

    1973-01-01

    A complex combination of fuel and weather factors accounts for the dangerous fires that often develop during the spring in sand pine forests of Florida. Moisture content of live needles is lowest in March, and resin and energy contents reach their yearly highs during the 4-month period from February through May. These fuel properties become critical, however, only when...

  13. Structural framework and sand genesis of Wilcox group, Travis Ward field, Jim Hogg County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolf, E.G.

    1987-09-01

    Since its discovery in 1983, there have been eight deep Wilcox and eight Queen City wells drilled in the Travis Ward field area. Of the eight Wilcox wells, four are producing gas from deep sands; three, that are capable of production, have been junked and abandoned, and one produces from the Hinnant sand at the top of the Wilcox. Only five of the eight Queen city wells have been completed; three are considered commercial. Wilcox gas reserve estimates range from 80 to 300 bcf. To date, Wilcox and Queen City production is related to normal faulting associated with a deepmore » salt and/or shale ridge within the Rio Grande interior salt basin. Growth of the ridge has resulted in the Wilcox being as much as 2000 ft structurally higher than the areas immediately north and south of Travis Ward field. Knowledge of the ancestral development of ridge closure prior to faulting may be critical to successful completions at Travis Ward field. Ridge-associated sea floor topography, shelf currents, sediment source proximity, and rate of sedimentation have combined for local development of high quality clean reservoir sands.« less

  14. Testosterone sorption and desorption: effects of soil particle size.

    PubMed

    Qi, Yong; Zhang, Tian C; Ren, Yongzheng

    2014-08-30

    Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay>silt>sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36-65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    USGS Publications Warehouse

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  16. Capture, adaptation and artificial control of reproduction of Lophiosilurus alexandri: A carnivorous freshwater species.

    PubMed

    Costa, Deliane Cristina; de Souza e Silva, Walisson; Melillo Filho, Reinaldo; Miranda Filho, Kleber Campos; Epaminondas dos Santos, José Claudio; Kennedy Luz, Ronald

    2015-08-01

    The present study describes the capture adaptation and reproduction of wild Lophiosilurus alexandri broodstock in laboratory conditions. There were two periods when capturing was performed in natural habitats. The animals were placed in four tanks of 5m(3) with water temperatures at 28°C with two tanks having sand bottoms. Thirty days after the temperature increased (during the winter) the first spawning occurred naturally, but only in tanks with sand on the bottom. During the breeding season, there were 24 spawning bouts with egg mass collections occurring as a result of the spawning bouts that occurred in the tanks. The hatching rates for eggs varied from 0% to 95%. The spawning bouts were mainly at night and on weekends. In the second reproductive period, the animals were sexed by cannulation and distributed in four tanks with all animals being maintained in tanks with sand on the bottom at 28°C. During this phase, there were 36 spawning bouts. Findings in the present study contribute to the understanding of the reproductive biology of this endangered species during captivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Simple method for preparation of nanostructurally organized spines of sand dollar Scaphechinus mirabilis (Agassiz, 1863).

    PubMed

    Ehrlich, Herman; Elkin, Yury N; Artoukov, Alexandr A; Stonik, Valentin A; Safronov, Peter P; Bazhenov, Vasily V; Kurek, Denis V; Varlamov, Valery P; Born, René; Meissner, Heike; Richter, Gert

    2011-06-01

    Unique skeletal formations of marine invertebrates, including representatives of Echinodermata, have the unique potential to serve as templates for bio-inspired materials chemistry, biomimetics, and materials science. The sand dollar Scaphechinus mirabilis (Agassiz, 1983) is widely distributed in the northwest of the Pacific Ocean from southern Japan to the Aleutian Islands. This animal is the main source of naphtochinone-based substances. These compounds have recently drawn medical attention for their use as cardiological and ophthalmological drugs. Unfortunately, after extraction of the naphtochinones, the residual skeletons and spines of the sand dollars were usually discarded. Here, we report the first method for the preparation of nanostructurally organized spines of S. mirabilis, using a simple enzymatic and hydrogen peroxide-based treatment. Application of this method opens the way for development of non-wasteful environmentally clean technology of sand dollars as well-known industrial marine invertebrates.

  18. Seeding hydrate formation in water-saturated sand with dissolved-phase methane obtained from hydrate dissolution: A progress report

    USGS Publications Warehouse

    Waite, William F.; Osegovic, J.P.; Winters, William J.; Max, M.D.; Mason, David H.

    2008-01-01

    An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the circulating water, and hydrate particles from the source chamber entrained in the circulating water can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing homogeneous hydrate formation throughout the sand pack are being developed.

  19. Methane Hydrate Formation in Thick Sand Reservoirs: Long-range Gas Transport or Short-range Methane Diffusion?

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2016-12-01

    We developed two 2-D numerical models to simulate hydrate formation by long range methane gas transport and short-range methane diffusion. We interpret that methane hydrates in thick sands are most likely formed by long range gas transport where methane gas is transported upward into the hydrate stability zone (HSZ) under buoyancy and locally forms hydrate to its stability limit. In short-range methane diffusion, methane is generated locally by biodegradation of organic matter in mud and diffused into bounding sands where it forms hydrate. We could not simulate enough methane transport by diffusion to account for its observed concentration in thick sands. In our models, we include the capillary effect on dissolved methane solubility and on the hydrate phase boundary, sedimentation and different compaction in sand and mud, fracture generation as well as the fully coupled multiphase flow and multicomponent transport. We apply our models to a 12 meter-thick hydrate-bearing sand layer at Walker Ridge 313, Northern Gulf of Mexico. With the long-range gas transport, hydrate saturation is greater than 90% and salinity is increased from seawater to about 8 wt.% through the entire sand. With short-range diffusion, hydrate saturation is more than 90% at the sand base and is less than 10% in the overlying section; salinity is close to seawater when sand is deposited to 800 meter below seafloor by short-range methane diffusion. With short-range diffusion, the amount of hydrate formed is much less than that interpreted from the well log data. Two transient gas layers separated by a hydrate layer are formed from short-range diffusion caused by capillary effect. This could be interpreted as a double bottom simulating reflector. This study provides further insights into different hydrate formation mechanisms, and could serve as a base to confirm the hydrate formation mechanism in fields.

  20. Sedimentary Framework of an Inner Continental Shelf Sand-Ridge System, West-Central Florida

    NASA Astrophysics Data System (ADS)

    Locker, S. D.; Hine, A. C.; Wright, A. K.; Duncan, D. S.

    2002-12-01

    The west-central Florida inner continental shelf is a dynamic environment subject to current flows on a variety of temporal and spatial scales. A site survey program, undertaken in support of the Office of Naval Research's Mine Burial prediction program, is focused on the sedimentary framework and sediment accumulation patterns in 10-18 meters water depth. Our specific goals are to image the shallow subsurface and to monitor changes in bedform distribution patterns that coincide with physical processes studies ongoing in the area. Methods of study include side-scan sonar imaging, boomer and chirp subbottom profiling, and sedimentary facies analysis using surface sediment sampling and vibracoring. A well-defined sand-ridge system was imaged, trending oblique to the west-Florida coastline. The side-scan clearly shows that there is extensive three-dimensional structure within these large-scale NW-SE trending sedimentary bedforms. The sand ridges commonly are approximately 1 km wide and 4-8 km in length. The characteristics of these ridges are distinctly different than the sand ridges in < 8 m water that we have previously studied. Ridges in the offshore area tend to be thicker, have a flatter morphology, and exhibit fewer smaller-scale sand waves. Sand-ridge thickness ranges 2-3 meters, and typically consists of fining upward medium to fine quartz sand facies with occasional centimeter-scale coarser-grained carbonate-rich intervals. Time series investigations tracking the shift in position of the sand ridge margins have found undetectable net annual movement. However significant resuspension and bedform development accompanies high-energy events such as winter cold front passage. Thus the large-scale bedforms (sand ridges) are in a state of dynamic equilibrium with the average annual hydrodynamic regime. Repeated field surveys will focus on monitoring small-scale sedimentological and stratal framework changes that will be integrated with the quantitative process studies.

  1. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    NASA Astrophysics Data System (ADS)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  2. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    PubMed

    Locke, Christina

    2015-01-01

    Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes during a period of intense conflict.

  3. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas

    PubMed Central

    Locke, Christina

    2015-01-01

    Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining—the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes during a period of intense conflict. PMID:26136238

  4. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.

    PubMed

    Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R

    2017-08-01

    Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.

  5. An Examination of the Nature of Sand Harvesting Conflicts and Their Influence on Poverty Alleviation Initiatives in Makueni County, Kenya

    ERIC Educational Resources Information Center

    Muthomi, Simon; Okoth, Pontian; Were, Edmond; Vundi, Silvia

    2015-01-01

    Though natural resources play an important role in the economies of many countries, conflicts associated with their access continue to contribute to poverty in many African countries. While studies confirm conflict-poverty nexus for high value natural resources, scanty information is available on the low value resources. This study, therefore,…

  6. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  7. Dissecting the variance-covariance structure in insect physiology: the multivariate association between metabolism and morphology in the nymphs of the sand cricket (Gryllus firmus).

    PubMed

    Nespolo, Roberto F; Castañeda, Luis E; Roff, Derek A

    2005-08-01

    Energy metabolism in animals has been largely studied in relation to exogenous sources of variation. However, because they give insight into the relationship between whole metabolism and lower organizational levels such as organs and tissues, examination of endogenous determinants of metabolism other than body mass is itself very important. We studied the multivariate association of body parts and several aspects of energy metabolism in an insect, the nymphs of the sand cricket, Gryllus firmus. By using a variety of both univariate and multivariate techniques, we explored the resultant variance-covariance matrix to build a path diagram with latent variables. After controlling for body mass, we found a significant canonical correlation between metabolism and morphology. According to the factor loadings and path coefficients, the most important contributions of morphology to the correlation were thorax and abdomen size measures, whereas the most important metabolic contribution was resting metabolism. Activity metabolism was mostly explained by body mass rather than body parts, which could be a result of resting rates being chronic consequences of the functioning of the metabolic machinery that the insect must maintain.

  8. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by their proximity to the interacting object or force with the sand. To illustrate an example, as a rover wheel moves forward and approaches a particular sand region, that region will continue to subdivide until individual sand particles are represented. Conversely, if the rover wheel moves away, previously subdivided sand regions will recombine. Thus, individual sand particles are available when an interacting force is present but stored away if there is not. As such, this technique allows for many particles to be represented without the computational complexity. We have also further generalized these subdivision regions in our sand framework into any volumetric area suitable for use in the simulation. This allows for more compact subdivision regions and has fine-tuned our framework so that more emphasis can be placed on regions of actively participating sand. We feel that this increases the framework's usefulness across scientific applications and can provide for other research opportunities within the earth and planetary sciences. Through continued collaboration with our academic partners, we continue to build upon our sand simulation framework and look for other opportunities to utilize this research.

  9. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs. ?? 2011 Elsevier Ltd.

  10. New species for the biomitigation of a super-intensive marine fish farm effluent: Combined use of polychaete-assisted sand filters and halophyte aquaponics.

    PubMed

    Marques, Bruna; Calado, Ricardo; Lillebø, Ana I

    2017-12-01

    The main objective of this study was to test an innovative biomitigation approach, where polychaete-assisted (Hediste diversicolor) sand filters were combined with the production of Halimione portulacoides in aquaponics, to remediate an organic-rich effluent generated by a super intensive fish farm operating a land-based RAS (Recirculating aquaculture system). The set up included four different experimental combinations that were periodically monitored for 5months. After this period, polychaete-assisted sand filters reduced in 70% the percentage of OM and the average densities increased from ≈400ind.m -2 to 7000ind.m -2 . H. portulacoides in aquaponics contributed to an average DIN (Dissolved inorganic Nitrogen) decrease of 65%, which increased to 67% when preceded by filter tanks stocked with polychaetes. From May until October (5months) halophytes biomass increased from 1.4kgm -2 ±0.7 (initial wet weight) to 18.6kgm -2 ±4.0. Bearing in mind that the uptake of carbon is mostly via photosynthesis and not though the uptake of dissolved inorganic carbon, this represents an approximate incorporation of ≈1.3kgm -2 carbon (C), ≈15gm -2 nitrogen (N) and ≈8gm -2 phosphorus (P) in the aerial part (76% of total biomass), and an approximate incorporation of ≈0.5kgm -2 carbon (C), ≈3gm -2 nitrogen (N) and ≈2gm -2 phosphorus (P) in the roots (24% of total biomass). In the present study, the potential of the two extractive species for biomitigation of a super-intensive marine fish farm effluent could be clearly demonstrated, contributing in this way to potentiate the implementation of more sustainable practices. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sediment composition and texture of Pleistocene deep-sea turbidites in the eastern Nankai Trough gas hydrate field

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  12. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    NASA Technical Reports Server (NTRS)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  13. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada.

    PubMed

    Lynam, Mary M; Dvonch, J Timothy; Barres, James A; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-11-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10(-4) - 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130-2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Wave-induced ripple development in mixed clay-sand substrates

    NASA Astrophysics Data System (ADS)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results for sediment dynamics in mixed-bed substrates are highlighted and discussed.

  15. Genesis and sedimentary record of blind channel and islands of the anabranching river: An evolution model

    NASA Astrophysics Data System (ADS)

    Leli, Isabel T.; Stevaux, José C.; Assine, Mário L.

    2018-02-01

    Blind channel (BC) is a fluvial feature formed by attachment of a lateral sand bar to an island or riverbank. It consists of a 10- to 20-m wide and hundreds to thousands meters long channel, parallel to the island or bank, closed at its upstream end by accretion to the island. It is an important feature in anabranching rivers that plays an important role in both the island formation and river ecology. This paper discusses the formation processes, functioning, evolution, and the sedimentary record of a blind channel, related landforms, and its context on island development in the Upper Paraná River. The evolution of this morphologic feature involves (1) formation of a lateral or attachment bar beside an island with the development of a channel in between; (2) vertical accretion of mud deposits during the flood and vegetal development on the bar; (3) the upstream channel closure that generates the blind channel; and (4) annexation of the blind channel to the island. A blind channel is semilotic to lentic, that is not totally integrated to the dynamics of the main active channel and that acts as a nursery for fingerlings and macrophytes. The sedimentary facies succession of BCs are relatively simple and characterized by cross-stratified sand covered by organic muddy sediments. Based on facies analysis of 12 cores, we identified a succession of environments that contribute to the formation of islands: channel bar, blind channel, pond, and swamp. Blind channel formation and its related bar-island attachment are relevant processes associated with the growing of large island evolution in some anabranching rivers.

  16. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare plants, insects, lizards, birds, and mammals.

  17. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  18. Morphology and ecology of the kalyptorhynch Typhlopolycystis rubra (Plathelminthes), an inmate of lugworm burrows in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Noldt, U.; Reise, K.

    1987-06-01

    Typhlopolycystis rubra, a new species of the taxon Polycystididae (Plathelminthes, Kalyptorhynchia), is described. The red species is characterized by copulatory hard structures which consist of a proximal girdle and 2 similar sized stylets. T. rubra occurs in intertidal sand near the island of Sylt in the North Sea. Here, it is virtually confined to the lowest parts of lugworm ( Arenicola marina) burrows, where it aggregates in the coarse grained sand around the feeding pocket areas. This is an extremely narrow spatial niche within the sulfide layer of sediment. Population size over a period of 7 years is the most constant one among all species of Plathelminthes living on the tidal flat. The ability of T. rubra to endure unsuitable conditions inside a cyst may contribute to this remarkably low population variability.

  19. Study of sandy soil grain-size distribution on its deformation properties

    NASA Astrophysics Data System (ADS)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  20. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

Top