Science.gov

Sample records for sandstone facies texas

  1. Depositional facies, diagenesis, and reservoir quality of Ivishak sandstone (Sadlerochit Group), Prudhoe Bay field

    SciTech Connect

    McGowen, J.H.; Bloch, S.

    1985-02-01

    The Sadlerochit Group is a large fan-delta system comparable in size to the modern Kosi River wet alluvial fan of Nepal and India. Braided-stream processes distributed chert gravel and quartz and chert sand in radial fashion to construct the subaerial part of the fan delta. Fluvial energy, slope of the fan surface, and grain size decrease in a north to south basinward direction. There is also a decrease in scale of sedimentation units from source area seaward. Facies of the subaerial fan delta can be broadly categorized as midfan delta (alternating conglomerate and sandstone), distal fan-delta (chiefly sandstone), and abandoned channel-fill, overbank, and pond facies (mudstone, siltstone, fine-grained sandstone). Seaward of the subaerial fan delta are the delta-front and prodelta facies. Subaerial fan-delta and delta-front facies compose the Ivishak sandstone, which grades basinward into the Kavik shale, a prodelta facies. Diagenetic effects were gradually superimposed on the sediments deposited in the Sadlerochit fan-delta system. The sedimentary facies, and in particular their textural characteristics, seem to control the side and degree of diagenesis, including enhancement of porosity and permeability. Comparison of permeability trends among the facies of the Ivishak sandstone with permeability patterns displayed by unconsolidated sands with analogous grain size and texture, indicates that the general trends that existed in the Ivishak sediments are still recognizable in spite of the diagenetic overprint.

  2. Petrography, diagenesis, and facies controls on porosity in Shannon sandstone, Hartzog Draw field, Wyoming

    SciTech Connect

    Ranganathan, V.; Tye, R.S.

    1986-01-01

    On the basis of lithology and sedimentary structures, six sedimentary facies (A-F) were distinguished in cores of Shannon Sandstone in Hartzog Draw field, Campbell County, Wyoming. Core porosities and permeabilities are highest in facies A (average 15% and 16 md), moderately high in facies B (average 13% and 11 md), low in facies C (average 11.3% and 3.5 md), and very low in facies D and E (average 9-10% and 1-2 md). Dispersed detrital clay is a primary control on porosity, but in cross-bedded sandstones of facies A and B, the main productive interval, dispersed detrital clay is sparse and variations in porosity are due mainly to diagenesis. Microporosity does not contribute to permeability. It is low in facies A and B, high in facies C-E, and is associated mainly with detrital clay. As microporosity increases, water saturation increases. The paragenetic sequence inferred is: (1) siderite cementation; (2) formation of a brown, grain-coating clay, possibility illite/smectite; (3) quartz cementation; (4) calcite and dolomite cementation; (5) dissolution of carbonate cements and some framework grains; (6) a second generation of quartz cementation along with some chlorite and interlayered illite/smectite formation; and (7) oil emplacement.

  3. Palaeocurrent and facies analysis of Ajali Sandstone in Western Anambra basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Akpofure, Edirin; Akana, Tombra S.

    2016-06-01

    Outcrops of the Campanian - Maastrichtian Ajali Sandstone in Ayogwiri, Fugar and Orame in the Western Anambra Basin allow for the recognition of palaeocurrent fabric and facies characterization of the formation. Detailed outcrop logging was carried out and production of graphic logs was made for each outcrop location. The Ajali is extensively cross-stratified with different types of cross-bedding, such as the planar, trough, and herring-bone cross-beddings. Palaeocurrent directions of the cross-beds were taken using the compass-clinometer to elucidate the palaeocurrent direction of the environment of formation and rose diagrams were constructed for each bed. The Ajali Sandstone is made up of two basic facies. The basal facies, is made up of thinly laminated, heterolithic beds of the shoreface environment. The upper facies consists mainly of cross-bedded sandstones of a tidally influenced shallow marine environment. The major palaeocurrent direction of the Ajali Sandstone in the studied area was in the NE direction which infers the sediment provenance source to be the uplifted Abakiliki Anticlinorium. However, subordinate direction to the south occurs in Orame1.

  4. Depositional systems and productive characteristics of major low-permeability gas sandstones in Texas

    SciTech Connect

    Finely, R.J.; Seni, S.J.; Tyler, N.; Lin, Z.S.

    1984-04-01

    Major tight gas sandstones in Texas range from lenticular to blanket geometry, from hydropressured to geopressured, and from Pennsylvanian to Eocene in age. The Cotton Valley sandstone (East Texas basin) includes barrier- and marine-bar sandstones (blanket) derived from prograding fan deltas with associated braided stream, delta-front, and prodelta deposits. Estimated gas in place varies from 53 tcf (Cotton Valley) to 25 tcf (Travis Peak); most wells initially produce from 500 to 1500 mcf and few wells produce 2500 mcf. Tight gas sandstones in the Wilcox and Vicksburg Groups (Gulf Coast basin) are mostly geopressured delta-front, shelf, and slope deposits. Initial well yields are most 300 to 2400 mcfd; resource estimates for tight Wilcox and Vicksburg trends are not available. Canyon Group sandstones of the Sonora basin (parts of the Ozona arch, Concho platform and Val Verde basin) contain 24 tcf of estimated gas in place and initial flow rates are commonly 100 to 1000 mcf. These sandstones are broadly lenticular and are interpreted to be submarine fan and possibly shelf-margin deposits. The Olmos Formation (Maverick basin) contains gas within broadly lenticular delta-front deposits of high-constructive delta systems; liquid hydrocarbons in the Olmos are trapped in more proximal facies. Gas in place in the Olmos is estimated to be 5 tcf and initial well yields are 300 to 3000 mcf. In 1980, 893 wells were completed in formations designated as partially or completely tight by the Railroad Commission of Texas. These completions represent 2.5% of new gas wells in the state, but 28.0% of those completed in the 5000 to 15,000-ft depth range in that year.

  5. Facies and stratigraphy of the Pennsylvanian Warren Point Sandstone, central Cumberland Plateau, Tennessee

    SciTech Connect

    Hurd, S.A.; Stapor, F.W. Jr. . Earth Sciences Dept.)

    1994-03-01

    The Warren Point Sandstone is a fine-grained, quartz arenite composed primarily of the following three facies: planar bedded 2-D cross beds, low angle cross beds, and broad, shallow channel-fills. Ripple cross lamination, horizontal lamination, and laminated shale facies are also observed. These facies units are grouped into four of Miall's major architectural elements: sandy bedforms, channels, laminated sand sheets, and overbank fines. Paleocurrent measurements made on the 2-D cross beds indicate southwest transport. Throughout this region the Warren Point occurs as a nearly continuous and essentially homogeneous, 7--12 m-thick, sandstone sheet. The authors interpret a sandy braid plain depositional environment for the Warren Point. Initial sand composition data suggest a foreland uplift provenance that along with the southwest transport indicate the Alleghenian orogen as the probable source. The Warren Point disconformably overlies each of it's two stratigraphically subjacent units: the Pennsylvanian Raccoon Mountain (0--5 m-thick) and the upper limestone member of the Mississippian Pennington formations. The Sewanee Conglomerate disconformably overlies the Warren Point and, near Spencer, TN, rests directly on the Pennington limestone member that was a topographic high during Warren Point deposition. The absence of underlying shelfal and marginal marine Pennsylvanian siliciclastics in conjunction with the Warren Point's basal disconformity suggests a sea-level fall that resulted in a basinward facies shift.

  6. Sequence stratigraphy and facies of estuarine Borrego Pass sandstone, New Mexico

    SciTech Connect

    Tillman, R.W.; Nummedal, D.

    1989-09-01

    The Coniacian-age Borrego Pass sandstone outcrops along the southern flank of the San Juan basin between Gallup and Albuquerque, New Mexico. The unit is discontinuous along strike, forming five discrete sand bodies separated by areas of apparent nondeposition. Sequence stratigraphically, the Borrego Pass sandstone is inferred to represent a transgressive systems tract related to the Coniacian sea level rise. Observed discontinuities along strike of this sandstone suggest the existence of significant coastal plain relief in the form of estuaries which were previously valleys cut and occupied by Torrivio Member (Gallup Formation) streams during the preceding sea level lowstand. The base of the Torrivio is a sequence boundary. With rise in sea level the estuaries were, in part, filled by the tidally dominated Borrego Pass sandstone. Nine different lithofacies are discriminated on the basis of lithology, physical and biogenic sedimentary structures, paleoflow patterns, fossil content, and lateral and vertical trends in texture. Coarse-grained facies are flood-tidal deltas, tidal channels, washover fans, oyster reefs, estuary mouth shoals, and fluvial (distributary ) channels. The finer grained facies are bioturbated back-barrier tidal flats, coals and carbonaceous shales, and flood-plain shales.

  7. Facies analysis of strawn submarine fan complex, Fort Worth basin, central Texas

    SciTech Connect

    Pranter, M.J. )

    1990-02-01

    The Fort Worth basin is a Paleozoic foreland basin located in central Texas. The basin developed in direct response to the tectonic evolution of the Ouachita thrust belt. Fan delta, submarine fan, and related slope depositional systems comprising the lower Strawn Group were deposited within the Fort Worth foreland basin and platform and shelf-edge carbonates developed on the adjacent Concho platform. The Ouachita thrust belt and related structural highlands served as the principal source areas for the thick accumulation of lower Strawn submarine fan sequences. The nature and distribution of depositional environments were controlled by active subsidence within the Fort Worth basin. Both sediment loading and tectonic loading following thrust-sheet propagation were major contributors to basin subsidence. The most rapid subsidence within the Fort Worth basin occurred during the early and late Atokan and continued into the early Desmoinesian. Decreasing subsidence and sedimentation rates during the late Desmoinesian and early Missourian established a setting for the development of upper Strawn fluvial and deltaic systems, which eventually prograded across the Fort Worth basin. Several cycles of fan progradation and abandonment are represented within the lower Strawn. The lower Strawn delta-fed submarine fan turbidites were deposited at the base of the slope forming an aggrading ramplike depositional feature. Individual facies recognized in outcrop and within the subsurface include fan delta, prodelta slope, proximal ramp, and distal ramp facies. Sandstone geometries and sediment distribution patterns reflect this ramplike feature.

  8. Multinomial Logistic Regression & Bootstrapping for Bayesian Estimation of Vertical Facies Prediction in Heterogeneous Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Al-Mudhafar, W. J.

    2013-12-01

    Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly

  9. Clarksville field Red River County, Texas: Production and facies interpretation

    SciTech Connect

    Reed, C.H. )

    1991-03-01

    The Clarksville field was discovered in December in 1985 while targeting a deeper paleozoic horizon. Since production went on line in 1986, this field has produced over 1 million barrels of oil (MMBO) with the appearance of a considerably longer and more lucrative life. The producing horizon is a Jurassic-age lithic conglomerate sitting unconformably on the Paleozoic and Triassic structural front of the buried Ouachita range. Facies correlation out of the basin indicate this unit to be Louark age. Mapping and compositional analysis indicate the depositional environmental of this unit to be an arid climate alluvial fan deposited as a 'Bajada' complex. This fan system was laid down at the updip margin of the actively forming Mesozoic embayment where it meets the Ouachita structural front. The significance of this field is demonstrated by the production yield at a relatively shallow depth (5800 ft). At this time, production similar to Clarksville field has yet to be encountered anywhere along the Mesozoic rim of the East Texas basin but does represent a viable exploration trend, in addition to being a gateway for future paleozoic production in the basin.

  10. Fluvial architecture and reservoir heterogeneity of middle Frio sandstones, Seeligson field, Jim Wells and Kleberg Counties, south Texas

    SciTech Connect

    Jirik, L.A.; Kerr, D.R.; Zinke, S.G.; Finley, R.J. )

    1990-05-01

    Evaluation of fluvial Frio reservoirs in south Texas reveals a complex architectural style potentially suited to the addition of incremental gas reserves through recognition of untapped compartments or bypassed gas zones. Seeligson field is being studied as part of a GRI/DOE/Texas-sponsored program, in cooperation with Oryx Energy Company and Mobil Exploration and Production U.S., Inc., and is designed to develop technologies and methodologies for increasing gas reserves from conventional reservoirs in mature fields. Seeligson field, discovered in 1937, has produced 2.2 tcf of gas from more than 50 middle Frio reservoirs. Cross sections as well as net sand and log facies maps illustrate depositional style, sandstone geometry, and reservoir heterogeneities. Far-offset vertical seismic profiles show laterally discontinuous reflections corresponding to the reservoirs. Lenticular lateral-bar sandstones dominate channel-fill deposits that together are commonly less than 50 ft thick, forming belts of sandstone approximately 2,500 ft wide. Crevasse-splay deposits commonly extend a few thousand feet beyond the channel system. Sand-rich channel-fill deposits are flanked by levee and overbank mudstones, isolating the reservoirs in narrow, dip-elongate trends. Deposition on an aggrading coastal plain resulted in a pattern of laterally stacked sandstone bodies that are widespread across the study area. Alternating periods of more rapid aggradation resulted in deposition of vertically stacked sandstones with limited areal distribution. Facies architecture of both depositional styles has implications for reservoir compartmentalization. Reservoir compartments within a laterally stacked system may be leaky, resulting from sandstone contact from producing wells along depositional axes. This effect is a major factor controlling incremental recovery. Reservoirs in vertically stacked systems should be better isolated.

  11. Reservoir heterogeneity in middle Frio fluvial sandstones: Case studies in Seeligson field, Jim Wells County, Texas

    SciTech Connect

    Jirik, L.A. )

    1990-09-01

    Detailed evaluation of middle Frio (Oligocene) fluvial sandstones reveals a complex architectural style potentially suited to the addition of gas reserves through recognition of poorly drained reservoir compartments and bypassed gas zones. Seeligson field is being studied as part of a Gas Research Institute/US Department of Energy/State of Texas-sponsored program, with the cooperation of Oryx Energy Company and Mobil Exploration and Producing US, Inc. Four reservoirs, Zones 15, 16D, 16E, and 19C, were studied in a 20 mi{sup 2} area within Seeligson field. Collectively, these reservoirs have produced more than 240 bcf of gas from wells within the study area. Detailed electric log correlation of individual reservoirs enabled subdivision of aggregate producing zones into component genetic units. Cross sections, net-sandstone maps, and log-facies maps were prepared to illustrate depositional style, sand-body geometry, and reservoir heterogeneity. Zones 15 and 19C are examples of laterally stacked fluvial architecture. Individual channel-fill sandstones range from 10 to 50 ft thick, and channel widths are approximately 2,500 ft. Crevasse-splay sandstones may extend a few thousand feet from the main channel system. Multiple, overlapping channel and splay deposits commonly form sand-rich belts that result in leaky reservoir compartments that may be incompletely drained. Zones 16D and 16E are examples of vertically stacked fluvial architecture, with discrete, relatively thin and narrow channel and splay sandstones generally encased within floodplain muds. This architectural style is likely to form more isolated reservoir compartments. Although all of these reservoirs are currently considered nearly depleted, low-pressure producers, recent well completions and bottomhole pressure data indicate that untapped or poorly drained compartments are being encountered.

  12. Differentiating Detrital and Metamorphic Monazite in Greenschist-Facies Sandstones From the Witwatersrand Supergroup

    NASA Astrophysics Data System (ADS)

    Muhling, J. R.; Rasmussen, B.

    2009-05-01

    Monazite is a robust and reliable geochronometer of low-temperature metamorphic and hydrothermal events. It is a widespread accessory phase in sedimentary rocks metamorphosed at prehnite-pumpellyite to lower greenschist facies grade, and also in a range of hydrothermal ore deposits. Its ability to date multiple fluid-flow events in low-grade metasedimentary belts has been largely neglected, possibly because of a misconception that it is rare in these rocks and possibly because of misidentification of metamorphic monazite grains as detrital. Both detrital and metamorphic monazites are present in sandstone and conglomerate from the Witwatersrand Supergroup but can be distinguished by their occurrence, chemistry and age. Detrital grains were unstable during regional greenschist-facies metamorphism, and show evidence for a number of destructive reactions dependent on bulk rock composition and the original composition of the monazite. In quartz sandstone and conglomerate, detrital grains were present in heavy mineral bands with pyrite, zircon and chromite. The monazite grains have been pseudomorphed by intergrowths of apatite, florencite and Th-silicate, as well as matrix muscovite and chlorite. In some samples, Th-silicate forms only minute specks but in others it forms larger prismatic crystals that comprise up to 2% of some pseudomorphs. These variations may reflect differences in the original compositions of the detrital grains. In other samples detrital monazite cores, dated at 2.8-3.0 Ga, are enclosed within 2.04 Ga metamorphic rims. These composite grains formed by dissolution and reprecipitation of monazite during metamorphism. The cores and rims have distinctly different compositions, and the metamorphic rims show pronounced zoning of REE. In more calcic sandstone monazite occurs in heavy mineral bands with chromite, zircon, rutile, pyrite, apatite, Th-silicate, allanite and baddeleyite. These sandstones are notably rich in Ca-bearing minerals such as epidote

  13. Diagenesis of the sandflat and mudflat facies of the upper Queen Formation, Midland basin, Texas

    SciTech Connect

    Mckone, C.J.; Malicse, A.; Mazzullo, J.M. )

    1991-03-01

    The upper Queen Formation (Permian, Guadalupian) of the Midland basin, Texas, consists of cyclically interbedded clastics and evaporites that were deposited in a fluvial-dominated continental sabkha environment. Fluvial sandflat deposits, consisting of thin units (0.2-5.0 m) of very fine grained arkosic sandstones constitute reservoir horizons, whereas 0.1-1.3 m thick units of coarse siltstones and evaporites of playa-mudflat deposits are nonproductive. This study addresses the diagenetic histories of the reservoir and nonreservoir clastics. The primary porosity of the clastics was first reduced by pore-filling hematitic smectite clay, anhydrite, and dolomite during an early diagenetic phase. Subsequent dissolution of the anhydrite and dolomite by acidic pore-waters created high porosities (mean = 15%) and permeabilities (mean = 70 md) in the sandflat deposits, porosities which were only slightly occluded by later dissolution and reprecipitation of grain-lining smectite. Pore-water movement and subsequent hydrocarbon migration were both controlled by the coarser grain size and lower clay-matrix and silt content of these sandflat deposits. In contrast, the finer grain size and higher clay-matrix and silt content prevented similar dissolution of cements within the mudflat facies, which have significantly lower porosities (mean{lt}10%) and permeabilities (mean{lt}0.1 md). Fluids and gases used in enhanced recovery techniques will follow pathways created by dissolution of anhydrite and dolomite cements within the sandflat facies. However, caution must be used with fluids that can cause swelling of the grain-lining smectite.

  14. Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone

    SciTech Connect

    Ye, Liangmiao; Yang, Kexian

    1997-08-01

    Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

  15. Impact of depositional facies on the distribution of diagenetic alterations in the Devonian shoreface sandstone reservoirs, Southern Ghadamis Basin, Libya

    NASA Astrophysics Data System (ADS)

    Khalifa, Muftah Ahmid; Morad, Sadoon

    2015-11-01

    The middle Devonian, shoreface quartz arenites (present-day burial depths 2833-2786 m) are important oil and gas reservoirs in the Ghadamis Basin, western Libya. This integrated petrographic and geochemical study aims to unravel the impact of depositional facies on distribution of diagenetic alterations and, consequently, related reservoir quality and heterogeneity of the sandstones. Eogenetic alterations include the formation of kaolinite, pseudomatrix, and pyrite. The mesogenetic alterations include cementation by quartz overgrowths, Fe-dolomite/ankerite, and illite, transformation of kaolinite to dickite, illitization of smectite, intergranular quartz dissolution, and stylolitization, and albitization of feldspar. The higher energy of deposition of the coarser-grained upper shoreface sandstones combined with less extensive chemical compaction and smaller amounts of quartz overgrowths account for their better primary reservoir quality compared to the finer-grained, middle-lower shoreface sandstones. The formation of kaolin in the upper and middle shoreface sandstones is attributed to a greater flux of meteoric water. More abundant quartz overgrowths in the middle and lower shoreface is attributed to a greater extent of stylolitization, which was promoted by more abundant illitic clays. This study demonstrated that linking the distribution of diagenetic alterations to depositional facies of shoreface sandstones leads to a better understanding of the impact of these alterations on the spatial and temporal variation in quality and heterogeneity of the reservoirs.

  16. Assessment of undiscovered sandstone-hosted uranium resources in the Texas Coastal Plain, 2015

    USGS Publications Warehouse

    Mihalasky, Mark J.; Hall, Susan M.; Hammarstrom, Jane M.; Tureck, Kathleen R.; Hannon, Mark T.; Breit, George N.; Zielinski, Robert A.; Elliott, Brent

    2015-12-02

    The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U3O8 ) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig.1).

  17. Identification of remaining oil resource potential in the Frio Fluvial/Deltaic Sandstone play, South Texas

    SciTech Connect

    Holtz, M.H.; McRae, L.E.; Tyler, N.

    1994-05-01

    The Frio Fluvial/Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas has produced nearly 1 billion stock tank barrels (BSTB) of oil, yet still contains about 1.2 BSTB of unrecovered mobile oil and an even greater amount of residual oil resources (1.5 BSTB). More than half of the reservoirs in this depositionally complex play have been abandoned, and large volumes of oil may remain unproduced. Interwell-scale geological facies models of Frio fluvial/deltaic reservoirs will be combined with engineering assessments and geophysical evaluations in order to characterize Frio fluvial/deltaic reservoir architecture, flow unit boundaries, and the controls that these characteristics exert on the location and volume of unrecovered mobile and residual oil. Reservoir attribute data were statistically analyzed from oil and gas fields throughout the geographic area covered by the Frio Fluvial/Deltaic Sandstone oil play. General reservoir attributes analyzed in detail included porosity, initial water saturation, residual oil saturation, net pay, reservoir area, and fluid characteristics. Statistical analysis of variance demonstrated no difference between oil reservoir attributes and gas reservoir attributes. Probability functions that describe attribute frequency distributions were determined for use in risk adjusting resource calculations. The oil play was found to contain significant volumes of remaining oil. The volumetric probability distribution between 5- and 95-percent probability for original oil in place ranges from 3.8 to 5.6 BSTB, original mobile oil in place ranges from 2.5 to 3.6 BSTB, and residual oil ranges from 1.5 to 2.3 BSTB. The untapped oil resource may be 10 percent of the original oil in place, or 380 million stock tank barrels.

  18. Facies analysis of the Plateau Sandstones (Eocene to early Miocene?), Bako National Park, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Johansson, M.

    1999-04-01

    Sandstones, located in the Kuching area, western Sarawak, are known as the 'Plateau Sandstones' (of possible Eocene to early Miocene age). However, based on a number of factors, including: (i) anomalous kerogene compositions; (ii) proximity of the on-lap surface; and (iii) palaeocurrent direction (generally to the NNE), it is thought that the sands exposed on the Bako Peninsula are unrelated to the Plateau Formation (located to the south of the Bako Penisula) and therefore a new name is coined; the Bako Sandstones, which form a subgroup of the Bako Sandstone Group. The Bako Sandstones form the Bako Peninsula, a flat-topped cliffed plateau which extends into the South China Sea at a latitude of 1°30'N. The plateau has a gently dipping surface, sloping northwards from a height of about 300 to 150 m. The sandstones form a succession of very thick bedded sandstones (up to 6 m thick), with lenses of conglomerates and subordinate sandy mudstones. The sandstones consist of pebbly coarse-medium grained sands, interbedded with polymictic pebble conglomerates. The sandstones are mainly lithic arenite, poorly to moderately sorted and consist of subangular to subrounded grains. Isolated pebbles are common throughout the sandstones. The most common structure in both sandstones and conglomerates is cross-bedding; planar cross-bedding and trough cross-bedding, together with thick sequences of climbing ripples. These structures suggest extensive tractional transport, forming both ripple and dune structures along the base of the channel. The geometry of the sands is either (i) lensoidal, or (ii) tabular, with the channel-fill interpreted as scour-fill channels or migrating dunes, respectively. Both types are commonly stacked vertically or amalgamate laterally to form thick interconnected units. The conglomeratic lenses, scour-fill features and rip-up shale clasts are related to higher energy erosional events, whilst the mud-draped ripples, ripple rejuvenation surfaces and two

  19. Upper Permian (Guadalupian) facies and their association with hydrocarbons - Permian basin, west Texas and New Mexico

    SciTech Connect

    Ward, R.F.; Kendall, C.G.S.C.; Harris, P.M.

    1986-03-01

    Outcrops of Guadalupian sedimentary rocks in the Permian basin of west Texas and southeastern New Mexico are a classic example of the facies relationships that span a carbonate shelf. In the subsurface, these rocks form classic hydrocarbon-facies taps. Proceeding from basin to the updip termination of the shelf, the facies are (1) deep-water basin, (2) an apron of allochthonous carbonates, (3) carbonate shelf margin or reef, (4) carbonate sand flats, (5) carbonate barrier islands, (6) lagoon, and (7) coastal playas and supratidal salt flats (sabkhas). Over a half century of exploration drilling has shown that hydrocarbons in the Permian rocks of the Permian basin have accumulated at the updip contact of the lagoonal dolomites and clastics with the coastal evaporites, and in the basinal channel-fill clastics. The shelf marginal (reef) facies contain cavernous porosity, but commonly are water saturated. These facies relationships and hydrocarbon occurrences provide an exploration model with which to explore and rank hydrocarbon potential in other carbonate provinces. 16 figures, 3 tables.

  20. Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas

    SciTech Connect

    Kirkland, B.L.; Lighty, R.G.; Rezak, R.; Tieh, T.T.

    1987-09-01

    Along the south Texas margin, a vast carbonate-shelf complex with an extensive barrier-reef system and abundant shallow-lagoon and skeletal-shoal deposits existed during the Aptian to Albian. The Sligo Formation represents more than 609.6 m (2000 ft) of deposition along this margin. Facies types along the shelf edge were quantitatively delineated by cluster analysis of detailed point-count data from 90 thin sections of whole cores from five wells. In addition, studies of 42.6 m (140 ft) of core slabs and thin sections of well cuttings from four other wells were used to establish a regional depositional model. Along the Sligo shelf edge, three major facies occur: reef or reef rubble (two subfacies), back reef (three subfacies), and lagoonal (two subfacies). Reef facies are dominated by caprinids and also contain solenoporid algae, stromatoporoids, and an assortment of corals. Behind the reef, a spectrum of extensive back-reef deposits interfinger with shallow (< 5 m), lagoonal sediments. Farther behind the shelf-margin reef complex, along the outer shelf, benthic foraminifera, peloids, and ooids were deposited in high-energy shoals, and are interbedded with low-energy lagoonal sediments. The two types of buildups probably existed along the Sligo shelf margin and the equivalent Cupido shelf margin to the south: (1) wave-resistant coral-caprinid-stromatoporid barrier reefs (adjacent to restricted lagoonal facies), and (2) low-lying rudist banks (adjacent to diverse, washed lagoonal facies).

  1. Recent Advances in Characterizing Depositional Facies and Pore Network Modeling in Context of Carbon Capture Storage: An Example from the Cambrian Mt. Simon Sandstone in the Illinois Basin

    NASA Astrophysics Data System (ADS)

    Freiburg, J. T.; Nathan, W.; Best, J.; Reesink, A.; Ritzi, R. W., Jr.; Pendleton, J.; Dominic, D. F.; Tudek, J.; Kohanpur, A. H.

    2015-12-01

    In order to understand subsurface flow dynamics, including CO2 plume migration and capillary trapping, a diverse set of geologic properties within the reservoir, from the pore scale to the basin scale, must be understood and quantified. The uncertainty about site-specific geology stems from the inherent variation in rock types, depositional environments, and diagenesis. In collaboration with geocellular and multiphase modeling, detailed characterization of the Lower Mt. Simon Sandstone (LMSS), a reservoir utilized for carbon capture storage, is supporting data-driven conceptual models to better understand reservoir heterogeneity and its relationship to reservoir properties. This includes characterization of sedimentary facies and pore scale modeling of the reservoir The Cambrian-age Lower Mt. Simon Sandstone (LMSS) is a reservoir utilized for two-different carbon capture storage projects in the Illinois Basin, USA. The LMSS is interpreted to have formed in a braided river environment comprising a hierarchy of stratification, with larger scale depositional facies comprising assemblages of smaller scale facies. The proportions, geometries, length scales, and petrophysical attributes of the depositional facies, and of the textural facies they comprise, are being quantified. Based on examination of core and analog outcrop in adjacent areas, the LMSS is comprised of five dominant depositional facies, the most abundant facies being planar to trough cross-bedded sandstones produced by subaqueous sand dunes. This facies has the best reservoir conditions with porosity up to 27% and permeability up to 470 mD. Three-dimensional pore network modeling via micro computed tomography of this facies shows well-connected and unobstructed pore throats and pore space. This presentation will outline the depositional heterogeneity of the LMSS, its relationship to diagenetic fabrics, and its influence on fluid movement within the reservoir.

  2. Assessment of tight-gas resources in Canyon sandstones of the Val Verde Basin, Texas, 2016

    USGS Publications Warehouse

    Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Leathers-Miller, Heidi M.; Marra, Kristen R.; Finn, Thomas M.; Pitman, Janet K.

    2016-07-08

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed mean resources of 5 trillion cubic feet of gas and 187 million barrels of natural gas liquids in tight-gas assessment units in the Canyon sandstones of the Val Verde Basin, Texas.

  3. Environment of deposition of downdip Lower Wilcox sandstones, Provident City field, Lavaca County, Texas

    SciTech Connect

    Vest, S.W.

    1990-09-01

    The Lower Wilcox section at Provident City field produces dry gas from thin-bedded, silty sandstones, at depths of 12,500 to 14,100 ft (3,810 to 4,298 m). Cores show that sandstone cosets range 0.1 to 2.7 ft (0.03 to 0.82 m) and average 0.5 8 ft (0. 18 m) in thickness. Sedimentary structures within the cosets range upward from a massive unit (A) to a planar-laminated unit (B) to a ripple-laminated unit (C). The cosets have an average composition of lithic arkose and show textural grading indicative of deposition from turbidity flows. The sandstones lie within the Wilcox fault zone, downdip of the Colorado and Guadalupe deltas of the Rockdale Delta System. Regional stratigraphy and structural trends indicate that the sandstones were deposited in a deep marine environment. A growth fault, having approximately 1000 ft (3048 m) of throw at a depth of 12,300 ft (3750 m), bounds the field to the northwest and largely controls the distribution of lithofacies. Stacked, AB-type, turbidite cosets indicate channel facies. The M Sandstone was deposited as a constructional channel, with abrupt lateral grading to overbank facies, where turbidites of the BC- and C-type are dominant. The S Sandstone was deposited as a series of thin, constructional channels, mostly with turbidites of the AB- and ABC-type that are generally stacked, causing superimposed, dip-trending lobes on an otherwise strike-trending sandstone.

  4. Analysis of sedimentary facies and petrofacies of lower Morrowan-upper Chesterian sandstones, Anadarko Basin, Oklahoma

    USGS Publications Warehouse

    Keighin, C. William; Flores, Romeo M.

    1989-01-01

    Three major lithofacies have been identified within the Morrow (Pennsylvanian) and Springer (Pennsylvanian-Mississippian) units, in core from 30 drill holes ranging from the Oklahoma Panhandle to the southwestern portion of the Anadarko basin. The study included inspection of ~6,500 ft of core, examination of ~100 thin sections, and a scanning-electron-microscope study of butts of the material used for thin-section preparation. The lithofacies identified are (1) fluvial-influenced coastal, which includes the deltaic facies described by Swanson (1979), (2) tidal-influenced nearshore, and (3) mixed, which shows mixed tidal and nontidal marine influence. Our interpretation is supported by the investigations of Moore (1979), Haiduk (1987), and Swanson (1979). The fluvial-influenced coastal facies is restricted to the northwestern (Panhandle) portion of the Anadarko basin.

  5. Sandstone distribution and lithofacies of the Triassic Dockum Group, Palo Duro Basin, Texas: Final report

    SciTech Connect

    Johns, D.A.

    1988-01-01

    The Triassic Dockum Group in the Palo Duro Basin consists of many interbedded sequences of coarse- to fine-grained terrigenous clastic sedimentary strata. Four sandstone-dominated progradational sequences appear in the lower Dockum section. Sandstone in the first unit has a relatively uniform distribution across the basin, owing to deposition by broad alluvial fans and fan deltas. Sandstones in the remaining units and the upper Dockum are unevenly distributed owing to deposition by deltaic and fluvial systems. Sediment sources for Triassic strata in the Palo Duro Basin, according to net-sandstone trends, indicate deposition from the west, north, and east for the basal unit, dominantly from the east for units 2 and 3, and mixed western and eastern sources for unit 4 and the upper Dockum. Net-sandstone distribution patterns and lithofacies trends suggest proximal depositional environments in the present eastern and northeastern Dockum and more distal environments to the west and southwest. Paleodip was apparently from east to west over most of the Texas side of the basin, possibly changing in the area of the Texas-New Mexico border. Basement structural elements within the basin were subtly active during deposition and influenced the local accumulation of sandstone. 38 refs., 25 figs., 3 tabs.

  6. Depositional systems and structural controls of Hackberry sandstone reservoirs in southeast Texas

    SciTech Connect

    Ewing, T.E.; Reed, R.S.

    1984-01-01

    Deep-water sandstones of the Oligocene-age Hackberry unit of the Frio Formation contain significant quantities of oil and gas remain potentially one of the most productive exploration targets in southeast Texas. The Hackberry is a wedge of sandstone and shale containing bathyal fauna that separates upper Frio barrier-bar-strandplain sandstones from lower Frio neritic shale and sand. Major Hackberry sandstones lie atop a channeled unconformity that forms the base of the unit. Sandstones in a typical sand-rich channel at Port Arthur field grade upward from a basal, confined channel-fill sandstone to more widespread, broad, fan-channel deposits. Topmost are proximal to medial fan deposits and overbank turbidite deposits. The sequence suggests that Hackberry sandstones were laid down by an onlapping submarine canyon-fan complex deposited in canyons that eroded headward into the contemporaneous Frio barrier system. Regional maps and seismic interpretations outline a network of sand-filled channels extending from the barrier toward the southeast.

  7. Lower Permian facies of the Palo Duro Basin, Texas: depositional systems, shelf-margin evolution, paleogeography, and petroleum potential

    SciTech Connect

    Handford, C.R.

    1980-01-01

    A Palo geological study suggests that potential hydrocarbon reservoirs occur in shelf-margin carbonates, delta-front sandstones, and fan-delta arkoses. Zones of porous (greater than 10 percent) dolomite are concentrated near shelf margins and have configurations similar to productive Lower Permian shelf-margin trends in New Mexico. Delta-front sandstones (log-computed porosity of 18 to 25 percent) are similar to producing deltaic sandstones of Morris Buie-Blaco Fields in North-Central Texas. Porous (18 percent) fan-delta sandstones along the south flank of the Amarillo Uplift may form reservoirs similiar to that of the Mobeetie Field on the north side of the Amarillo Uplife in Wheeler County, Texas. Potential hydrocarbon source beds occur in slope and basinal environments. Total organic carbon generally ranges from 1 to 2.3 percent by weight and averages 0.589 percent by weight.

  8. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1981-10-01

    Three areas in the Texas Gulf Coast region with different depositional settings, structural styles, and sandstone distribution were studied with well log and seismic data to evaluate some of the controls on subsurface conditions in geopressured aquifers. Structural and stratigraphic interpretations were made primarily on the basis of well log correlations. Seismic data confirm the log interpretations but also are useful in structure mapping at depths below well control.

  9. Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya

    NASA Astrophysics Data System (ADS)

    El-ghali, Mohamed Ali Kalefa; Mansurbeg, Howri; Morad, Sadoon; Al-Aasm, Ihsan; Ramseyer, Karl

    2006-08-01

    The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite ( δ18O VPDB = - 3.1‰ to + 1.1‰ and δ13C VPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface-offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised

  10. Petrography and diagenesis of Eagle Mills sandstones, subsurface - Northeast Texas and southwest Arkansas

    SciTech Connect

    Dawson, W.C.; Callender, C.A. )

    1991-03-01

    The Eagle Mills Formation (Triassic-Jurassic) has been penetrated by several deep wells (12,000 to 18,000 ft) in northeast Texas and southwest Arkansas. It consists of green, red, and pink conglomeratic lithic arenites and fine- to coarse-grained feldspathic arenites, interbedded with red and greenish gray shales and siltstones. Lithic arenites contain basalt, chert, quartzite, and dolomite rock fragments; plagioclase is the predominant feldspar. All Eagle Mills sandstones have low textural and mineralogic maturities. Eagle Mills red beds and associated intrusive igneous rocks (diabase and basalt dikes and sills) represent the fillings of grabens or rift basins that actively subsided during deposition (in alluvial, fluvial-deltaic, and lacustrine paleoenvironments). Eagle Mills lithic and feldspathic sandstones have undergone a complex diagenetic history, including chlorite cementation (pore linings and pore fillings), compaction, quartz and feldspar overgrowths, dolomite cementation, chloritization and albitization of detrital feldspars, local dissolution of framework grains (igneous lithics and feldspars), precipitation of kaolinite, late Fe-calcite cementation, and saddle dolomite formation. Cement mineralogies are strongly correlative with lithofacies. Lithic sandstones contain the highest frequency of chlorite cements, whereas feldspathic sandstones are preferentially cemented with carbonates and anhydrite; quartz and feldspar overgrowths are ubiquitous. The suite of authigenic minerals in Eagle Mills sandstones records progressive burial into a deep, high-temperature (120-150C), semiclosed, diagenetic regime.

  11. Mineralogy and geochemistry of the main glauconite bed in the Middle Eocene of Texas: paleoenvironmental implications for the verdine facies.

    PubMed

    Harding, Sherie C; Nash, Barbara P; Petersen, Erich U; Ekdale, A A; Bradbury, Christopher D; Dyar, M Darby

    2014-01-01

    The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe(3+) 0.89 Mg0.45 Al0.67 Fe(2+) 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions.

  12. Mineralogy and Geochemistry of the Main Glauconite Bed in the Middle Eocene of Texas: Paleoenvironmental Implications for the Verdine Facies

    PubMed Central

    Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby

    2014-01-01

    The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+0.89 Mg0.45 Al0.67 Fe2+0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875

  13. Cotton Valley Sandstone of East Texas: a log-core study

    SciTech Connect

    Wilson, D.A.; Hensel, W.M. Jr.

    1984-09-01

    A comparison of calculations of various reservoir parameters, from logs and cores, provides guidelines for understanding reservoir evaluation in the Cotton Valley Sandstone of east Texas. The cores and logs are from the Carthage field area in Panola County. In these rocks, grain size distribution and the degree of shaliness, in addition to porosity, control permeability and irreducible water saturation. Clays in the Cotton Valley are mainly illite and chlorite. Cementation factor and saturation exponent values vary on a bed-by-bed basis; however, values of a = 1, m = 1.83, and an average value of n = 1.89 are acceptable for general evaluations. Sun's BITRI program was used to compute values for lithology porosity and water saturation, in good agreement with standard core and x-ray analysis. Cotton Valley Sandstone intervals with porosities less than 4% appear to be nonproductive.

  14. Carbonate facies and stratigraphic framework of middle Magdalena (middle Pennsylvanian), Hueco Mountains, west Texas

    SciTech Connect

    Lambert, L.L.; Stanton, R.J. Jr.

    1988-01-01

    The middle Magdalena of the Hueco Mountains, west Texas, is best exposed in the vicinity of Pow Wow Canyon, particularly along the western scarp of the range. It can be divided into two major depositional sequences, the lowermost of which consists predominantly of alternating bank, interbank, and shoal deposits of Atokan age. These banks are low-relief accumulations of Donezella, with coeval slackwater skeletal wackestones and interbedded deposits of foraminiferal sands. A prominent zone of intertonguing Chaetetes biostromes punctuates the middle part of this sequence. The Desmoinesian sequence begins as a series of rubbly limestones in association with abundant silicified plant remains and is interpreted as a set of paleosols. These are overlain by argillaceous, low-diversity wackestones and packstones of lagoonal origin, followed by carbonates of more open-marine circulation with abundant corals and other stenotypic fossils. In turn, these deposits are succeeded by a sequence of phylloid algal banks that increase in resistance upward to where they represent strata of the upper Magdalena. At this locality, however, the upper Magdalena is very thin because it is truncated by the pre-Hueco unconformity which, so prominent at the head of the canyon, can now be traced to the western scarp. These deposits are directly analogous to subsurface reservoir facies of the same age on the opposite side of the Diablo uplift in the Permian basin and thus provide an opportunity to generate reservoir models based on extensive outcrop exposure.

  15. Clay mineralogy and its controls on production, Pennsylvanian upper Morrow sandstone, Farnsworth field, Ochiltree County, Texas

    SciTech Connect

    Munson, T.W. )

    1989-12-01

    Farnsworth field in Ochiltree County, Texas, is the most prolific upper Morrow oil field in the Anadarko basin, producing more than 36 million bbl of oil and 27 billion ft{sup 3} of gas since its discovery in 1955. The bulk of the production comes from an upper Morrow-aged sandstone locally referred to as the Buckhaults sandstone. The Buckhaults sandstone is a coarse to very coarse-grained, arkose to arkosic wacke. Grain-size distributions, sedimentary structure analysis, and sand-body geometry indicate that the Buckhaults was deposited in a fluvial-deltaic environment as distributary channel and distributary mouth-bar sands. Depositional strike is northwest to southeast. The source area for the Buckhaults sediments was primarily a plutonic igneous terrane, with a minor contribution from volcanic and reworked sedimentary rocks. The proposed source area is the Amarillo-Wichita uplift to the south. In addition, the Cimarron arch and/or Keyes dome to the west-northwest may also have contributed sediment to the study area. The large (average) grain size, the amount of feldspar present, and the overall immaturity of the Buckhaults sediments indicate a relatively short distance of transport. Detailed scanning electron microscopy and x-ray diffraction analysis of cores from the productive interval coupled with comparisons of varying completion practices across the field indicate a significant correlation between individual well performance, clay mineralogy, and completion technique.

  16. Regional geology of the low-permeability, gas-bearing Cleveland Formation, western Anadarko Basin, Texas Panhandle: Lithologic and depositional facies, structure, and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Hentz, Tucker F.

    1992-09-01

    The Upper Pennsylvania (lower Missourian) Cleveland formation produces gas from low-permeability ('tight') sandstone reservoirs in the western Anadarko Basin of the northeastern Texas Panhandle. In the six-county region, these reservoirs had produced more than 412 Bcf of natural gas through December 31, 1989. Because of their typically low permeability, the Cleveland sandstones require acidizing and hydraulic fracture treatment to produce gas at economic rates. Since 1982, the Gas Research Institute has supported geological investigations throughout the United States to develop the scientific and technological knowledge for producing from low-permeability, gas-bearing sandstones. As part of the program and the GRI Tight Gas Sands project, the Bureau of Economic Geology has been conducting research on low-permeability sandstones in the Cleveland formation and on several other sandstone units of similar character in Texas and Wyoming.

  17. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1983-01-01

    Three areas in the Texas Gulf Coastal Plain were studied using electric logs and seismic-reflection data to interpret their depositional and structural history and to compare their potential as geopressured-geothermal reservoirs. The Cuero study area, on the lower Wilcox (upper Paleocene) growth-fault trend, is characterized by closely and evenly spaced, subparallel, down-to-the-basin growth faults, relatively small expansion ratios, and minor block rotation. Distributary-channel sandstones in the geopressured lower Wilcox Group of the South Cook fault block appear to be the best geothermal aquifers in the Cuero area. The Blessing study area, on the lower Frio (Oligocene) growth-fault trend, shows wider and more variable fault spacing and much greater expansion ratios and block rotation, particularly during early Frio time. Thick geopressured sandstone aquifers are laterally more extensive in the Blessing area than in the Cuero area. The Pleasant Bayou study area, like the Blessing area, is on the Frio growth-fault trand, and its early structural development was similar rapid movement of widely spaced faults resulted in large expansion ratios and major block rotation. However, a late-stage pattern of salt uplift and withdrawal complicated the structural style. Thick geopressured lower Frio sandstone aquifers are highly permeable and laterally extensive, as in the Blessing area. In all three areas, geopressured aquifers were created where early, rapid movement along down-to-the-basin growth faults juxtaposed shallow-water sands against older shales, probably deposited in slope environments. Major transgressions followed the deposition of reservoir sands and probably also influenced the hydraulic isolation that allowed the build up of abnormal pressures. 26 refs., 49 figs., 8 tabs.

  18. Fluvial and deltaic facies and environments of the late permian back-reef shelves of the Permian Basin of Texas and New Mexico

    SciTech Connect

    Mazzullo, J. )

    1993-02-01

    The Artesia Group is a sequence of carbonates, evaporites, and clastics that was deposited across the back-reef shelves of the Permian Basin during late Permian time. There has been some controversy over the depositional environments of the clastic members of the Artesia Group and the role of sea level fluctuations in their accumulation. However, the results of a regional core study of the Queen Formation of the Artesia Group indicate that they were largely deposited in desert fluvial and deltaic environments during low-stands of sea level. Three fluvial-deltaic facies are recognized within the clastic members of the Queen. The first consists of medium to very find sandstones and silty sandstones with cross-beds, ripple cross-laminae, and planar and wavy laminae. This facies forms wavy sheets that thicken and thin along linear trends, and was deposited in sandy braided streams. The second facies consists of very find to fine sandstones, silty sandstones, and siltstones with ripple cross-laminae, planar and wavy laminae, cross-beds, clay drapes and pedogenetic cutans, as well as siltstones and silty mudstones with haloturbation structures and evaporite nodules. This facies forms thick planar sheets, and was deposited in fluvial sandflats and adjacent fluvial-dominated continental sabkhas. The third facies consists of cyclic deposits of haloturbated silty mudstones that grade into siltstones and very fine sandstones with crossbeds, planar and wavy laminae, haloturbation structures and evaporite nodules. Each cycle forms a lobate body that is bounded by carbonates or evaporites and which was deposited in sheet deltas that formed along the landward margins of a back-reef lagoon.

  19. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    SciTech Connect

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  20. Evaluation of evaporite facies as a tool for exploration, Yates Field, Texas

    SciTech Connect

    Spencer, A.W.; Warren, J.K.

    1987-05-01

    Evaporites have long been recognized as the most efficient reservoir seal; however, the seal can itself serve as an exploration tool to locate subtle stratigraphic traps. By analogy with modern environments, thick massive evaporites form subaqueously in ponds (salinas) in topographic lows while sabkhas form on the subaerially exposed supratidal zone on topographic highs. Recognition of evaporite facies distribution can delineate paleotopography where sabkhas form a seal over local highs and closure is provided by salinas forming a lateral seal in lows. These relationships are illustrated by the giant Yates field (2 billion bbl reserves), situated at the southern tip of the Central basin platform in the Permian basin. The seal over the Yates reservoir (San Andres formation) is formed by the evaporites at the base of the Seven Rivers Formation (Guadalupian). Within the evaporite, two distinct depositional facies are recognized: a massive, salina-anhydrite in the central and western parts of the field; and on the east, stacked sabkha sequences consisting of sandy dolomite overlying a sharp base, grading into nodular anhydrite and capped by an erosional surface. The depositional topography on the underlying San Andres reservoir controlled the facies distribution in the basal Seven Rivers. Carbonate buildups formed on the eastern side of the field, while interbedded shales and dolomites accumulated in the quiet lagoonal waters behind. Due to dewatering and compaction during early burial, the lagoons remained topographically low until early Seven Rivers time when they were finally filled with salina evaporites. The rigid shelf margin buildups remained as topographic highs over which sabkhas developed. Only 10% of the production has come from the lagoonal muds under the salinas, while 90% has been produced from the carbonate buildups under the sabkhas.

  1. Secondary natural gas recovery in mature fluvial sandstone reservoirs, Frio Formation, Agua Dulce Field, South Texas

    SciTech Connect

    Ambrose, W.A.; Levey, R.A. ); Vidal, J.M. ); Sippel, M.A. ); Ballard, J.R. ); Coover, D.M. Jr. ); Bloxsom, W.E. )

    1993-09-01

    An approach that integrates detailed geologic, engineering, and petrophysical analyses combined with improved well-log analytical techniques can be used by independent oil and gas companies of successful infield exploration in mature Gulf Coast fields that larger companies may consider uneconomic. In a secondary gas recovery project conducted by the Bureau of Economic Geology and funded by the Gas Research Institute and the U.S. Department of Energy, a potential incremental natural gas resource of 7.7 bcf, of which 4.0 bcf may be technically recoverable, was identified in a 490-ac lease in Agua Dulce field. Five wells in this lease had previously produced 13.7 bcf from Frio reservoirs at depths of 4600-6200 ft. The pay zones occur in heterogeneous fluvial sandstones offset by faults associated with the Vicksburg fault zone. The compartments may each contain up to 1.0 bcf of gas resources with estimates based on previous completions and the recent infield drilling experience of Pintas Creek Oil Company. Uncontacted gas resources occur in thin (typically less than 10 ft) bypassed zones that can be identified through a computed log evaluation that integrates open-hole logs, wireline pressure tests, fluid samples, and cores. At Agua Dulce field, such analysis identified at 4-ft bypassed zone uphole from previously produced reservoirs. This reservoir contained original reservoir pressure and flowed at rates exceeding 1 mmcf/d. The expected ultimate recovery is 0.4 bcf. Methodologies developed in the evaluation of Agua Dulce field can be successfully applied to other mature gas fields in the south Texas Gulf Coast. For example, Stratton and McFaddin are two fields in which the secondary gas recovery project has demonstrated the existence of thin, potentially bypassed zones that can yield significant incremental gas resources, extending the economic life of these fields.

  2. Contrasting evolutionary patterns of Lower Permian shelf and basinal facies, Midland basin, Texas

    SciTech Connect

    Mazzullo, S.J.; Reid, A.M.

    1987-05-01

    The evolution of carbonate and siliciclastic shelf-to-basin depositional systems of the Lower Permian in the Midland basin was influenced by eustatic fluctuations, changing shelf-margin biota, and concurrent tectonism. The development of these systems from Wolfcampian to Leonardian time (28-m.y. duration) involved seven distinct phases that are recognized seismically as third and lesser order cycles. These phases are (1) highstand progradational shelf carbonate packages, separated by low-stand deltaic and basinal shales, deposited during relatively long-term eustatic cycles (early Wolfcampian); the component carbonate systems evolved from ramps to distally steepened ramps associated with nonframe-building algal reefs and grainstones, with little resedimented foreshelf detritus; (2) dominantly carbonate deposition during the middle and early late Wolfcampian, with construction of offlapping (but laterally juxtaposed) progradational shelves with steep platform margins deposited during a lengthy period of stillstand and/or slow submergence; dolomitized platform-margin facies are composed of marine-cemented, sponge-algal reefs and grainstones, with resedimented carbonate megabreccia to micrite channels and lobes in the contiguous shale basin; (3) shelf emergence and erosion during a major late middle(.) to late Wolfcampian lowstand contemporaneous with basinwide tectonism, with mass wastage into the basin of the terminal Wolfcampian platform-margin carbonate section; (4) regional transgression and black shale deposition followed by a repeat of Phase 2 type systems in the latest Wolfcampian to earliest Leonardian but under arid conditions; rapid vertical platform margin accretion by dolomitized, marine-cemented, sponge-algal-coral reefs and grainstones, and deposition of thick foreshelf megabreccia wedges, aprons, channels, and lobes;

  3. Strategies for reservoir characterization and identification of incremental recovery opportunities in mature reservoirs in Frio Fluvial-Deltaic sandstones, south Texas: An example from Rincon Field, Starr County. Topical report

    SciTech Connect

    McRae, L.; Holtz, M.; Hentz, T.

    1995-11-01

    Fluvial-deltaic sandstone reservoirs in the United States are being abandoned at high rates, yet they still contain more than 34 billion barrels of unrecovered oil. The mature Oligocene-age fluvial-deltaic reservoirs of the Frio Formation along the Vicksburg Fault Zone in South Texas are typical of this class in that, after more than three decades of production, they still contain 61 percent of the original mobile oil in place, or 1.6 billion barrels. This resource represents a tremendous target for advanced reservoir characterization studies that integrate geological and engineering analysis to locate untapped and incompletely drained reservoir compartments isolated by stratigraphic heterogeneities. The D and E reservoir intervals of Rincon field, Starr County, South Texas, were selected for detailed study to demonstrate the ability of advanced characterization techniques to identify reservoir compartmentalization and locate specific infield reserve-growth opportunities. Reservoir architecture, determined through high-frequency genetic stratigraphy and facies analysis, was integrated with production history and facies-based petrophysical analysis of individual flow units to identify recompletion and geologically targeted infill drilling opportunities. Estimates of original oil in place versus cumulative production in D and E reservoirs suggest that potential reserve growth exceeds 4.5 million barrels. Comparison of reservoir architecture and the distribution of completions in each flow unit indicates a large number of reserve-growth opportunities. Potential reserves can be assigned to each opportunity by constructing an Sooh map of remaining mobile oil, which is the difference between original oil in place and the volumes drained by past completions.

  4. Facies and diagenesis of Triassic (Austrian alpine) and upper Permian (New Mexico-Texas) platform-margin carbonates: a comparison

    SciTech Connect

    Mazzullo, S.J.; Lobitzer, H.

    1988-02-01

    Platform-margin carbonates of the Austrian Middle and basal Upper Triassic (Carnian) (Wettersteinkalk) and Upper Permian (Capitan reef, Guadalupian) are similar in terms of facies development, biota, and syndepositional diagenetic fabrics. These similarities are noteworthy because of their occurrence across the Permian-Triassic boundary, and the fact that these carbonates are distinct from younger (Upper Triassic Dachsteinkalk) depositional systems. The Upper Permian and Middle to basal Upper Triassic were deposited as subdued rimmed platforms with component lagoonal, reef-flat, reef, and fore-reef facies belts. The reef facies appear to represent upper slope marginal mounds, and consist mainly of sponges, solitary corals, Tubiphytes, and various encrusting biota; typically, this facies is pervasively marine cemented. The reef-flat facies consist of similarly lithified biograin-stones deposited in high-energy wave-base zones along the platform margins. By contrast, steep rimmed platforms with massive framework coral buildups and relatively less syndepositional marine cements dominate in Upper Triassic units (e.g., Dachsteinkalk, Steinplatte reef). Proximal fore-reef beds in the Upper Permian and Middle to basal Upper Triassic are characterized by carbonate-clast debris cemented by coarse crystalline carbonate. The precipitation of this cement (grossoolith) may have occurred during early shallow burial of the fore-reef beds. Similar depositional and diagenetic facies are poorly developed in the Upper Triassic, instead being represented mainly by bedded micrites.

  5. [X-ray radiography as a method of detailing the analysis of sedimentary facies, based on example of the Cergowa sandstones (Flysch Carpathians)].

    PubMed

    Pszonka, Joanna; Wendorff, Marek; Jucha, Katarzyna; Bartynowska, Karolina; Urbanik, Andrzej

    2013-01-01

    The paper presents the X-ray radiography as a method useful for the visualization of sedimentary structures in macroscopically homogeneous rocks. The radiographic analysis presented here bases on the example the Cergowa turbidite sandstones. The applied technique reveals that some of the apparently homogeneus Cergowa sandstones possess internal sedimentary structure of cross-lamination, which reflects on the sedimentological interpretation of the depositional mechanisms of this rock unit. This is the first application of this method in research on the Carpathian Flysch sedimentation.

  6. [X-ray radiography as a method of detailing the analysis of sedimentary facies, based on example of the Cergowa sandstones (Flysch Carpathians)].

    PubMed

    Pszonka, Joanna; Wendorff, Marek; Jucha, Katarzyna; Bartynowska, Karolina; Urbanik, Andrzej

    2013-01-01

    The paper presents the X-ray radiography as a method useful for the visualization of sedimentary structures in macroscopically homogeneous rocks. The radiographic analysis presented here bases on the example the Cergowa turbidite sandstones. The applied technique reveals that some of the apparently homogeneus Cergowa sandstones possess internal sedimentary structure of cross-lamination, which reflects on the sedimentological interpretation of the depositional mechanisms of this rock unit. This is the first application of this method in research on the Carpathian Flysch sedimentation. PMID:23944113

  7. Facies analysis and sequence stratigraphic framework of upper Campanian strata (Neslen and Mount Garfield formations, Bluecastle Tongue of the Castlegate sandstone, and Mancos shale), Eastern Book cliffs, Colorado and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Hettinger, Robert D.

    2004-01-01

    Facies and sequence-stratigraphic analysis identifies six high-resolution sequences within upper Campanian strata across about 120 miles of the Book Cliffs in western Colorado and eastern Utah. The six sequences are named after prominent sandstone units and include, in ascending order, upper Sego sequence, Neslen sequence, Corcoran sequence, Buck Canyon/lower Cozzette sequence, upper Cozzette sequence, and Cozzette/Rollins sequence. A seventh sequence, the Bluecastle sequence, is present in the extreme western part of the study area. Facies analysis documents deepening- and shallowing- upward successions, parasequence stacking patterns, downlap in subsurface cross sections, facies dislocations, basinward shifts in facies, and truncation of strata.All six sequences display major incision into shoreface deposits of the Sego Sandstone and sandstones of the Corcoran and Cozzette Members of the Mount Garfield Formation. The incised surfaces represent sequence-boundary unconformities that allowed bypass of sediment to lowstand shorelines that are either attached to the older highstand shorelines or are detached from the older highstand shorelines and located southeast of the main study area. The sequence boundary unconformities represent valley incisions that were cut during successive lowstands of relative sea level. The overlying valley-fill deposits generally consist of tidally influenced strata deposited during an overall base level rise. Transgressive surfaces can be traced or projected over, or locally into, estuarine deposits above and landward of their associated shoreface deposits. Maximum flooding surfaces can be traced or projected landward from offshore strata into, or above, coastal-plain deposits. With the exception of the Cozzette/Rollins sequence, the majority of coal-bearing coastal-plain strata was deposited before maximum flooding and is therefore within the transgressive systems tracts. Maximum flooding was followed by strong progradation of

  8. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    SciTech Connect

    Nieto Camargo, Jorge E. Jensen, Jerry L.

    2012-09-15

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  9. Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117

    SciTech Connect

    Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

    1982-01-01

    Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

  10. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    SciTech Connect

    Holtz, M.; Knox, P.; McRae, L.

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  11. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic Sandstone Reservoirs of South Texas

    SciTech Connect

    McRae, L.E.; Holtz, M.H.; Knox, P.R.

    1995-07-01

    The Frio Fluvial-Deltaic Sandstone Play of South Texas is one example of a mature play where reservoirs are being abandoned at high rates, potentially leaving behind significant unrecovered resources in untapped and incompletely drained reservoirs. Nearly 1 billion barrels of oil have been produced from Frio reservoirs since the 1940`s, yet more than 1.6 BSTB of unrecovered mobile oil is estimated to remain in the play. Frio reservoirs of the South Texas Gulf Coast are being studied to better characterize interwell stratigraphic heterogeneity in fluvial-deltaic depositional systems and determine controls on locations and volumes of unrecovered oil. Engineering data from fields throughout the play trend were evaluated to characterize variability exhibited by these heterogeneous reservoirs and were used as the basis for resource calculations to demonstrate a large additional oil potential remaining within the play. Study areas within two separate fields have been selected in which to apply advanced reservoir characterization techniques. Stratigraphic log correlations, reservoir mapping, core analyses, and evaluation of production data from each field study area have been used to characterize reservoir variability present within a single field. Differences in sandstone depositional styles and production behavior were assessed to identify zones with significant stratigraphic heterogeneity and a high potential for containing unproduced oil. Detailed studies of selected reservoir zones within these two fields are currently in progress.

  12. Geologic description of the San Andres reservoir facies in the Mabee field

    SciTech Connect

    Miller, K.D. )

    1992-04-01

    The Mabee field is located in Andrews and Martin counties, Texas, approximately 16 mi northwest of Midland in the Permian basin. Production is from the upper Permian San Andres dolomite at an average depth of 4700 ft. The San Andres/Grayburg formations are the most prolific oil-producing formations in the Permian basin, with total production over 10 billion bbl, and an estimated additional 3.8 billion bbl to be recovered by conventional secondary and tertiary methods. The Mabee field has produced over 90 MMBO by primary and secondary methods since its discovery in 1943. A tertiary CO{sub 2} flood will be implemented in 1992. An essential prerequisite to a successful CO{sub 2} project is a detailed reservoir description and facies analysis. Examination of over 5000 ft of core established six major facies in an overall shallowing-upward sequence. The cap rock consists of dense anhydritic dolomites of the supratidal and oncolite facies. Production primarily is from the underlying dolomitized subtidal and ooid facies. Sandstones interfinger with the ooid facies, but are tightly cemented and act as barriers to fluid migration. The lower-most open-marine facies is below the oil/water contact for the field. Reservoir characterization improves the planning and operation of an enhanced recovery project.

  13. Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy

    SciTech Connect

    Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

    1983-01-01

    Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

  14. Albitization of plagioclase crystals in the Stevens sandstone (Miocene), San Joaquin Basin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas. A TEM/AEM study

    SciTech Connect

    Hirt, W.G. ); Wenk, H.R. ); Boles, J.R. )

    1993-06-01

    Conventional Transmission Electron Microscopy (CTEM) and Analytical Electron Microscopy (AEM) studies of partially albitized plagioclase crystals taken from drill cores from the Stevens sandstone (Miocene), San Joaquin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas, reveal that replacement of Ca-rich plagioclase cores by nearly pure albite (Ab[sub 96]-Ab[sub 100]) occurs along submicroscopic ([minus]15 nm wide) en echelon (001) and (110) cleavages. The cleavages are the result of changes in the localized stress regime created by dissolution of adjacent phases. Photomicrographs show albite-lined brittle cleavage crosscutting albitized semibrittle fractures. Such crosscutting relationships can be explained by a reduction in effective stress associated with the albitization process. On a macroscopic scale, this reduction in effective stress implies that the transition from hydrostatic to lithostatic pressure is discontinuous. 30 refs., 7 figs.

  15. Texas

    USGS Publications Warehouse

    ,

    1999-01-01

    In 1997, the Texas Legislature passed a comprehensive revision to the Texas Water Code. This legislation (Senate Bill 1) changed water planning in Texas from a statewide to a regional activity. By September 2001, the 16 regions created by Senate Bill 1 must produce water plans to address their water needs during drought-of-record conditions, and must identify water-management strategies for periods when streamflows, reservoir storage, and groundwater levels are 50 and 75 percent of normal.

  16. Revitalizing a mature oil play: Strategies for finding and producing oil in Frio Fluvial-Deltaic Sandstone reservoirs of South Texas

    SciTech Connect

    Knox, P.R.; Holtz, M.H.; McRae, L.E.

    1996-09-01

    Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locate remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.

  17. Variations in cementation exponent (m) and fracture porosity, Permian Delaware Mountain Group sandstones, Reeves and Culberson counties, Texas

    SciTech Connect

    Thomerson, M.D.; Arnold, M.D.; Asquith, G.B. )

    1994-03-01

    To calculate accurate volumetric oil reserves in the Permian Delaware Mountain Group, reliable values for cementation exponent (m) are required in addition to the other reservoir parameters. The porosity in these siltstone and very fine-grain sandstone reservoirs is intergranular and therefore the cementation exponent should be approximately 2.0. However, crossplots of core derived porosity vs. the formation resistivity factor (Fr) indicate an average cementation exponent (m) of 1.80. the lower cementation exponent is a result of minor amounts of fracture porosity. Comparison of the Delaware Mountain Group porosity vs. the Fr crossplot with the laboratory data of Rasmus (1987), reveals a similar decrease in Fr with a decrease in porosity due to the presence of a 1% fracture porosity. The lower cementation exponent (1.80) results in the calculation of substantially lower water saturations, which increases the amount of volumetric oil reserves. Analysis of three zones in the Bell Canyon and Cherry Canyon formations of the Delaware Mountain Group using standard methods of calculating water saturation resulted in volumetric oil reserves (based on 40 ac drainage) of 1.37 to 1.42 million bbl. However, using a cementation exponent of 1.80 resulted in volumetric oil reserves of 1.55 million bbl. The 9% to 13% increase in volumetric oil reserves from only three zones in the Bell Canyon and Cherry Canyon formations illustrates the critical importance of combining core analysis with log analysis when doing volumetric reserve calculations.

  18. Sandstone reservoirs

    SciTech Connect

    Weimer, R.J.; Tillman, R.W.

    1982-01-01

    The Rocky Mountain province of the United States contains structural and stratigraphic traps from which petroleum is produced from all types of sandstone reservoirs ranging in age from Cambrian to the Eocene. Three large typical stratigraphic traps in this province, where reservoirs are of Cretaceous age, are described. The Cut Bank Field, Montana produces from aluvial point bar sandstones; Patrick Draw field, Wyoming produces from marine shoreline sandstones; and, Hartzog Draw field, Wyoming produces from marine shelf sandstone. 10 refs.

  19. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    SciTech Connect

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively.

  20. Shelf sandstones of Twowells tongue, Dakota Sandstone, northwestern New Mexico

    SciTech Connect

    Wolter, N.R.; Nummedal, D.

    1988-01-01

    The Dakota Sandstone of northwestern New Mexico is composed of basal continental strata and three marine sandstone tongues, which intertongue was the Mancos Shale. The late Cenomanian Twowells tongue was the last tongue deposited in the Dakota transgressive systems tract. This tongue is most commonly gradationallly underlain by the Whitewater Arroyo shale tongue and abruptly overlain by the Rio Salado tongue of the Mancos Shale. Data collected from 85 outcrop sections and 180 electric well logs, from the San Juan, Acoma, and Zuni Basins, indicates that the Twowells tongue represents three phases of marine deposition. The White-water Arroyo shale tongue, the muddy burrowed facies, and the horizontally bedded facies of the Twowells tongue represent a shoaling-upward sequence (regressive phase) of shelf and shoreface deposition. The regressive phase is sharply overlain by an inferred transgressive cross-bedded facies. Erosional scour and an extensive pebble lag mark the contact between the regressive and the transgressive facies. In the Acoma basin, the transgressive cross-bedded facies describes a north-south oriented shelf-sand ridge 32 km long, 18 km wide, and 32 m thick.

  1. Depositional and diagenetic controls on porosity permeability and oil production in McFarland/Magutex (Queen) reservoirs, Andrews County, west Texas

    SciTech Connect

    Holtz, M.H. )

    1991-03-01

    The McFarland/Magutex Queen reservoir complex lies along the northeastern edge of the Central basin platform in the west Texas Permian basin and produces oil from the Permian Queen Formation. Current production from this complex totals 42 million stock-tank barrels (MMSTB) of an estimated 219 MMSTB of original oil in place, with an estimated 90 MMSTB of remaining mobile oil (RMO). The gross pay interval contains two parasequences consisting of progradational, 30-ft-thick, upward-shoaling facies packages. Facies include shoreface, mixed tidal channel and intertidal flat, and supratidal. Elongate shoreface facies are characterized by poorly consolidated, massive to thinly laminated sandstones. The supratidal facies, which act as permeability barriers, are characterized by algal-laminated dolostone and nodular, laminated, and massive anhydrite containing halite and gypsum pseudomorphs. Highest production and the largest amount of the 90 MMSTB of RMO is associated with the shoreface and tidal-channel facies. Bulk pore volume storage capacity and permeability are also highest within these two facies. Sandstones are arkosic, containing anhydrite and dolomite cements. Accessory minerals are clays, authigenic feldspar, and dolomite. Three main pore types are recognized: interparticle, moldic and intraconstituent, and micropores. Moldic and intraconstituent porosity is associated with leached feldspars and anhydrite cement dissolution. Microporosity is associated with syndepositional, grain-coating corrensite, dissolution-enhanced feldspar cleavage planes, and authigenic multifaceted dolomite. Microporosity derived from clays and dolomite is formed preferentially in tidal-channel and intertidal flat facies.

  2. The Cambrian Araba Formation in northeastern Egypt: Facies and depositional environments

    NASA Astrophysics Data System (ADS)

    Khalifa, M. A.; Soliman, H. E.; Wanas, H. A.

    2006-10-01

    The Cambrian Araba Formation exposed in Gabal El Zeit and in the Sinai Peninsula unconformably overlies Precambrian basement rocks, and is in turn overlain unconformably by the Ordovician Naqus formation. The Araba Formation has been subdivided into three informal lithologic units: lower, middle and upper, from field observations. Seven sedimentary facies assignable to three facies associations (fluvial, tidal and coastal to open marine) are recognized within the Araba Formation. The lower unit comprises two main facies: matrix-supported conglomerate (facies-A) in the south (Gabal Araba and Wadi Feiran) and interbeds of granulestone and sandstone (facies-B) in the north (Gabal Dhalal and Taba) deposited in fluvial conditions. The middle unit includes four facies: cross-bedded sandstone (facies-C), thin laminated sandstone (facies-D), burrowed-massive sandstone (facies-E) and rhythmically bedded sandstone-mudstone (facies-F) deposited mainly under tidal conditions in the coastal zone. The upper unit consists mainly of interbeds of burrowed mudstone-siltstone, with Skolithos, probably deposited in open marine environment. The sequence records the southward transgression of the Tethys Ocean over a horst and graben system developed in the late Precambrian on the northern margin of the Arabo-Nubian continent.

  3. Evolution of salt structures, East Texas Diapir Province, Part 1: Sedimentary record of Halokinesis

    SciTech Connect

    Seni, S.J.; Jackson, M.P.A.

    1983-08-01

    Post-Aptian (post-112Ma) strata in the East Texas basin were strongly influenced by halokinesis and therefore record the evolution of associated salt structures. Domeinduced changes in patterns of sandstone distribution, depositional facies, and reef growth indicate that thickness variations in strata surrounding domes were caused by syndepositional processes rather than by tectonic distortion. Salt domes in the East Texas basin exhibit three stages of growth: pillow, diapir, and post-diapir, each of which affected surrounding strata differently. Pillow growth caused broad uplift of strata over the crest of the pillows; the resulting topographic swell influenced depositional trends and was susceptible to erosion. Fluvial channel systems bypassed pillow crests and stacked vertically in primary peripheral sinks on the updip flanks of the pillows. Diapir growth was characterized by expanded sections of shelf and deltaic strata in secondary peripheral sinks around the diapirs. Lower Cretaceous reefs on topographic saddles between secondary peripheral sinks now host major oil production at Fairway field. Post-diapir crestal uplifts and peripheral subsidence affected smaller areas than did equivalent processes during pillow or diapir stages. Documented facies variations over and around domes at different stages of growth enable prediction of subtle facies-controlled hydrocarbon traps. Facies-controlled traps are likely to be the only undiscovered ones remaining in mature petroliferous basins such as the East Texas basin.

  4. Evolution of salt structures, East Texas diapir province, part 1: sedimentary record of halokinesis

    SciTech Connect

    Seni, S.J.; Jackson M.P.A.

    1983-08-01

    Post-Aptian (post-112 Ma) strata in the East Texas basin were strongly influenced by halokinesis and therefore record the evolution of associated salt structures. Dome-induced changes in patterns of sandstone distribution, depositional facies, and reef growth indicate that thickness variations in strata surrounding domes were caused by syndepositional processes rather than by tectonic distortion. Salt domes in the East Texas basin exhibit three stages of growth: pillow, diapir, and post-diapir, each of which affected surrounding strata differently. Pillow growth caused broad uplift of strata over the crest of the pillows; the resulting topographic swell influenced depositional trends and was susceptible to erosion. Fluvial channel systems bypassed pillow crests and stacked vertically in primary peripheral sinks on the updip flanks of the pillows. Diapir growth was characterized by expanded sections of shelf and deltaic strata in secondary peripheral sinks around the diapirs. Lower Cretaceous reefs on topographic saddles between secondary peripheral sinks now host major oil production at Fairway field. Post-diapir crestal uplifts and peripheral subsidence affected smaller areas than did equivalent processes during pillow or diapir stages. Documented facies variations over and around domes at different stages of growth enable prediction of subtle facies-controlled hydrocarbon traps. Facies-controlled traps are likely to be the only undiscovered ones remaining in mature petroliferous basins such as the East Texas basin.

  5. Study effects of geopressured-geothermal subsurface environment on elastic properties of Texas Gulf Coast sandstones and shales using well logs, core data, and velocity surveys. Final report

    SciTech Connect

    Gregory, A.R.

    1980-05-01

    Relations between porosity and permeability for the Pleasant Bayou wells were determined from conventional core data. Porosities from the time average equations required compaction correction factors of 1.9 in hydropressured sandstones and 1.0 in geopressured sandstones. Best average prmeabilities in the geopressured zone were found in the primary production interval 14,687 to 14,716 ft (4477 to 4485 m). Average density gradients were 2.106 x 10/sup -3/ and 2.688 x 10/sup -3/ (gm/cm/sup 3/)/100 ft in sandstones and shales respectively. Compressional (P-wave) and shear (S-wave) velocities from the long-spaced sonic log and bulk densities from the formation density log were used to compute in-situ elastic moduli, Poisson's ratio, V/sub p//V/sub s/, and bulk compressibility in two intervals of deep geopressured sandstone and shale in No. 2 Pleasant Bayou. Most computed values of these parameters seem reasonable. Improved accuracy of travel times from the long-spaced sonic log should permit more accurate depth-to-time correlation with seismic data.

  6. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico-stratigraphic hierarchy and cycle stacking facies distribution, and interwell-scale heterogeneity: Grayburg Formation, New Mexico. Final report

    SciTech Connect

    Barnaby, R.J.; Ward, W.B.; Jennings, J.W. Jr.

    1997-06-01

    The Grayburg Formation (middle Guadalupian) is a major producing interval in the Permian Basin and has yielded more than 2.5 billion barrels of oil in West Texas. Grayburg reservoirs have produced, on average, less than 30 percent of their original oil in place and are undergoing secondary and tertiary recovery. Efficient design of such enhanced recovery programs dictates improved geological models to better understand and predict reservoir heterogeneity imposed by depositional and diagenetic controls. The Grayburg records mixed carbonate-siliciclastic sedimentation on shallow-water platforms that rimmed the Delaware and Midland Basins. Grayburg outcrops in the Guadalupe and Brokeoff Mountains region on the northwest margin of the Delaware Basin present an opportunity to construct a detailed, three-dimensional image of the stratigraphic and facies architecture. This model can be applied towards improved description and characterization of heterogeneity in analogous Grayburg reservoirs. Four orders of stratigraphic hierarchy are recognized in the Grayburg Formation. The Grayburg represents a long-term composite sequence composed of four high-frequency sequences (HFS 1-4). Each HFS contains several composite cycles comprising two or more cycles that define intermediate-scale transgressive-regressive successions. Cycles are the smallest scale upward-shoaling vertical facies successions that can be recognized and correlated across various facies tracts. Cycles thus form the basis for establishing the detailed chronostratigraphic correlations needed to delineate facies heterogeneity.

  7. Submarine fan facies of Upper Cretaceous Strata, Southern San Rafael Mountains, Santa Barbara County, California

    SciTech Connect

    Toyne, C.D.

    1986-04-01

    A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these deposits are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.

  8. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  9. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    USGS Publications Warehouse

    Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  10. Tidal influence within Pennsylvanian sandstones

    SciTech Connect

    Archer, A.W. )

    1991-08-01

    Within Pennsylvanian-age strata of the Illinois basin, large-scale linear sand bodies have been previously interpreted as fluvial and deltaic in origin. Nonetheless, analyses of fine-scale sedimentology and bed forms within such sandstones and the associated shales indicate that tidal processes greatly influenced the depositional environments within such lithofacies. Recent work on Mid-Continent Pennsylvanian-age sandstones indicates the occurrence of similar depositional environments. Based upon the pervasive tidal influence observed within such strata, environmental analogs other than fluvial and deltaic bear consideration. In general, tidally influenced estuarine models seem particularly appropriate. Within such settings, the changeover from a fluvially dominated deposystem to tidally influenced estuary occurs during transgressive phases. Despite the tidal influence that can be interpreted from the sedimentology, the strata contain few, if any, marine indicators because of the low salinities that occurred during deposition. Ongoing work in the Mid-Continent indicates that Morrowan, Atokan, Desmoinesian, Missourian, and Virgilian sands share a number of similarities with the tidally influenced environments delineated in the Illinois basin studies. Thus a tidal/estuarine interpretation might be a generalizable model for many Pennsylvanian sandstones. In addition, enhanced understanding of the siliciclastic parts of Mid-Continent cyclothems provides a more useful framework for documentation of carbonate/siliciclastic interrelationships. Oscillations of carbonate/siliciclastic environments may be more readily explainable by climatic cycles rather than by traditionally popular depth-related facies models.

  11. Lithofacies in Twowells tongue of Dakota sandstone, southern San Juan basin, New Mexico

    SciTech Connect

    Dillinger, J.K. )

    1989-09-01

    The Upper Cretaceous Twowells Tongue forms the uppermost part of the Dakota Sandstone in the southern San Juan basin and represents the last minor regressive pulse in the regional Cenomanian transgression of the Late Cretaceous seaway. This widespread marine sandstone ranges in thickness from less than 15 to 98 ft in the study area between Gallup and Laguna, New Mexico. In outcrop, four major lithofacies are distinguished on the basis of sedimentologic structures and ichnofossils: (1) very silty, (2) horizontally bedded, (3) bioturbated structureless, and (4) cross-bedded sandstone. The distribution of these lithofacies suggests that depositional environments varied significantly from west to east. The very silty sandstone facies is the lowest unit in the coarsening-upward sequence of the Twowells. To the east, this facies also occurs in the middle of the tongue, indicating fluctuating depositional conditions. The horizontally bedded sandstone and bioturbated structureless sandstone facies usually occur above the very silty sandstone but randomly alternate with each other. These two facies are thinner to the east and are replaced by the cross-bedded sandstone and very silty sandstone facies. The cross-bedded sandstone facies occurs at the top of the sequence. It is scarce in the west because of erosion or non-deposition. To the east, it occurs within, and at the top of, the tongue; at one locality it composes the entire tongue. These four lithofacies formed under a wide range of energy conditions, show similarities to deposits in both shoreface and offshore marine environments, and indicate a complex depositional history for the Twowells Tongue.

  12. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; Edgar, Lauren A.; Dietrich, William E.

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  13. Geothermal and heavy-oil resources in Texas

    SciTech Connect

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  14. Process regime variability across growth faults in the Paleogene Lower Wilcox Guadalupe Delta, South Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Olariu, Mariana I.; Ambrose, William A.

    2016-07-01

    The Wilcox Group in Texas is a 3000 m thick unit of clastic sediments deposited along the Gulf of Mexico coast during early Paleogene. This study integrates core facies analysis with subsurface well-log correlation to document the sedimentology and stratigraphy of the Lower Wilcox Guadalupe Delta. Core descriptions indicate a transition from wave- and tidally-influenced to wave-dominated deposition. Upward-coarsening facies successions contain current ripples, organic matter, low trace fossil abundance and low diversity, which suggest deposition in a fluvial prodelta to delta front environment. Heterolithic stratification with lenticular, wavy and flaser bedding indicate tidal influence. Pervasively bioturbated sandy mudstones and muddy sandstones with Cruziana ichnofacies and structureless sandstones with Ophiomorpha record deposition in wave-influenced deltas. Tidal channels truncate delta front deposits and display gradational upward-fining facies successions with basal lags and sandy tabular cross-beds passing into heterolithic tidal flats and biologically homogenized mudstones. Growth faults within the lower Wilcox control expanded thickness of sedimentary units (up to 4 times) on the downdip sides of faults. Increased local accommodation due to fault subsidence favors a stronger wave regime on the outer shelf due to unrestricted fetch and water depth. As the shoreline advances during deltaic progradation, successively more sediment is deposited in the downthrown depocenters and reworked along shore by wave processes, resulting in a thick sedimentary unit characterized by repeated stacking of shoreface sequences. Thick and laterally continuous clean sandstone successions in the downthrown compartments represent attractive hydrocarbon reservoirs. As a consequence of the wave dominance and increased accommodation, thick (tens of meters) sandstone-bodies with increased homogeneity and vertical permeability within the stacked shoreface successions are created.

  15. Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation

    SciTech Connect

    Ridgley, Jennie

    2001-08-21

    The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within the ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.

  16. Provenance of Norphlet sandstone, northern Gulf Coast

    SciTech Connect

    Ryan, W.P.; Ward, W.C.; Kuglar, R.L.

    1987-09-01

    The Upper Jurassic Norphlet sandstone of the northern Gulf Coast is predominantly subarkose, with some arkose in the eastern area and sublitharenite and quartzarenite in the western area. Despite great depths of burial and despite feldspar and rock-fragment constituents, diagenesis has not appreciably altered the composition of Norphlet sandstone. Therefore, reconstruction of original composition of Norphlet sandstone presented little difficulty. Variation in detrital modes of the Norphlet suggests compositionally distinct source terranes. Samples from Florida, Alabama, and Mississippi reflect the influence of metamorphic and plutonic rocks of the Appalachian Piedmont Province and of Triassic-Jurassic volcanic rocks. Sandstones in east Texas, northern Louisiana, and southern Arkansas were derived from sedimentary and metasedimentary rocks of the Ouachita system. The Arbuckle Mountains and Llano uplift may have supplied trace amounts of quartzo-feldspathic and volcanic-rock fragments to the extreme western part of the study area. Norphlet sandstones represent a mixture of collision-orogen-derived sediment from the Appalachian and/or Ouachita system and continental-block-derived sediment from paleohighs and uplifts within the Gulf basin. However, Norphlet sandstones plot in the craton-interior and transitional-continental fields on Q-F-L and QM-F-Lt tectonic-provenance diagrams, because of mineralogically mature source rocks, elimination of unstable grains by abrasion and sorting during deposition, and/or sediment mixing from different source terranes.

  17. Porosity prediction in sandstones using erosional unconformities

    SciTech Connect

    Shanmugam, G.

    1989-03-01

    Erosional unconformities of subaerial origin are created by tectonic uplifts and eustatic sea level fall. Most erosional unconformities developed on sandstones are planes of increased porosity because uplifted sandstones are exposed to undersaturated CO/sub 2/-charged meteoric waters that result in dissolution of unstable framework grains and cements. The chemical weathering of sandstones is intensified in humid regions by the heavy rainfall, soil zones, lush vegetation, and accompanying voluminous production of organic and inorganic acids. Erosional unconformities are considered hydrologically open systems because of abundant supply of fresh meteoric water and relatively unrestricted transport of dissolved constituents away from the site of dissolution, causing a net gain in porosity near unconformities. Thus, porosity in sandstones tends to increase toward overlying unconformities. Such porosity trends have been observed in hydrocarbon-bearing sandstone reservoirs in Alaska, Algeria, Australia, China, Libya, Netherlands, Norwegian North Sea, Norwegian Sea, and Texas. A common attribute of these reservoirs is that they were all subaerially exposed under heavy rainfall conditions. An empirical model has been developed for the Triassic and Jurassic sandstone reservoirs in the Norwegian North Sea on the basis of the observed relationship that shows an increase in porosity in these reservoirs with increasing proximity to the overlying base of Cretaceous unconformity. An important practical attribute of this model is that it allows for the prediction of porosity in the neighboring undrilled areas by recognizing the base of Cretaceous unconformity in seismic reflection profiles and by constructing subcrop maps.

  18. Depositional systems and oil reservoirs in Spraberry Formation (Permian), Midland Basin, Texas

    SciTech Connect

    Tyler, N.; Guevara, E.H.; Gholston, J.C.

    1988-01-01

    Terrigenous clastic submarine-fan facies comprise the upper and lower parts of the Spraberry Formation (Permian, Leonardian) of west Texas. The Jo Mill submarine-fan system makes up the lower Spraberry. The upper Spraberry comprises the Driver and the overlying Floyd submarine-fan systems. The Midland basin plain system, composed mainly of shales and carbonates with thinner, interbedded sandstones, makes up the middle Spraberry and vertically separates the Jo Mill and Driver fans. Sand-rich inner fan facies of all three fan systems extend 50 mi into the Midland basin from the northern shelf edge. The abrupt transition from inner to midfan facies coincides with the underlying Horseshoe atoll, suggesting this bathymetrically positive feature influenced sedimentation patterns in younger sediments. Midfan to outer fan facies extend downdip from the subjacent atoll 100 mi farther into the basin. Sand contents decrease and interbedded mudstones thicken basinward. Recovery efficiencies are strongly related to submarine-fan facies. Recoveries in inner fan, incised-channel reservoirs (24% in Jo Mill field) are higher than in midfan and outer fan reservoirs (5% in the Spraberry trend to 15% in Benedum field). These more distal reservoirs consist of anastomosing to meandering channel-fill and interchannel facies associations. Stacking of channels through time resulted in dipelongate depositional axes in which wells have produced from two to as much as six times more oil than wells tapping interaxial areas. Pronounced stratigraphic heterogeneity and current well completion practices result in partly drained reservoir compartments, providing abundant opportunities for additional oil recovery.

  19. Hydrofacies In Sandstones. Evidence For Feedback Between Sandstone Lithofacies and Permeability Development

    NASA Astrophysics Data System (ADS)

    Bloomfield, J. P.; Newell, A.; Moreau, M.

    In order to enhance our ability to develop effective numerical models of flow and con- taminant transport in the Permo-Triassic sandstone aquifer of the UK, relationships between lithofacies, rock mass characteristics (such as porosity and pore-throat size distribution), and permeability have been investigated through a series of case studies. Flow in the Permo-Triassic sandstones is primarily through the matrix. Permeability distribution is principally a function of the pore-throat size distribution and there is a relatively weak correlation with primary sedimentary lithofacies. It is observed that matrix permeability data broadly fall into two, discontinuous, sub-populations above and below about 1 mD. It is proposed that modification of primary sedimentary litho- facies by circulation of groundwater is the main control on the development of these two permeability sub-populations or hydrofacies. Identification of these two hydrofa- cies has significant implications for numerical modelling of the sandstones.

  20. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    SciTech Connect

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenous clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.

  1. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lowr Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by crossbedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are nonhomogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  2. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lower Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by cross-bedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are non-homogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  3. Deep-marine facies models: Implications for hydrocarbon exploration and production

    SciTech Connect

    Shanmugam, G. )

    1991-03-01

    Facies models serve as a generalized conceptual framework for classifying and understanding sedimentary environments. Deep-marine facies models range in scale from a single facies of a turbidite bed (first-order models) to an association of different facies representing an entire submarine fan or a basin-fill complex (third-order models). At present, numerous facies models exist for modern and ancient deep-marine systems with distinct depositional components. These models are based on (1) types of channel (e.g., convergent and divergent channel systems, low-sinuosity and high-sinuosity channel patterns), (2) types of lobes (e.g., suprafan lobes, depositional lobes, fanlobes, ponded lobes), (3) tectonic settings (e.g., active-margin and mature passive-margin fans), (4) eustatic sea-level changes (e.g., lowstand submarine fans and highstand nonfan turbidites), (5) sediment sources (e.g., canyon-fed submarine fan and delta-fed submarine ramp), and (6) bottom-current reworking. It is also clear that not all submarine fans are composed of identical distribution of depositional facies in time and space. Therefore, no single facies model can adequately explain all submarine fans. Submarine fans can and do vary in their size, shape, lithofacies distribution, sand-body geometry, and reservoir quality. Because facies models differ significantly from each other in terms of reservoir properties, caution must be exercised in selecting a particular facies model for a sandstone reservoir.

  4. Depositional facies of the Cambrian Araba Formation in the Taba region, east Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El-Araby, A.; Abdel-Motelib, A.

    1999-10-01

    A thick succession of Cambrian sediments is exposed in the Taba region, east Sinai, and subdivided into the Araba Formation and the overlying Naqus Formation. The vertical and lateral distribution of the Araba Formation in the Taba region provides an outstanding example of an overall retrograding sequence. Three distinctive units (I, II and III) are distinguished within this succession on the basis of depositional geometries, stratified patterns, sedimentary features and petrographic examinations. They record different depositional environments and each unit is distinguished by a particular facies association, which records processes characteristic of these environments. The lower unit (I) is dominated by five depositional facies (la-le) which belong to low sinuosity braided channels associated with floodplain fines and alluvial fans. Channel deposits are represented by tabular cross-bedded and horizontally stratified pebbly coarse-grained sandstones. The middle unit (II) reveals a relative sea level rise and is composed of fine- to coarse-grained sandstone, shale and mudstone with carbonate intercalcations. From four depositional facies (Ila-Ild), recognised facies (Ila, Ilc and Ild) are comparable to upper-lower shoreface and tidal channel environments. The fourth facies (Ilb) is carbonate-dominated with trilobite tracks, and reflects deposition in the upper-middle intertidal flat. The latter facies (llb) is subjected to intea-Cambrian karstification, which is deduced from the presence of macro- and microscopic fresh water calcite fillings, botryoidal Fe and Mn oxides and terra rossa. The uppermost unit (III) is shale-dominated from the inner shelf and is represented by two facies (Illa and Illb). Despite the general rise in sea-level in the Araba Formation, the uppermost facies (Illb) points to a progradational-upward tendency in unit (III), and this is coeval with an increase in the percentage of interbedded fine-grained sandstones.

  5. Sedimentation of shelf sandstones in Queen Formation, McFarland and Means fields, central basin platform of Permian basin

    SciTech Connect

    Malicse, A.; Mazzullo, J.; Holley, C.; Mazzullo, S.J.

    1988-01-01

    The Queen Formation is a sequence of carbonates, evaporites, and sandstones of Permian (Guadalupian) age that is found across the subsurface of the Central Basin platform of the Permian basin. The formation is a major hydrocarbon reservoir in this region, and its primary reservoir facies are porous shelf sandstones and dolomites. Cores and well logs from McFarland and Means fields (on the northwest margin of the Central Basin platform) were examined to determine the sedimentary history of the shelf sandstones.

  6. Influence of depositional processes on the composition of sandstone in a wave-dominated fan delta

    SciTech Connect

    Suttner, L.J.; Hood, L.A.; Dutta, P.K.

    1988-01-01

    Sandstone in the Lower Pennsylvanian (Morrowan-Atokan) portion of the Fountain Formation in the Manitou Springs, Colorado, area was derived from Precambrian granite gneiss and deposited in associated medial alluvial-fan, foreshore, shoreface, and offshore environments constituting a wave-dominated fan delta. The sandstone facies are arranged in six vertically stacked progradational sequences. The regressive marine portions of the sequences rest on a transgressive lag conglomerate and range from 5 to 9 m thick. The alluvial deposits capping each sequence are up to 20 m thick. The different sandstone facies of the fan delta system show variations in mineralogical composition. Because all of the sandstone facies share a common first-cycle provenance and burial history, differences in composition largely reflect differences in depositional-process control on composition. Foreshore sandstones possess maximum compositional maturity; offshore sandstone is most immature. Apparently feldspar is winnowed out of the foreshore sand, bypasses the shoreface, and is concentrated in offshore, storm-deposited sand. Alluvial and shoreface sandstone are intermediate in composition with QFR content of 55:35:10 and 60:35:5, respectively.

  7. Organic facies characteristics of the Pliocene coaly units, central Anatolia, Ilgin (Konya / Turkey)

    NASA Astrophysics Data System (ADS)

    Altunsoy, Mehmet; Ozdoğan, Meltem; Ozcelik, Orhan; Ünal, Neslihan

    2015-04-01

    This study aims to determine organic facies characteristics of the Pliocene coaly units in the Ilgın (Konya, Central Anatolia, Turkey) area. Pliocene units (Dursunlu Formation) are composed of sandstone, siltstone, marl, mudstone and coal in the region. Lignite layers where coals are found and has a varying thickness between 100 - 300 m. Organic matter is composed predominantly of terrestrial material, with a minor contribution of algal and amorphous material. Organic matter in these units have generally low hydrogen index (HI) values and high oxygen index (OI) values, mostly characteristics type III kerogen (partly type II kerogen). Organic matters in the samples are immature to marginally mature in terms of organic maturation. Total organic carbon (TOC) values are generally between 0.03 and 51.7 %, but reach 53.4 % in the formation. Tmax values vary between 392 and 433 °C. Organic facies type C, CD and D were identified in the investigated units. C, CD and D facies are related to marl, mudstone and coal lithofacies. These facies are characterized by average values of HI around 102 (equivalent to type II/ III kerogene), TOC around 12.2 %, and an average of S2 of 14.6 mg HC/g of rock. The organic matter is terrestrial, partly oxidized / oxidized / highly oxidized , decomposed and reworked. Organic facies C and CD are the "gas-prone" facies but Organic facies D is nongenerative. Keywords: Central Anatolia, Pliocene, Organic Facies, Ilgın, Coal

  8. Regional lithofacies patterns of the louark group in northeast Texas

    SciTech Connect

    Swenson, D.R. )

    1993-09-01

    The northeasternmost part of the East Texas basin is a relatively simple area in which to observe the lithologic patterns of the Late Jurassic Smackover, Buckner and Gilmer sedimentary wedge. Throughout most of the area, the Smackover is a shallowing-upward carbonate capped by a variably dolomitized grainstone. The overlying Buckner grades from updip red beds to downdip anhydrite with red beds overlying anhydrite in most of the area. The Buckner grades into the Smackover and thus pinches out downdip. The Gilmer consists largely of limestone that grades updip into sandstone and downdip into shale or muddy limestones. Those gross patterns, coupled with critical interpretations of paleoenvironment based on more detailed lithologic observations, lead to a simple synthesis of geologic history. With marine inundation of the east Texas area and a lack of terrigenous influx, carbonate began to accumulate and a Smackover shallow marine/shoreline complex prograded basinward. Behind the shoreline complex, a starved area developed whose landward side filled with a red bed wadi plain and marine side with gypsum precipitated in a hypersaline lagoon. The most restricted areas of the lagoon saw halite precipitation. The Buckner complex prograded basinward behind the Smackover paralic facies creating a sedimentary platform that projected 70 km into the basin. A marine transgression reestablished limestone deposition of the Gilmer on the Buckner platform. The shallow-marine Gilmer prograded across the shallow platform back to the location of the youngest Smackover shoreline. The shoreline facies aggraded at the platform edge until Terrigenous clastics in the western part of the area near the top of the Gilmer evidently record a short-lived regression. Since the Buckner/Gilmer boundary represents a more profound depositional change than the gradational Buckner/Smackover contact, it seems appropriate to consider the Buckner a formation rather than a member of the Gilmer.

  9. Sedimentology and cyclicity in the Lower Permian De Chelly sandstone on the Defiance Plateau: Eastern Arizona

    SciTech Connect

    Stanesco, J.D. )

    1991-10-01

    Lithofacies in the De Chelly Sandstone consist of (1) a large-scale trough to tabular- and/or wedge-planar cross-stratified sandstone facies of large-scale eolian dune origin, (2) a small- to medium-scale, trough cross-stratified sandstone also of eolian dune origin, (3) a horizontally stratified, wind-rippled sandstone of sand sheet origin, (4) a wavy, horizontally stratified, wind-rippled sandstone of sabkha origin, and (5) a mud-draped ripple-laminated sandstone of mud-flat origin. The De Chelly Sandstone in the northern Defiance Plateau consists mainly of large-scale dune deposits. Stratigraphic sections in the middle of the plateau are dominated by small- to medium-scale dune and sand sheet deposits whereas those along the southern end of the plateau are composed largely of sabkha and supratidal mud-flat deposits. The lateral distribution of these facies suggests a north-south juxtaposition of central-erg, fore-erg, and mixed sabkha-supratidal depositional environments. Repetitive interbedding of facies in the De Chelly indicates at least twelve depositional cycles in which sabkha and/or supratidal to coastal-plain mud-flats were sequentially overridden by eolian sand sheets and cross-stratified dunes. Lateral and vertical facies relations within the lower and upper members of the De Chelly Sandstone record episodic expansion of the De Chelly erg southward. The comparative abundance of large-scale dune deposits in the upper member suggests that progradation was more extensive during latter stages of deposition. The intervening tongue of Supai Formation and the redbeds that overlie the upper member of the De Chelly at Bonito Canyon document northward transgression of sabkha and supratidal to coastal-plain mud-flat environments. Eolian dune deposition was restricted to the northern Defiance Plateau during deposition of these units.

  10. Carbonate facies and Landsat imagery of shelf off Belize, central America

    SciTech Connect

    Jordan, C.F. Jr.; Pusey, W.C. III; Belcher, R.C.; Borger, R.L.

    1985-02-01

    A reevaluation of Holocene sediments on the Belize shelf is based on (1) a newly constructed composite of 7 Landsat images, enhanced and registered to form a regional base map, and (2) a Holocene facies map based on a rigorous treatment of compositional and textural parameters for approximately 600 bottom samples. The sediments are mapped in terms usually applied to lithified carbonate rocks, allowing direct comparisons with carbonate facies in the subsurface. By combining Landsat imagery with this facies map, it is possible to point out the following geologic features: (1) major tectonic elements, such as the Maya Mountains, the Yucatan Plateau, several offshore bridges, and 3 large atolls, (2) major physiographic features such as the Belize barrier reef with its reef platform and crest, middle-shelf shoal deposits, middle-shelf patch reefs (including lagoon reefs or rhomboid reefs), (3) Holocene facies patterns with potential reservoir facies of foraminifera-grainstone bars, Halimeda grainstones, and branching-coral, encrusting red-algae boundstones, and (4) nearshore clastics and a sharp transition eastward to carbonate sediments. An understanding of Holocene facies patterns on the Belize shelf is important to the explorationist, because these facies patterns are living examples of exploration fairways and invite comparisons with several petroleum provinces: (1) Cretaceous reefs of Texas, (2) upper Paleozoic skeletal-grainstone bars in west Texas, and (3) Devonian reefs of the Alberta basin.

  11. Volcanic Facies of the Lower Jurassic Talkeetna Formation, Iniskin Peninsula to Tuxedni Bay, Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Bull, K. F.

    2015-12-01

    The Lower Jurassic Talkeetna Formation (Jtk), a >1,000-km-long belt of vol­canic facies within the accreted intra-oceanic Talkeetna Arc has been characterized within the Talkeetna Mountains, but on the Alaska Peninsula Jtk facies have not previously been described in detail. Here we describe facies of the Jtk stretching from the Iniskin Peninsula to Tuxedni Bay. On the Iniskin Peninsula, a high concentration and great thickness of mafic to intermediate lavas, associated autobreccias and hyaloclastites, fluidal-clast breccias and possible pillows are suggestive of one or more submarine effusive eruption centers. Also volumetrically significant are non-stratified polymictic volcaniclastic breccia facies. Minor facies include thinly bedded volcaniclastic sandstone to pebble breccia-conglomerate facies, some of which are shard- and pumice-bearing pyroclastic deposits preserved in thinly bedded deposits, indicative of episodes of explosive volcanism and the eruption-fed nature of some of the deposits. North of Chinitna Bay, coherent facies tend to be thin and relatively small in volume. Volcaniclastic facies provide evidence of subaerial-fluvial deposition, and pyroclastic activity. Thinly bedded, laterally continuous beds locally exhibit cross-laminations, channel fills, normal grading and lenticular beds, and contain plant fossils. Within this sequence is a 10-m-thick pumice breccia containing fossilized logs, underlain by a thin, weakly laminated, pumice- and lithic-bearing volcaniclastic siltstone to sandstone. The log-bearing pumice breccia and the lithic-bearing laminated basal unit represent pyroclastic density current (PDC) facies deposited in a subaerial or possibly shallow aqueous environment. Underlying the PDC deposit are several 30-cm-thick maroon and olive green volcaniclastic fine-grained sandstone and siltstone beds containing channel fills, cross-beds and lenticular beds. Marbles exposed in the contact zone between the intrusions of Alaska

  12. Frisco City sandstone: Upper Jurassic play in southern Alabama

    SciTech Connect

    Montgomery, S.L.; Baria, L.R.; Handford, C.R.

    1997-10-01

    The Frisco City sandstone play in southern Alabama is an example of hydrocarbon entrapment on the flanks of basement erosional features, with principal reservoirs occurring in proximal alluvial-fan to marine shoreface facies. Productive fields are developed on four-way closures of complex geometry, with reservoir sandstones showing maximum thickness along the margins of basement highs that are roughly 1.3-5.18 km{sup 2} in size and have 136-151 m of relief. Detailed analysis of sandstone facies indicates a downdip progression from alluvial-fan through wadi, eolian, beach, tidal-flat, and shoreface deposits. A sequence stratigraphic model based on identification of backstepping strata representing successive transgressive events is useful in predicting maximum reservoir occurrence in the vicinity of inselbergs. Reservoir quality in productive sandstones is high, with porosities ranging from 13 to 27% and permeabilities of 50 md to 5 d. Hydrocarbon occurrence is related to the distribution of high-quality source rock in the Smackover Formation and to maturation history.

  13. Internal-tide deposits in an Ordovician submarine channel: Previously unrecognized facies

    SciTech Connect

    Gao Zhenzhong; Eriksson, K.A. )

    1991-07-01

    A Middle Ordovician submarine-channel deposit in the southern Appalachians is capped by an interval of fine-grained, predominantly cross-laminated sandstones that are interpreted as internal-tide deposits. Two facies are recognized: (1) bidirectional cross-laminated, very fine grained sandstones, and (2) unidirectional cross-bedded and cross-laminated, medium- to fine-grained sandstones. Facies 1 is dominated by bidirectional cross-laminations that dip both landward and seaward parallel to the paleochannel axis. This facies is related to up-channel and down-channel currents caused by internal tides. Facies 2 has both low-angle, tabular cross-beds and cross-laminations that dip landward. The formative up-channel currents are attributed to superimposition of internal waves on internal tides. The vertical transition from high-concentration gravity-flow deposits to intercalated low-concentration turbidites and internal-tide deposits is related to a rise in sea level that resulted in storage of coarse debris landward of the submarine channel.

  14. Upper Strawn (Desmoinesian) carbonte and clastic depositional environments, southeastern King County, Texas

    SciTech Connect

    Boring, T.H. )

    1990-02-01

    The Pennsylvanian upper Strawn Group of southeastern King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water terrigenous clastic sediments. Within the study area, carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeastern King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion, and compaction. The platform carbonates within the northern region of southeastern King County record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region of southeastern King County occur in a variety of complex depositional geometries, including distributary-bar fingers, lobate deltas, and offshore bars. Cores of these sandstones represent mainly the uppermost portion of the various sandstone bodies. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000-6,000 ft. Total production within the area is over 100 million bbl of oil since the early 1940s. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve a detailed study due to these relatively shallow, unexplored, multiple pay zones.

  15. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah

    NASA Astrophysics Data System (ADS)

    Roberts, Eric M.

    2007-04-01

    The Kaiparowits Formation is an unusually thick package of Upper Cretaceous (late Campanian) strata exposed in Grand Staircase-Escalante National Monument of southern Utah, USA. The formation was deposited within the rapidly subsiding Cordilleran foreland basin as part of a thick clastic wedge derived from sources in the Sevier orogenic belt, thrust sheets in southeastern Nevada and southern California, and the Mogollon slope in southwestern Arizona. Channel systems in the Kaiparowits Formation shifted from northeastward to southeastward flow over time, and for a short period of time, sea level rise in the Western Interior Seaway resulted in tidally influenced rivers and/or estuarine systems. Thick floodbasin pond deposits, large suspended-load channels, and poorly developed, hydromorphic paleosols dominate the sedimentary record, and all are suggestive of a relatively wet, subhumid alluvial system. This is supported by extremely rapid sediment accumulation rates (41 cm/ka), and high diversity and abundance of aquatic vertebrate and invertebrate fossils. Facies and architectural analysis was performed on the Kaiparowits Formation, resulting in the identification of nine distinct facies associations: 1) intraformational conglomerate, 2) mollusc-shell conglomerate, 3) major tabular sandstone, 4) major lenticular sandstone, 5) minor tabular and lenticular sandstone, 6) finely laminated, calcareous siltstone, 7) inclined heterolithic sandstone and mudstone, 8) sandy mudstone, and 9) carbonaceous mudstone. These facies associations are interpreted as: 1) channel lags, 2) rare channel-hosted storm beds, 3) meandering channels, 4) anastomosing channels, 5) crevasse splays and crevasse channels, 6) lakes, 7) tidally influenced fluvial and/or estuarine channels, 8) mud-dominated floodplains, and 9) swamps and oxbow lakes. Based on this analysis, the formation is subdivided into three informal units, representative of gross changes in alluvial architecture, including facies

  16. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  17. Petrology and reservoir paragenesis in the Sussex B sandstone of the Upper Cretaceous Cody Shale, House Creek and Porcupine fields, Powder River basin, Wyoming

    SciTech Connect

    Not Available

    1992-01-01

    This book of reservoir paragenesis includes detailed descriptions of the petrology of depositional facies of the Sussex B sandstone of the Sussex Sandstone Member of the Upper Cretaceous Cody Shale in the House Creek and Porcupine fields, Powder River basin, Wyoming.

  18. Organic facies characteristics of the Carboniferous Pamucakyayla Formation, western Taurus, Antalya Nappes, Kemer (Antalya/Turkey)

    NASA Astrophysics Data System (ADS)

    Bertan Gulludag, Cevdet; Altunsoy, Mehmet; Ozcelik, Orhan

    2015-04-01

    The study area is located in the western part of the Taurus Belt (SW Turkey). This region exhibits a complex structure involving two autochthonous units surrounded and imbricated with three allochthonous complexes. Antalya Nappes is a complex tectonic imbricate structure including sedimantary and ultrabasic rocks. In this study, organic facies characteristics of Carboniferous coaly units in the Pamucakyayla region (Kemer, Antalya-Turkey) were examined. The Carboniferous Pamucakyayla Formation, which is characterized by sandstone, claystone, marl and coaly units. This units includes different levels of coal seams in different thicknesses. Organic matter is composed predominantly of woody and amorphous material, with a minor contribution of planty and coaly material. Kerogen in the deposits is type II/III, as indicated by organic petrographic observations and Rock-Eval data. Total organic carbon (TOC) values are generally between 0.01 and 1.44 %, but reach 5.81 % in the formation. Tmax values vary between 446 and 451 °C and indicate mature zone (Based on the value of 0.25 % TOC). Organic facies type BC, C and CD were identified in the investigated units. Organic facies BC is related sandstoneand marl lithofacies. This facis is deposited under an anoxic water column in a fine grained clastics, where rapid deposition creates anoxia in the sediments after deposition. This facies is characterized by average values of HI around 317 (equivalent to type II kerogene), TOC around 0.02 %, and an average of S2 of 0.04 mg HC/g of rock. Organic facies C is related to sandstone, marl and coal lithofacies. This facies is characterized by average values of HI around 176 (equivalent to type III kerogene), TOC around 0.19 %, and an average of S2 of 0.03 mg HC/g of rock. The organic matter is partly oxidized, and terrestrial. Organic facies C is the "gas-prone" facies. Organic facies CD is related to limestone, marl and coal lithofacies. This facies is characterized by average values

  19. The complex facies architecture and emplacement sequence of a Miocene submarine mega-pillow lava flow system, Muriwai, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Bear, A. N.; Cas, R. A. F.

    2007-02-01

    The early Miocene Waiatarua Formation at Maori Bay, Muriwai, North Island, New Zealand consists of a complex association of basaltic andesite volcanic facies including entablature-jointed thick massive facies, colonnade-jointed thin massive sheet facies, mega-pillow facies, normal pillow facies and minor associated fragmental facies, including vitric sandstone and breccia interpreted as hyaloclastite and peperite. Field observations suggest that the facies, which form the Waiatarua Formation lava, were emplaced as multiple flow lobes in a single lava flow from one sustained eruption. Magma discharge rate at the vent was high; however magma supply rate to the more distal and lateral portions of the flow, as its surface area increased, varied considerably. Higher magma supply rates produced thick, massive and thin sheet facies, whereas mega-pillow facies and normal pillow facies were produced contemporaneously with the thick and thin massive sheet facies but were restricted to portions of the distal flow subjected to lower magma supply rates. The evolution of the Waiatarua formation lava flow at Maori Bay has been reconstructed from the complex facies architecture. This suggests that the propagation of the lava involved 7 discrete lobes that were emplaced successively.

  20. Stochastic reconstruction of sandstones

    PubMed

    Manwart; Torquato; Hilfer

    2000-07-01

    A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples.

  1. Sedimentology and cyclicity in the Lower Permian De Chelly Sandstone on the Defiance Plateau: eastern Arizona

    USGS Publications Warehouse

    Stanesco, J.D.

    1991-01-01

    The Lower Permian (Leonardian) De Chelly Sandstone crops out along a north-south trend on the Defiance Plateau of eastern Arizona. It is divided into lower and upper members separated by a tongue of the Supai Formation that pinches out to the north. Stratigraphy, and lateral and vertical facies relations within the lower and upper members, are discussed. -from Author

  2. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic reservoirs of South Texas. Technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Tyler, N.; Dutton, S.

    1994-06-30

    Advanced reservoir characterization techniques are being applied to selected reservoirs in the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) trend of South Texas in order to maximize the economic producibility of resources in this mature oil play. More than half of the reservoirs in this depositionally complex play have already been abandoned, and large volumes of oil may remain unproduced unless advanced characterization techniques are applied to define untapped, incompletely drained, and new pool reservoirs as suitable targets for near-term recovery methods. This project is developing interwell-scale geological facies models and assessing engineering attributes of Frio fluvial-deltaic reservoirs in selected fields in order to characterize reservoir architecture, flow unit boundaries, and the controls that these characteristics exert on the location and volume of unrecovered mobile and residual oil. The results of these studies will lead directly to the identification of specific opportunities to exploit these heterogeneous reservoirs for incremental recovery by recompletion and strategic infill drilling. Work during the second project quarter of 1994 focused on continuation of Phase 2 tasks associated with characterizing stratigraphic heterogeneity in selected Frio fluvial-deltaic sandstone reservoirs. Playwide reservoir assessment continued as reservoir engineering data from fields throughout the Frio Fluvial-Deltaic Sandstone trend were grouped within stratigraphic sub-intervals in order to characterize general reservoir heterogeneity, evaluate production behavior, and assess remaining resource potential in middle Frio, lower Frio, and upper Vicksburg reservoir sandstones.

  3. Fault-related Silurian Clinton sandstone deposition in Ohio

    SciTech Connect

    Coogan, A.H. )

    1988-08-01

    Mapping the thickness of the Silurian Clinton sandstone reservoir and associated shale, sandstone, and carbonate facies in the subsurface of 40 counties in eastern Ohio reveals a general correspondence between major patterns of deposition and the location of faults that strike parallel with or subparallel to the depositional trends. Clinton delta-front sandstones, which occur along a line from Hocking and Perry Counties, through Knox, Holmes, and Wayne Counties northeast to Lake County, Ohio, parallel a line of major change in magnetic intensity in the basement, which is interpreted here to be the juncture between the more stable, less subsiding central Ohio carbonate bank and the more subsiding western edge of the Appalachian basin. The principal Clinton deltaic lobes occur in east-central and northeastern Ohio. The Clinton sandstone interval is thinner and starved of coarse clastic sediment close to the Rome trough, which is located along the southeasternmost Ohio border. Sediment distribution patterns indicate that deltaic deposits of Clinton sandstone were captured in the subsiding Rome trough at the border of southern Ohio during the Early Silurian. Farther north, deltaic sediments spread out across eastern Ohio to reach an elongate depocenter caused by minor subsidence at the central Ohio platform edge. There, deltaic sands intermittently filled the delta-edge trough, and spilled out as thin shelf sands onto the more stable platform, a site of predominantly mixed shale and carbonate deposition during the Early Silurian.

  4. Sand and sandstone

    SciTech Connect

    Pettijohn, F.J.; Potter, P.E.; Siever, R.

    1987-01-01

    Here is a new, second edition of a classical textbook in sedimentology, petrology, and petrography of sand and sandstones. It has been extensively revised and updated, including: new techniques and their utility; new literature; new illustrations; new, explicitly stated problems for the student; and a wider scope.

  5. Reservoir quality and heterogeneity of tidal inlet sandstones, Halfway Formation, northeastern British Columbia, Canada

    SciTech Connect

    Munroe, H.D. ); Moslow, T.F. )

    1991-03-01

    A subsurface investigation of the mid-to-late Triassic Halfway Formation in northeastern British Columbia has identified a series of wave-dominated tidal inlet sandstones associated with transgressive and prograding barrier island shoreline trends. Depositional models and facies reconstructions were based on sedimentologic analysis approximately 60 cored sequences and 1200 well logs within the Halfway. Tidal inlet sequences are very fine to coarse-grained quartzose sandstone ranging from 4.0 to 10.0 m in thickness. Facies with greatest reservoir quality are contained within the lower half of the sequence. Fine- to medium-grained stacked fining-upward units with scoured lower contacts and planar to trough cross-bedding characterize this facies. Molluscan shell molds and casts can comprise up to 60% of an inlet sequence. Porosity values as high as 25% are associated with these coquinas.

  6. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  7. Misener sandstone - A complex cyclic sequence

    SciTech Connect

    Shelton, J.W.; Fritz, R.D.; Kuykendall, M.; Hooker, E. )

    1989-08-01

    The Misener sandstone is part of two major transgressive/regressive episodes during the Devonian. The Misener is a prolific reservoir in Oklahoma but is one of the most difficult to predict due to its erratic distribution. Depositional environment, a key to understanding Misener distribution and ultimately reservoir geometry, is determined only by understanding the overall geological setting - petrography, unconformities, stratigraphy, paleogeography, and source. Analyses of composition, textures, and sedimentary features in cores and samples combined with detailed correlation and sequence stratigraphy provide a basic framework for determining Misener facies, which indicate deposition in a marine environment. Types of environment range from tidal ridge to estuarine to tidal flat. Many cores show an overall shallowing-upward Misener sequence and change from a terrigenous to a carbonate regime - from phosphatic sands upward to sandy dolomites. This sequence, compared with the regional configuration of the Woodford Shale, suggests that the Woodford developed in two cycles. The Misener section is genetically equivalent to the lower Woodford transgressive/regressive cycle. A paleogeographic model of the Mid-Continent during Misener deposition shows that with the pre-Woodford paleodrainage system, the most likely source for the Misener is from Simpson subcrops around the Ozark dome; the sand was transported and deposited by west-northwest-trending marine currents. A local model for the Misener is the Kremlin area where sand was deposited in erosional lows before carbonate deposition to form a sequence that reflects both shallowing and facies change.

  8. Groundwater flow, late cementation, and petroleum accumulation the Permian Lyons Sandstone, Denver basin

    SciTech Connect

    Lee, M.K.; Bethke, C.M. )

    1994-02-01

    The gray diagenetic facies of the Permian Lyons Sandstone, associated with all known petroleum accumulations in the formation, formed late in the history of the Denver basin as an alteration product of the formation's red facies. The red facies that makes up most of the sandstone contains iron oxide coating, quartz overgrowths and calcite cements. The gray facies, which occurs locally in the deep basin, is distinguished by pore-filling dolomite and anhydrite cements and by a lack of iron oxide and calcite. The dolomite and anhydrite cements overlie bitumen that was deposited by migrating oil, and hence formed after oil was first generated in the basin, late in the Cretaceous or early in the Tertiary. The isotopic composition of oxygen in the dolomite ranges to such light values that the cement must have formed deep in the basin in the presence of meteoric water. The gray facies likely formed in a regime of groundwater flow resulting from Laramide uplift of the Front Range during the Tertiary. In our model, saline groundwater flowed eastward through the Pennsylvanian Fountain Formation and then upwelled along the basin axis, where is discharged into the Lyons Sandstone. The saline water mixed with more dilute groundwater in the Lyons, driving a reaction that dissolved calcite and, by a common-ion effect, precipitated dolomite and anhydrite. The facies' gray color resulted from reduction of ferric oxide in the presence of migrating oil or the Fountain brine. Underlying source beds by this time had begun to generate petroleum, which migrated by buoyancy into the Lyons. The association of the gray facies with petroleum accumulations can be explained if the Fountain brines discharged across aquitards along the same fractures that transmitted oil. As petroleum accumulated in the Lyons, the newly formed cements prevented continued migration, as is observed in shallower strata, by sealing oil into the reservoirs from which it is produced today. 77 refs., 16 figs., 5 tabs.

  9. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.

    2010-01-01

    Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone

  10. Saline-water resources of Texas

    USGS Publications Warehouse

    Winslow, Allen George; Kister, Lester Ray

    1956-01-01

    Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.

  11. Silurian and Devonian in Vietnam—Stratigraphy and facies

    NASA Astrophysics Data System (ADS)

    Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy

    2013-09-01

    Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and

  12. Facies analysis of a Toarcian-Bajocian shallow marine/coastal succession (Bardas Blancas Formation) in northern Neuquén Basin, Mendoza province, Argentina

    NASA Astrophysics Data System (ADS)

    Bressan, Graciela S.; Kietzmann, Diego A.; Palma, Ricardo M.

    2013-04-01

    Strata of the Bardas Blancas Formation (lower Toarcian-lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive-regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.

  13. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  14. Trilobites from Lower Mississippian starved basin facies of the southern United States

    USGS Publications Warehouse

    Brezinski, D.K.

    1998-01-01

    A distinctive trilobite fauna occurs within condensed statigraphic sections of the Lower Mississippian (Tournaisian) Chappel Limestone of the Llano region of Texas, the Welden Limestone of Oklahoma, and the Chouteau Limestone of Union County, Illinois. The seven species comprising this fauna are interpreted to have inhabited sediment-starved basinal environments. The starved-basin facies existed in the south-central United States throughout the Tournaisian (Kinderhookian to Osagean). Two species from this fauna, Australosutura llanoensis, and Carbonocoryphe planucauda, are new. The remaining five species, Griffithidella doris (Hall), Griffithidella alternata (Girty), Carbonocoryphe depressa (Girty), Thigiffides roundyi (Girty), and Pudoproetus chappelensis (Hessler), are restricted to starved-basin facies.

  15. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    USGS Publications Warehouse

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  16. Stratigraphy and sedimentology of Kincaid Formation, Midway Group (Paleocene), Upper Rio Grande Embayment, Texas

    SciTech Connect

    Roy, E.C. Jr.

    1984-09-01

    Sedimentary rocks of the Kincaid Formation crop out along the northern and western edges of the Rio Grande Embayment. Siltstones are exposed at the type locality of the Kincaid Formation along the Frio River in Uvalde County, Texas. On the east and south, the Kincaid Formation changes facies to richly fossiliferous carbonate rocks; however, basinward, it grades into a shale facies that contains interbedded units of fine-grained sandstone. At the type locality of the Kincaid Formation, approximately 30 ft (9 m) of massive siltstone grades upward into a very silty limestone unit. Bedding is poorly defined throughout the section, largely the result of intensive bioturbation. The grain size of the siltstone increases upward, ranging from medium to coarse. Clay content in the siltstone decreases upward as the amount of calcareous material increases. The upper 4-6 ft (1.2-1.8 m) may actually be considered a silty limestone. A dramatic facies change is present along the outcrop both east and south of the type section. To the east, the Kincaid Formation is composed of glauconitic and highly fossiliferous limestone. The siltstone present at the type locality thins eastward and is absent less than 20 mi (32 km) away. Eighty miles (130 km) to the south, along the Rio Grande River, approximately 45 ft (14 m) of limestone and shale comprise the Kincaid Formation. These early Paleocene sediments are interpreted to be shallow marine in origin. The siltstone represents a shallow sublittoral shoreface environment whereas the limestones on the east and south were deposited in shallow nearshore environments beyond the reach of clastic deposition.

  17. Classification of six ordinary chondrites from Texas

    NASA Astrophysics Data System (ADS)

    Ehlmann, Arthur J.; Keil, Klaus

    1988-12-01

    Based on optical microscopy, modal and electron microprobe analyses, six ordinary chondrites from Texas were classified in compositional groups, petrologic types, and shock facies. These meteorites are Comanche (stone), L5c; Haskell, L5c; Deport (a), H4b; Naruna (a), H4b; Naruna (b), H4b; and Clarendon (b), H5d.

  18. Application of outcrop studies to aid facies interpretation, establish high-resolution correlations, and map reservoir compartments

    SciTech Connect

    Navarre, J.C.; Eschard, R.; Guillocheau, F.

    1995-08-01

    As part of a project designed to use stratigraphically identified fluid-flow units as input for reservoir simulation, we have used surface correlations to aid subsurface correlations of strata within the Mesa Verde Group, San Juan basin, Colorado. Surface correlations show changes in symmetry of stratigraphic cycles and changes in facies types and associations within different parts of stratigraphic cycles. A knowledge of these changes in facies within a stratigraphic context is an invaluable aid in high-resolution subsurface correlation and in mapping fluid-flow compartments. In miles-long continuous exposures in Mancos Canyon, we have identified very low-angle (0.12{degrees}) clinoforms in shoreface strata of the Point Lookout Formations. Strata within groups of clinoforms of base-level fall hemicycles show shallowing-up vertical profiles in shelf through upper shoreface facies. The shallowest facies of the most seaward (youngest) shoreface clinoform package is overlain either by a thin deepening-up facies succession or by a transgressive surface of starvation followed by another shallowing-upward facies succession. Farther landward base-level hemicycles are recognized by alternations in types of channelbelt sandstones and lake and floodplain mudstones. Base-level rise strata generally show increasing aggradation and sediment preservation in a landward direction for a few miles. The most continuous, and often the thickest, mud-rich strata occur at the base-level rise to fall turn-around positions in all environments. These continuous, low-permeability strata follow the topography of clinoforms and divide the reservoir quality sandstones of the shoreface, tidally influenced estuary and bay, and channelbelts into reservoir compartments. Sandstones of the compartments average 10-15 m thick, dip at 0.12{degrees} through the shoreface, extend an average of 13 km in the dip direction, and at least 10 km in strike directions.

  19. Sedimentary facies and tectonic implications of Lower Mesozoic alluvial-fan conglomerates of the Newark Basin, northeastern United States

    NASA Astrophysics Data System (ADS)

    Tevfik Arguden, A.; Rodolfo, Kelvin S.

    1986-12-01

    Upper Triassic to Lower Jurassic conglomeratic sequences of the Passaic and succeeding formations along the northwest-bounding fault of the Newark Basin in eastern Pennsylvania, New Jersey and New York, have six relatively distinct lithofacies that record continental basin filling under arid to semi-arid conditions. Matrix-supported conglomerates represent debris flows: clast-supported conglomerates are hyperconcentrated steamflood deposits. Coarse pebbly sandstones represent a braided-stream channel facies, and medium-to-fine sandstones are interpreted as a sheetflood facies, deposits normally succeeded by thin mudstones of a waning-flood facies. Associated with such mudstones at Milford, New Jersey is a sixth, pedogenic facies: caliches that document pauses in deposition. Areal lithologic variations and analyses of vertical changes, including Markov analyses of facies transitions, document intermittent, cyclical debris flows and streamfloods on alluvial fans prograding into the basin. The intermittency is best accounted for by episodic, localized tectonic rejuvenation of fan provenance at the northwest bounding fault of the Newark Basin during the late Triassic to early Jurassic, the final phase of basin filling. Penecontemporaneity of tectonism and fan deposition is corroborated by deformation of some conglomerate clasts which transmitted tectonic stresses to each other before their enclosing matrices were completely lithified. Some pebbles and cobbles are shattered at points of contact, and clasts of relatively soft lithologies became pocked while grinding against harder fragments during post-depositional tectonic episodes.

  20. Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan

    SciTech Connect

    McHargue, T.R.; Webb, J.E.

    1986-02-01

    The Indus Fan, the second largest submarine fan in the world, covers 1,250,000 km/sup 2/ (500,000 mi/sup 2/) and contains sediment more than 7 km (23,000 ft) thick. Multichannel (24-fold) CDP seismic data provide the bases for evaluating the Indus Fan and consist of four seismic facies. Of these, only the high-amplitude, discontinuous (H-D) facies is thought to contain reservoir-quality sandstones. The H-D facies is confined to the axes of leveed channels. Canyon-channel systems that fed the fan in the past can be divided into three zones. The degradational zone is composed of an erosional canyon complex filled by prodelta mud. The transitional zone, located near the canyon mouth, consists of superimposed channels that initially were erosional but eventually aggraded and developed levees. The headward termination of the H-D facies occurs in this zone. The aggradational zone consists of superimposed leveed channels confined solely by their own levees. The proximal termination of the H-D facies near canyon mouths implies the presence of reservoir-quality sandstone surrounded by source/seal mudstone in the transitional zone. This stratigraphic trapping geometry and structural leads may represent a vast, untapped petroleum province.

  1. Les « Kel Essuf »: un nouveau faciès de l'art rupestre du Sahara centralThe Kel Essuf: a new facies of central Saharan rock art.

    NASA Astrophysics Data System (ADS)

    Ferhat, Nadjib; Striedter, Karl Heinz; Tauveron, Michel

    2000-04-01

    Recent field research in the sandstone massif of the Tadrart (far southeastern Algeria) proved the existence of a highly original group of rock engravings which we named 'Kel Essuf' and whose characteristics are described in the following. We are dealing with a regional facies, since this type of engravings is limited to the Tadrart (including some Libyan Tadrart sites). As the paintings of the Round Head Period overlie the engravings of 'Kel Essuf', we suggest it is an ancient, probably Pleistocene, facies. Several representations indicate that there were no major ruptures marking the transition between 'Kel Essuf' and Round Heads.

  2. Facies and facies association of the siliciclastic Brak River and carbonate Gemsbok formations in the Lower Ugab River valley, Namibia, W. Africa

    NASA Astrophysics Data System (ADS)

    Paciullo, F. V. P.; Ribeiro, A.; Trouw, R. A. J.; Passchier, C. W.

    2007-03-01

    The Neoproterozoic Zerrissene Turbidite Complex of central-western Namibia comprises five turbiditic units. From the base to the top they are the Zebrapüts Formation (greywacke and pelite), Brandberg West Formation (marble and pelite), Brak River Formation (greywacke and pelite with dropstones), Gemsbok River Formation (marble and pelite) and Amis River Formation (greywacke and pelites with rare carbonates and quartz-wacke). In the Lower Ugab River valley, five siliciclastic facies were recognised in the Brak River Formation. These are massive and laminated sandstones, classical turbidites (thick- and thin-bedded), mudrock, rare conglomerate and breccia. For the carbonate Gemsbok River Formation four facies were identified including massive non-graded and graded calcarenite, fine grained evenly bedded blue marble and calcareous mudrock. Most of these facies are also present in the other siliciclastic units of the Zerrissene Turbidite Complex as observed in other areas. The vertical facies association of the siliciclastic Brak River Formation is interpreted as representing sheet sand lobe to lobe-fringe palaeoenvironment with the abandonment of siliciclastic deposition at the top of the succession. The vertical facies association of the carbonate Gemsbok Formation is interpreted as the slope apron succession overlain by periplatform facies, suggesting a carbonate slope sedimentation of a prograding depositional shelf margin. If the siliciclastic-carbonate paired succession would represent a lowstand relative sea-level and highstand relative sea-level, respectively, the entire turbidite succession of the Zerrissene Turbidite Complex can be interpreted as three depositional sequences including two paired siliciclastic-carbonate units (Zebrapüts-Brandberg West formations; Brak River-Gemsbok formations) and an incomplete succession without carbonate at the top (Amis River Formation).

  3. Influence of depositional processes on the composition of sandstone in a wave-dominated fan delta

    SciTech Connect

    Suttner, L.J.; Hood, L.A.; Dutta, P.K.

    1988-02-01

    Sandstone in the Lower Pennsylvanian (Morrowan-Atokan) portion of the Fountain Formation in the Manitou Springs, Colorado, area was derived from Precambrian granite gneiss and deposited in associated medial alluvial-fan, foreshore, shoreface, and offshore environments constituting a wave-dominated fan delta. The sandstone facies are arranged in six vertically stacked progradational sequences. The regressive marine portions of the sequences rest on a transgressive lag conglomerate and range from 5 to 9 m thick. The alluvial deposits capping each sequence are up to 20 m thick.

  4. Fossil facies of the Greater Caspian region

    NASA Astrophysics Data System (ADS)

    Svitoch, A. A.

    2015-05-01

    The Pliocene-Pleistocene marine sediments of the Great Caspian region host various lithological fossil facies, which reflect specific sedimentation conditions caused by different structural-geomorphologic settings, tectonic regimes, climates, and hydrologies. The facies of shelf, epicontinental basins, ingression gulfs and estuaries, intermontane and mountainous basins, and deep-sea depressions form a hierarchy of geological bodies from types to subtypes. Paragenetic associations of fossil facies, which form various series in space and along the section, are typical of marine sediments.

  5. Upper Jurassic and Lower Cretaceous facies relationships in a passive margin basin, western North Atlantic

    SciTech Connect

    Prather, B.E.

    1988-02-01

    Correlation of facies from hydrocarbon-bearing continental and transitional marine sandstones to time-equivalent high-energy shelf-margin carbonates provide insight into hydrocarbon habitats of the Baltimore Canyon basin. These facies occur within a thick (> 10,000 ft) prograded wedge of shelf sediments in this passive margin basin. Wells drilled to test structural closures in shallow-water (< 600 ft) areas of Baltimore Canyon penetrate clastic facies which are time-equivalent to the downdip carbonate facies tested in deep-water wells. Numerous hydrocarbon shows, including a noncommercial gas and gas-condensate accumulation, occur with sandstone units that were deposited in prograding continental/fluvial and transitional marine environments located updip of the Oxfordian/Kimmeridgian carbonate shelf edge. The continental and transitional facies are overlain by a fine-grained deltaic complex which forms a regionally extensive top seal unit. The deltaic complex was deposited during aggradation of the Kimmeridgian through Berriasian shelf-margin carbonates penetrated by the deep-water wells. Deep-water wells (> 5000 ft) drilled off the continental shelf edge to test large structural closures along the downdip termination of the Upper Jurassic/Lower Cretaceous carbonate shelf edge encountered no significant hydrocarbon shows. Reservoir rocks in these wells consist of (1) oolite grainstone which was deposited within a shoal-water complex located at the Aptian shelf edge, and (2) coral-stromatoporoid grainstone and boundstone which formed an aggraded shelf-margin complex located at the Kimmeridgian through Berriasian shelf edge. Structural closures with reservoir and top seals are present in both updip and downdip trends. The absence of hydrocarbon shows in downdip carbonate reservoirs suggests a lack of source rocks available to charge objectives at the shelf margin.

  6. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  7. Facies mosaic in a fiord: Carboniferous-Permian Talchir Formation, India

    SciTech Connect

    Bose, P.K.; Mukhopadhyay, G.; Bhattacharya, H.N.

    1988-01-01

    Facies analysis of the basal 37m of the Carboniferous-Permian Talchir Formation is a glacier-fed bedrock trough in Dudhi nala, Bihar, India, provides insight into the pattern of sedimentation of course gravels in a fiord. Rapid transitions between 11 recognized facies, together with their complex organization, random variability in bed thickness, and differences in clast, shape, size, and composition indicate coalescence of fans developed from numerous point sources bordering the elongated trough. Converging slide masses and lodgment tillites on the slopes flanking the trough give way to sediment gravity flow deposits composed of an array of conglomerates (matrix and clast supported with normal, inverse of absence of grading), attendant turbidite sands, and prodelta mud. The rheology of the in-trough flows ranged from plastic laminar to fluidal turbulent in response to flow from slope to floor of the trough. Rapid calving of icebergs during the onset of deglaciation established a wave regime at the mouth of the trough and deposited cross-stratified sandstone replete with dripstones. The impact of large dripstones landing triggered turbidity currents. Continued rise in water level led to eventual preservation of the fan complex under onlapping wave-built shoal facies that grade into a sequence of upward-thinning hummocky cross-stratified sandstone beds virtually devoid of dripstones.

  8. Lithological and geochemical facies of Shublik Formation (Triassic), North Slope, Alaska

    SciTech Connect

    Parrish, J.T.

    1985-04-01

    The Shublik Formation is a heterogeneous unit consisting of several distinct facies, including: (1) fossiliferous sandstone or siltstone; (2) glauconitic sandstone or siltstone; (3) siltstone, calcareous mudstone, or limestone with phosphate nodules; and (4) black, calcareous mudstone or black limestone, usually fossilferous. This sequence of lithologies is interpreted as having been deposited along an onshore-offshore (north to south) gradient. Bioturbation of the sediments is variable but generally decreases offshore. Organic carbon increases offshore, and phosphate increases from the paleoshoreline and decreases again farthest offshore. The distribution of glauconite, phosphate, and organic-carbon-rich rock is consistent with the facies expected in a zone that has a well-developed oxygen minimum. Glauconite is consistent with dysoxic conditions, and well-laminated, organic-carbon-rich rock in the offshore facies is consistent with anoxic conditions. High biologic productivity coupled with normal oceanic circulation may have caused the basin's low-oxygen conditions, as indicated by the presence of phosphate nodules and the extreme abundance of bivalves that have been interpreted to be pelagic. Phosphate indicates a high rate of supply of organic matter to the sediment-water interface, where it was mobilized from the organic matter within the anoxic zone, and reprecipitated at the zone's edges. Pelagic bivalves (Monotis and Halobia) are present in such large numbers as to suggest unusually abundant food supply; in addition, their distribution is consistent with mass dills, which are common among fish in zones.

  9. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic reservoirs of south Texas. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Tyler, N.; Levey, R.A.

    1996-07-11

    Advanced reservoir characterization techniques have been applied to selected reservoirs in the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) trend of South Texas in order to maximize the economic producibility of resources in this mature oil play. More than half of the reservoirs in this depositionally complex play have already been abandoned, and large volumes of oil may remain unproduced unless advanced characterization techniques are applied to define untapped, incompletely drained, and new pool reservoirs as suitable targets for near-term recovery methods. This project has developed interwell-scale geological facies models and has assessed engineering attributes of Frio fluvial-deltaic reservoirs in selected fields in order to characterize reservoir architecture, flow unit boundaries, and the controls that these characteristics exert on the location and volume of unrecovered mobile and residual oil. Results of these studies led to the identification of specific opportunities to exploit these heterogeneous reservoirs for incremental recovery by recompletion and strategic infill drilling.

  10. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect

    David, F.; Gast, R.; Kraft, T. )

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  11. Geology of the Southern Guadalupe Mountains, Texas

    USGS Publications Warehouse

    King, Philip B.

    1948-01-01

    This report deals with an area of 425 square miles in the western part of Texas, immediately south of the New Mexico line. The area comprises the south end of the Guadalupe Mountains and the adjacent part of the Delaware Mountains; it includes the highest peaks in the State of Texas. The area is a segment of a large mountain mass that extends 50 miles or more northward and southward. The report describes the geology of the area, that is, the nature of its rocks, tectonics, and surface features, and the evidence that they give as to the evolution of the area through geologic time. Incidental reference is made to the geology of surrounding regions in order to place the area in its environment. Stratigraphy of Permian rocks - The consolidated rocks of the area are all marine sediments of Permian age, whose total exposed thickness is about 4,000 feet. Most of the rocks contain abundant invertebrate fossils, some of which were described by B. F. Shumard in 1858. They were made famous by the classic study of G. H. Girty in 1908. The rocks consist chiefly of sandstones and limestones of various textures and structures, and are notable for their abrupt change from one rock type into another within short distances. This characteristic is believed to have been caused by the rocks being laid down on the margin of the Delaware Basin, a structural feature of Permian time. The margin lay between the more rapidly subsiding basin and a less rapidly subsiding shelf area to the northwest. The lowest exposed formation is the Bone Spring limestone. Two deep wells indicate that it is underlain by the Hueco limestone (of Carboniferous or Permian age), and this by rocks of Pennsylvanian age. The Bone Spring is predominantly black, thin-bedded limestone to the southeast, in the basin area, but to the northwest this facies changes into gray, thicker-bedded limestone. At the margin of the basin, the formation is raised along the Bone Spring flexure, which was apparently in movement toward

  12. Correlating organic facies and turbidite facies in a Hoh turbidite sequence (Miocene), Western Olympic Peninsula, Washington

    SciTech Connect

    Grady, M.T.

    1985-02-01

    The distribution of organic facies is a function of the environment of deposition. Within each turbidite facies, diverse depositional regimes are present that affect both the preservation and dispersal and organic matter. Proper identification of turbidite facies can lead to a proper prediction of organic content within a particular turbidite facies or turbidite facies association. The type section of the Brown's Point formation, a turbidite sequence within the Hoh rock assemblage, demonstrates the correlation between organic facies and turbidite facies, as defined by E. Mutti and F. Ricci-Lucchi. Turbidite facies can be matched to organic facies throughout the entire 4000 ft (1220 m) thick vertical section. Outer and middle fan turbidite associations have been analyzed and correlated for organic facies lateral continuity. Distribution of organic carbon concentrations and organic carbon type suggests a dominance of terrestrial input. TAI and R/sub 0/ analyses reflect a marginally mature thermal maturation level (R/sub 0/ = 0.5-0.6). Visual kerogen inspection reveals a mixed to structured kerogen with a predominance of type III/IV over type IV kerogen. Overall, maturation indices suggest a gas source with poor source potential for oil. Individual turbidite facies display a significant relationship to the amount, type, and level of maturation of organic matter present within each facies and facies association. Frontier basin analysis of turbidite sequences can be expedited by proper field identification of turbidite facies and subsequent geochemical analysis of the content, type, and maturation level of the organic matter present within each turbidite facies.

  13. Analysis of glacier facies using satellite techniques

    USGS Publications Warehouse

    Williams, R.S., Jr.; Hall, D.K.; Benson, C.S.

    1991-01-01

    Landsat-derived reflectance is lowest for exposed ice and increases markedly at the transient snow line. Above the slush zone is a gradual increase in near-infrared reflectance as a result of decreasing grain-size of the snow, which characterizes drier snow. Landsat data are useful in measuring the areal extent of the ice facies, the slush zone within the wet-snow facies, the snow facies (combined wet-snow, percolation and dry-snow facies), and the respective position of the transient snow line and the slush limit. In addition, fresh snowfall and/or airborne contaminants, such as soot and tephra, can limit the utility of Landsat data for delineation of the glacier facies in some cases. -from Authors

  14. Sedimentology and reservoir potential of Matilija sandstone: an Eocene sand-rich deep-sea fan and shallow-marine complex, California

    SciTech Connect

    Link, M.H.; Welton, J.E.

    1982-10-01

    A deep-sea fan facies model for the Matilija Sandstone (southern California) regression from turbidite to shallow-marine to brackish deposits are documented. In addition, reservoir characteristics and the diagenetic history of the deep-sea fan complex is discussed. Despite thick, favorable source beds and generally good initial reservoir characteristics, the Matilija Sandstone is not a productive unit of the Ventura basin because of low reservoir permeability and porosity.

  15. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    SciTech Connect

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-02-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining the paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.

  16. Influence of depositional environment and diagenesis on gas reservoir properties in St. Peter Sandstone, Michigan basin

    SciTech Connect

    Harrison, W.B. III; Turmelle, T.M.; Barnes, D.A.

    1987-05-01

    The St. Peter Sandstone in the Michigan basin subsurface is rapidly becoming a major exploration target for natural gas. This reservoir was first proven with the successful completion of the Dart-Edwards 7-36 (Falmouth field, Missaukee County, Michigan) in 1981. Fifteen fields now are known, with a maximum of three producing wells in any one field. The production from these wells ranges from 1 to more than 10 MMCFGD on choke, with light-gravity condensate production of up to 450 b/d. Depth to the producing intervals ranges from about 7000 ft to more than 11,000 ft. The St. Peter Sandstone is an amalgamated stack of shoreface and shelf sequences more than 1100 ft in thickness in the basin center and thinning to zero at the basin margins. Sandstone composition varies from quartzarenite in the coarser sizes to subarkose and arkose in the finer sizes. Thin salty/shaly lithologies and dolomite-cemented sandstone intervals separate the porous sandstone packages. Two major lithofacies are recognized in the basin: a coarse-grained, well-sorted quartzarenite with various current laminations and a fine-grained, more poorly sorted subarkose and arkose with abundant bioturbation and distinct vertical and horizontal burrows. Reservoir quality is influenced by original depositional and diagenetic fabrics, but there is inversion of permeability and porosity with respect to primary textures in the major lithofacies. The initially highly porous and permeable, well-sorted, coarser facies is now tightly cemented with syntaxial quartz cement, resulting in a low-permeability, poor quality reservoir. The more poorly sorted, finer facies with initially lower permeabilities did not receive significant fluid flux until it passed below the zone of quartz cementation. This facies was cemented with carbonate which has subsequently dissolved to form a major secondary porosity reservoir.

  17. Sparta sandstones: future exploration potential in south-central Louisiana

    SciTech Connect

    Lemoine, R.C.; Moslow, T.F.; Sassen, R.; Ferrell, R.E.

    1989-03-01

    The middle Eocene Sparta Formation is an important exploration objective within the prolific Eocene-Oligocene trend of south-central Louisiana. Cumulative production from 20 multiple-reservoir fields in the trend exceeds 269 million bbl of crude, 50 million bbl of condensate, and 1.5 billion ft/sup 3/ of gas. Additional reservoirs include the lower Eocene Wilcox, upper Eocene Cockfield, and Oligocene Frio Formations. This trend, coincident with the location of the Lower Cretaceous carbonate shelf edge, represents a series of unstable progradational clastic shelf margins. Principal structural traps are rollover anticlines, associated with down-to-the-basin growth faults, and salt domes. Recent Sparta production is associated with progradational barrier island complexes. Storm washover fan sandstones (22% porosity, 324 md permeability), tidal-inlet channel sandstones (20% porosity, 140 md permeability), and upper shoreface sandstones (19% porosity, 113 md permeability) represent the optimum-quality reservoir facies. Organic-rich basinal shales are source rocks for crude oil downdip from production where they are thermally mature. Lateral migration best explains emplacement of hydrocarbons in reservoirs.

  18. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  19. Gravelly to sandy braidplain deposition in the buntsandstein-facies bohdašin formation in northeastern bohemia (Czechoslovakia)

    NASA Astrophysics Data System (ADS)

    Prouza, Vladimír; Tásler, Radko; Valín, Frantisek; Holub, Vlastimil

    The Buntsandstein-facies Bohdaín Formation in Northeastern Bohemia (Czechoslovakia) forms the Lower Triassic part of an extensive sequence of continental red beds of mainly Permian age and is conformably overlying the Upper Permian Bohuslavice Formation. The Bohdaín Formation in Czechoslovakia predominantly crops out in the Intra Sudetic Basin and in the eastern part of the Krkonoe Piedmont Basin. The Buntsandstein-facies red beds are hidden in many places underneath the cover of marine Cenomanian. The Bohdaín Formation is built up of three main lithofacies associations which in ascending order successively comprise polymictic sandstones and conglomerates, feldspathic sandstones and kaolinitic quartzose sandstones. Feldspathic and polymictic sandstones can partially substitute each other, whereas the kaolinitic quartzose sandstones are only present in the uppermost part of the unit. Polymictic sandstones and conglomerates contain gravel-size clasts of biotite gneisses, granitoids, rhyolites, granolites and other medium- to high-grade metamorphic rocks. The feldspathic sandstones either cover the polymictic sandstones and conglomerates or lap on the Upper Permian Bohuslavice Formation, thus pointing to some expansion of the basin. The suite of gravel-size clasts consists of milky quartz, translucent quartz, gneisses, granitoids, metaquartzites and lydites, indicating progressive maturing by advancing unroofing and increasing significance of recycling. The kaolinitic quartzose sandstones represent the climax of amelioration of textural and mineralogical maturity of the sediment material with reaching considerable amounts of monocrystalline quartz and polycrystalline quartzites both in the pebble and sand fraction. The boundary between the Lower Triassic Bohdaín Formation and the Upper Cretaceous is highlighted by numerous burrows within the uppermost layer of the kaolinitic quartzose sandstones which are infilled with glauconitic Cenomanian sand. The

  20. Petrophysics of Lower Silurian sandstones and integration with the tectonic-stratigraphic framework, Appalachian basin, United States

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    2005-01-01

    Petrophysical properties were determined for six facies in Lower Silurian sandstones of the Appalachian basin: fluvial, estuarine, upper shoreface, lower shoreface, tidal channel, and tidal flat. Fluvial sandstones have the highest permeability for a given porosity and exhibit a wide range of porosity (2-18%) and permeability (0.002-450 md). With a transition-zone thickness of only 1-6 m (3-20 ft), fluvial sandstones with permeability greater than 5 md have irreducible water saturation (Siw) less than 20%, typical of many gas reservoirs. Upper shoreface sandstones exhibit good reservoir properties with high porosity (10-21%), high permeability (3-250 md), and low S iw (<20%). Lower shoreface sandstones, which are finer grained, have lower porosity (4-12%), lower permeability (0.0007-4 md), thicker transition zones (6-180 m [20-600 ft]), and higher S iw. In the tidal-channel, tidal-flat, and estuarine facies, low porosity (average < 6%), low permeability (average < 0.02 md), and small pore throats result in large transition zones (30-200 m; 100-650 ft) and high water saturations. The most favorable reservoir petrophysical properties and the best estimated production from the Lower Silurian sandstones are associated with fluvial and upper shoreface facies of incised-valley fills, which we interpret to have formed predominantly in areas of structural recesses that evolved from promontories along a collisional margin during the Taconic orogeny. Although the total thickness of the sandstone may not be as great in these areas, reservoir quality is better than in adjacent structural salients, which is attributed to higher energy depositional processes and shallower maximum burial depth in the recesses than in the salients. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.

  1. Diagenetic contrast of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK, USA)

    NASA Astrophysics Data System (ADS)

    Wolela, A.

    2014-11-01

    Diagenetic studied in hydrocarbon-prospective Mesozoic rift basins were carried out in the Blue Nile Basin (Ethiopia), Ulster Basin (United Kingdom) and Hartford Basin (United States of America). Alluvial fan, single and amalgamated multistorey meandering and braided river, deep and shallow perennial lake, shallow ephemeral lake, aeolian and playa mud-flat are the prominent depositional environments. The studied sandstones exhibit red bed diagenesis. Source area geology, depositional environments, pore-water chemistry and circulation, tectonic setting and burial history controlled the diagenetic evolution. The diagenetic minerals include: facies-related minerals (calcrete and dolocrete), grain-coating clay minerals and/or hematite, quartz and feldspar overgrowths, carbonate cements, hematite, kaolinite, illite-smectite, smectite, illite, chlorite, actinolite, laumontite, pyrite and apatite. Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment and burial history of the basins. Variation in infiltrated clays, carbonate cements and clay minerals observed in the studied sandstones. The alluvial fan and fluviatile sandstones are dominated by kaolinite, illite calcite and ferroan calcite, whereas the playa and lacustrine sandstones are dominated by illite-smectite, smectite-chlorite, smectite, chlorite, dolomite ferroan dolomite and ankerite. Albite, pyrite and apatite are predominantly precipitated in lacustrine sandstones. Basaltic eruption in the basins modified mechanically infiltrated clays to authigenic clays. In all the studied sandstones, secondary porosity predominates over primary porosity. The oil emplacement inhabited clay authigenesis and generation of secondary porosity, whereas authigenesis of quartz, pyrite and apatite continued after oil emplacement.

  2. Quartz cementation mechanisms between adjacent sandstone and shale in Middle Cambrian, West Lithuania

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Friis, Henrik

    2013-04-01

    Quartz is an important cementing material in siliciclastic sandstones that can reduce porosity and permeability severely. For efficiently predicting and extrapolating petrophysical properties such as porosity and permeability, the controls on the occurrence and the degree of quartz cementation need to be better understood. Because it is generally difficult to identify specific sources for quartz cement, many models attempting to explain quartz cementation conclude that external sources of silica are needed to explain the observed quantity of quartz cement, such as the mass transfer between sandstone and shale. Cambrian sandstones in Lithuania have abundant quartz cement which has significant effect on reservoir properties. The detrital quartz grains have been dissolved extensively along the shale-quartz contacts zones, making it a natural laboratory to study the influence of mass transfer between sandstone and shale to quartz cementation on petrophysical properties and reservoir quality. Our Cambrian shale samples in west Lithuania are mainly silty shale or siltstone (sample locations vary from 330 to 2090 m of burial depth). They are composed of quartz, clay and traces of feldspars, sericite, calcite, and pyrite. The clay minerals are mainly illite, with variable content of kaolinite and traces of chlorite. In the sandstone lamina, authigenic illite occurs as pore-filling cement which was composed of fibrous illite; pore-filling kaolinite is generally well crystallized and occurs as hexagonal plates arranged in booklets; quartz overgrowth are obvious in these sandstone laminas, especially in the contact zones between sandstone and shale. Dolomite and pyrite cementation are also present in some sandstone laminas but with few quartz overgrowth. Depositional facies and architecture played an important role in the precipitation of silica. Three different possible sources are distinguished for the quartz overgrowths in the intercalated sandstones: 1) Pressure

  3. Facies and sequence stratigraphy of a Late Barremian wave-dominated deltaic deposit, Agadir Basin, Morocco

    NASA Astrophysics Data System (ADS)

    Nouidar, Mohammed; Chellaı̈, El Hassan

    2002-07-01

    The late Barremian succession in the Agadir Basin of the Moroccan Western High Atlas represents wave-dominated deltaic deposits. The succession is represented by stacked thickening and coarsening upwards parasequences 5-15 m thick formed during fifth- or fourth-order regression and building a third-order highstand systems tract. Vertical facies transitions in parasequences reflect flooding followed by shoaling of diverse shelf environments ranging from offshore transition interbedded mudstones, siltstones and thin sandstones, lower shoreface/lower delta front hummocky bedforms to upper shoreface/upper delta front cross-bedded sandstones. The regional configuration reflects the progradation of wave-dominated deltas over an offshore setting. The maximum sea-level fall led to the development of a sequence boundary that is an unconformity. The subsequent early Aptian relative sea-level rise contributes to the development of an extensive conglomerate lagged transgressive surface of erosion. The latter and the sequence boundary are amalgamated forming a composite surface.

  4. Deep-water facies and petrography of the Galoc clastic unit, offshore Palawan, Philippines (south China Sea)

    SciTech Connect

    Link, M.H.; Helmold, K.P.

    1988-02-01

    The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturally submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.

  5. Hydropressure tongues within regionally geopressured lower Tuscaloosa sandstone, Tuscaloosa trend, Louisiana

    SciTech Connect

    McCulloh, R.P.; Purcell, M.D.

    1983-01-01

    A regional study of the Tuscaloosa Formation in Louisiana, undertaken to assess geopressured-geothermal potential, revealed lobate, downdip extensions of the hydropressured zone in lower Tuscaloosa massive sandstone facies below the regional top of geopressure. Normal pressure zones within geopressured section were identified by drilling mud weights less than 13 pounds per gallon on electric logs of massive lower Tuscaloosa sandstone, and cross sections demonstrated updip continuity of these zones with the regional hydropressured zone. These hydropressure tongues are permitted by the anomalously high permeabilities reportd from the deep Tuscaloosa trend which have been attributed to both primary and secondary porosity. The hydropressure tongues correspond with lobes of thick net sandstone, principally in Pointe Coupee, East Feliciana, East Baton Rouge, and Livingston Parishes in the central Tuscaloosa trend. Limited control suggests at least one hydropressure tongue in the Chandeleur Sound area to the east.

  6. Facies and petrophysical modelling of a thick lower cretaceous tsunami deposit in E Spain: Up-scaling from sample to outcrop scales

    NASA Astrophysics Data System (ADS)

    Veloso, Fernanda M. L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Nieves; Frykman, Peter

    2016-08-01

    The tsunami deposit (up to 3 m thick) of the Cretaceous Camarillas Formation in the Galve sub-basin (eastern Spain) is characterized by a large lateral extent (35 km2) and facies uniformity, consisting in fine to coarse subarkosic-arkosic sandstones. At the scale of outcrop observation, different lithofacies were distinguished and related to sedimentation processes. Sand facies distribution conditioned the facies heterogeneity at both mesoscopic or outcrop scales (10- 1-101 m scale) and sample scale (10- 3-10- 2 m). The sample features were up-scaled to that of a facies model using probability functions and variograms as well as to outcrop-scale data (geometry and size) of facies distribution, and it showed a good correlation with the facies distribution at the outcrop. Porosity is strongly correlated to permeability and the pairs of porosity and permeability values fall into the global hydraulic element (GHEs) 5, so that they can be up-scaled into reservoir models in terms of hydraulic properties. From data analysis, no apparent link between sand sorting and porosity and permeability values was observed. The petrophysical models, which were independent of facies models, were up-scaled taking into account the porosity and permeability values from sample data and the statistical analysis of their distribution along the outcrop. The permeability model was carried out as a function of porosity by applying a linear relation, which simplified the modelling process and discarded permeability uncertainties linked to facies distribution in the deposit. In spite of different source data, the petrophysical models show a distribution of lower and higher values that resembles the facies model. Consequently, our modelling results clearly suggest the link of facies type and their grain size distributions with the petrophysical properties into the deposit. Consistency between facies and petrophysical models and outcrop-scale observations make it possible to extrapolate to other

  7. ANALYSIS OF OIL-BEARING CRETACEOUS SANDSTONE HYDROCARBON RESERVOIRS, EXCLUSIVE OF THE DAKOTA SANDSTONE, ON THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO

    SciTech Connect

    Jennie Ridgley

    2000-05-21

    A goal of the Mesaverde project was to better define the depositional system of the Mesaverde in hopes that it would provide insight to new or by-passed targets for oil exploration. The new, detailed studies of the Mesaverde give us a better understanding of the lateral variability in depositional environments and facies. Recognition of this lateral variability and establishment of the criteria for separating deltaic, strandplain-barrier, and estuarine deposits from each other permit development of better hydrocarbon exploration models, because the sandstone geometry differs in each depositional system. Although these insights will provide better exploration models for gas exploration, it does not appear that they will be instrumental in finding more oil. Oil in the Mesaverde Group is produced from isolated fields on the Chaco slope; only a few wells define each field. Production is from sandstone beds in the upper part of the Point Lookout Sandstone or from individual fluvial channel sandstones in the Menefee. Stratigraphic traps rather than structural traps are more important. Source of the oil in the Menefee and Point Lookout may be from interbedded organic-rich mudstones or coals rather than from the Lewis Shale. The Lewis Shale appears to contain more type III organic matter and, hence, should produce mainly gas. Outcrop studies have not documented oil staining that might point to past oil migration through the sandstones of the Mesaverde. The lack of oil production may be related to the following: (1) lack of abundant organic matter of the type I or II variety in the Lewis Shale needed to produce oil, (2) ineffective migration pathways due to discontinuities in sandstone reservoir geometries, (3) cementation or early formation of gas prior to oil generation that reduced effective permeabilities and served as barriers to updip migration of oil, or (4) erosion of oilbearing reservoirs from the southern part of the basin. Any new production should mimic that of

  8. Facies Reconstruction by hidden Markov models

    NASA Astrophysics Data System (ADS)

    Panzeri, M.; Della Rossa, E.; Dovera, L.; Riva, M.; Guadagnini, A.

    2012-04-01

    The inherent heterogeneity of natural aquifer complex systems can be properly described by a doubly stochastic composite medium approach, where distributions of geomaterials (facies) and attributes, e.g., hydraulic conductivity and porosity, can be uncertain. We focus on the reconstruction of the spatial distribution of facies within a porous medium. The key contribution of our work is to provide a methodology for evaluating the unknown facies distribution while maintaining the spatial correlation between the geological bodies. The latter is considered to be known a priori. The geostatistical model for the spatial distribution of facies is defined in the framework of multiple-point geostatistics, relying on transition probabilities (Stien and Kolbjornsen, 2011). Specifically, we model the facies distribution over the domain by employing the notion of Hidden Markov Model. The hidden states of the system are provided by the value of the indicator function at each cell of the grid, while the the petrophysical properties of the soil (e.g., the permeability) are considered as known. In this context, the key issue is the assessment of the spatial architecture of the geological bodies within the domain of interest upon maximizing the probability associated with a given permeability distribution. This objective is achieved through the Viterbi algorithm. This algorithm was initially introduced for signal denoising problems (e.g., Rabiner, 1989) and has been extended here to a two-dimensional system, following the approach proposed by Li et al. (2000) according to the following steps: (1) the parameters of the transitional probabilities of the facies distribution are estimated from a given training image; (2) the facies distribution maximizing the probability of occurrence considering the probability of (i) facies distribution, (ii) conductivity distribution and (iii) their joint conditional probability is then reconstructed. We demonstrate the reliability and advantage of

  9. Shelf sandstones of Twowells tongue, Dakota sandstone, northwestern New Mexico

    SciTech Connect

    Wolter, N.R.; Nummedal, D.

    1988-02-01

    The Dakota Sandstone of northwestern New Mexico is composed of basal continental strata and three marine sandstone tongues, which intertongue with the Mancos Shale. The late Cenomanian Twowells tongue was the last tongue deposited in the Dakota transgressive systems tract. This tongue is most commonly gradationally underlain by the Whitewater Arroyo shale tongue and abruptly overlain by the Rio Salado tongue of the Mancos Shale. Data collected from 85 outcrop sections and 180 electric well logs, from the San Juan, Acoma, and Zuni basins, indicates that the Twowells tongue represents three phases of marine deposition.

  10. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    SciTech Connect

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-01-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining the paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.

  11. Cyclic sedimentation, synsedimentary volcanism, microfabrics, and fracture intensity in the Austin Chalk, Texas

    SciTech Connect

    Hovorka, S.D. )

    1992-01-01

    Pelagic depositional environments of the Austin Chalk (Coniacian-Santonian) were influenced by sea-level variation, planktonic productivity, and allochthonous detrital input. Subtle differences in chalk facies influence fracture intensity, therefore imposing stratigraphic variability on hydrologic properties of the Austin Chalk. Variations in fracture intensity may affect ground-water flow through the Superconducting Super Collider (SSC) site south of Dallas in the same way that they influence hydrocarbon production in South Texas. The lower Austin Chalk was deposited during transgression. Glauconitic sandstone is overlain by cyclic chalk containing chalk-filled channels. Meter-thick chalk/marl cycles have frequencies in the Milankovitch spectrum. Marl accumulated during episodes of decreased planktonic productivity. Maximum flooding is indicated by organic-rich marls in the upper part of the Lower Austin Chalk. Shallowing during deposition of the middle and upper Austin Chalk is indicated by increasing abundance of winnowed lag deposits and firm grounds, resulting in increased faunal diversity. Authigenic clay, a product of alteration of volcanic ash codeposited with the chalk and marl, increases ductility in the middle Austin Chalk. The stratigraphic distribution of authigenic clay corresponds to disseminated biotite, quartz, and feldspar phenocrysts in most samples of the middle Austing Chalk. Authigenic clay decreases porosity, influences porosity-permeability relationships, and provides a regionally traceable low SP log response that correlates with low fracture intensity.

  12. Facies transition and depositional architecture of the Late Eocene tide-dominated delta in northern coast of Birket Qarun, Fayum, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Zaki A.

    2016-07-01

    Late Eocene successions in the Fayum Depression display notable facies transition from open-marine to brackish-marine realms. Stratigraphic and sedimentologic characteristics of the depositional facies are integrated with ichnological data for the recognition of four facies associations (FA1 to FA4). The transition from open-marine sandstones (FA1) to the brackish-marine deposits (FA2) heralds a transgressive - regressive dislocation. The shallowing- and coarsening-upward progradation from the basal prodelta mudstone-dominated facies (FA2a) to deltafront heterolithics (FA2b) and sandstone facies (FA2c) are overlain by finning-upward delta plain deposits which are expressed by the delta plain mudstone (FA2d) and erosive-based distributary channel fills (FA4). Prodelta/deltfront deposits of FA2 are arranged in thinning- and coarsening-upward parasequences which are stacked in a shallowing-upward progressive cycle. Shallow-marine fossiliferous sandstones (FA3) mark the basal part of each parasequence. Stratigraphic and depositional architectures reflect a tide-dominated delta rather than an estuarine and incised valley (IV) model. This can be evinced by the progressive facies architecture, absence of basal regional incision or a subaerial unconformity and the stratigraphic position above a maximum flooding surface (MFS), in addition to the presence of multiple tidally-influenced distributary channels. Stratigraphic and depositional characteristics of the suggested model resemble those of modern tide-dominated deltaic systems. Accordingly, this model contributes to our understanding of the depositional models for analogous brackish-marine environments, particularly tide-dominated deltas in the rock record.

  13. Clastic facies and diagenesis, Lewis-Evans interval in Black Warrior Basin

    SciTech Connect

    Cleaves, A.W.; Bat, D.

    1988-01-01

    Subsurface maps of the Lewis and Evans sandstone-facies tracts (Chester Group) on the northern shelf of the Black Warrior basin document two distinct deltaic depositional systems, each having a source area from the Mid-Dontinent interior. Within the Lewis genetic interval, six dip-elongate, river-dominated, cratonic delta lobes comprise the principal coarse-grained clastic units. However, in the higher Evans interval, five strike-elongate (cuspate) wave-dominated lobes are present on the northwestern rim of the basin. Petrographic evidence from four Mississippi cores associated with delta-plain and delta-front facies in the two sandstone unites indicates a dominance of monocrystalline quartz and chert rock fragments and a relative absence of orogenic indicators such as polycrystalline quartz, muscovite, and metamorphic rock fragments. Porosity development results largely from the formation of moldic secondary porosity and enlarged intergranular porosity. Primary porosity is occluded by the precipitation of quartz overgrowths and early calcite cement. Secondary moldic porosity was generated through the dissolution of feldspars and shale fragments. Enlarged intergranular porosity resulted from the dissolution of detrital illite matrix. Secondary porosity itself is partially occluded by authigenic kaolinite and illite, as well as by late-stage pyrite and dolomite.

  14. Multidisciplinary studies on ancient sandstone quarries of Western Sardinia (Italy).

    NASA Astrophysics Data System (ADS)

    Grillo, Silvana Maria; Del Vais, Carla; Naitza, Stefano

    2013-04-01

    , Oristano, Santa Giusta). They are prevailing fine-medium grained carbonate sandstones, and subordinate coarse sandstones and micro-conglomerates, variably cemented. In the studied areas, stratigraphic sequences grade from coarser facies of marine environment to fine-grained aeolian deposits, marked by cross-stratification. The Quaternary sedimentary sequence rests on Miocene limestones and clays, and on Plio-Pleistocene basalts. On optical microscopy, sandstones show grain-supported texture, with abundant carbonate bioclasts, intraclasts and algal nodules, with quartz, feldspars and fragments of granitoids, quartzites, volcanics. Grainsize in sandstone sequences progressively decreases towards the top, corresponding to an increase of fine bioclastic components. Terrigenous components change from the northernmost outcrops (Is Arutas quarries), where clasts of granitoid origin are dominant, to the southern outcrops (San Giovanni di Sinis quarries), which show a more marked compositional heterogeneity, with frequent volcanic feldspars and lithoclasts. The calcitic cement also shows distinct variations, both along the stratigraphic sequence and at areal scale, between the sparitic type and the micro/cryptocrystalline type. First evidences on samples from Tharros city walls indicate that sandstone blocks may come, almost in part, from the quarries of San Giovanni di Sinis that, consequently, could have started to work during the Punic age. Other evidences in the area, however, indicate that quarrying activities in Sinis continued well over the Ancient times, presumably including all the Middle Ages.

  15. Paleoshorelines in the Upper Cretaceous Point Lookout Sandstone, southern San Juan Basin, New Mexico

    USGS Publications Warehouse

    Zech, R.S.

    1982-01-01

    LANDSAT images and aerial photography reveal several parallel linear features as much as 17 km long and 0.7 km wide. Detailed cross sections normal to a linear feature show it to be an exhumed paleoshoreline containing several overlapping sandstone units. Each unit tends to pinchout into the shales of the overlying Menefee Formation, showing a range of depositional environments including upper shoreface, foreshore, washover and eolian. Paleogeomorphic elements, predominately beach ridges and interridge swales, shape the upper surface of the sandstone and produce a relief as great as 4.2 m. The various components found in the paleoshoreline create a trellis-like drainage pattern that contrasts with the regional dendritic drainage pattern; the resulting linear feature is easily discernible on aerial photography and LANDSAT images. The rapid lithologic and thickness changes of the sandstone bodies in these linear features provide excellent potential as stratigraphic trap for hydrocarbons. Paleoshoreline facies are likely to be preserved in areas of thickest marginal marine regressive sand accumulation and similar paleoshoreline systems may be preserved at depth in the Point Lookout (Sandstone) or other Cretaceous sandstones.

  16. Sequence stratigraphy and depositional facies of the Silurian-Devonian interval of the northern Permian basin

    SciTech Connect

    Canter, K.L.; Geesaman, R.C. ); Wheeler, D. )

    1992-04-01

    The Silurian and Devonian intervals of the northern Central Basin platform area of west Texas and southeastern New Mexico include the Fusselman, Wristen, and Thirtyone formations and the Woodford Shale. The carbonate-rich Fusselman, Wristen, and Thirtyone formations record a transition from ramp to platform deposition. Oolite grainstones of the lower Fusselman Formation were deposited in a ramp setting during an Upper Ordovician/Lower Silurian transgression. The overlying crinoid packstones and grainstones represent shoals that developed along a break in slope separating the evolving platform from a southward-dipping starved basin. By the close of Fusselman deposition, the platform was well developed, with shallow peridtidal mudstones and wackestones, and high-energy grainstones deposited as near-parallel facies tracts over the platform area. The platform system became fully developed during the deposition of the Wristen Formation. Porous dolomitic peridtidal and platform margin facies grade downdip into nonporous, limy and argillaceous open-shelf facies. Platform facies are typified by numerous shallowing-upward parasequences that terminated at subaerial exposure surfaces. The rocks of the Lower Devonian Thirtyone Formation were deposited as a wedge that onlaps the exposed Silurian platform margin. This formation contains a porous, chert-rich, lowstand deposit; a transgressive disconformity; and variably porous, grain-rich highstand deposits representing an overall sea level rise. A major unconformity marks the contact between the karsted upper surface of the Thirtyone Formation and the overlying organic-rich, anoxic Woodford Shale.

  17. Operation Sandstone: 1948. Technical report

    SciTech Connect

    Berkhouse, L.H.; Hallowell, J.H.; McMullan, F.W.; Davis, S.E.; Jones, C.B.

    1983-12-19

    SANDSTONE was a three-detonation atmospheric nuclear weapon test series conducted during the spring of 1948 at Enewetak Atoll in the Marshall Islands. Report emphasis is on the radiological safety of the personnel. Available records on personnel exposure are summarized.

  18. A New Classification of Sandstone.

    ERIC Educational Resources Information Center

    Brewer, Roger Clay; And Others

    1990-01-01

    Introduced is a sandstone classification scheme intended for use with thin-sections and hand specimens. Detailed is a step-by-step classification scheme. A graphic presentation of the scheme is presented. This method is compared with other existing schemes. (CW)

  19. Assessing Biogenecity of Stromatolites: Return to the Facies

    NASA Astrophysics Data System (ADS)

    Shapiro, R. S.; Jameson, S.; Rutter, A.; McCarthy, K.; Planavsky, N. J.; Severson, M.

    2013-12-01

    The discovery of richly microfossiliferous cherty stromatolites near Schreiber and Kakabeka Falls, Ontario, in the 1.9 Ga Gunflint Iron Formation, firmly established the field of pre-Cambrian paleontology. In the half-century since this discovery, paradigm shifts in the ecology of the microfossils as well as the utility of stromatolites as biological markers has caused a re-evaluation of our understanding of the pre-Cambrian fossil record. This research summarizes facies evaluation of the two stromatolite marker beds in the Gunflint-correlative Biwabik Iron Formation of Minnesota. The centimeter-scale microstratigraphy of cores drilled through the central and eastern Mesabi Iron Range was coupled with field descriptions of outcrops and mines in both the Biwabik and Gunflint iron formations. Eight lithologic facies associated with the stromatolites are identified: A) Pebble conglomerate clasts ranging in size of 0.5-3 cm, syneresis cracks, and septarian nodules with medium to coarse grain matrix; B) siltstone with subparallel sub-mm to 5 cm magnetitic and non-magnetic bands; C) stromatolitic boundstone comprising stratiform, pseudocolumnar, domal, undulatory, flat-laminated, dendritic, columnar, and mico-digitate forms and oncoids 0.5 to 2 cm diameter; D) grainstone with medium to coarse siliceous and carbonate ooids and peloids; E) massive green crystalline beds with bands of magnetite, quartz, calcite, disseminated pyrite and localized ankerite; F) autobreccicated fabric of 0.3 to 10 mm clasts; G) medium to coarse sandstone; H) quartzite. Correlation between 11 cores near Hoyt Lakes and 9 cores through the basal stromatolite layer at the MinnTac Mine near Virginia revealed that stromatolites formed both on conglomerate and medium quartz sandstone. Multiple forms of stromatolite may occur in a vertical succession (flat-laminated to undulatory to psuedocolumnar to columnar) or a core may be dominated by one type, typically columnar-stratiform. Where stromatolites do

  20. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    SciTech Connect

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

  1. Mid-Eocene alluvial-lacustrine succession at Gebel El-Goza El-Hamra (Shabrawet area, NE Eastern Desert, Egypt): Facies analysis, sequence stratigraphy and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wanas, H. A.; Sallam, E.; Zobaa, M. K.; Li, X.

    2015-11-01

    This study aims to provide the depositional facies, sequence stratigraphic and paleoclimatic characteristics of the Mid-Eocene (Bartonian) continental succession exposed at Gebel El-Goza El-Hamra (Shabrawet Area, NE Eastern Desert, Egypt). The studied succession consists of siliciclastic rocks followed upward by carbonate rocks. Detailed field observation and petrographic investigation indicate accumulation in floodplain-dominated alluvial and shallow lacustrine systems. The floodplain-dominated alluvial facies (45 m thick) is composed mainly of carbonate nodules-bearing, mottled mudrock with subordinate sandstone and conglomerate beds. The conglomerate and pebbly sandstone bodies interpreted as ephemeral braided channel deposits. The massive, laminated, planner cross-bedded, fine- to medium-grained sandstone bodies interlayered within mudstone reflect sheet flood deposits. The mudrocks associated with paleosols represent distal floodplain deposits. The shallow lacustrine facies (15 m thick) is made up of an alternation of marlstone, micritic limestone, dolostone and mudrock beds with charophytes and small gastropods. Both the alluvial and lacustrine facies show evidence of macro-and micro-pedogenic features. Pollen assemblages, stable δ18O and δ13C isotopes, and paleopedogenic features reflect prevalence of arid to semi-arid climatic conditions during the Bartonian. The sequence stratigraphic framework shows an overall fining-upward depositional sequence, consisting of Low- and High-accommodation Systems Tracts (LAST, HAST), and is bounded by two sequence boundaries (SB-1, SB-2). Conglomerate and pebbly sandstone deposits (braided channel and sheet flood deposits) of the lower part of the alluvial facies reflect a LAST. Mudrock and silty claystone facies (distal floodplain deposits) of the upper part of alluvial facies and its overlying lacustrine facies correspond to a HAST. The LAST, HAST and SB were formed during different accommodation-to-sediment supply (A

  2. A multistorey sandstone complex in the Himalayan Foreland Basin, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Rohtash; Sangode, Satish J.; Ghosh, Sumit K.

    2004-07-01

    Ten parallel stratigraphic sections (1500-1800 m thick) spread over an area of >400 km 2 in Dehra Dun sub-basin (DSB) of the Himalayan Foreland Belt (HFB) were studied to understand the anatomy of one of the largest (900-1200 m thick) fluviatile Multistorey Sandstone Complexes (MSC) of the world using fluvial geometry, compositional data and magnetic fabrics over a magnetostratigraphically controlled master section. The multistorey sandstone complex, between 10-5 Ma representing the Middle Siwalik sub-Group, comprises of grey, medium- to fine-grained lithic arenites to lithic greywacke and records tectonic and/or climatic episodes. Three main facies associations are recognised: sandstone-mudstone, sandstone, and conglomerate-sandstone that represent fluvial fan deposit. Palaeocurrent data show radial palaeoflow pattern with major palaeodrainage towards the southern quadrant. The magnetic fabric studies suggest three major tectonic pulses. The first pulse at ˜8.7 Ma resulted in the development of major depocenter for the MSC, the second pulse at ˜7.65 Ma enhanced the sedimentation and progradation, while the third pulse at ˜6.5 Ma records overlapping earlier fluvial fan by another coarse grained piedmont alluvial fan. Thrust movement in the northern fold belt, basement lineaments and rate of basin subsidence controlled the lateral and vertical facies distribution and palaeodrainage. The sedimentation pattern of the multistorey complex is characterised by mainly sheet flood deposits of laterally avulsing unconfined braided rivers and resembles to the modern megafan sedimentation in the Ganga Basin to the south.

  3. Tide-influenced sedimentary environments and facies

    SciTech Connect

    De Boer, P.L.; Van Gelder, A.; Nio, S.D.

    1988-01-01

    This volume contains examples of recent as well as fossil tide-influenced sedimentary facies. Studies of recent tidal processes and sediments provide an insight into the way in which tidal facies and sequences develop, and into the processes which are active. The studies performed on fossil rocks give information on one-to-one scale model experiments that have been executed by nature both relatively recently and in the distant past. In this work, the parallel presentation of papers on recent and fossil examples of tide-influenced sedimentary facies and environments follows the philosophy of comparative sedimentology, aiming at an understanding of both the past and the present, with the aim also, of forecasting future developments.

  4. Facies distribution, depositional environment, and petrophysical features of the Sharawra Formation, Old Qusaiba Village, Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abbas, Muhammad Asif; Kaminski, Michael; Umran Dogan, A.

    2016-04-01

    moderate-scale transgressive episodes, while the thin shale interbeds in the middle and upper part of the Sharawra Formation represent small-scale transgressions. Overall, the Sharawra Formation contains a series of repetitive transgressive and regressive events and has been interpreted as a pro-deltaic deposit in previous studies. In the present study, the lowermost sandstone thickly bedded facies lie within the transition zone environment. The siltstone facies and the horizontally stratified facies show a middle shore face environment. The middle shore face environment is present locally. The bioturbation in the uppermost facies is indicative of the upper shore face environment. The porosity values do not vary much, as the average porosity for the sandstone facies is about 15%, for the siltstones it ranges about 7%. The permeability is variable throughout the formation, the values range from 50 to 300 md. Although sandstone has a good porosity and permeability, the siltstone facies exhibit poor petrophysical characteristics. In terms of reservoir characterization, the mineralogical mature, moderately well sorted top most sandstone facies, with appreciable porosity and permeability can be considered as a potential reservoir rock. This study has provided a base for future quantitative studies in this important formation in the area.

  5. Sedimentary facies and environmental ichnology of a ?Permian playa-lake complex in western Argentina

    USGS Publications Warehouse

    Zhang, G.; Buatois, L.A.; Mangano, M.G.; Acenolaza, F.G.

    1998-01-01

    A moderately diverse arthropod icnofauna occurs in ?Permian ephemeral lacustrine deposits of the Paganzo Basin that crop out at Bordo Atravesado, Cuesta de Miranda, western Argentina. Sedimentary successions are interpreted as having accumulated in a playa-lake complex. Deposits include three sedimentary facies: (A) laminated siltstone and mudstone: (B) current-rippled cross-laminated very fine grained sandstone: and (C) climbing and wave-rippled cross-laminated fine-grained sandstone deposited by sheet floods under wave influence in the playa-lake complex. Analysis of facies sequences suggests that repeated vertical facies associations result from transgressive regressive episodes of variable time spans. The Bordo Atravesado ichnofauna includes Cruziana problematica, Diplocraterion isp., cf. Diplopadichnus biformis, Kouphichnium? isp., Merostomichnites aicunai, Mirandaichnium famatinense, Monomorphichnus lineatus, Palaeophyeus tubularis, Umfolozia sinuosa and Umfolozia ef. U. longula. The assemblage is largely dominated by arthropod trackways and represents an example of the Scoyenia ichnofacies. Trace fossils are mostly preserved as hypichnial ridges on the soles of facies C beds, being comparatively rare in facies A and B. Ichnofossil preservation was linked to rapid influx of sand via sheet floods entering into the lake. Four taphonomic variants (types 1-4) are recognized, each determined by substrate consistency and time averaging. Type 1 is recorded by the presence of low density assemblages consisting of poorly defined trackways, which suggests that arthropods crawled in soft, probably slightly subaqueous substrates. Type 2 is represented by low to moderate density suites that include sharply defined trackways commonly associated with mud cracks, suggesting that the tracemakers inhabited a firm, desiccated lacustrine substrate. Type 3 displays features of types 1 and 2 and represents palimpsestic bedding surfaces, resulting from the overprint of terrestrial

  6. Possible climate variability in the Lower Old Red Sandstone Conigar Pit Sandstone Member (early Devonian), South Wales, UK

    NASA Astrophysics Data System (ADS)

    Hillier, Robert D.; Marriott, Susan B.; Williams, Brian P. J.; Wright, V. Paul

    2007-11-01

    The Early Devonian Conigar Pit Sandstone Member (CPSM) of the Freshwater West Formation (Lower Old Red Sandstone, Lochkovian age) at Freshwater West in south Wales comprises a heterolithic, predominantly alluvial suite (mudstones, fine to coarse-grained sandstones, conglomerates) with varying depositional architecture. A number of discrete facies associations are observed. The fine-grained, inclined- and non-inclined heterolithic association is dominant within the CPSM. It represents dryland sinuous channelized flow (IHS bedsets) and unconfined flow (non-inclined bedsets) at terminal and intermediate floodouts deposited under semi-arid conditions. Mudstones were deposited in two distinct environments associated with this semi-arid river system. Laminated and burrowed, reddish brown mudstones were deposited in shallow semi-permanent lakes or pools on the floodplain. Massive mudstones were deposited as within-channel muddy braid-bars, with sedimentary structures being lost during subsequent compaction. The mudstones exhibit Vertisol pedogenesis reflecting the seasonal wetting and drying associated with the semi-arid climate. Periods of intense desiccation are indicated by deep desiccation cracks and associated rubbly surfaces. Possible, though unproven tidal conditions influenced a small percentage of the heterolithic channels at Freshwater West. The extent of these channels is uncertain. The coarser-grained multi-storey sandstone association was deposited by low-sinuosity rivers with a fluctuating, but perennial discharge. Associated with these laterally extensive sandbodies was a high water table with surface ponding (wetlands) that enabled the preservation of plant detritus. During high discharge events, flow expanded over the contemporaneous floodplain depositing the sheet sandstone association within splay complexes. The interpretation that perennial discharge may have been triggered by basin-wide climate change challenges the long-held view that the Lower ORS

  7. Facies composition calculated from the sonic, neutron, and density log suite, upper part of the Minnelusa Formation, Powder River basin, Wyoming

    USGS Publications Warehouse

    Schmoker, J.W.; Schenk, C.J.

    1988-01-01

    Sandstones and dolomites of the Permian upper part of the Minnelusa Formation are treated here as four-component systems consisting of fluid-filled pore space, quartz, dolomite, and anhydrite. Response equations of sonic, neutron, and density logs form a system of four simultaneous equations. With four equations and four unknowns, the composition of upper Minnelusa facies is defined by the three-log suite and can be calculated by solving a 4 ?? 4 matrix. Such calculations of facies composition help in establishing subsurface correlations and yield information on the diagenesis and physical character of upper Minnelusa sandstones and dolomites. Applications of composition calculations are illustrated by examples drawn from the area of the West Mellott field (T52N, R68W), where the upper Minnelusa is at depths of about 7000 ft (2100m). -from Authors

  8. Mississippian facies relationships, eastern Anadarko basin, Oklahoma

    SciTech Connect

    Peace, H.W. ); Forgotson, J.M. )

    1991-08-01

    Mississippian strata in the eastern Anadarko basin record a gradual deepening of the basin. Late and post-Mississippian tectonism (Wichita and Arbuckle orogenies) fragmented the single large basin into the series of paired basins and uplifts recognized in the southern half of Oklahoma today. Lower Mississippian isopach and facies trends (Sycamore and Caney Formations) indicate that basinal strike in the study area (southeastern Anadarko basin) was predominantly east-west. Depositional environment interpretations made for Lower Mississippian strata suggest that the basin was partially sediment starved and exhibited a low shelf-to-basin gradient. Upper Mississippian isopach and facies trends suggest that basinal strike within the study area shifted from dominantly east-west to dominantly northwest-southeast due to Late Mississippian and Early Pennsylvanian uplift along the Nemaha ridge. Within the study area, the Chester Formation, composed of gray to dove-gray shales with interbedded limestones deposited on a carbonate shelf, thins depositionally into the basin and is thinnest at its facies boundary with the Springer Group and the upper portion of the Caney Formation. As basin subsidence rates accelerated, the southern edge of the Chester carbonate shelf was progressively drowned, causing a backstepping of the Chester Formation calcareous shale and carbonate facies. Springer Group sands and black shales transgressed northward over the drowned Chester Formation shelf.

  9. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  10. Texas Greenup

    NASA Technical Reports Server (NTRS)

    2007-01-01

    June 2007 was one of the wettest Junes on record for the state of Texas. Starting in late May, a string of low-pressure systems settled in over the U.S. Southern Plains and unleashed weeks of heavy to torrential rain. During the final week of June, much of Texas, Oklahoma, and Kansas received more than 330 percent of their average rainfall, said the National Climatic Data Center. The widespread heavy rain brought deadly floods to the entire region. On July 6, the Associated Press reported that every major river basin in Texas was at flood stage, an event that had not occurred since 1957. In addition to causing floods, the rains stimulated plant growth. The grassy, often arid, plains and plateaus of northern Mexico (bottom left), Texas (center), and New Mexico (top, left of center) burst to life with dense vegetation as this vegetation anomaly image shows. Regions where plants were growing more quickly or fuller than average are green, while areas where growth is below average are brown. Most of Texas is green, with a concentrated deep green, almost black, spot where vegetation growth was greatest. This area of western Texas is where the Pecos River flows out of New Mexico and heads southeast to the Rio Grande. In the darkest areas, vegetation was more than 100 percent above average. The brown spots in northeastern Texas and Oklahoma (top, right of center) may be areas where persistent clouds or water on the ground are hiding the plants from the satellite's view. Plants may also be growing less than average if swamped by too much rain. The image was made with data collected by the SPOT satellite between June 11 and June 20, 2007. NASA imagery created by Jesse Allen, Earth Observatory, using SPOT data provided courtesy of the USDA Foreign Agricultural Service and processed by Jennifer Small and Assaf Anyamba of the GIMMS Group at NASA GSFC.

  11. Reservoir heterogeneity in the middle Frio Formation: Case studies in Stratton and Agua Dulce fields, Nueces County, Texas

    SciTech Connect

    Kerr, D.R. )

    1990-09-01

    Selected middle Frio (Oligocene) reservoirs of Stratton field and the contiguous Agua Dulce field are being studied as part of a Gas Research Institute/Department of Energy/State of Texas cosponsored program designed to improve reserve growth in mature gas fields. Over the past four decades, Stratton has produced 2.0 tcf of gas from 113 middle Frio reservoirs, and Agua Dulce has produced 1.6 tcf from 116 reservoirs. Recent drilling and workover activities, however, suggest the presence of additional untapped or bypassed middle Frio reservoirs. Four reservoirs, the E18/6,020-ft, E21/6,050-ft, E31/6,100-ft, and E41/Bertram, were evaluated over a 13,000-acre tract that includes areas adjacent to both fields. The middle Frio is composed of sand-rich channel-fill and splay deposits interstratified with floodplain mudstones, all forming part of the Gueydan fluvial system. Channel-fill deposits are 30 ({plus minus}15) ft thick and 2,500 ({plus minus}500) ft wide. Splay deposits are up to 30 ft thick proximal to channels and extend as much as 2 mi from channels. Channel-fill and associated splay sandstones are reservoir facies (porosity 20%; permeability = 10s to 100s md); floodplain mudstones and levee sandy mudstones are barriers to flow facies separating individual reservoirs vertically and laterally. The E41/Bertram reservoir is an example of a laterally stacked channel system deposited during relatively slow aggradation. This reservoir includes sand-on-sand contacts and is composed of mostly leaky compartments. The E 18/6,020-ft, E21/6,050-ft, and E31/6,100ft reservoirs are examples of vertically stacked channel systems reflecting higher rates of aggradation. Vertically stacked architectures are more favorable for isolated compartments and therefore are better candidates for infield reserve growth.

  12. Paleolatitudinal changes in vertical facies transitions recording late Paleozoic glaciations: a case study from eastern Australia

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.; Frank, T. D.; Shultis, A. I.

    2011-12-01

    Stratigraphic records of the complex and multi-phase late Paleozoic Ice Age (LPIA) have been examined over a 2000 km paleo-polar to paleo-mid latitude transect from Tasmania to Queensland, eastern Australia. In this presentation, we summarize changes in facies assemblages within glacial and nonglacial epochs and the transitions between them, within the coastal to shallow marine Permian succession. In the earliest Permian P1 glacial interval, facies represent proximal proglacial to locally glacial environments in Tasmania (TAS), and an array of mainly marine proglacial to glacimarine environments in New South Wales (NSW) and Queensland (QLD). A trend of more ice-proximal to less ice-proximal facies assemblages is evident from south to north. The end of P1 is represented both by abrupt flooding trends in some areas and by thicker intervals of more gradually fining-upward facies recording progressive deepening elsewhere. The onset of the Sakmarian/Artinskian P2 glacial interval is best-exposed in southern NSW, where an abrupt change to marine proglacial facies is accompanied by evidence for deepening, suggesting isostatic loading of the sedimentary surface. P2 glacial facies are more proximal in NSW than in QLD. Both P1 and P2 intervals preserve complex internal stratigraphy, in many cases recording multiple glacial-interglacial cycles. The close of P2 is again recorded in a variety of ways, with many sections showing a gradual fining-upward and decrease in indicators of glacial conditions. The Kungurian to Capitanian P3 and P4 glacial intervals are in general represented by less proximal facies than their predecessors, typically intervals of outsize clast-bearing mudrocks and sandstones. These in many areas show diffuse boundaries with the nonglacial facies that enclose them. Furthermore, no significant paleolatitudinal changes in the P3 and P4 facies assemblages are evident from TAS to QLD. The documented patterns support the view that the P1 glacial represents the

  13. Sedimentology and Stratigraphy of the Granite Wash: Contact Rapids and Keg River Sandstone (Red Earth Area)

    NASA Astrophysics Data System (ADS)

    Balshaw, Kevin Ewart

    The Granite Wash is comprised of diachronous, Cambrian to Devonian sandstone deposits, which include the Devonian Contact Rapids and Keg River sandstones of which this study will focus. Prolific oil production from the Granite Wash has fueled exploration since the 1950s and as a result substantial core and wireline data is available. Mapping of the Precambrian subcrop suggests that palaeo-highs, known as inselbergs, strongly influenced sedimentation transport, volume, rate and ultimately preservation after marine transgression. Several distinct surfaces identified from wireline data and cores indicate an overall marine transgression throughout Keg River time. The facies observed represent continental, shallow marine and sabkha environments and a climatic shift from arid to semi-arid to arid. This detailed sedimentological and stratigraphic study provided the depositional framework that allowed for palaeogeographic maps to be constructed.

  14. Micro-facies of Dead Sea sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Schwab, Markus J.; Brauer, Achim; Frank, Ute; Dulski, Peter; Kitagawa, Hiroyuki; Enzel, Yehouda; Waldmann, Nicolas; Ariztegui, Daniel; Drilling Party, Dsddp

    2013-04-01

    Lacustrine sediments infilling the Dead Sea basin (DSB) provide a rare opportunity to trace changing climates in the eastern Mediterranean-Levant region throughout the Pleistocene and Holocene. In this context, high-resolution investigation of changes in sediment micro- facies allow deciphering short-term climatic fluctuations and changing environmental conditions in the Levant. The Dead Sea is a terminal lake with one of the largest drainage areas in the Levant, located in the Mediterranean climate zone and influenced also by the Saharo-Arabian deserts. Due to drastic climatic changes in this region, an exceptionally large variety of lacustrine sediments has been deposited in the DSB. These sediments, partially the results of changing lake levels, primarily represent changes in precipitation (e.g. Enzel et al., 2008). Evaporites (halite and gypsum) reflect dry climatic conditions during interglacials, while alternated aragonite-detritus (AAD) is deposited during glacial lake level high-stands. Here we present the first micro-facies inventory of a ~450 m long sediment profile from the deepest part of the northern DSB (ICDP site 5017-1, ~300 m water depth). The sediment record comprises the last two glacial-interglacial cycles, with mainly AAD facies in the upper part of the Amora Formation (penultimate glacial) and the last glacial Lisan Formation. The last interglacial Samra and the Holocene Zeelim Formations are predominantly characterized by thick bedded halite deposits, intercalated by partly laminated detrital marl sequences. Representative sections of the different facies types have been analyzed for micro-facies on petrographic thin sections, supported by high-resolution µXRF element scanning, magnetic susceptibility measurements and microscopic fluorescence analysis. Furthermore, Holocene sediments retrieved at the deep basin core site have been compared to their shallow-water counterpart at the western margin of the lake (core DSEn; Migowski et al., 2004

  15. The Paleozoic sandstones in Wadi Feiran - El Tor area, Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Allam, A.

    The Paleozoic sandstone succession between Wadi Feiran and El-Tor in southwestern Sinai has been subdivided into five distinct lithostratigraphic units: the Lower Cambrian Araba Formation; the Upper Cambrian Naqus Formation; the Lower Carboniferous Abu Durba Formation; the Upper Carboniferous Aheimer Formation and the Permian Qiseib Formation. The present study has also proved that the Paleozoic Earth movements have undergone distinct changes in the sedimentary facies, together with lateral variations in the composition and thickness of strata. The distribution of the sediments and their faunal contents point to the existence of five major phases of sedimentation during the Paleozoic Era.

  16. Recent Developments in Facies Models for Siliciclastic Sediments.

    ERIC Educational Resources Information Center

    Miall, Andrew D.

    1982-01-01

    Discusses theory of facies models (attempts to synthesize/generalize information about depositional environments), strengths/weaknesses of facies modelling, recent advances in facies models for siliciclastic sediments (focusing on fluvial, lacustrine, eolian and glacial environments, clastic shorelines and continental shelves, and clastic…

  17. The Manciano Sandstone: a shoreface deposit of Miocene basins of the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Martini, I. P.; Cascella, A.; Rau, A.

    1995-09-01

    Well exposed, diamond-line cut, quarry-exposures of the Manciano Sandstone allow a detailed analysis of sandy, fossiliferous, nearshore deposits of the shelf of the Northern Apennines. The Manciano Sandstone is characterized by medium to very coarse, washed, fairly well sorted, lithic sandstone, with thin interlayers of sandy conglomerates. It displays two principal, rhythmically alternating sandy facies: (a) slightly burrowed (mostly Macaronichnus, Ophiomorpha, Skolithos) units, trough cross-bedded, locally showing possible tidal bundles with few whole Scutella (echinoid) shells reworked on foresets, or occasional large-scale (approximately 2 m) planar cross-bedded, bar-accretion units; and (b) slightly finer, darker-coloured reddish-brown sandstone units, heavily bioturbated ( Cruziana-Skolithos) ichnofauna) representing slightly more sheltered settings. Large oysters are present in near-living position in a few thin layers and, more commonly, as reworked, comminuted fragments in sandy layers. Many calcareous pebbles and oyster fragments are bored. Other fossils consist of echinoids ( Scutella), some balanids and reworked foraminifera and bryozoa. The Manciano sands were deposited primarily in a wave-dominated shoreface, containing migrating bars/ridges and affected by wave-induced, possibly tidal-enhanced currents. This tidal influence confirms the opening of the Miocene Apenninic Sea to oceans, both the developing Atlantic Ocean to the west and, through a long, narrow seaway, the Asian portion of the Tethys Sea to the east.

  18. Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians

    SciTech Connect

    Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

    1980-03-01

    The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

  19. Facies in stratigraphy: from 'terrains' to 'terranes'.

    USGS Publications Warehouse

    Nelson, C.M.

    1985-01-01

    Concepts of lateral variation in sedimentary rocks and fossil assemblages developed in France from the 1760s; the definitive definition of facies was provided in 1838 by the Swiss geologist Amanz Gressly (1814-65) in his detailed field study of the eastern Jura. His maps and cross-sections of variations in Jurassic and Triassic rocks are illustrated. He believed that variations reflected environmental conditions, as in modern seas, and would eventually permit former depths to be reconstructed. Gressly studied at Strasbourg under Voltz and Thurmann: he collaborated with L.Agassiz, E.Desor and C.Vogt. His work influenced German and French geologists and provided a basis for interpretations of the Alps. But the facies concept was not deeply rooted in American geology until around 1884 (H.S.Williams) and in Britain and Russia until around 1900. I.S.Evans

  20. Pore-throat sizes in sandstones, tight sandstones, and shales

    USGS Publications Warehouse

    Nelson, Philip H.

    2009-01-01

    Pore-throat sizes in silidclastic rocks form a continuum from the submillimeter to the nanometer scale. That continuum is documented in this article using previously published data on the pore and pore-throat sizes of conventional reservoir rocks, tight-gas sandstones, and shales. For measures of central tendency (mean, mode, median), pore-throat sizes (diameters) are generally greater than 2 μm in conventional reservoir rocks, range from about 2 to 0.03 μm in tight-gas sandstones, and range from 0.1 to 0.005 μm in shales. Hydrocarbon molecules, asphaltenes, ring structures, paraffins, and methane, form another continuum, ranging from 100 Å (0.01 μm for asphaltenes to 3.8 A (0.00038 μm) for methane. The pore-throat size continuum provides a useful perspective for considering (1) the emplacement of petroleum in consolidated siliciclastics and (2) fluid flow through fine-grained source rocks now being exploited as reservoirs.

  1. SEQUENCE STRATIGRAPHIC ANALYSIS AND FACIES ARCHITECTURE OF THE CRETACEOUS MANCOS SHALE ON AND NEAR THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO-THEIR RELATION TO SITES OF OIL ACCUMULATION

    SciTech Connect

    Jennie Ridgley

    2000-03-31

    Oil distribution in the lower part of the Mancos Shale seems to be mainly controlled by fractures and by sandier facies that are dolomite-cemented. Structure in the area of the Jicarilla Apache Indian Reservation consists of the broad northwest- to southeast-trending Chaco slope, the deep central basin, and the monocline that forms the eastern boundary of the San Juan Basin. Superimposed on the regional structure are broad low-amplitude folds. Fractures seem best developed in the areas of these folds. Using sequence stratigraphic principals, the lower part of the Mancos Shale has been subdivided into four main regressive and transgressive components. These include facies that are the basinal time equivalents to the Gallup Sandstone, an overlying interbedded sandstone and shale sequence time equivalent to the transgressive Mulatto Tongue of the Mancos Shale, the El Vado Sandstone Member which is time equivalent to part of the Dalton Sandstone, and an unnamed interbedded sandstone and shale succession time equivalent to the regressive Dalton Sandstone and transgressive Hosta Tongue of the Mesaverde Group. Facies time equivalent to the Gallup Sandstone underlie an unconformity of regional extent. These facies are gradually truncated from south to north across the Reservation. The best potential for additional oil resources in these facies is in the southern part of the Reservation where the top sandier part of these facies is preserved. The overlying unnamed wedge of transgressive rocks produces some oil but is underexplored, except for sandstones equivalent to the Tocito Sandstone. This wedge of rocks is divided into from two to five units. The highest sand content in this wedge occurs where each of the four subdivisions above the Tocito terminates to the south and is overstepped by the next youngest unit. These terminal areas should offer the best targets for future oil exploration. The El Vado Sandstone Member overlies the transgressive wedge. It produces most of

  2. Facies Modeling of of Dam and Hofuf Formations: Outcrop Analog of Mixed Carbonate and Siliciclastic (Miocene-Pliocene) Succession, Eastern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdullatif, O.; Yassin, M.

    2012-04-01

    1KFUPM This study investigates the lithofacies types distribution of the carbonate and siliciclastic rocks of Dam and Hofuf Formations in eastern Saudi Arabia. The shallow burial of these formations and limited post depositional changes allowed significant preservation of porosity at outcrop scale. The mixed carbonate-siliciclastic succession represents important reservoirs in the Mesozoic and Tertiary stratigraphic succession in the Arabian Plate.This study integrates field work sedimentological and stratigraphical and lithofacies data to model the spatial distribution of facies of this shallow marine and fluvial depositional setting. The Dam Formation is characterized by very high percentage of grain- dominated textures representing high to low energy intertidal deposits a mixed of carbonate and siliciclastic succession. The middle Miocene Dam section is dominated by intra-clasts, ooids and peloids grainstones. The Hofuf Formation represents fluvial channel and overank facies which is characterized by mudclast abd gravel-rich erosive bases overlain by pebbly conglomerates which passes upward into medium to very coarse grained massive, horizontally stratified and trough cross-stratifed sandstone facies. Lithological stratigraphic sections data distributed over the Al-lidam escarpment were correlated on the basis of facies types and sequences. This allow mapping and building a framework for modeling the spatial distribution of the carbonate and siliciclastic facies in the area. The geological model shows variations in the facies distribution patterns which mainly reflect both dynamic and static depositional controls on facies types distribution. The geological model may act as a guide for facies types distribution, and provide better understanding and prediction of reservoir quality and architecture of stratigraphically equivalent carbonate-siliciclastic successions in the subsurface.

  3. Latent space classification of seismic facies

    NASA Astrophysics Data System (ADS)

    Roy, Atish

    Supervised and unsupervised seismic facies classification methods are slowly gaining popularity in hydrocarbon exploration and production workflows. Unsupervised clustering is data driven, unbiased by the interpreter beyond the choice of input data and brings out the natural clusters present in the data. There are several competing unsupervised clustering techniques, each with advantages and disadvantages. In this dissertation, I demonstrate the use of various classification techniques on real 3D seismic data from various depositional environments. Initially, I use the popular unsupervised Kohonen self-organizing maps (SOMs) algorithms and apply it to a deep-water Gulf of Mexico 3D dataset to identify various deep-water depositional facies including basin floor fans, mass transport complexes and feeder channels. I then extend this algorithm to characterize a heterogeneous Mississippian Chert reservoir from Oklahoma and map the locations of the tight/non-porous chert and limestone vs. more prospective porous tripolitic chert and fractured chert zones. The tight chert and dense limestone can be highly fractured, giving rise to an additional seismic facies. In both the case studies, a large number of potential classes are fed into the SOM algorithm. These "prototype vectors" are clustered and colors are assigned to them using a 2D gradational RGB color-scale for visual aid in interpretation. Kohonen SOM suffers from the absence of any proper convergence criterion and rules for parameter selection. These shortcomings are addressed by the more recent development of generative topographic mapping (GTM) algorithm. GTM is based on a probabilistic unsupervised classification technique and "generates" a PDF to map the data about a lower dimensional "topographic" surface residing in high dimensional attribute space. GTM predicts not only which cluster best represents the data, but how well it is predicted by all other clusters. For this reason, GTM interfaces neatly with

  4. Diagenetic Patterns of the Cretaceous Baseline Sandstone, Southern Nevada: Implications for Controls on Iron-Oxide Cementation and Coloration

    NASA Astrophysics Data System (ADS)

    Duncan, C. J.; Chan, M. A.

    2015-12-01

    The Cretaceous Baseline Sandstone of the Sevier foreland basin deposits in southern Nevada exhibits intense diagenetic iron-oxide coloration and bleaching, and contains abundant cemented masses. The Baseline Formation is ~1 km thick with three alluvial to fluvial members: the basal White (Kbw) Member, overlain by coeval Red (Kbr) and Overton Conglomerate (Kbo) Members. Iron-oxide diagenetic features occur in two broad classes: 1) bedding parallel coloration facies of diffuse to banded red, pink, purple, white, to yellow colors; and 2) concretionary facies of heavily cemented horizons, pods/lenses, spherical to spheroidal concretions, boxworks, pipes, and irregular concretion forms. A distinctive geometry is the occurrence of large (~1 m diameter) spherical "beach ball" concretions within the Kbr. Preliminary mapping of diagenetic features shows that concretionary facies are more common within a ~125 m interval near the bottom of Kbw, and within the lower ~125 m of Kbr. Intense coloration changes are present throughout Kbw but occur only in the lowermost ~150 m of Kbr. In the Kbw, concretionary forms commonly occur in stratigraphic intervals of fine-grained sandstone, siltstone, and mudstone lithologies, whereas cemented masses are much less common in stratigraphic intervals composed of medium-grained sandstone and conglomerate lithologies. Additionally, both Kbw and Kbr Members exhibit rare examples of wood fragments in the center of iron-oxide concretions, suggesting the importance of organics as nucleation sites for precipitation. The distribution of complex and overprinted diagenetic patterns indicates nested scales of processes involving iron-oxide dissolution, mobilization, and precipitation. Overall stratigraphic architecture influenced formation-scale patterns, but specific lithologies and textures influenced the type and distribution of diagenetic facies at outcrop scales, and organic content encouraged cementation at grain-scales.

  5. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    SciTech Connect

    Patchen, D.G.; Hohn, M.E.; Aminian, K.; Donaldson, A.; Shumaker, R.; Wilson, T.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositional systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.

  6. Facies, Stratigraphic and Depositional Model of the Sediments in the Abrolhos Archipelago (Bahia, BRAZIL)

    NASA Astrophysics Data System (ADS)

    Matte, R. R.; Zambonato, E. E.

    2012-04-01

    Located in the Mucuri Basin on the continental shelf of southern Bahia state, northeast Brazil, about 70 km from the city of Caravelas,the Abrolhos archipelago is made up of five islands; Santa Barbara, Redonda, Siriba, Guarita and Sueste. The exhumed sediments in the Abrolhos archipelago are a rare record of the turbidite systems which fill the Brazilian Atlantic Basin, and are probably an unprecedented example of a plataform turbidite system (Dr. Mutti, personal communication). Despite the limited area, the outcrops display a wide facies variation produced by different depositional processes, and also allow for the observation of the layer geometries. Associated with such sedimentary rocks, the Abrolhos Volcanic Complex belongs stratigraphically to the Abrolhos Formation. These igneous rocks were dated by the Ar / Ar method, with ages ranging from 60 to 40 My, placing such Volcanic Complex between the Paleocene and Eocene. The sedimentary section is best exposed in the Santa Barbara and Redonda islands and altogether it is 70 m thick. The measured vertical sections show a good stratigraphic correlation between the rocks of the western portion of the first island and those of Redonda Island. However, there is no correlation between the eastern and western portions of Santa Barbara Island, since they are very likely interrupted by the igneous intrusion and possibly by faulting. The sedimentary stack consists of deposits with alternated regressive and transgressive episodes interpreted as high frequency sequences. The coarse facies, sandstones and conglomerates, with abrupt or erosive bases record regressive phases. On the other hand, finer sandstones and siltstones facies, which are partly bioturbated, correspond to phases of a little sediment supply. In the central and eastern portions of Santa Barbara Island, there is a trend of progradational stacking, while both in the western portion of Santa Barbara and in Redonda islands an agradational trend is observed

  7. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    NASA Astrophysics Data System (ADS)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  8. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W. ); McJannet, G.S. )

    1996-01-01

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  9. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W.; McJannet, G.S.

    1996-12-31

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  10. Log-Derived evaluation of shaly sandstone reservoirs

    SciTech Connect

    Fertl, W.H.

    1984-04-01

    Significant natural gas resources are known to exist in the United States in tight, low-permeability sandstones that cover a prospective area of 1,000,000 mi/sup 2/ (2,590,000 km/sup 2/). Characterization and reliable estimation of their production potential based on well logs are important although difficult task. Proper evaluation of low permeability sands based on conventional log-interpretation techniques is frequently inadequate. Furthermore, while empirical rules of thumb assist in the evaluation of localized conditions, they only provide guidelines. Recent developments in quantitative log-analysis techniques incorporate natural-gamma-ray spectral data and application of the Waxman-Smits model for detailed reservoir description. Quantitative correlations of cation exchange capacity (CEC), water salinity, porosity, and conductivity of water- and hydrocarbon-bearing shaly sand reservoirs are based on resistivity, density, neutron and natural-gamma-ray spectral data. These correlations provide important information about clay volume, reservoir porosities (total, effective) and fluid-saturation distribution (total, effective), type of clay minerals (smectite, illite, chlorite/kaolinite), their distribution in the reservoir (dispersed, laminated, structural), and log-derived indicators of potential formation damage. Field experiences are reviewed for logging and evaluating tight formations in south Texas; the Jurassic Cotton Valley trend in east Texas, Louisiana, and Arkansas; and the Tertiary Fort Union and Cretaceous Mesaverde Formations of the Piceance basin in Colorado.

  11. Depositional architecture of Springer Old Woman sandstone, central Anadarko basin, Oklahoma

    SciTech Connect

    O'Donnell, M.R.; Haiduk, J.P.

    1987-08-01

    The fluvial meander belt containing the Old Woman sandstone served as a conduit for clastics transported into the Anadarko basin. Mappable for a distance of more than 30 mi (48 km), sand bodies characterizing this system average 0.5 mi (0.8 km) in width and attain maximum thicknesses of 50-70 ft (15-20 m). Channel and point-bar sandstone facies display a fining-upward sequence and sharp basal contact, as inferred from gamma-ray and resistivity logs. Sandstones of the Old Woman fluvial complex overlie the laminated shales and silts of the penecontemporaneous flood-plain environment. These flood-plain deposits are underlain by crinoidal wackestones and packstones deposited in the subtidal regime. Encroachment of the fluvial complex into a marine setting is interpreted from this sequence. Thin flood-plain deposits and lack of shallow marine clastic sediments suggest rapid advancement. Quartzitic and petrologically mature, the Old Woman sandstone is fine grained, with small-scale troughs and laminations, and a few mudstone rip-up clasts. Diagenesis has altered the mineralogic composition mainly by siliceous and carbonate cementation. Porosity is secondary, resulting from dissolution of various metastable constituents. The Old Woman sandstone was established as a hydrocarbon reservoir in the early 1960s, and sporadic development continued for years. The present-day petroleum market has prompted a resurgence in drilling activity owing to the economic viability of this reservoir. Successful wells are concentrated in newly discovered meander-belt bends; however, the elusiveness of this fluvial system challenges today's exploration geologists as it has for the past quarter century.

  12. Silicate facies iron-formation of the Egbe-Isanlu Palaeoproterozoic schist belt, southwest Nigeria

    NASA Astrophysics Data System (ADS)

    Annor, A. E.; Olobaniyi, S. B.; Mücke, A.

    1997-02-01

    Field, petrological, mineralogical and geochemical data on the Egbe-Isanlu Palaeoproterozoic schist belt are presented, high-lighting the main features of a silicate facies iron-formation, which hitherto had been described as a metamorphosed, impure sandstone. The iron-formation is relatively thin (max. 15 m) and concordantly interbedded with schistose, semi-pelitic, amphibolitic and talcose host rocks, with which it shares a common polyphase tectonometamorphic history. The last of these is the Pan-African overprint, during which time the iron-formation was locally silicified. The main constituent minerals are garnet (almandine-spessartine solid solution), amphibole (Mn and Ca bearing grunerite-cummingtonite solid solution), quartz and ilmenite. Magnetite was not observed. Geochemical data show that the iron-formation and metasediments are of different origins. The silicate facies iron-formation of Isanlu belongs to the Algoma-type and was derived by the metamorphism of a volcano-exhalative-sedimentary protolith, probably during Eburnian times.

  13. DRAFT LANDSAT DATA MOSAIC: MONTGOMERY COUNTY, TEXAS; HARRIS COUNTY, TEXAS; FORT BEND COUNTY, TEXAS; BRAZORIA COUNTY, TEXAS; GALVESTON COUNTY, TEXAS

    EPA Science Inventory

    This is a draft Landsat Data Mosaic, which contains remote sensing information for Montgomery County, Texas Harris County, Texas Fort Bend County, Texas Brazoria County, Texas Galveston County, and Texas Imagery dates on the following dates: October 6, 1999 and September 29, 200...

  14. Reservoir sandstone bodies in lower Silurian Clinton sandstone interval, eastern Ohio

    SciTech Connect

    Coogan, A.H.

    1987-09-01

    The stratigraphic relationships of the sandstones, shales, limestones, dolomites, and related beds of the Lower Silurian Clinton sandstone interval in Ohio have been examined using several thousand well logs from Medina County to Coshocton County in eastern Ohio. This north-south band of counties lies semiparallel to the north-northeast-trending depositional edge of the Clinton lower deltaic and coastal plain. Continuous and discontinuous bar sandstones with patterns similar to barrier island deposits are found at the edge of the deltaic plain. The thicker sandstone reservoirs in these deposits have been prolific oil and gas pools. The discontinuous bar sands are more common, however, and where drilling is sparse or where only the cleaner sandstones are mapped, these bar sands appear as isolated, thick, porous sandstone bodies. Examples exist in Holmes and Wayne Counties, Ohio. Elongate, nearly straight, narrow sandstone bodies occur on the lower deltaic plain, and were deposited in channels that were fluvial or partly estuarine. The channel sandstones are less than 1000 ft wide, extend for distances up to 10 mi and can be seen in Coshocton, Summit, and Medina Counties. The reservoirs in these sandstones are prolific oil and gas producers, but they are not easy to locate. At the seaward end of the elongate channel, sandstones are thick, localized sand bodies that fit in the sedimentological picture as river mouth bars. An example from Medina County illustrates this reservoir geometry at the site of excellent oil production from the Clinton interval.

  15. Application of actualistic models to unravel primary volcanic control on sedimentation (Taveyanne Sandstones, Oligocene Northalpine Foreland Basin)

    NASA Astrophysics Data System (ADS)

    Di Capua, Andrea; Groppelli, Gianluca

    2016-05-01

    This work is focused on the Taveyanne Sandstones (Grés de Taveyanne), an Oligocene volcaniclastic turbidite sequence cropping out in the Northern Alpine Molassa between SE France and Central Switzerland, with the aim to investigate the temporal relationship between volcanic activity and sediment supply. Detailed stratigraphic, sedimentological, and petrographic (XRD analyses on mudstones and point counts on sandstones) studies conducted on three sections (Col de l'Oulette and Flaine in SE France, Taveyanne in SW Switzerland) allow a discrimination of three main facies, among which only one is extremely enriched in volcaniclastic detritus and characterized by features similar to those of disaggregated pyroclastic density current deposits. The other two facies are characterized by variable to no volcanic detritus but supplied by crystalline and sedimentary detritus. Such sediment trends are similar to those of modern, volcanically controlled source-to-sink systems. This allows a reinterpretation of the Taveyanne Sandstones as a syn-volcanic turbidite system, episodically supplied by large amounts of volcanic detritus, which periodically modified the drainage paths. Moreover, the well-known temporal and spatial persistence of such modifications in modern settings leads to conciliate the syn-volcanic supply with the location of the volcanic centers in the internal part of the Alps, without invoking particular climatic and tectonic conditions controlling foreland sedimentation.

  16. Sedimentology and facies of a Mississippi River meander belt

    SciTech Connect

    Pryor, W.A.; Jordan, D.W.

    1988-01-01

    The meander belt of the Mississippi River in Southeastern Missouri, consists of four facies: river channel, chute, levee, and abandoned channel fill. A depositional model and vertical sequences have been developed from drill cores, vibracores, fathometer surveys, and mapping of these facies. This model and the vertical sequences compare very well to ancient sequences. The vertical sequences observed in cores through the various facies systems have systematic variations and associations that serve as models for meander belt fluvial systems.

  17. Surface gamma-ray logs as a correlation tool between outcrop and subsurface: Application to the Silurian-Devonian of west Texas and southern New Mexico

    SciTech Connect

    Colleary, W.M. ); Crafton, J.W. Gas Research Institute, Chicago, IL )

    1992-04-01

    Outcrop gamma-ray logs are an excellent tool for correlation between surface measured sections and subsurface well logs. The work presented here illustrates the utility of constructing such profiles and the applicability of this technique to carbonate sequences such as those of the Permian basin. Outcrop sections with gamma-ray profiles have been measured over the Silurian-Devonian section in three separate areas. These sections are located in the Sacramento Mountains of southern New Mexico, and the northern Franklin Mountains and Hueco Mountains of west Texas. A hand-held Scintrex Model BGS-4 Digital Scintillometer was used to measure surface gamma radiation while detailed stratigraphic sections were being measured and described. Data were collected at regularly spaced intervals along the section. The scintillometer detects natural radiation emitted by radioactive elements that occur in most clay minerals and generally are more abundant in shales than in sandstones or carbonates. The lithology of poorly exposed or covered units also may be inferred from surface gamma-ray profiles. Organic-rich black shales are particularly radioactive, as are condensed sections. The strength of this method does not lie in the absolute reading of gamma radiation. The value of this tool lies in recognizing patterns within each profile, directly relating these patterns to their associated facies, and correlating them with subsurface profiles.

  18. Sedimentology and petroleum occurrence, Schoolhouse Tongue of Weber Sandstone (lower Permian), Northwest Colorado

    SciTech Connect

    Johnson, S.Y.; Schenk, C.J.; Anders, D.E.; Tuttle, M.L.

    1988-01-01

    The Schoolhouse Tongue of the Weber Sandstone, an extensive paleo-petroleum reservoir in northwest Colorado, consists mainly of bleached or oil-stained sandstone of inferred eolian sand-sheet origin. Low-angle to parallel-bedded, very fine to fine-grained sandstone is the dominant facies. Low-angle deflationary surfaces and deflation lags are common. Cross-bedded dune deposits are a less common sand-sheet facies. Interbedded fluvial deposits are present in most sections. The sand-sheet deposits of the Schoolhouse Tongue are sedimentologically similar to those in the gradationally underlying red beds of the Middle Pennsylvanian to Lower Permian Maroon Formation, and the Schoolhouse Tongue is best constructed as the uppermost sand sheet in the Maroon sequence. At Rifle Creek, the site of a late Paleozoic-early Mesozoic structural high, the Schoolhouse Tongue is 66 m thick and oil staining extends several hundred meters down into the underlying Maroon Formation. Away from Rifle Creek, the Schoolhouse Tongue thins to the north and pinches out to the southeast and east (within 40-65 km), and oil staining in the Maroon is minimal. The distribution of oil-stained rock suggests that hydrocarbons were introduced at a point source, possibly related to faults on the margins of the paleohigh. Oil in the Schoolhouse Tongue mainly occurs in secondary pore space resulting from the dissolution of carbonate cement by migrating organic acids. Oil was trapped below overlying red siltstones. Geochemical typing of the hydrocarbons is consistent with a late Paleozoic source rock.

  19. Stratigraphy and environmental significance of continental Triassic rock of Texas

    SciTech Connect

    Gawloski, T.

    1983-03-01

    The continental Triassic rocks of Texas are represented by four distinct but similar rock groups that exist both in outcrop and in the subsurface and include the Eagle Mills Formation (south-central and northeast Texas), Sycamore Formation (central Texas), Dockum Group (west Texas), and Bissett Formation (southwest Texas). They are clearly terrigenous in nature derived principally from older Paleozoic sedimentary rocks. The rock groups are composed in part or entirely of mudstone, siltstone, medium to coarse-grained sandstone, and pebble to boulder conglomerate (intrabasinal and extrabasinal). The sediments were deposited in alluvial fans, braided and meandering streams, lobate deltas, fan deltas, and lakes. The coarse sandstone and conglomerate are the products of high-energy, short-duration depositional events. Sedimentation was greatly affected by alternating climatic conditions that produced changes in base level, water depth, and lake area as well as the type of streams that flowed into the depositional basins. The character of the rock groups strongly suggests semi-arid to arid deposition typical of the low latitude desert regions of today. Thus, the rocks comprising the Eagle Mills, Sycamore, Dockum, and Bissett Formations appear to be products of continental clastic deposition during a major semi-arid to arid climatic episode, such as that of late Triassic time.

  20. Sedimentology and reservoir heterogeneity of a valley-fill deposit-A field guide to the Dakota Sandstone of the San Rafael Swell, Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Schenk, Christopher J.

    2010-01-01

    Valley-fill deposits form a significant class of hydrocarbon reservoirs in many basins of the world. Maximizing recovery of fluids from these reservoirs requires an understanding of the scales of fluid-flow heterogeneity present within the valley-fill system. The Upper Cretaceous Dakota Sandstone in the San Rafael Swell, Utah contains well exposed, relatively accessible outcrops that allow a unique view of the external geometry and internal complexity of a set of rocks interpreted to be deposits of an incised valley fill. These units can be traced on outcrop for tens of miles, and individual sandstone bodies are exposed in three dimensions because of modern erosion in side canyons in a semiarid setting and by exhumation of the overlying, easily erodible Mancos Shale. The Dakota consists of two major units: (1) a lower amalgamated sandstone facies dominated by large-scale cross stratification with several individual sandstone bodies ranging in thickness from 8 to 28 feet, ranging in width from 115 to 150 feet, and having lengths as much as 5,000 feet, and (2) an upper facies composed of numerous mud-encased lenticular sandstones, dominated by ripple-scale lamination, in bedsets ranging in thickness from 5 to 12 feet. The lower facies is interpreted to be fluvial, probably of mainly braided stream origin that exhibits multiple incisions amalgamated into a complex sandstone body. The upper facies has lower energy, probably anastomosed channels encased within alluvial and coastal-plain floodplain sediments. The Dakota valley-fill complex has multiple scales of heterogeneity that could affect fluid flow in similar oil and gas subsurface reservoirs. The largest scale heterogeneity is at the formation level, where the valley-fill complex is sealed within overlying and underlying units. Within the valley-fill complex, there are heterogeneities between individual sandstone bodies, and at the smallest scale, internal heterogeneities within the bodies themselves. These

  1. Mechanisms of sandstone deposition in a late Proterozoic submarine canyon, Adelaide geosyncline, South Australia

    SciTech Connect

    von der Borch, C.C.; Grady, A.E.

    1984-06-01

    Late Proterozoic submarine canyon fills the Adelaide Supergroup (Flinders Range, South Australia) are asymmetrical in terms of their facies. Coarse breccia units, commonly associated with coarse-grained channelized turbidite sandstone units, generally occur adjacent to north walls of all the east-west-trending canyon incisions. In contrast, fine-grained sandstones and mudstones within the canyon fill are generally associated with south walls. In one canyon (Patsy-Springs canyon), an additional element of asymmetry is associated with the prevalence of northward-climbing sets of climbing ripples (southward-dipping stoss sides) within channelized turbidites, in what are interpreted to be major thalweg channels and their associated levees. Flute casts at the bases of individual turbidite sandstones invariably indicate initial turbidity current flow to the west throughout the vertical sequences of the channel fills. Parallel laminations above the flute casts in each flow pass upward into climbing ripples with south-dipping stoss sides, implying southward lateral accretion across the channel of a levee or bar as each turbidity current decelerated. The asymmetries outlined could be explained by: Coriolis force acting on the turbidity currents, or the existence on a steep slope of a meandering canyon gorge, confining a thalweg channel developed within subsequent canyon fill. In such a situation, roller-coastering turbidity currents would seek outer bends of the meandering primary gorge.

  2. Facies analysis and sequence stratigraphy of the Cenomanian-Turonian mixed siliciclastic-carbonate sediments in west Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Anan, Tarek I.

    2014-06-01

    The unconformity bounded Cenomanian-Turonian succession in west Sinai is subdivided into three formations: the Raha, Abu Qada, and Wata. These rock units were deposited in a mixed siliciclastic-carbonate system on a ramp setting. The studied ramp only includes inner and mid-ramp facies, whereas the outer ramp facies occurs in northern Sinai. Four sequence boundaries (SB) were recognized in the studied formations due to the presence of subaerial exposure or flooding events in the facies stacking pattern. The first and last sequence boundaries (SB1 and SB4) might be considered as Type 1 sequence boundary attributable to the presence of widespread erosion. It is difficult to determine type of the second and third sequence boundaries (SB2 and SB3) because of their minor unconformity and minimal erosion. Determination of systems tracts within the Wata Formation is debatable owing to the action of dolomitization that has destroyed both original components and sedimentary structures. The lowstand systems tracts of the recorded sequences are characterized by sandstones, siltstones, and sandy shales, while fossiliferous shale and limestone with oysters prevailed during sea level rise. The highstand systems tracts are generally characterized by shallow intertidal and subtidal deposits that are made up of abundant oyster wackestones with benthic foraminifera and ostracods.

  3. Jurassic sandstone from the tropical atlantic.

    PubMed

    Fox, P J; Heezen, B C; Johnson, G L

    1970-12-25

    The oldest sediment yet sampled from the abyssal margins of South America, late Jurassic (or possibly very early Cretaceous) shallow-water, coarse-grained, calcareous sandstone containing palynomorphs and mollusk prisms, was recovered from a depth of 4400 meters on the seaward scarp of the Demerara Plateau. The sandstone was deposited in a shallow, late Jurassic epicontinental sea after the initial stages of rifting when the newly created Atlantic began to founder.

  4. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within

  5. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies.

    PubMed

    Stegen, James C; Konopka, Allan; McKinley, James P; Murray, Chris; Lin, Xueju; Miller, Micah D; Kennedy, David W; Miller, Erin A; Resch, Charles T; Fredrickson, Jim K

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies-oxidized, reduced, and transition-within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness-the number of microbial taxa-was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  6. Trace fossils and sedimentary facies from a Late Cambrian-Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; Acenolaza, G.F.

    1996-01-01

    The Santa Rosita Formation is one the most widely distributed lower Paleozoic units of northwest Argentina. At the Quebrada del Salto Alto section, east of Purmamarca, Jujuy Province, it is represented by four sedimentary facies: thick-bedded planar cross-stratified quartzose sandstones (A), thin-bedded planar cross-stratified quartzose sandstones and mudstones (B), wave-rippled sandstones and bioturbated mudstones (C), and black and greenish gray shales (D). Paleocurrent data, sandstone architecture, and sedimentary structures from facies A and B indicate bipolar/bimodal paleoflows, suggesting the action of tidal currents. The succession is interpreted as that of a tide-dominated shelf, with only secondary influence of wave processes. Trace fossils are restricted to facies B and C. The Cruziana ichnocoenosis is preserved on the soles of thin-bedded planar cross-stratified quartzose sandstones (facies B). This ichnocoenosis consists of Conostichus isp., Cruziana omanica, C. semiplicata, C. cf. tortworthi, Cruziana isp. Helminthopsis abeli, Monomorphichnus bilinearis, M. multilineatus, Palaeophycus tubularis, Rusophycus carbonarius, R. latus, and R. isp. The occurrence of Cruziana semiplicata, C. omanica, C. cf. tortworthi, and Rusophycus latus supports a Late Cambrian-Tremadoc age. Slabbing of Cruziana shows complex interactions between biologic and sedimentologic processes, and suggests a predominance of exhumed traces, washed out and recast by tractive sand deposition. Sandstone soles are densely packed with biogenic structures and exhibit distinctive clusters of Rusophycus isp. that most likely represent trilobite nesting burrows. The Cruziana ichnocoenosis records the resident fauna of a protected, lower intertidal to subtidal interbar setting. The Skolithos ichnocoenosis is represented by high to low density vertical burrows of Skolithos linearis, which extend downwards to the quartzose sandstone soles of facies B and cross the Cruziana ichnocoenosis. The

  7. New insights into the provenance of Saudi Arabian Palaeozoic sandstones from heavy mineral analysis and single-grain geochemistry

    NASA Astrophysics Data System (ADS)

    Bassis, Alexander; Hinderer, Matthias; Meinhold, Guido

    2016-03-01

    Saudi Arabian Palaeozoic siliciclastics cover a stratigraphic range from the Cambrian to the Permian. They crop out along the eastern margin of the Arabian Shield and are comprised of highly mature sandstones. Their heavy mineral assemblage reflects their mineralogical maturity and is dominated by the ultra-stable phases zircon, tourmaline and rutile. Less stable accessories are apatite, staurolite and garnet. Standard heavy mineral analysis of samples from two study areas in central/northern (Tabuk area) and southern (Wajid area) Saudi Arabia reveals distinct changes in provenance. Cambrian-Ordovician sandstones are first-cycle sediments, probably sourced from the 'Pan-African' basement. The overlying Hirnantian glaciogenic deposits consist of recycled Cambrian-Ordovician material. Devonian-Permian sandstones show a significant influx of fresh basement material, as attested by an increase of meta-stable heavy minerals. Single-grain geochemical analysis of rutile and garnet has proven to be a powerful supplementary technique. Rutile varietal studies reveal distinct differences in host rock lithologies between the two study areas: the Tabuk area contains predominantly felsic rutiles, whereas the Wajid area has more mafic input. Zr-in-rutile thermometry identified granulite-facies detritus in the lower Palaeozoic of the Tabuk area and has the potential to further define source areas. The distribution patterns of garnet host rock lithologies are remarkably similar in both study areas. They are dominated by amphibolite-facies metasediments and intermediate to felsic igneous rocks. Garnets derived from granulite-facies metasediments, which are scarce in the Arabian-Nubian Shield, also occur. Possible source rocks for high-grade garnets can be found in Yemen or farther south in the Mozambique Belt.

  8. An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran

    NASA Astrophysics Data System (ADS)

    Wilmsen, Markus; Fürsich, Franz Theodor; Majidifard, Mahmoud Reza

    2015-04-01

    The Cretaceous successions of the Yazd Block, the western of three structural blocks of the Central-East Iranian Microcontinent (CEIM), have been studied using an integrated approach of litho-, bio- and sequence stratigraphy associated with litho-, bio- and microfacies analyses. The Cretaceous System of that area is in excess of 5 km thick and a generalized relative sea-level curve can be inferred from the facies and thickness development. This curve can be subdivided into two transgressive-regressive megacycles (TRMs), separated by a major tectonic unconformity in the Upper Turonian. TRM 1 comprises the Early Cretaceous to Middle Turonian, TRM 2 the Coniacian to Maastrichtian. TRM 1 starts with up to 1500-m-thick conglomerates and sandstones covering Palaeozoic-Triassic basement rocks, metasediments, or Upper Jurassic-lowermost Cretaceous granites. The basal tectonic unconformity, related to the Late Cimmerian event (Jurassic-Cretaceous boundary interval), shows a pronounced palaeo-relief that is levelled by the basal siliciclastic formations. Sparse biostratigraphic data from calcareous intercalations in the upper part of these strata indicate a Hauterivian to Barremian age. The Aptian facies development is marked by the onlap of thick-bedded, micritic carbonates with abundant orbitolinid foraminifera and rudists representing a large-scale shallow-marine carbonate platform system that fringed the Yazd Block in the north and west. These platforms are up to 1000 m thick and drowned during the middle to Late Aptian, followed by up to 1500-m-thick basinal marly sediments of Late Aptian to mid-Late Albian ages, representing the maximum relative sea-level during TRM 1. During the latest Albian-Middle Turonian, a gradual shallowing is indicated by progradation of shallow-water skeletal limestones separated by marl tongues, representing a carbonate ramp system. Strata of TRM 2 overlie older units along a regional angular unconformity and indicate tectonic stability and

  9. Facies distribution, heterogeneity study and numerical 3D modeling of a multilayered Rhaetian-Lower Cretaceous aquifer succession in the Höllviken Halfgraben, SW Skåne, Sweden - assessment of suitability for storage of CO2

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Niemi, A.; Lindström, S.; Gunnarsson, N.; Daher, S. Bou

    2012-04-01

    Several variably thick sandstone beds are found within a 200-300 m thick Rhaetian-Lower Cretaceous succession in the Höllviken Halfgraben. Many of these are considered as potential aquifers for geothermal energy and possibly also for CO2 storage. One of the challenges in evaluating this potential lies within the task to assess the frequency and distribution patterns of the sandstone units in the multilayered succession. For this purpose biostratigraphic analyses, lithofacies investigations and numerical modeling have been conducted. The main part of the investigated succession along the margins of the Danish Basin, including the Höllviken Halfgraben reflects a highly dynamic coastline, which along with differential subsidence, and possible multiple sediment sources has resulted in a difficulty to correlate lithological units between boreholes. Four main lithofacies, of which one is fine-grained sandstone, are identified by use geophysical wire line logs and a few cored reference boreholes. The gradual transition between the identified lithofacies implies a genetic relation between the different facies, related to relative sea level fluctuation coupled with tectonic activity. This has, thus, yielded high degree of heterogeneity regarding distribution and frequency of the different facies. The four defined facies can be assigned to a tide dominated deltaic setting, which could further be divided into sub-environements based on proximity to the shoreline. There are only 2-3 sandstone units which have a regional distribution and that can be defined from a sequence stratigraphic analysis and correlated by use of the biostratigraphic results. The majority of beds have, however a local interfingering distribution pattern. A frequency study of the different facies in five wells indicate that the sandstone facies is more common adjacent to the bounding fault zones, thus indicating syndepositional surrounding highs generating eroded clastics entering the H

  10. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  11. "Sydney sandstone": Heritage Stone from Australia

    NASA Astrophysics Data System (ADS)

    Cooper, Barry; Kramar, Sabina

    2014-05-01

    Sydney is Australia's oldest city being founded in 1788. The city was fortunate to be established on an extensive and a relatively undeformed layer of lithified quartz sandstone of Triassic age that has proved to be an ideal building stone. The stone has been long identified by geologists as the Hawkesbury Sandstone. On the other hand the term "Sydney sandstone" has also been widely used over a long period, even to the extent of being utilised as the title of published books, so its formal designation as a heritage stone will immediately formalise this term. The oldest international usage is believed to be its use in the construction of the Stone Store at Kerikeri, New Zealand (1832-1836). In the late 19th century, public buildings such as hospitals, court houses as well as the prominent Sydney Town Hall, Sydney General Post Office, Art Gallery of New South Wales, State Library of New South Wales as well as numerous schools, churches, office building buildings, University, hotels, houses, retaining walls were all constructed using Sydney sandstone. Innumerable sculptures utilising the gold-coloured stone also embellished the city ranging from decorative friezes and capitals on building to significant monuments. Also in the late 19th and early 20th century, Sydney sandstone was used for major construction in most other major Australian cities especially Melbourne, Adelaide and Brisbane to the extent that complaints were expressed that suitable local stone materials were being neglected. Quarrying of Sydney sandstone continues today. In 2000 it was recorded noted that there were 33 significant operating Sydney sandstone quarries including aggregate and dimension stone operations. In addition sandstone continues to be sourced today from construction sites across the city area. Today major dimension stone producers (eg Gosford Quarries) sell Sydney sandstone not only into the Sydney market but also on national and international markets as cladding and paving products

  12. Tubiphytes-archaeolithoporella-girvanella reefal facies in Permian buildup, Mino terrane, central Japan

    NASA Astrophysics Data System (ADS)

    Sano, Hiroyoshi; Horibo, Kenji; Kumamoto, Yasuko

    1990-10-01

    The Lower to Middle Permian Okumino buildup of the Mino terrane, central Japan, formed a carbonate cap on a seamount which was sitting in an open-ocean realm. Microscopic examination reveals considerable amounts of Tubiphytes, Archaeolithoporella, and Girvanella in these rocks. These low laminar encrusting organisms together with cystopore bryozoa and syndepositional radial-fibrous cements formed bindstones. The bindstones are interpreted as having formed wave-resistant algal reefal mounds on the marginal terrace of the Okumino buildup which also has the lagoonal flat, sand bar or shoal, and foreslope facies. The Okumino buildup is closer in its biotic association of major encrusting organisms to the Trogkofel buildup in southern Alps than to the Capitan Reef Complex in New Mexico and Texas. The similarity implies that Tubiphytes and Archaeolithoporella were the most predominant and significant rock-forming encrusting organisms in Early to early Middle Permian times.

  13. Evolution of Permian evaporite basin in Texas panhandle

    SciTech Connect

    Presley, M.W. )

    1987-02-01

    Permian (Leonardian to Ochoan) evaporites in the Texas Panhandle were deposited in a range of marine shelf to supratidal environments along an arid coastline. Carbonates in these strata generally were deposited in inner shelf systems and include subtidal to supratidal facies. Landward of shelf environments, evaporites were deposited in brine pans and salt flats. Brine-pan facies are laminated anhydrite and banded salt that formed in shallow, hypersaline water such as restricted lagoons or supratidal salines. Salt-flat facies are mainly chaotic mixtures of mudstone and halite possibly formed by salt deposition on and within mud flats that bordered brine pans, or in brine-soaked mud-flat depressions. Periodically, mud flats built across the evaporite systems and were supplied with red terrestrial clastics, mainly mud and silt. These facies occur together in at least three different types of lithogenetic units. Strata in the Clear Fork Group (Leonardian) are considered deposits of a coastal evaporite basin that was progressively filled by terrestrial clastics. These rocks exhibit regressive cycles of brine-pan, salt-flat, and mud-flat facies. In contrast, San Andres strata (Guadalupian) were deposited in a broad marine embayment with persistent brine-pan conditions, and contain cycles of inner shelf and brine-pan facies. Post-San Andres strata (late Guadalupian and Ochoan) were deposited in the inner reaches of a broad interior salt basin and are composed mainly of mud-flat, salt-flat, and halite-rich brine-pan facies. 20 figs., 2 tabs.

  14. Origin of the Nubian and similar sandstones

    USGS Publications Warehouse

    McKee, E.D.

    1963-01-01

    The Nubian Sandstone and similar sandstone bodies exposed across much of northern Africa and adjoining parts of Asia are characteristically formed of clean sand that is conspicuously cross stratified throughout. Such sandstone, here called Nubian-type sandstone, ranges from Cambrian through Cretaceous in age and its genesis has been interpreted in many ways. Studies of its primary structures, and of the direction of sand transport, based on statistical measurements of foreset dip directions, have contributed new data on its genesis. By far the most common structure in Nubian-type sandstone is a medium-scale planar-type cross stratification in which sets of evenly dipping cross beds are bounded by essentially flat-lying top and bottom surfaces to form tabular bodies. Other less numerous but typical structures are large-scale, truncated-wedge cross strata, trough-type cross strata, intraformational recumbent folds, small-scale ripple laminae, and dipping sets of tabular-planar cross beds. An analysis of these structures suggests that in the typical Nubian Sandstone of Cretaceous age eolian deposits are not represented and normal marine types probably also are lacking; flood plain, pond or lagoon, and other continental and marginal environments are indicated. In the Carboniferous rocks of Sinai Peninsula some beach sandstone and possibly some eolian, in addition to the types described, form part of the sequence. Direction of sand transport, as determined from cross-bed dips, was northerly in the Cretaceous Nubian of Libya, Sudan, and Egypt; easterly in the Jurassic Adigrat of Ethiopia; westerly in the Carboniferous of Sinai; northwesterly in the early Paleozoic of Jordan. ?? 1963 Ferdinand Enke Verlag Stuttgart.

  15. Tidal-bundle sequences in the Jordan Sandstone (Upper Cambrian), southeastern Minnesota, U.S.A.: Evidence for tides along inboard shorelines of the Sauk Epicontinental Sea

    USGS Publications Warehouse

    Tape, C.H.; Cowan, Clinton A.; Runkel, Anthony C.

    2003-01-01

    This study documents for the first time tidal bundling in a lower Paleozoic sheet sandstone from the cratonic interior of North America, providing insights into the hydrodynamics of ancient epicontinental seas. The Jordan Sandstone (Upper Cambrian) in the Upper Mississippi Valley contains large-scale planar tabular cross-sets with tidal-bundle sequences, which were analyzed in detail at an exceptional exposure. Tidal-bundle sequences (neap-spring-neap cycles) were delineated by foreset thickening-thinning patterns and composite shale drapes, the latter of which represent accumulations of mud during the neap tides of neap-spring-neap tidal cycles. Fourier analysis of the bundle thickness data from the 26 measurable bundle sequences revealed cycles ranging from 15 to 34 bundles per sequence, which suggests a semidiurnal or mixed tidal system along this part of the Late Cambrian shoreline. We extend the tidal interpretation to widespread occurrences of the same facies in outcrops of lesser quality, where the facies is recognizable but too few bundles are exposed for tidal cycles to be measured. By doing so, this study shows that tidally generated deposits have a significant geographic and temporal extent in Upper Cambrian strata of central mid-continent North America. The deposition and preservation of tidal facies was related to the intermittent development of shoreline embayments during transgressions. The tidally dominated deposits filled ravined topographies that were repeatedly developed on the updip parts of the shoreface. Resulting coastal geomorphologies, accompanied perhaps by larger-scale changes in basinal conditions and/or configuration, led to changes in depositional conditions from wave-dominated to tide-dominated. Outcrops of the Jordan Sandstone tidal facies in the Upper Mississippi Valley represent the farthest inboard recorded transmission of ocean-generated tides in the Laurentian epicontinental seas, demonstrating that tidal currents were

  16. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect

    Schatzinger, R.A.; Tomutsa, L.

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  17. A sequence stratigraphic study of the Tangaroa Sandstone, Taranaki Basin, New Zealand

    SciTech Connect

    Gresko, M.D.; Jordan, D.W.; Thompson, P.R. )

    1990-05-01

    Seismic sequence interpretation of the Tangaroa Sandstone, combined with detailed biostratigraphic analysis, well log interpretation, and core descriptions, confirm the Tangaroa as a late Eocene-early Oligocene, sand-rich, submarine fan complex within the Taranaki basin of northwest New Zealand. The Tangaroa Sandstone is underlain by deep-water shales (Eocene Kaiata Formation) and overlain by a thick deep-water limestone (Oligocene Te Kuiti Formation), and typically consists of two, 25-150-m-thick vertically stacked sandstones, separated by a thin (8 m) limestone. Seismic isochron thickness maps of the Tangaroa interval display a fan-shaped geometry. Internal seismic facies are dominated by erosional channels and progradational wedges. The erosional channels, to 1-5 km wide and approximately 70-150 m thick, are interpreted as upper to mid-fan feeder channels. Thin progradational wedges are located basinward of the channels. Paleobathymetic data, based on micropaleontology, indicate a shelf-to-deep-water genesis of the Tangaroa. Conventional core data suggest that the Tangaroa comprises fine- to coarse-grained clastics that were deposited by debris flows, liquefied flows, and turbidites. Using seismic sequence techniques, verified by biostratigraphic control, the Tangaroa Sandstone is subdivided into two sequences: the Lower Tangaroa sequence and the Upper Tangaroa sequence, which formed during two distinct relative lowstands in sea level. The intervening limestone and the overlying Te Kuiti Limestone, apparently were deposited during periods of relative highstands in sea level. The Eocene Oligocene boundary is located in the thin limestone of the Lower Tangaroa sequence.

  18. Geometric and sedimentologic characteristic of Mid-Miocene lowstand reservoir sandstones, offshore northwest Java, Indonesia

    SciTech Connect

    Lowry, P.; Kusumanegara, Y.; Warman, S.

    1996-12-31

    Numerous reservoirs in the Upper Cibulakan Formation (Mid-Miocene) of the Offshore Northwest Java shelf occur in sharp-based sandbodies that range from less than 1 m up to 10 m in thickness. Well-log derived net-sand isopach and seismic amplitude maps of these sandbodies depict elongate features, that are 1-2 km wide and 5-8 km long. The orientation of the longest axis of these sandbodies is predominantly north-south. Conventional cores reveal that these sandbodies are burrowed to completely bioturbated sandstones. Common trace fossils associated with these sandbodies include Ophiomorpha, Teichichnus and Thalassinoides. The lower contact of these sands is typically sharp and is commonly associated with a Glossifungites surface and siderite mud clasts. Overlying and underlying mudstones are relatively devoid of burrowing. Benthonic foraminifera assemblages within these mudstones indicate inner to outer neritic conditions in a relatively restricted marine setting. The upper contact of these sandstones is gradational over a 0.5 to 1m interval. Sandbodies of the same age and similar facies were observed in outcrops in onshore west Java. Here, they can be observed to pinch out over a distance of 500 m. The lower bounding contact appears discordant with underlying interbedded sandstones and mudstones. Several of the sandstones contain abundant accumulations of the large, open marine, benthonic foraminifera Cycloclypeus and Lepidocyclina. Occasionally the concentration of these large foraminifera form limestones within the sharp-based sandbodies. These bioclastic deposits commonly exhibit planar-tabular and trough cross-stratification. The sandbodies are interpreted as having been emplaced during relative falls in sea-level within a large Mid-Miocene embayment. Our understanding of their geometry and sedimentologic characteristics is leading to a more effective exploitation strategy for these sandbodies in the Offshore Northwest Java area.

  19. Anatomy of an ancient aeolian sandstone on Mars: the Stimson formation, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Banham, Steven; Rubin, David; Watkins, Jessica; Sumner, Dawn; Grotzinger, John P.; Lewis, Kevin; Edgett, Kenneth S.; Edgar, Lauren; Stack, Kathryn; Day, McKenzie; Ewing, Ryan; Lapotre, Mathieu

    2016-10-01

    Since landing in 2012, the Mars Science Laboratory's (MSL) rover Curiosity has traversed the plains and foothills of Aeolis Mons (informally known as Mt. Sharp) investigating the environments preserved in the stratigraphic record of Gale crater. Recently, the Curiosity team has been investigating the Stimson formation, a sandstone exhibiting abundant crossbedding that drapes the underlying Murray formation mudstones. The contact between the Stimson and underlying Murray formation exhibits several meters relief over several 100 m hundred metres where encountered thus far. The Stimson is observed to onlap onto this contact, indicating that accumulating Stimson sandstones unconformably onlapped or buried local palaeotopography.Facies and architectural elements observed within the Stimson are interpreted to represent deposition within an ancient dune field. The Stimson formation is typically composed of decimeter-scale and meter-scale crossbedded sandstones, (exhibiting wind-ripple lamination and well rounded particles up to granule size). Architectural elements are visible in outcrops oriented perpendicular to the regional northwest dip. These consist of undulating surfaces parallel to the regional dip with observed lateral extents up to 30 m that truncate underlying cross-sets and commonly act as basal surfaces to overlying cross-sets. Undulating surfaces are interpreted possibly to be deflationary supersurfaces, which formed in response to deflation or dune-field stabilisation across a regional extent. Surfaces inclined relative to the regional dip ascend between supersurfaces towards the north east at an observed angle of 3-4°. These surfaces are interpreted to be dune bounding surfaces, which are preserved when dunes climb as a result of dune-field aggradation. Aggradation of the system during the duration of the dune field's existence possibly occurred as a response to episodic increases of sediment supply into the basin, allowing dunes to climb and preserving

  20. Facies stratigraphy of Upper Cretaceous chalk-to-clastic transition zone and discontinuity-bounded genetic packages created by rapid sea level change on Campanian shelf of central and eastern Alabama

    SciTech Connect

    King, D.T. Jr.; Skotnicki, M.C.

    1986-05-01

    The intertonguing Mooreville Chalk and clastic Blufftown Formation (Campanian) contain a transition zone from chalk to clastic rocks in the outcrop area between Montgomery, in central Alabama, and the Chattahooche Valley of Alabama's eastern border, a span of 150 km. A dipsection transect of the shelf facies shows the shoreward sequence: chalk (outer shelf), clayey marl (inner outer shelf), marly glauconitic siltstone (inner shelf), and bioturbated sand (lower shoreface). The inner-shelf facies contains evidence of punctuated mixing of clastics in the form of hummocky cross-bedded sand, turbidite-emplaced coquinoid sandstone beds, and imbricated Exogyra shell beds. The outer-shelf facies contains sandy shelf-bar deposits associated with regressive episodes. A regional correlation of shelf and shoreline facies shows distinct genetic packages marked by facies discontinuities. These discontinuities are the result of rapid sea level changes. The authors interpreted four transgressive-dominant genetic packages, ranging from 15 m to 50 m thick, each of which can be traced from the shoreline clastic region in the east to the outer-shelf area on the west. In the shoreline clastic region, truncated, transgressive barrier-island sequences rest on lagoonal facies. In the shelf area, the tops of some genetic packages are marked by increased frequency of storm and turbidite sand layers and the development of sandy shelf bars.

  1. The stratigraphy of the Trinity Group, East Texas basin

    SciTech Connect

    French, V.L. )

    1991-03-01

    The Lower Cretaceous Trinity Group of the East Texas basin contains formations that have produced oil for a number of years, and while they have been the subject of considerable discussion, little has been said about their character and regional distribution over the entire basin. This regional treatment is critical to an understanding of the tectonic history of the East Texas basin. The Trinity Group consists of facies varying from fluvial sands to marginal marine limestones and shales. In the East Texas basin, Trinity rocks were initially deposited during basinal subsidence and form a wedge of sediments that thicken rapidly eastward. Early Trinity deposition began as clastics were shed from highlands to the north and west and then were deposited within the basin by prograding deltaic systems. Sediment was first deposited as channel-fill and point-bar deposits. Toward the basin, fluvial sands were deposited as destructive deltaic facies. True marine sedimentation was confined to the extreme southeastern part of the basin. Trinity deposition reflects a series of minor transgressive and regressive pulses, with environments ranging from deltaic and shallow open shelf to restricted lagoon. With the buildup of the Stuart City reef system along the southern margin of the basin isolation occurred. During late Trinity, seas covered the entire basin and a large area of the stable Texas platform resulting in deposition of a thick, shallow, open-marine limestone and shale sequence, which marks the end of Trinity deposition.

  2. Shoreline depositional environments of Glen Rose Formation (lower Cretaceous) in type area, Somervell and Hood Counties, Texas

    SciTech Connect

    Bergan, G.R.

    1988-09-01

    The studied interval of the Glen Rose Formation (Aptian-Albian) comprises a clastic-to-carbonate sequence, which was deposited in a seaward-fining tidal flat-salt marsh complex. Eight distinct facies were identified, including the calcareous sandstone, calcareous shale, bivalve shale, oyster shale, transitional terrigenous-carbonate, dolomite, bioclastic packstone-grainstone, and shell-fragment wackestone facies. These facies were deposited in sand flats; small fluvial creeks; an ecologically complex, mud-dominated intertidal flat; and a subtidal, nearshore lagoon. Thin bioclastic packstone-grainstones and dolomites of the high energy intertidal and supratidal environments regularly interrupt the terrigenous clastic facies. Abundant nearshore features include salt-tolerant land plants, dinosaur tracks, desiccation cracks, and localized concentrations of evaporites. A warm semi-arid to arid climate is indicated. This sequence is interpreted as being comparable to the Holocene salt marshes on Sapelo Island, Georgia, based on similar lithofacies, sedimentary structures, and biological components.

  3. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    SciTech Connect

    Henry, C D; Duex, T W; Wilbert, W P

    1982-09-01

    The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.

  4. Eustatic controls on stratification and facies associations in deep-water deposits, Great Valley sequence, Sacramento Valley, California

    SciTech Connect

    Morgan, S.R.; Campion, K.M.

    1987-05-01

    The Great Valley sequence consists of submarine fan deposits that are divided into laterally persistent sandstones and conglomerates separated by thick shaly intervals. The frequency of sandstone-shale successions in the Great Valley closely corresponds to the occurrence of major eustatic falls observed elsewhere in the world during the Upper Jurassic and Cretaceous. This close correspondence between the number of observed fans and sea level cycles has implications for the timing of fan development and facies models of deep-water deposits. On the basis of seismic expression, deep-water deposits from various basins have been divided by Mitchum into a sand-prone lower fan, which has a sharp basal contact, and a younger upper fan, which exhibits downlap onto and over the lower fan. Sand-prone members of the Great Valley (e.g., Venado and Forbes) are sharp-based, fining-upward units that have an aggradational or retrogradational stacking pattern of fan lobes. Massive sandstone, pebbly sandstone, conglomerate, pebbly mudstone, turbidites, and lenticular turbidites compose the fan lithologies. These rocks are typically referred to as inner fan channel or midfan lobes. In contrast, shale-dominated sections with thin-bedded turbidites (e.g., Boxer and Yolo) that have been variously described as basin plain, outer fan, inner fan levee, and slope correspond to the upper fan. Sharp basal fan contacts, textural contrasts between the lower and upper fans, and encasement of sand-prone fans in thick shaly sections indicate that fan development is an episodic rather than a continuous process. Rapid eustatic fall causing stream incision and shelf bypass is a likely mechanism for basin-wide and interbasinal fan development. Lithofacies encountered in fan deposits are related to grain size in the source area; specific lithologies in Great Valley fans (e.g., conglomerate) may be absent in other basins.

  5. Reservoir characterization through facies analysis of core and outcrop of the Lower Green River Formation: Hydrocarbon production enhancement in the Altamont-Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Wegner, M.; Garner, A.; Morris, T.H.

    1995-06-01

    The Altamont-Bluebell Field has produced over 125 million barrels of oil from lacustrine rocks of the Green River Formation, yet operators have not been able to accurately distinguish productive zones from non-productive, thief, and water-bearing zones. Low recoverability is largely due to the lack of understanding of the relationship between heterolithic facies, reservoir fracture systems and clay migration. These areas were investigated by analyzing over 457 meters of core from the Bluebell area and 843 meters of outcrop from the Willow Creek area. Approximately 60% of the core consists of carbonates and 40% consists of clastics (predominantly sandstones). The carbonate rocks in general have good porosity and randomly oriented, interconnected fractures, whereas the fractures in the sandstones are more vertical and isolated. The sandstones, however, do have the best reservoir capacity due to inherent interparticle porosity. Preliminary analysis of clay types indicates swelling illite-smectite mixed layer clays as well as kaolinite in both the elastic and carbonate rocks. These swelling clay types combine with the high pour point waxy oils to reduce production efficiency and total recovery. Outcrop studies conducted in the Willow Creek Canyon area help establish facies heterogeneity and reservoir storage capacity of lithology within the facies belts that have been defined in the Altamont-Bluebell field. Although production primarily occurs from fractured lithology, core plug analyses of more than 10 lithology indicate that arenites have the greatest potential for reservoir capacity, with porosities as high as 27%. This suggests that an association of arenites with fractured lithology would provide the best scenario for long-term production.

  6. New Perspectives on the Old Red Sandstone

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.

    The Old Red Sandstone is amongst the most distinctive and well-known stratigraphic units in the British Isles. It is mainly of Devonian age; in fact, its lower boundary was used to define the base of the Devonian until relatively recently and it was called "Old" back in the nineteenth century to distinguish it from a superficially similar succession of Triassic age named the New Red Sandstone. The Old Red Sandstone has long been known to be a non-marine syntectonic to post-tectonic deposit associated with the Caledonian Orogeny One of the most famous outcrops of the red sandstone is at Siccar Point in northeast England at one of several outcrops named "Hutton's unconformity" where it lies, with marked angularity on Silurian lithic sandstones and shales. It was at these outcrops, toward the end of the eigthteenth century that James Hutton first came to understand the meaning of angular unconformities as structures representing vast amounts of missing time during which major upheavals of the Earth's crust occurred.

  7. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    PubMed Central

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  8. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  9. Distinguishing different sedimentary facies in a deltaic system

    NASA Astrophysics Data System (ADS)

    Purkait, Barendra; Majumdar, Dipanjan Das

    2014-07-01

    An attempt has been made to differentiate sedimentary facies in a modern deltaic system by means of grain-size characteristics of the Ganga alluvial plain of West Bengal, India. Three main energy environments (marine, mixed and riverine) comprising the delta were considered. Sand samples were collected from rivers (both tidal and non-tidal), coastal dunes, beaches and tidal flats of the deltaic plain. The grain-size distribution patterns were compared with the two model distributions of log-normal and log-skew-Laplace. Different sedimentary facies were identified by discriminant functions. The analytical results indicate that the energy gradient of the different sedimentary facies of the deltaic system is well reflected by the grain-size characteristics of the individual facies. While critically analyzing the role of different textural parameters in discriminating the individual facies associations, it is observed that the mean size, alpha (slope of coarser fractions of Laplace model) and skewness have greater potential to distinguish different sedimentary facies of the deltaic system. The results of discriminant analysis might be applicable to paleo-environmental interpretation of a deltaic system by distinguishing the individual facies associations.

  10. Seismic facies interpretation of Mesozoic sequences, Shiwandashan basin, China

    SciTech Connect

    Leu, Leikuang; Armentrout, J.M.; Faz, J.J. )

    1991-03-01

    Integration of outcrop and subsurface geologic data with seismic facies analysis identified three exploration plays in Shiwandashan basin, southeastern China: Triassic Submarine Fan: Elongate-mounded packages of variable amplitude, discontinuous, nonparallel reflections occur basinward of the slope and are downlapped by prograding slope clinoforms. This facies is undrilled. Basin modeling suggests the mounded seismic facies correlates with outcrops of Triassic marine siliclastic turbidites which grade laterally into basinal mudstone/limestone couplets. Triassic Shelf Carbonates: Localized, high amplitude parallel reflections occur in a retrograde succession at the top of the Triassic prograding clinoform. These high amplitude seismic facies are calibrated with drilled carbonate facies and are correlated with outcrops of upper Triassic shelf and shelf-edge reefs that contain two generations of migrated hydrocarbons. Jurassic Fan Deltas: Thick northeast-southwest bidirectional downlapping hummocks of variable amplitude reflections and intersecting northwest downlapping clinoforms form large mounds and grade laterally to moderately continuous parallel reflections. The hummocky-clinoform mound facies is calibrated by drilled, poorly sorted conglomerates and correlates with outcrops of a Jurassic synrift basin-fill succession. These Jurassic rocks are interpreted as fan-deltas grading laterally to sandy fluvial and shaley lacustrine facies. The geochemical data suggest a potential gas-prone play for the Triassic submarine fans and potential oil-prone play for the stratigraphically shallower Triassic shelf and shelf-edge reefs. The Jurassic fan delta play drilled tight with no hydrocarbons.

  11. Coal facies studies in the eastern United States

    USGS Publications Warehouse

    Hower, J.C.; Eble, C.F.

    2004-01-01

    Coals in the eastern United States (east of the Mississippi River) have been the subject of a number of coal facies studies, going back to the 19th century. Such studies would not necessarily fall within a strict modern classification of coal facies studies, but if a study encompassed some aspects of paleobotany, palynology, petrology, geochemistry, or sedimentology, we assumed that some data and interpretations may be of use in evaluations of the facies. References are presented, as a guide for further research, with annotation in the tables. ?? 2004 Elsevier B.V. All rights reserved.

  12. Quaternary alluvial deposits of Wadi Gaza in the middle of the Gaza Strip (Palestine): Facies, granulometric characteristics, and their paleoflow direction

    NASA Astrophysics Data System (ADS)

    Ubeid, Khalid Fathi

    2016-06-01

    The Quaternary rocks of the Gaza Strip mainly consist of clastic sedimentary rocks. In Wadi Gaza, the outcropping rocks consist of brownish fine-grained deposits, sandstones, and conglomerates. The deposits have been studied from a genetic point of view, and six facies have been described: (i) graded clast-supported conglomerates, (ii) cross-bedded clast-supported conglomerates, (iii) sandy matrix conglomerates, (iv) cross-laminated medium-grained sandstones, (v) graded coarse-grained sandstones, and (vi) massive sandstones. The field work observations and granulometric analysis show that the sphericity of the grains increase toward the west, where its value ranges from ∼0.64 in the east to ∼0.70 in the west. In addition, the grain forms tend to be disc shape in the east, whereas they tend to be disc-to spheroid shape in the west, and they become well rounded to well sorted toward the west. Moreover, the features, geometry, and spatial relationship among these facies suggest that the Wadi Gaza was meandering wadi fed from Beir Sheva and the Northern Negev in the southeast of Gaza Strip through Wadi Al Shallala and Wadi Sheneq and from Hebron mountains in the West Bank at the east through Wadi Al Shari'a alluvials. Within the Gaza Strip, paleocurrent data ranges from 210° to 310°, indicating a mean a paleoflow direction to the W (276°) and a median value about 275°. The sedimentary rocks in the Wadi Gaza are considered to be deposited in two periods of climate conditions: the coarse-grained rocks were deposited during the period of wet condition before 12.4 ka age, whereas the eolinite fine-grained rocks were deposited during semiarid climate conditions which are younger in age than 12.4 ka.

  13. Delayed onset sandstone pneumoconiosis: a case report

    SciTech Connect

    Symanski, H.

    1981-01-01

    An unusual case of silicosis is described in a worker who inhaled the dust of pure silica while working in a sandstone quarry. The exposure lasted only eight years. In 1980, 45 years after exposure ceased, severe clinical manifestations of silicosis appeared for the first time. The chest X-ray showed a pneumoconiosis A 2mn/A2 Mn Cor, em, hilus, based on the International Classification of Geneva, 1958. A diagnosis of sandstone pneumoconiosis was made. The case is one further example of late-occurring disease appearing after a latency of several decades.

  14. A NMR characterisation of a banded sandstone.

    PubMed

    Bolam, A C; Packer, K J

    1998-01-01

    1H-nuclear magnetic resonance (NMR) measurements have been carried out on a banded sandstone to investigate the effects of structural inhomogeneities on the fluid dynamics of the sample as a whole. The results obtained from average propagator measurements (the probability of a displacement z in a time delta or P delta (z)) using pulsed-field-gradient techniques have been compared to those obtained from a study of a homogeneous sandstone. Relaxation has been used to derive the pore sizes for the differing bands and have been found to correlate with flow velocities within the bands.

  15. Delayed onset sandstone pneumoconiosis: a case report.

    PubMed

    Symanski, H

    1981-01-01

    An unusual case of silicosis is described in a worker who inhaled the dust of pure silica while working in a sandstone quarry. The exposure lasted only eight years. In 1980, 45 years after exposure ceased, severe clinical manifestations of silicosis appeared for the first time. The chest X-ray showed a pneumoconiosis A 2mn/A2 Mn Cor, em, hilus, based on the International Classification of Geneva, 1958. A diagnosis of sandstone pneumoconiosis was made. The case is one further example of late-occurring disease appearing after a latency of several decades.

  16. Stratigraphy and depositional environment of nonmarine facies of Frontier Formation, Eastern Pioneer Mountains, southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Tysdal, R.G.

    1998-01-01

    The Upper Cretaceous Frontier Formation in the eastern Pioneer Mountains of southwestern Montana was deposited in nonmarine environments west of the Western Interior Seaway within the Cordilleran foreland basin. These rocks have been assigned to the Frontier because they contain lithologies typical of the Frontier in the region even though they are entirely nonmarine and are thicker than the correlative marine Frontier to the east. The Frontier in the eastern Pioneer Mountains is underlain by the Vaughn Member of the Blackleaf Formation, but the upper part of the Frontier has been eroded and locally is overlain by rocks of Tertiary age. Geologic mapping was conducted and four sections were measured and described to determine facies, thickness variations, and depositional environments. In the eastern Pioneer Mountains study area, the Frontier ranges in thickness from about 1200 ft (366 m) in the south to more than 3400 ft (1036 m) in the north\\. Frontier strata in the study area cannot be readily subdivided into mappable units, but two broadly-defined informal lithic units are described. The lower unit contains yellow-brown weathering siltstone, mudstone, and fine-grained quartz-rich sandstone, and is about 250 ft (76 m) thick. The upper unit is composed of yellow-brown to dark-gray siltstone and mudstone, quartz- and chert-rich sandstone, conglomeratic sandstone, and limestone, and is more than 2100 ft (640 m) thick in one measured section. The lower contact of the Frontier is placed at the top of a porcellanite bed that is associated with maroon mudstone and siltstone, limestone, and calcareous dark-gray shale in the underlying Vaughn Member of the Blackleaf Formation. The porcellanite bed directly overlies the highest maroon mudstone-siltstone bed of the upper Vaughn. The Frontier Formation in the eastern Pioneer Mountains was deposited on a broad delta plain dominated by fine-grained sediments. Sandstones exhibit characteristics of anastomosing fluvial channels

  17. Critical appraisal of fluvial facies models

    SciTech Connect

    Bridge, J.S.

    1983-03-01

    Interpretation (and subsequent prediction) of the lithofacies geometry of ancient river-channel deposits requires full understanding of the formative processes. This is ideally gained by linking channel geometry and hydraulics with sediment erosion, transport, and deposition, using generalized (quantitative) physical models. Such models exist for high-stage deposition in single curved channels of simple planform: they are capable of approximating the three-dimensional variation of mean grain size and internal structure of point-bar deposits in channels with differing geometries and flow characteristics. However, such models cannot presently predict processes operating on point bar tops (e.g., sheet floods, chute channel and bar formation, scroll bars, flow separation zones) or the nature of low-flow deposits. Lateral lithofacies variation due to meander-loop evolution and cutoff is also inadequately understood. Generalized physical models of braided and anastomosed river deposition are particularly poorly developed, and need urgent attention. Single-channel and braided rivers can be distinguished on the basis of their water discharge, slope, width/depth ratio, and sinuosity; quantitative analysis of ancient alluvium is required for reconstruction of these parameters. Although braided river deposits should typically have a high proportion of coarse-grained channel fills relative to lateral accretion deposits, coarse-grained channel fills are also common in sinuous rivers with cutoffs. It appears that presently available qualitative facies models do not adequately represent the range of lithofacies geometries expected from different kinds of rivers, and therefore do not allow thorough and unequivocal interpretation of paleochannel geometry, flow characteristics, and evolution.

  18. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic Reservoirs of South Texas. [Quarterly] technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Tyler, N.; Levey, R.A.

    1995-06-30

    Advanced reservoir characterization techniques are being applied to selected reservoirs in the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) trend of South Texas in order to maximize the economic producibility of resources in this mature oil play. More than half of the reservoirs in this depositionally complex play have already been abandoned, and large volumes of oil may remain unproduced unless advanced characterization techniques are applied to define untapped, incompletely drained, and new pool reservoirs as suitable targets for near-term recovery methods. This project is developing interwell-scale geological facies models and assessing engineering attributes of Frio fluvial-deltaic reservoirs in selected fields in order to characterize reservoir architecture, flow unit boundaries, and the controls that these characteristics exert on the location and volume of unrecovered mobile and residual oil. The results of these studies will lead directly to the identification of specific opportunities to exploit these heterogeneous reservoirs for incremental recovery by recompletion and strategic infill drilling. Project work during the second quarter of 1995 consisted of (1) documentation of Phase II tasks associated with the delineation of untapped and incompletely drained reservoir compartments and new pool reservoirs in selected Frio fluvial-deltaic sandstone intervals in Rincon and Tijerina-Canales-Blucher (T-C-B) fields, as well as (2) tasks related to the transfer of the technologies to industry that aided in delineation. Text and figures have been prepared to support the geological-based compartment architecture and petrophysical analysis is being undertaken to provide a volumetric assessment of remaining resources and recoverable reserves. Petrophysical work during this period has focused on Rincon field reservoirs because of the availability of core material for special core analysis.

  19. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio fluvial-deltaic reservoirs of South Texas. Technical progress report, July 1--September 30, 1995

    SciTech Connect

    Tyler, N.; Levey, R.A.

    1995-10-10

    Advanced reservoir characterization techniques are being applied to selected reservoirs in the Frio fluvial-deltaic sandstone trend in order to maximize the economic producibility of resources in this mature oil play. More than half of the reservoirs in this play have already been abandoned, and large volumes of oil may remain unproduced unless advanced characterization techniques are applied to define untapped, incompletely drained, and new pool reservoirs as suitable targets for near-term recovery methods. This project is developing interwell-scale geological facies models and assessing engineering attributes of reservoirs in selected fields in order to characterize reservoir architecture, flow unit boundaries, and the controls that these characteristics exert on the location and volume of unrecovered mobile and residual oil. Phase 1 consisted of reservoir selection and initial framework characterization. Phase 2 involved advanced characterization to delineate incremental resource opportunities. Subtasks included volumetric assessments of untapped and incompletely drained oil along with an analysis of specific targets for recompletion and strategic infill drilling. The third phase of the project consists of documentation of Phase 2 results, technology transfer, and the extrapolation of specific results from reservoirs in this study to other heterogeneous fluvial-deltaic reservoirs within and beyond the Frio play in South Texas. Project work during this quarter consisted of (1) documentation of Phase 2 tasks associated with the delineation of untapped and incompletely drained reservoir compartments and new pool reservoirs in selected Frio fluvial-deltaic sandstone intervals in Rincon and Tijerina-Canales-Blucher fields, as well as (2) Phase 3 tasks related to the transfer of the technologies to industry that aided in delineation.

  20. PROBLEMS AND METHODOLOGY OF THE PETROLOGIC ANALYSIS OF COAL FACIES.

    USGS Publications Warehouse

    Chao, Edward C.T.

    1983-01-01

    This condensed synthesis gives a broad outline of the methodology of coal facies analysis, procedures for constructing sedimentation and geochemical formation curves, and micro- and macrostratigraphic analysis. The hypothetical coal bed profile has a 3-fold cycle of material characteristics. Based on studies of other similar profiles of the same coal bed, and on field studies of the sedimentary rock types and their facies interpretation, one can assume that the 3-fold subdivision is of regional significance.

  1. [FEATURES MORPHOLOGICAL PICTURE FACIES ORAL LIQUID IN PREGNANT].

    PubMed

    Iakovets, O V

    2015-01-01

    The features of morphological picture facies oral fluid of pregnant women with intact periodontal inflammatory diseases periodontal tissues. Results of the study were compared with the clinical picture. The features of morphological picture of the oral liquid with a healthy non-pregnant and periodontal inflammatory periodontal diseases in pregnant women. Revealed signs of inflammation markers in oral fluid facies in inflammatory processes in periodontal tissues. PMID:27089718

  2. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. )

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  3. Impact Metamorphism of Sandstones at Amguid Crater, Algeria

    NASA Astrophysics Data System (ADS)

    Sahoui, R.; Belhai, D.

    2016-08-01

    Amguid is a 450 m diameter sample crater; it is emplaced in Lower Devonian sandstones.We have carried out a petrographic study in order to investigate shock effects recorded in these sandstones and define shock stages in Amguid.

  4. Treasured Texas Theaters

    ERIC Educational Resources Information Center

    Horton, Anita

    2012-01-01

    Dallas artist Jon Flaming's deep love of Texas is evident in his paintings and sculpture. Although he has created one sculptural Texas theater, his work primarily showcases old Texas barbershops, vacant homes, and gas stations. In this article, the author describes how her students, inspired by Flaming's works, created three-dimensional historical…

  5. East Texas Storytellers.

    ERIC Educational Resources Information Center

    Anderson, Brandi, Ed.

    1987-01-01

    Written and published by the students at Gary High School, Gary, Texas, "Loblolly Magazine" is published twice a year. Issues are frequently devoted to a distant theme. The theme of this issue, "East Texas Storytellers," attempts to capture some of the local color and regional history of eastern Texas. The first article, "Timothy Griffith, Master…

  6. Fractures and stresses in Bone Spring sandstones

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.; Sattler, A.R.; Northrop, D.A.

    1990-09-01

    This project is a collaboration between Sandia National Laboratories and Harvey E. Yates Company being conducted under the auspices of the Oil Recovery Technology Partnership. The project seeks to apply perspectives related to the effects of natural fractures, stress, and sedimentology to the simulation and production of low-permeability gas reservoirs to low-permeability oil reservoirs as typified by the Bone Spring sandstones of the Permian Basin, southeast New Mexico. This report presents the results and analysis obtained in 1989 from 233 ft of oriented core, comprehensive suite of logs, various in situ stress measurements, and detailed well tests conducted in conjunction with the drilling of two development wells. Natural fractures were observed in core and logs in the interbed carbonates, but there was no direct evidence of fractures in the sandstones. However, production tests of the sandstones indicated permeabilities and behavior typical of a dual porosity reservoir. A general northeast trend for the maximum principal horizontal stress was observed in an elastic strain recovery measurements and in strikes of drilling-induced fractures; this direction is subparallel to the principal fracture trend observed in the interbed carbonates. Many of the results presented are believed to be new information for the Bone Spring sandstones. 57 figs., 18 tabs.

  7. Palynostratigraphy and sedimentary facies of Middle Miocene fluvial deposits of the Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Dino, Rodolfo; Soares, Emílio Alberto Amaral; Antonioli, Luzia; Riccomini, Claudio; Nogueira, Afonso César Rodrigues

    2012-03-01

    Palynostratigraphic and sedimentary facies analyses were made on sedimentary deposits from the left bank of the Solimões River, southwest of Manaus, State of Amazonas, Brazil. These provided the age-dating and subdivision of a post-Cretaceous stratigraphic succession in the Amazonas Basin. The Novo Remanso Formation is subdivided into upper and lower units, and delineated by discontinuous surfaces at its top and bottom. The formation consists primarily of sandstones and minor mudstones and conglomerates, reflecting fluvial channel, point bar and floodplain facies of a fluvial meandering paleosystem. Fairly well-preserved palynoflora was recovered from four palynologically productive samples collected in a local irregular concentration of gray clay deposits, rich in organic material and fossilized wood, at the top of the Novo Remanso Formation upper unit. The palynoflora is dominated by terrestrial spores and pollen grains, and is characterized by abundant angiosperm pollen grains ( Tricolpites, Grimsdalea, Perisyncolporites, Tricolporites and Malvacearumpollis). Trilete spores are almost as abundant as the angiosperm pollen, and are represented mainly by the genera Deltoidospora, Verrutriletes, and Hamulatisporis. Gymnosperm pollen is scarce. The presence of the index species Grimsdalea magnaclavata Germeraad et al. (1968) indicates that these deposits belong to the Middle Miocene homonymous palynozone (Lorente, 1986; Hoorn, 1993; Jaramillo et al., 2011). Sedimentological characteristics (poorly sorted, angular to sub-angular, fine to very-coarse quartz sands facies) are typical of the Novo Remanso Formation upper part. These are associated with a paleoflow to the NE-E and SE-E, and with an entirely lowland-derived palinofloristic content with no Andean ferns and gymnosperms representatives. All together, this suggests a cratonic origin for this Middle Miocene fluvial paleosystem, which was probably born in the Purus Arch eastern flank and areas surrounding the

  8. Eccentricity and precession forced cyclicity in the Upper Silurian Williamsport Sandstone Member of the Wills Creek Formation

    SciTech Connect

    Shelton, S.D.; Anderson, E.J. . Dept. of Geology)

    1993-03-01

    The Williamsport Sandstone Member, located at the base of the Wills Creek Formation, contains a complete 5th order sequence, traceable for more than 100 kilometers. This 5th order sequence is initiated with a massive iron-rich sandstone unit. The upper iron-rich sand of the Williamsport Member marks the beginning of the next 5th order sequence. The first 5th order rock cycle, interpreted as the product of the 100 k.y. Milankovitch eccentricity cycle, is divisible into five meter-scale 6th order precessional cycles (PACs). At Cedar Cliff, Maryland, the lithology of each of the five 6th order cycles is distinct. The first cycle (.8m thick) is a massive iron-rich sandstone. The second cycle (.75m thick) is an argillaceous nodular micrite. The third cycle (.75m thick) consists totally of thin-bedded quartz sandstone. The fourth cycle (2m thick) is represented by bedded limestones that thicken upward. The fifth cycle (.6m thick) is very thin-bedded to nodular limestone. This 5th order sequence and most of its internal cyclic elements can be traced over 100 kilometers to Mount Union, Pennsylvania where its facies are largely non-marine. Detailed correlation of these 6th order cycles reveals that the uppermost PAC is missing at Cumberland and Mount Union. At these localities, the prominent iron bed of the next 5th order sequence rests unconformably on the fourth PAC in the sequence. The fifth 6th order cycle was either not deposited or removed by erosion at these proximal localities. The laterally traceable hierarchic cyclic structure in the Williamsport Sandstone is consistent with the Milankovitch forcing model and provides a detailed stratigraphic basis for analysis of lateral patterns of cyclic accumulation in the late Silurian of the central Appalachians.

  9. Lower Cretaceous Avile Sandstone, Neuquen basin, Argentina - Exploration model for a lowstand clastic wedge in a back-arc basin

    SciTech Connect

    Ryer, T.A. )

    1991-03-01

    The Neuquen basin of western Argentina is a back-arc basin that was occupied by epeiric seas during much of Jurassic and Cretaceous time. The Avile Sandstone Member of the Agrio Formation records a pronounced but short-lived regression of the Agrio sea during middle Hauterivian (Early Cretaceous) time. Abrupt lowering of relative sea level resulted in emergence and erosion of the Agrio sea floor; shoreline and fluvial facies characteristic of the Centenario Formation shifted basinward. The Avile rests erosionally upon lower Agrio shale over a large area; well-sorted, porous sandstones within the member pinch out laterally against the base-Avile erosional surface. Avile deposition closed with an abrupt transgression of the shoreline to the approximate position it had occupied prior to the Avile regression. The transgressive deposits are carbonate rich, reflecting starvation of the basin as a consequence of sea-level rise. The Avile lowstand clastic wedge consists predominantly of sandstones deposited in fluvial to shallow-marine paleoenvironments; eolian sandstones probably constitute an important component in the eastern part of the area. The sandstones locally have excellent reservoir characteristics; they constitute the reservoirs in the Puesto Hernandez, Chihuido de la Sierra Negra, and Filo Morado fields. The pinch-out of the Avile lowstand clastic wedge has the potential to form stratigraphic traps in favorable structural positions. The depositional model indicates that there may be a viable stratigraphic play to be made along the Avile pinch-out in the deep, relatively undrilled, northwestern part of the Neuquen basin.

  10. Emplacement of sandstone intrusions during contractional tectonics

    NASA Astrophysics Data System (ADS)

    Palladino, Giuseppe; Grippa, Antonio; Bureau, Denis; Alsop, G. Ian; Hurst, Andrew

    2016-08-01

    Sandstone injections are created by the forceful emplacement of remobilized sand in response to increases in overpressure. However, the contribution provided by horizontal compressive stress to the build-up in overpressure, and the resulting emplacement of sand injection complexes, is still to be substantiated by robust field observations. An opportunity to address this issue occurs in Central California where a large volume of sandstone intrusions record regionally-persistent supra-lithostatic pore-pressure. Detailed fieldwork allows sandstone-filled thrusts to be recognized and, for the first time, permits us to demonstrate that some sandstone intrusions are linked to contractional deformation affecting the western border of the Great Valley Basin. Fluidized sand was extensively injected along thrust surfaces, and also fills local dilatant cavities linked to thrusting. The main aims of this paper are to provide detailed descriptions of the newly recognized syn-tectonic injections, and describe detailed cross-cutting relationships with earlier sandstone injection complexes in the study area. Finally, an evolutionary model consisting of three phases of sand injection is provided. In this model, sand injection is linked to contractional tectonic episodes affecting the western side of the Great Valley Basin during the Early-Middle Cenozoic. This study demonstrates that sand injections, driven by fluid overpressure, may inject along thrusts and folds and thereby overcome stresses associated with regional contractional deformation. It is shown that different generations of sand injection can develop in the same area under the control of different stress regimes, linked to the evolving mountain chain.

  11. Statewide summary for Texas

    USGS Publications Warehouse

    Handley, Lawrence R.; Spear, Kathryn A.; Gibeaut, Jim; Thatcher, Cindy

    2014-01-01

    Seafood landed at Texas ports valued $240 million in 2011, and recreational saltwater fishing alone provided nearly 17,000 jobs (Texas GLO, 2013). Fishes directly dependent upon wetland habitats include multiple shrimp species, blue crab, eastern oyster, black drum, flounder, sheepshead, and snapper. Texas has the highest number of hunters, anglers, and hunting expenditures in the nation (U.S. Fish and Wildlife Service, 2012). Hunting yields $2.3 billion for the state, and recreational fishing yields $3.2 billion. Texas is the top birding destination in the Nation. Tourism in Texas generates $7.5 billion for the state, and wildlife viewing generates $2.9 billion.

  12. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud

  13. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  14. Build-and-fill sequences: How subtle paleotopography affects 3-D heterogeneity of potential reservoir facies

    USGS Publications Warehouse

    McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.

    2005-01-01

    This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay

  15. Uraniferous asphaltite in Moore and Potter Counties, Texas

    SciTech Connect

    Handford, C.R.; Granata, G.E.

    1980-06-01

    Asphaltite is present in facies of the Red Cave and Panhandle lime Formation. Drill cuttings from 30 Moore County wells and 4 cores distributed across Moore and Potter Counties were examined for asphaltite. Results show that asphaltite is widespread but seems to be most abundant over structural highs, and that there is a facies control of asphaltite occurrences. In drill cuttings sandstones contain most abundant nodules yet the nodules are generally very small. Largest nodules were commonly observed in mudstone core samples. A potential exploration program should take those observations into account. Once exploitable deposits are located and if proper in situ leaching materials were developed for extraction of uranium, only sandstones could be worked. Interchannel mudstones are too impermeable and nonporous. Subsurface mining would be forced to address potential problems derived from high concentrations of hydrocarbons in the target rocks (Red Cave Formation produces oil and gas in Moore County) as well as high levels of radon (averages 100 x 10/sup -12/ curies per liter STP) in gas produced from the Panhandle Field.

  16. Basin Dynamics and Sedimentary Infilling of Miocene Sandstone Reservoir Systems In Eastern Tunisian African Margin

    NASA Astrophysics Data System (ADS)

    Bédir, Mourad; Khomsi, Sami

    2015-04-01

    Most of hydrocarbon accumulations and aquifers within the Cap Bon, Gulf of Hammamet and Sahel basins in eastern tunisian foreland are reservoired within the Upper Miocene Birsa and Saouaf sandstones and shales Formations. In the gulf of Hammamet, these sandstones constitutes oil and gas fields and are exploited on anticline highs and described as varying from shoreface to shallow marine and typically exhibit excellent reservoir quality of 30% to 35% porosity and good permeability from 500 to 1100 md. In addition, the fracturing of faults enhanced the reservoir quality potential. In contrary, the same hydrocarbon reservoirs are important hydrogeologic ones in the Cap Bon and Sahel basins with huge amount of hundred millions of cubic meters of water only partially exploited. Integrated wire line logging correlations, seismic sequence stratigraphic, tectonics and outcrop geologic analogue studies had permitted to highlight the basin structuring and sedimentary environments of sequence deposits infilling of the reservoir distribution between high platforms to subsiding graben and syncline basins bounded by deep-seated transtensive and transpressive flower faults. Seven third order sequence deposits limited by downlap prograding and onlap/toplap aggrading/retrograding system tracts extend along the eastern margin around the three basins by facies and thickness variances. System tracts exhibit around high horst and graben a channelized and levee infillings extending from 100 meters to more than a kilometer of width. They present a stacked single story and multistory channels types showing space lateral and vertical migrations along NE-SW, E-W and N-S directions. Paleogeographic depositional reservoir fair maps distribution highlight deltaic horst domain with floodplain and incised valley of fluvial amalgamed and braided sandstones distributary channels that occupy the high folded horsts. Whereas folded horst-graben and syncline borders domain of Shelf prodelta are

  17. Geologic observations of the Whirlpool Sandstone in Western Warren County, Pennsylvania

    SciTech Connect

    Ensign, J. )

    1991-08-01

    The Whirlpool Sandstone represents the lowest member of the Lower Silurian Medina Group. The sandstone is ubiquitous in western New York and northwestern Pennsylvania, but economic development is difficult to predict and locate on a consistent basis. This reservoir appears to be composed of a basal beach sand, which in some areas is overlain by what appears to be prograding tidal/channel facies. Gross sequence of strata maps and unique vertical-profile maps have been helpful in reconstructing the depositional history of this reservoir. Porosity-foot maps have been very helpful for most development drilling decisions. Detailed cross sections have also provided valuable insight regarding subtle, but important, structural trends. Sonic logs and QLA2 logging software have helped to accurately determine that the cementation exponent is lower than 2.0, which is thought to be characteristic of intergranular porosity. This has justified recompletions in some areas where the Whirlpool was originally not completed due to overly pessimistic water saturations. A multiple regression equation has been used to identify those parameters possessing the highest degrees of correlation when compared to reserves. The maximum value for r-squared was 0.66. The equation-generated reserves were compared against decline-curve reserves and the results were extremely close, suggesting that the regression equations could be used to predict lifetime reserves even before the well is completed. However, since the independent variables are geographically sensitive, this equation can be used only in very specific areas.

  18. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  19. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  20. Sequence stratigraphy of the Aux Vases Sandstone: A major oil producer in the Illinois basin

    USGS Publications Warehouse

    Leetaru, H.E.

    2000-01-01

    The Aux Vases Sandstone (Mississippian) has contributed between 10 and 25% of all the oil produced in Illinois. The Aux Vases is not only an important oil reservoir but is also an important source of groundwater, quarrying stone, and fluorspar. Using sequence stratigraphy, a more accurate stratigraphic interpretation of this economically important formation can be discerned and thereby enable more effective exploration for the resources contained therein. Previous studies have assumed that the underlying Spar Mountain, Karnak, and Joppa formations interfingered with the Aux Vases, as did the overlying Renault Limestone. This study demonstrates that these formations instead are separated by sequence boundaries; therefore, they are not genetically related to each other. A result of this sequence stratigraphic approach is the identification of incised valleys, paleotopography, and potential new hydrocarbon reservoirs in the Spar Mountain and Aux Vases. In eastern Illinois, the Aux Vases is bounded by sequence boundaries with 20 ft (6 m) of relief. The Aux Vases oil reservoir facies was deposited as a tidally influenced siliciclastic wedge that prograded over underlying carbonate-rich sediments. The Aux Vases sedimentary succession consists of offshore sediment overlain by intertidal and supratidal sediments. Low-permeability shales and carbonates typically surround the Aux Vases reservoir sandstone and thereby form numerous bypassed compartments from which additional oil can be recovered. The potential for new significant oil fields within the Aux Vases is great, as is the potential for undrained reservoir compartments within existing Aux Vases fields.

  1. Read Across Texas! 2002 Texas Reading Club Manual.

    ERIC Educational Resources Information Center

    Edgmon, Missy; Ferate-Soto, Paolo; Foley, Lelana; Hager, Tina; Heard, Adriana; Ingham, Donna; Lopez, Nohemi; McMahon, Dorothy; Meyer, Sally; Parrish, Leila; Rodriguez-Gibbs, Josefina; Moreyra-Torres, Maricela; Travis, Gayle; Welch, Willy

    The goal of the Texas Reading Club is to encourage the children of Texas to become library users and lifelong readers. This manual was created for the 2002 Texas Reading Club, a program of the Texas State Library and Archives Commission. The theme, "Read Across Texas!" invites children to explore the history, geography, and culture of Texas…

  2. Facies comparison of autochthonous and allochthonous Permian and Triassic units, north-central Brooks Range, Alaska

    SciTech Connect

    Adams, K.E.

    1985-04-01

    Eight stratigraphic sections of Permian and Triassic rocks have been studied over a 30 km by 150 km area in the Endicott and Philip Smith Mountains of the central Brooks Range. Six of the sections are located on the Endicott Mountains allochthon, and the remaining two are parautochthonous columns in the Mount Doonerak area. The sections record a facies transition between the autochthonous Sadlerochit Group and Shublik Formation of the northeastern Brooks Range and the characteristically siliceous rocks of the allochthonous Siksikpuk and Otuk formations of the western Brooks Range. Laterally continuous and bioturbated beds of fine-grained sandstone, siltstone, and shale dominantly compose the Permian sequence, whereas the Triassic rocks consist of black shales, thin rhythmically bedded siliceous mudstones, and fossiliferous limestones. When the allochthonous sections are restored to a position south of the Mount Doonerak area, a general shallowing trend from southwest to northwest becomes evident within the reconstructed marine basin. To the south and west, the Permian sediments show a marked increase in silica content, with the occurrence of barite and a corresponding decrease in the thickness of the basal, coarser grained clastics. The Triassic formations also document an increase in silica and the presence of barite to the south and west, while becoming significantly sooty and phosphatic to the north and east. Ongoing petrographic and micropaleontologic studies of the field data will clarify these general paleogeographic relationships.

  3. Putative domal microbial structures in fluvial siliciclastic facies of the Mesoproterozoic (1.09 Ga) Copper Harbor Conglomerate, Upper Peninsula of Michigan, USA.

    PubMed

    Wilmeth, Dylan T; Dornbos, Stephen Q; Isbell, John L; Czaja, Andrew D

    2014-01-01

    The Copper Harbor Conglomerate is a Mesoproterozoic (1.09 Ga) freshwater sedimentary sequence that outcrops in the Upper Peninsula of Michigan. The formation was deposited during infilling of the failed Midcontinent Rift and contains fluvial, lacustrine, and alluvial fan facies. This study describes and analyzes the formation of small domal structures preserved in fluvial sandstone facies within the lower portion of the formation. These domal structures range from millimeters to several centimeters in diameter and height, and are preserved in convex epirelief on fine-grained sandstone beds. The structures have a pustulose texture and a patchy distribution on bedding planes. Slabs containing the structures were collected in the field and analyzed in the laboratory through inspection of cut slabs, petrographic thin sections, X-radiographs, and RAMAN spectroscopy. Results of these analyses reveal that the domal structures often contain weak, wavy horizontal bedding and laminae, and lack any vertical structures. These results support a biogenic origin of the domal structures instead of through abiogenic processes such as loading, sand volcanoes, or adhesion warts. These structures are akin to what were traditionally labeled as 'sand stromatolites', but are now known as 'domal sand structures'. Along with previous descriptions of carbonate stromatolites, organic-rich paleosols, and microbial sand structures, our findings provide further evidence that mat-forming microbial communities thrived in the late Mesoproterozoic freshwater systems of the Midcontinent Rift. PMID:24325309

  4. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  5. Sedimentology, diagenesis, and trapping style, Chesterian Tar Springs sandstone at Inman Field, Gallatin County, Illinois

    SciTech Connect

    Morse, D.G.

    1996-09-01

    The Tar Springs Sandstone in southern Illinois is often over-looked as a pay, yet it can be a prolific producer. The Inman Field, discovered in 1940, produces from several cyclic Chesterian sandstones from structural-stratigraphic traps in the Wabash Valley Fault System of southeastern Illinois. The oil was sourced from the Devonian New Albany Shale and apparently migrated vertically along the Wabash Valley faults to its present location, thus charging many of the Chesterian and lower Pennsylvanian sands in the field. The Tar Springs Sandstone produces from stacked distributary channel sand reservoirs up to 125 feet thick which have cut up to 40 feet into laterally equivalent non-reservoir, delta-fringe facies and the underlying Glen Dean Limestone. The reservoir sands are well-sorted, fine- to medium-grained quartz arenites with less than 5% feldspar and chert. Quartz grains have quartz overgrowths. Feldspar grains are clouded in thin-section and show pronounced etching and dissolution in SEM. Diagenetic kaolinite and small amounts of illite and magnesium-rich chlorite occur in intergranular pores. Sparry, iron-rich dolomite or ankerite that fills pores in irregular millimeter-size patches, occupies up to 10% of the reservoir rock. Typical reservoir porosity ranges from 16 to 19 percent and permeability ranges from 60 to 700 md. By contrast non-reservoir delta-fringe sands typically have porosities of 6 to 12 percent and permeabilities of 1 to 20 md. Delta-fringe Tar Springs shales act as impermeable lateral and vertical seals, aiding in stratigraphic trapping.

  6. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf

    SciTech Connect

    Ehrenberg, S.N. )

    1993-07-01

    Five Lower to Middle Jurassic sandstone reservoirs from the Norwegian sector provide examples of deep porosity preservation caused by grain-coating, authigenic chlorite. Wide porosity variations in clean sandstones correlate with an abundance of grain-coating chlorite and consequent inhibition of quarts cementation. Maximum porosities tend to decrease with increasing depth but generally are 10-15% higher than would be predicted from regional trends of mean porosity vs. depth. It is proposed in this paper that the high chlorite content of the porous zones reflects syndepositional concentration of Fe-rich marine clays analogous to minerals of the modern verdine facies. Fe-clay mineralization would have been localized where Fe-rich river water was discharged into the sea. The syndepositional clays were transformed during burial diagenesis into grain coatings of radially oriented chlorite crystals. Petrographic relationships indicate that these coatings grew mainly before the beginning of quartz cementation and feldspar grain dissolution (probably within the first 2 km of burial) but after grain contacts had become adjusted by mechanical compaction. The Norwegian examples demonstrate that a wide range of nearshore marine sand-body types is susceptible to chlorite mineralization. The distribution of anomalous porosity and the proportion of the net sand affected depend upon sedimentary facies architecture and the pattern of discharge of Fe-rich river water during sand deposition. This phenomenon can be critically important for hydrocarbon exploration because it can provide good reservoir quality at depths far below the [open quotes]economic basement[close quotes] originally defined on the basis of sandstones lacking chlorite coatings. 58 refs., 25 figs., 1 tab.

  7. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    SciTech Connect

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  8. Granulite Facies Metamorphism in the Kabul Block, Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, S.; Faryad, S. W.

    2012-04-01

    The Proterozoic Kabul Block is part of the Afghan Central Massif and occurs between the Hindu Kush and Sulaiman Mountain ranges. It consists of amphibolite to granulite facies rocks of Paleo-Neoproterzoic age. The Kabul block has a lens-like shape and is encircled by the Chaman fault from NW and the Altimoor faults from SE. The basement rocks of the Kabul Block are predominantly represented by schists, gneisses and migmatites with lenses of amphibolites and locally also marble. They are mostly unconformably overlain by low-grade early to late Paleozoic sequences. As the Kabul block occurs between the magmatic arc and accretionary wedge which formed during subduction and subsequent collision of the Indian Plate beneath the Laurasian continent, it was subjected to compression and a metamorphic overprint during Alpine orogeny to various degrees. The granulite facies rocks are exposed only locally within amphibolite facies gneisses and migmatites, exposed in the hills that surround Kabul city. They are represented by quartz-feldspathic lithology, which contains lenses of marble and amphibolite. Granulite facies conditions are confirmed by the presence of orthopyroxene both in the gneiss and amphibolite. In addition to orthopyroxene (XMg = 0.4, Al2O3 = 1.3 wt %), the gneiss contains quartz, plagioclase (An27-36), orthoclase and biotite with XMg = 0.36 and TiO2 = 3.5 wt %. The rocks are overprinted by amphibolite facies metamorphism, which is represented by the formation of garnet overgrowing biotite and orthopyroxene. The mafic rocks consist of plagioclase (An87), hornblende (XMg = 0.81), biotite and orthopyroxene (XMg = 0.57, Al2O3 = 1.1 wt %) with inclusions of ilmenite, cummingtonite (XMg = 0.6) and biotite. Hornblende forms as a rim around cummingtonite and overgrows orthopyroxene. Biotite present in this sample has XMg = 0.63 with almost 4 wt % TiO2. Marble adjacent to the granulites are mostly pure calcite, but at contact with surrounding rocks may contain also

  9. Lower Eocene carbonate facies of Egypt: paleogeographic and tectonic implications

    SciTech Connect

    Garrison, R.E.

    1983-03-01

    The northern Arabo-Nubian craton witnessed a major Late Cretaceous-early Tertiary marine transgression that culminated in the deposition of widespread shelf-sea carbonates during Early Eocene (Ypresian) time. Outer shelf facies characterize exposures in central Egypt (Assiut, Luxor, Kharga), and are composed primarily of rhythmically interbedded chalk and micritic limestone with minor intercalated marine hardgrounds. To the south (Kurkur-Dungul), these fine-grained lithologies give way to inner shelf foraminiferal wackestones and grainstones, typical Tethyan Nummulitic facies. Missing in southern Egypt is the restricted dolomitic evaporitic facies predicted by the Irwin model and observed in the lower Eocene of the Sirte basin to the west and the Arabian Platform to the east. Comparing the areal distribution of these lower Eocene carbonates to coeval facies developed across the remained of northern Africa and Arabia reveals the presence of a broad marine embayment which extended through central and eastern Egypt into northern Sudan during Ypresian time. The widespread subsidence that resulted in the development of this features may have been an effect of regional crustal attenuation preceding the rifting of the Red Sea. Concomitant with this regional subsidence were localized uplift and extensional block faulting in the vicinity of the incipient Red Sea rift (the Safaga-Quseir coastal plain). Here, lower Eocene carbonate facies are indicative of shallow water platforms developed on horst blocks, and deeper water, turbidite-fed basins in intervening grabens.

  10. Late Neogene stratigraphy and tectonic control on facies evolution in the Laguna Salada Basin, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Martín-Barajas, A.; Vázquez-Hernández, S.; Carreño, A. L.; Helenes, J.; Suárez-Vidal, F.; Alvarez-Rosales, J.

    2001-10-01

    The Laguna Salada Basin (LSB) in northeastern Baja California records late-Neogene marine incursions in the Salton Trough and progradation of the Colorado River delta. Early subsidence and subsequent tectonic erosion are related to evolution of the Sierra El Mayor detachment fault during late Miocene time (<12 Ma). The stratigraphy of uplifted blocks on the east-central margin of the Laguna Salada Basin and from three exploratory wells allows reconstruction of the main sedimentary and tectonic events. Marine mudstone and sandstone, and subordinate conglomerate of the Imperial Formation tectonically overlie metamorphic and granitic basement. Microfossils, lithology, and sedimentary structures in the Imperial Formation define Upper Miocene (<6 Ma) outer-shelf facies that grade up-section into inner-shelf and tide-dominated delta plain deposits of the ancient Colorado River. Lower Pliocene (˜4-2 Ma) reddish, sub-arkosic fluvial sandstone and siltstone of the Palm Spring Formation defines progradation of non-marine fluvio-deltaic deposits over the marine Imperial Formation. Continuous outcrops of the Palm Spring are less than 170-m thick, but correlative deposits are more than 570 m thick in the lower part of a 2400-m deep geothermal exploratory well on the eastern margin of LSB. Interfingering fluvial-sandstone deposits and prograding alluvial fanglomerates with coarse debris-flow and rock-avalanche deposits crudely mark the onset of vertical slip along the Laguna Salada fault and rapid uplift of Sierra Cucapa and Sierra El Mayor. Up to 2 km of Quaternary alluvial-fan and lacustrine deposits accumulated along the eastern margin of LSB, whereas lower subsidence rates produced a thinner sedimentary wedge over a ramp-like crystalline basement along the western margin. In early Pleistocene time (˜2-1 Ma), the Laguna Salada became progressively isolated from the Colorado River delta complex, and the Salton Trough by activity on the Elsinore and Laguna Salada fault zones.

  11. Ordovician conodonts and stratigraphy of the ST. Peter sandstone and glen wood shale, central United States

    USGS Publications Warehouse

    Witzke, B.J.; Metzger, R.A.

    2005-01-01

    The age of the St. Peter Sandstone in the central and northern Midcontinent has long been considered equivocal because of the general absence of biostratigraphically useful fossils. Conodonts recovered from the St. Peter Sandstone in Iowa, Minnesota, Nebraska, and Kansas for this study help place some age constraints on this renowned formation in its northern and western extent. Faunas from the lower St. Peter include Phragmodus flexuosus, Cahabagnathus sp., and Leptochirognathus sp., and a late Whiterockian (Chazyan) correlation is indicated. Juvenile or immature elements of P. flexuosus from these collections show morphologies trending toward P. cognitus and P. inflexus, and paedomorphic derivation of these latter species is proposed. Diverse assemblages of hyaline forms also occur in the St. Peter strata (Erismodus spp., Erraticodon sp., Curtognathus sp., Coleodus sp., Archeognathus sp., Stereoconus sp., others) along with various albid elements (Plectodina sp., Eoplacognathus sp., others). The overlying Glenwood Shale contains abundant conodonts dominated by Phragmodus cognitus, Erismodus sp., and Chirognathus duodactylus, and the fauna is interpreted as an early Mohawkian (Blackriveran) association. Certain thin shale units in the St. Peter-Glenwood succession represent condensed intervals, in part reflected by their exceptionally high conodont abundances. Some organic-rich phosphatic shale units in the lower St. Peter of western Iowa have produced equivalent yields of tens of thousands of conodonts per kilogram, and many Glenwood Shale samples yield thousands of conodonts per kilogram. Previous depositional models have proposed that the St. Peter is primarily a succession of littoral and nearshore facies forming a broadly diachronous transgressive sheet sand. However, broad-scale diachroneity cannot be demonstrated with available biostratigraphic control. The recognition of condensed marine shale units, phosphorites, ironstones, and pyritic hardgrounds in the

  12. Jonah field, sublette county, Wyoming: Gas production from overpressured Upper Cretaceous Lance sandstones of the Green River basin

    USGS Publications Warehouse

    Montgomery, S.L.; Robinson, J.W.

    1997-01-01

    Jonah field, located in the northwestern Green River basin, Wyoming, produces gas from overpressured fluvial channel sandstones of the Upper Cretaceous Lance Formation. Reservoirs exist in isolated and amalgamated channel facies 10-100 ft (3-30 m) thick and 150-4000 ft (45-1210 m) wide, deposited by meandering and braided streams. Compositional and paleocurrent studies indicate these streams flowed eastward and had their source area in highlands associated with the Wyoming-Idaho thrust belt to the west. Productive sandstones at Jonah have been divided into five pay intervals, only one of which (Jonah interval) displays continuity across most of the field. Porosities in clean, productive sandstones range from 8 to 12%, with core permeabilities of .01-0.9 md (millidarcys) and in-situ permeabilities as low as 3-20 ??d (microdarcys), as determined by pressure buildup analyses. Structurally, the field is bounded by faults that have partly controlled the level of overpressuring. This level is 2500 ft (758 m) higher at Jonah field than in surrounding parts of the basin, extending to the top part of the Lance Formation. The field was discovered in 1975, but only in the 1990s did the area become fully commercial, due to improvements in fracture stimulation techniques. Recent advances in this area have further increased recoverable reserves and serve as a potential example for future development of tight gas sands elsewhere in the Rocky Mountain region.

  13. True triaxial testing of Castlegate sandstone.

    SciTech Connect

    Ingraham, M. D.; Holcomb, David Joseph; Issen, Kathleen A.

    2010-03-01

    Deformation bands in high porosity sandstone are an important geological feature for geologists and petroleum engineers; however, their formation is not fully understood. Axisymmetric compression, the common test for this material, is not sufficient to fully evaluate localization criteria. This study seeks to investigate the influence of the second principal stress on the failure and the formation of deformation bands in Castlegate sandstone. Experimental results from tests run in the axisymmetric compression stress state, as well as a stress state between axisymmetric compression and pure shear will be presented. Samples are tested using a custom triaxial testing rig at Sandia National Laboratories capable of applying stresses up to 400 MPa. Acoustic emissions are used to locate deformation bands should they not be visible on the specimen exterior. It is suspected that the second invariant of stress has a strong contribution to the failure mode and band formation. These results could have significant bearing on petroleum extraction as well as carbon dioxide sequestration.

  14. Fractures and stresses in Bone Spring sandstones

    SciTech Connect

    Warpinski, N.R.; Sattler, A.R.; Lorenz, J.C.; Northrop, D.A.

    1992-06-01

    This project was a collaboration between Sandia National Laboratories and the Harvey E. Yates Company (Heyco), Roswell, NM, conducted under the auspices of Department of Energy's Oil Recovery Technology Partnership. The project applied Sandia perspectives on the effects of natural fractures, stress, and sedimentology for the stimulation and production of low permeability gas reservoirs to low permeability oil reservoirs, such as those typified by the Bone Spring sandstones of the Delaware Basin, southeast New Mexico. This report details the results and analyses obtained in 1990 from core, logs, stress, and other data taken from three additional development wells. An overall summary gives results from all five wells studied in this project in 1989--1990. Most of the results presented are believed to be new information for the Bone Spring sandstones.

  15. Preserving Native American petroglyphs on porous sandstone

    USGS Publications Warehouse

    Grisafe, D.A.

    1996-01-01

    A new method of chemical treatment is proposed to improve the durability of soft, porous sandstones onto which Native American petroglyphs have been carved. Cores of Dakota Sandstone from the Faris Cave site, located along the Smoky Hill River in Ellsworth County, Kansas, were treated with ethyl silicate dissolved in a lightweight ketone carrier, and some cores were subsequently treated with a combination of ethyl silicate and silane using the same solvent. Measurement of the resulting physical properties, when compared to untreated cores, indicate the treatments substantially increased the compressive strength and freeze-thaw resistance of the stone without discoloring the stone or completely sealing the pore system. The treatment increases the durability of the stone and provides a method for preserving the petroglyphs at the site. After treating test panels at the site, the petroglyphs were treated in like manner.

  16. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  17. Isotopic fractionation of uranium in sandstone

    USGS Publications Warehouse

    Rosholt, J.N.; Shields, W.R.; Garner, E.L.

    1963-01-01

    Relatively unoxidized black uranium ores from sandstone deposits in the western United States show deviations in the uranium-235 to uranium-234 ratio throughout a range from 40 percent excess uranium-234 to 40 percent deficient uranium-234 with respect to a reference uranium-235 to uranium-234 ratio. The deficient uranium-234 is leached preferentially to uranium-238 and the excess uranium-234 is believed to result from deposition of uranium-234 enriched in solutions from leached deposits.

  18. Control On Fluid Flow Properties In Sandstone: Interactions Between Diagenesis Processes And Fracture Corridors

    NASA Astrophysics Data System (ADS)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca

    2016-04-01

    During the development of a fault zone, processes occur at different scales: secondary faults and fractures development in the damage zone while "diagenetic" processes, i.e: fluid rock interaction at the grains size scale, contribute to modify the matrix features. Spatial distribution of these processes is clearly controlled by microstructural transformations induced by fractured corridors and their location. Understanding flowing properties in the associated damage zone contributes to the better modeling of the fluid flow in faulted and fractured reservoirs which could be oil, gas or water bearing. The Lower Triassic Buntsandstein sandstones outcrop of Cleebourg is located in the Hochwald Horst affected by a major NNE-SSW striking fault, and the structure globally dips with 30° toward Rhenish Fault (Upper Rhine Graben main western border fault). The study of the outcrop aims to decipher the fluid-flow scheme and interactions between fracture network and diagenetic features distribution in the damage zone of a fault, located close to major faulted areas, through field and laboratories petrophysical measurements (permeability, thermic conductivity), and samples microstructural and diagenetical descriptions. The outcrop is structurally divided into a 14 meters thick fault core, surrounded by 5 meters thick transition zones, and damage zone of minimum thickness of 40 meters (total thickness unknown, due to the limits of the outcrop). Damage zone includes three fractured corridors, perpendicular to bedding and from 2 to 5 meters thick. Results presented here were acquired in 2 different layers with similar lithology but only on damage zone samples. In entire damage zone, porosity results and thin section description allow to distinguish two different facies: • Fa1 Intermediate porous (porosity of 12%) sandstone with major illite cement and clay content up to 20% (detrital and diagenetic); • Fa2 High porous (porosity >15%) sandstone with quartz feeding

  19. Wettability changes in trichloroethylene-contaminated sandstone.

    PubMed

    Harrold, G; Gooddy, D C; Lerner, D N; Leharne, S A

    2001-04-01

    It is usually assumed that chlorinated solvent nonaqueous-phase liquids (NAPLs) are nonwetting with respect to water-saturated porous media. The focus of this work was to examine whether this supposition is appropriate for used trichloroethylene (TCE) samples. In this work, the term "used" indicates that the sample has been employed industrially and therefore contains solutes and breakdown products related to its previous use. The data obtained in this study indicate that exposure of initially water wet quartz slides to industrially used solvents can cause a contact angle change, measured through the aqueous phase, of 100 degrees with a maximum stable contact angle of 170 degrees (indicative of strong NAPL wetting characteristics) being recorded. The work on quartz slides was complemented by the use of sandstone cores. Wettability was measured using the Amott test. Used TCE again proved able to alter the wetting properties of sandstone to neutral wetting. The complexity of the industrially used samples precluded any realistic attempt to examine the agents causing these wetting changes. The data captured in these experiments were compared with laboratory grade TCE, and some attempts were made to synthesize known mixtures in order to replicate wetting changes. These experiments resulted in contact angle changes but did not alter the overall wettability of the quartz slides or sandstone cores. Finally the work reported here also demonstrates that increasing the duration of exposure to solvent has an important impact upon measured contact angle.

  20. Delineation of geological facies from poorly differentiated data

    SciTech Connect

    Wohlberg, Brendt; Tartakovsky, Daniel

    2008-01-01

    The ability to delineate geologic facies and to estima.te their properties from sparse data is essential for modeling physical and biochemical processes occurring in the 'ubsurface. If such data are poorly differentiated, this challcnrring task is complicated further by the absence of a clear distinction between different hydrofacies even at locations where data. are available. vVe consider three alt mative approaches for analysis of poorly differentiated data: a k-means clU!:iterinrr algorithm, an expectation-maximization algorithm, and a minimum-variance algorithm. Two distinct synthetically generated geological settings are used to r:tnalyze the ability of these algorithmti to as ign accurately the membership of such data in a given geologic facies. On average, the minimum-variance algorithm provides a more robust p rformance than its two counterparts and when combined with a nearest-neighbor algorithm, it also yields the most accurate reconstruction of the boundaries between the facies.

  1. Diagenesis and cement fabric of gas reservoirs in the Oligocene Vicksburg Formation, McAllen Ranch Field, Hidalgo County, Texas

    SciTech Connect

    Langford, R.P.; Lynch, F.L. )

    1990-09-01

    McAllen Ranch field produces natural gas from 12 deep, overpressured sandstone packages, each interpreted to be the deposit of a prograding shelf-edge delta. One hundred and sixty thin sections from 350 ft of core were petrographically described. The sandstones are feldspathic litharenites containing subequal proportions of volcanic rock fragments (VRF), feldspar, and quartz grains. Grain size ranges from very fine to coarse sand. Porosity is mostly secondary, having formed through dissolution of VRF and feldspar grains. There are four major diagenetic facies (portions of core that can be grouped by the predominance of one diagenetic cement and similar appearance in hand specimen): (1) calcite cemented; (2) chlorite cemented, tight; (3) chlorite cemented, porous; and (4) quartz overgrowths, porous. The calcite-cemented facies predominates in very fine grained sandstones and siltstones and encroaches into adjoining sandstones irrespective of grain size. Sparry calcite filled all available pores and replaced some feldspar. Core permeabilities are generally less than 0.01 md, and porosities range from 7 to 15%. Authigenic clay (predominantly chlorite) generally cements sands intermediate in grain size between those cemented by calcite and those cemented by quartz. Two types of diagenetic clay fabric are interbedded, forming distinct alternating bands 0.1 in. to 3 ft thick. Gray, tightly chlorite-cemented bands are macroscopically and microscopically distinct from green, porous chlorite-cemented bands. In the tightly chlorite-cemented facies, permeabilities are less than 0.3 md, and porosities range from 8 to 16%. Small plates of chlorite fill interparticle pores, and secondary pores are rare. In the porous chlorite-cemented facies, dissolution of framework grains and chlorite cement increased porosity, and a second chlorite cement was precipitated. Core permeability ranges from 0.1 to 1 md, and porosities range from 15 to 20%.

  2. Madison Group (Mississippian) reservoir facies of Williston Basin, North Dakota

    SciTech Connect

    Lindsay, R.F.

    1985-02-01

    Twenty-seven oil fields producing from the Mission Canyon Limestone and Charles Formation (Madison Group) were studied: 1) along the eastern basin margin (Bluell, Sherwood, Mohall, Glenburn, Haas, and Chola fields), 2) northeast of Nesson anticline (Foothills, North Black Slough, South Black Slough, Rival, Lignite, and Flaxton), 3) along Nesson anticline (North Tioga, Tioga, Beaver Lodge, Capa, Hoffland, Charlson, Hawkeye, Blue Buttes, Antelope, and Clear Creek), and 4) south of the basin center (Lone Butte, Little Knife, Big Stick, Fryburg, and Medora). Mission Canyon reservoirs along the eastern margin are in several shoaling-upward carbonate to anhydrite cycles of pisolitic packstone or grainstone buildups. South of the basin center, only a single shoaling-upward sequence is present, with dolomitized, mostly restructed-marine skeletal wackstone to pelletal wackstone or packstone reservoir facies. Nesson anticline, between these 2 areas, contains a single shoaling-upward sequence without an anhydrite cap. In northern Nesson anticline, Mission Canyon reservoir facies are oolitic-pisolitic, intraclastic wackestone or grainstone buildups or open-marine skeletal packstone or grainstone. Both limestones and dolostones are productive in southern Nesson anticline. Limestone reservoir facies are transitional, open to restricted-marine slightly intraclastic, skeletal wackestone or packstone facies. Dolostone reservoir facies are restricted-marine mudstone to skeletal mudstone and pelletal wackestone or packstone. Northeast of the Nesson anticline, production is from oolitic to pisolitic packstone or grainstone buildups in the Rival subinterval and from restricted-marine, dolomitized spiculitic mudstone in the Midale subinterval (base of Charles Formation). In the northern Nesson anticline, Rival reservoir facies are offshore open to restricted-marine, skeletal, intraclastic, pelletal wackestone and/or packstones.

  3. Geopressured geothermal resource in Texas and Louisiana: geological constraints

    SciTech Connect

    Bebout, D.G.; Gutierrez, D.R.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The objective of the DOE-funded geopressured geothermal project is to assess the viability of producing energy from the deep subsurface aquifers of the Texas and Louisiana Gulf Coast. These aquifers must comprise thick extensive sandstone units with high temperature, high porosity and permeability, and low salinity. Regional studies indicate that these ideal aquifers are not common; in fact, none have yet been found. Geological studies have demonstrated that sandstones decrease in abundance and thickness with depth; however, exceptions do occur and some are now being drilled and tested. Porosity and permeability also decrease with depth, but differences in original composition, burial history, and diagenesis result in variations in preserved porosity. Salinity within the geopressured zone is highly variable and probably related to aquifer porosity and permeability, thickness and lateral extent, and to the nature of the bounding growth faults.

  4. Synkinematic quartz cementation in partially open fractures in sandstones

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Laubach, Stephen E.; Fall, Andras; Eichhubl, Peter

    2014-05-01

    Faults and networks of naturally open fractures can provide open conduits for fluid flow, and may play a significant role in hydrocarbon recovery, hydrogeology, and CO2 sequestration. However, sandstone fracture systems are commonly infilled, at least to some degree, by quartz cement, which can stiffen and occlude fractures. Such cement deposits can systematically reduce the overall permeability enhancement due to open fractures (by reducing open fracture length) and result in permeability anisotropies. Thus, it is important to identify the factors that control the precipitation of quartz in fractures in order to identify potential fluid conduits under the present-day stress field. In many sandstones, quartz nucleates syntaxially on quartz grain or cement substrate of the fracture wall, and extends between fracture walls only locally, forming pillars or bridges. Scanning electron microscope cathodoluminescence (SEM-CL) images reveal that the core of these bridges are made up of bands of broken and resealed cement containing wall-parallel fluid inclusion planes. The fluid inclusion-rich core is usually surrounded by a layer of inclusion-poor clear quartz that comprises the lateral cement. Such crack-seal textures indicate that this phase was precipitating while the fractures were actively opening (synkinematic growth). Rapid quartz accumulation is generally believed to require temperatures of 80°C or more. Fluid inclusion thermometry and Raman spectroscopy of two-phase aqueous fluid-inclusions trapped in crack-seal bands may be used to track the P-T-X evolution of pore fluids during fracture opening and crack-seal cementation of quartz. Quartz cement bridges across opening mode fractures in the Cretaceous Travis Peak Formation of the tectonically quiescent East Texas Basin indicate individual fractures opened over a 48 m.y. time span at rates of 16-23 µm/m.y. Similarly, the Upper Cretaceous Mesaverde Group in the Piceance Basin, Colorado contains fractures that

  5. Texas Heart Institute

    MedlinePlus

    ... 2016 Resources Texas Heart Institute Journal Scientific Publications Library & Learning Resources Resources for Physicians Fellowships & Residencies School of Perfusion Technology Please contact our Webmaster with ...

  6. Mechanical stratigraphy of deep-water sandstones: insights from a multisciplinary field and laboratory study

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; di Celma, Claudio; Tondi, Emanuele; Corradetti, Amerigo; Cantalamessa, Gino

    2010-05-01

    Turbidite sandstones found in deep-water fold-and-thrust belts are increasingly exploited as hydrocarbon reservoirs. Within these rocks, the fluid flow is profoundly affected by the complex interaction between primary sedimentological and stratigraphic attributes (i.e, facies, layering, reservoir quality, stacking patterns, bed connectivity and lateral extent) and fracture characteristics (i.e., length, spacing, distribution, orientation, connectivity). Unfortunately, most of these features are at, or below, the resolution of conventional seismic datasets and, for this reason, their identification and localization represent one of the fundamental challenges facing exploration, appraisal and production of the sandstone reservoirs. In this respect, whereas considerable effort has been afforded to a characterization of the sedimentological and stratigraphic aspects of sandstones, detailed analysis of fractures in this type of successions has received significantly less attention. In this work, we combine field and laboratory analyses to assess the possible mechanical control exerted by the rock properties (grain size, intergranualr porosity, and Young modulus), as well as the influence of bed thickness, on joint density in turbidite sandstones. Joints are mode-I fractures occurring parallel to the greatest principle stress axis, which solve opening displacement and do not show evidence of shearing and enhance the values of total porosity forming preferential hydraulic conduits for fluid flow. Within layered rocks, commonly, joints form perpendicular to bedding due to overburden or exhumation. The empirical relation between joint spacing and bed thickness, documented in the field by many authors, has been mechanically related to the stress perturbation taking place around joints during their formation. Furthermore, close correlations between joint density and rock properties have been already established. In this present contribution, we focus on the bed

  7. Microfacies and depositional environment of the Word Formation (Permian) Glass Mountains, Texas

    SciTech Connect

    Rathjen, J.D. . Dept. of Geological Sciences)

    1993-02-01

    The Word Formation (Permian) crops out in the Glass Mountains of West Texas. The Word is composed of clastics in the southwest, carbonates in the northeast, and a transitional zone of alternating carbonates and clastics separating the two extreme facies. Sediment thickness ranges from 457 meters in the southwest to 91 meters in the northeast. Measured sections and petrographic data have identified six microfacies from the transitional and eastern facies of the Word. These are southwest to northeast: (1) Peloidal Packstones, (2) Bioclastic Wackestones/Packstones, (3) Whole Fossil Wackestones/Packstones, (4) Bioturbated Wackestones, (5) Fusulinid-Crinoid Packstones, and from the eastern facies, (6) Dolostones. Petrographic data indicate that a shallow water lagoonal environment existed in the southwest. This lagoonal environment grades into a more fossiliferous normal marine environment toward the northeast. In the northeast, a very shallow water shelf environment existed which was periodically subaerially exposed, dolomitizing the sediments.

  8. Facies Delineation using Core, Wireline log, Electrical Resistance Tomography, and Electromagnetic Borehole Flowmeter Data

    NASA Astrophysics Data System (ADS)

    Rockhold, M. L.; Chen, X.; Ramanathan, R.; Vermeul, V.; Johnson, T. C.; Murray, C. J.

    2011-12-01

    Multiple data types from the Hanford 300 Area IFRC site and surrounding area were used to delineate and map facies across multiple scales. The data used for facies delineation included grain-size distribution metrics from core samples, spectral gamma logs, ERT, and EBF data. Multivariate analysis and clustering methods were used for facies identification, and transition probability geostatistics were used to generate facies distributions. Simulations of a field-scale flow and tracer transport experiment were performed using facies distributions generated using different combinations of data types and different facies delineation methods to determine which data types and methods were most effective in reproducing the observed flow and transport behavior.

  9. Recent sedimentary facies in interdistributary basin, Mississippi delta

    SciTech Connect

    Hi, I.Y.; Kosters, E.; Moslow, T.F.

    1986-05-01

    Five sedimentary facies have been recognized from 23 vibracores in an abandoned interdistributary basin of the St. Bernard delta lobe, 15 km southeast of New Orleans. They are: (1) detrital clays containing shell fragments and lenticular laminations, interpreted as a bay facies; (2) laminated to massive-appearing, fine grained sandbeds averaging 10-20 cm in thickness, of possible overbank or crevasse splay origin; (3) thinly interbedded, parallel laminated and ripple laminated, sandy and clayey silts forming 50 to 70-cm-thick sequences that increase in clay content upwards, interpreted as flood events during overbank deposition; (4) extensively rooted detrital clays with less than 10% organic matter as disseminated plan material, representing a transitional, brackish-to-saline marsh facies; (5) organic-rich clays (35-75% organic matter) and peats (> 75% organic matter), interpreted as marsh and swamp facies. Major depositional environments observed on the present deltaic plain include irregular-shaped lakes, distributary channels, natural levees, overbank splays, small meandering channels, oyster reefs, and swamp, brackish and saline marshes.

  10. [Vaginal ecology, climate, landscapes and populations (xenoecies and facies)].

    PubMed

    Nicoli, J M; Nourrit, J; Michel-Nguyen, A; Sempe, M; Nicoli, R M

    1994-06-01

    Brief study of vaginal populations, the human vagina being considered as a biotopic cavity. Allusion to dynamic aspects ("vaginal climate", "landscapes") and to various bacterial populations. Introduction of the concept of xenoecies and of facies. This study is preceded by essential definitions of terms widely used in ecology.

  11. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  12. Marginal erg facies: A trial approach toward a descriptive classification

    SciTech Connect

    Caputo, M.V. ); Langford, R.P. )

    1991-03-01

    During the late 1970s and early 1980s, sedimentologists began recognizing the margins of eolian sand seas as separate, components which differed from interior sand seas in geometry, extent, and facies. Stratigraphers have now observed these differences in eolian rocks. Erg margins may be grouped in five ways: (1) by associations with extradunal environments-coastal plain, lacustrine, periglacial, marine (tidal flat, coastal sabkha, beach, and lagoon), and arid alluvial (alluvial fan, fluvial, playa, inland sabkha); (2) by allocyclic controls-eustasy, plate tectonism, and climate; (3) by autocyclic controls-local tectonism, topography, vegetation, hydrology, structure, sediment source and supply, and wind regime; (4) by geographic position-upwind, downwind, and along-wind margins; and (5) by sedimentary facies-texture and architecture. In contrast with erg interiors, erg margins are characterized by smaller, less complex dune-forms related to thinner sand accumulation; elementary dune architecture; more vegetation and bioturbation; high occurrence of sand sheet, zibar, and serir facies; expansive, low-relief interdunes with widely distributed dunes; and a greater proportion of interbedded extradunal deposits. Some of the published studies on ancient eolian systems have identified erg margin facies that have been influences by marine and arid alluvial processes. Few reports have described lacustrine-eolian and periglacial-eolian interactions. This study is an attempt to organize known features of modern and ancient erg margins into a scheme based on erg margin controls.

  13. Fireball Over Texas

    NASA Video Gallery

    Video of the fireball seen over Texas this morning (12/7/12); it was taken by a NASA camera located near Mayhill, New Mexico. It is very unusual for us to see a meteor all the way across Texas. The...

  14. Basal ice facies: a review and unifying approach

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Cook, Simon; Coulson, Hayley

    2009-09-01

    Over the past ˜30 years numerous basal ice facies have been identified, named and classified. However, the resulting facies descriptions and names are inconsistent and no single scheme encompasses all of the different ice types that exist at different ice masses. In this paper, we review and critique existing basal ice facies names, descriptions and classification schemes, and propose a new, non-genetic approach that has the capacity to name and describe all basal ice types. We define six fundamental basal cryofacies and a further 12 composite cryofacies which can all be defined on the basis of a cursory evaluation of debris disposition and concentration. More detailed cryofacies description is based on characterizing three sets of ice properties that can also be estimated visually in the field: (a) the thickness of the basal ice facies and its constituent sub-layers, (b) the concentration and texture of debris included within any or all of those layers, and (c) the concentration and size of bubbles included within any or all of those layers. We also propose a shorthand method for the presentation of this descriptive information. Here, codes for the layer thicknesses are presented as standard text, and codes for the included debris characteristics and included bubble characteristics are presented as superscripts and subscripts respectively. Sub-layers are characterized similarly, but within a nested sequence of brackets. We evaluate the effectiveness of these two schemes by using them to rename and reclassify several existing basal ice facies. Results indicate that the schemes are robust and that they provide a coherent, non-genetic framework for the effective naming and description of basal cryofacies.

  15. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas

    USGS Publications Warehouse

    McKenna, T.E.; Sharp, J.M.

    1998-01-01

    Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we

  16. Depositional facies mosaics and their time lines in Lower Ordovician carbonates of central Appalachians

    SciTech Connect

    Nguyen, C.T.; Goldhammer, R.K.; Hardie, L.A.

    1985-02-01

    A comparative sedimentology and facies stratigraphy study of the Lower Ordovician carbonate of the central Appalachians (Beekmantown Group and equivalents) has been carried out. Our approach used subfacies (rock record of subenvironments) as the basin units of section measurement. The authors differentiated related sets of subfacies into larger facies units (rock record of environments). Facies were then correlated from section to section using fossils and lithostratigraphy to make a 3-dimensional facies mosaic. Within this mosaic, time lines were constructed using onlap-offlap tongues and cyclic sequences. These time lines cut across facies boundaries. Using this approach, the authors have established that the lower 600 m of the Lower Ordovician carbonate sequence is made up of 4 main facies: (1) cyclic laminite facies composed of a package of shoaling-upward shelf lagoon-peritidal cycles, (2) thin-bedded grainstone facies deposited in a shelf lagoon, (3) Renalcis bioherm facies recording a shelf lagoon patch-reef environment, and (4) Epiphyton bioherm facies recording a shelf-edge reef system. The distribution of these facies along time lines across the strike of the central Appalachians is markedly zoned. Epiphyton bioherm facies dominate the eastern margin while cyclic laminite facies dominate the western margin, with thin-bedded grainstone and Renalcis bioherm facies making up the central belt. This zonation of facies is a typical shallow carbonate shelf system with fringing reefs along the eastern, seaward margin and tidal flats along the western, landward margin. Vertical distribution of these facies across strike records 3 major sea level changes during deposition of the lower 600 m of this extensive Lower Ordovician carbonate shelf.

  17. Is there a basin-centered gas accumulation in Cotton Valley Group Sandstones, Gulf Coast Basin, U.S.A.?

    USGS Publications Warehouse

    Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is reevaluating the resource potential of selected domestic basin-centered gas accumulations. Basin-centered gas accumulations are characterized by presence of gas in extensive low-permeability (tight) reservoirs in which conventional seals and trapping mechanisms are absent, abnormally high or low reservoir pressures exist, and gas-water contacts are absent. In 1995, the USGS assessed one basin-centered gas play and two conventional plays within the trend of Jurassic and Cretaceous Cotton Valley Group fl uvial-deltaic and barrierisland/ strandplain sandstones across the onshore northern Gulf of Mexico Basin. Detailed evaluation of geologic and production data provides new insights into these Cotton Valley plays. Two Cotton Valley sandstone trends are identifi ed based on reservoir properties and gas-production characteristics. Transgressive blanket sandstones across northern Louisiana have relatively high porosity and permeability and do not require fracture stimulation to produce gas at commercial rates. South of this trend, and extending westward into eastern Texas, massive sandstones of the Cotton Valley trend exhibit low porosity and permeability and require fracture stimulation. The high permeability of Cotton Valley blanket sandstones is not conducive to the presence of basin-centered gas, but lowpermeability massive sandstones provide the type of reservoir in which basin-centered gas accumulations commonly occur. Data on source rocks, including burial and thermal history, are consistent with the interpretation of potential basincentered gas within Cotton Valley sandstones. However, pressure gradients throughout most of the blanket- and massivesandstone trends are normal or nearly normal, which is not characteristic of basin-centered gas accumulations. The presence of gas-water contacts in at least seven fi elds across the blanket-sandstone trend together with relatively

  18. Furthering Medical Education in Texas.

    PubMed

    Varma, Surendra K; Jennings, John

    2016-02-01

    Medical education in Texas is moving in the right direction. The Texas Medical Association has been a major partner in advancing medical education initiatives. This special symposium issue on medical education examines residency training costs, the Next Accreditation System, graduate medical education in rural Texas, Texas' physician workforce needs, the current state of education reform, and efforts to retain medical graduates in Texas. PMID:26859372

  19. Mesozoic sedimentary rocks and depositional facies, Vizcaino-Cedros Area, Baja California, Mexico

    SciTech Connect

    Boles, J.R.

    1986-04-01

    Mesozoic sedimentary rocks in the Vizcaino-Cedros area constitute a 135-m.y. history of arc-related marine sedimentation with a cumulative thickness of 14 km. The Upper Triassic San Hipolito Formation is the oldest sedimentary unit in the region, and is recognized only on the Vizcaino Peninsula. The formation depositionally overlies an ophiolite sequence and consists of 2.4 km of tuffaceous sediment including a limestone megabreccia. The upper two-thirds of the sequence in the type section is now believed to be of Early Jurassic age. On Cedros Island, the basal sedimentary rocks are 1.2 km of the Lower Jurassic Gran Canon Formation. This richly tuffaceous unit depositionally overlies both ophiolite and arc volcanics. Conformably overlying the Gran Canon on Cedros Island is the Coloradito Formation, a spectacular sedimentary olistostrome up to 0.4 km thick, containing Triassic and late Paleozoic metasedimentary blocks. This formation record the first evidence of continental detritus in the region. Conformably overlying the Coloradito and, in part, stratigraphically equivalent to it on Cedros is 0.4 km of volcanogenic-metasedimentary conglomerate designated the Eugenia Formation. The Eugenia is much thicker (to 2.7 km) and widespread on Vizcaino where it unconformably overlies the San Hipolito Formation. On Vizcaino, the lower Eugenia (Upper Jurassic) includes spectacular volcanic debris flows interbedded with sandstone, but it is transitional upward into finer facies with increasing plutonic detritus. Time equivalent to the upper Eugenia and locally deposited on tonalite and volcanics is the Lower Cretaceous Asunction Formation (0.8 km thick). This sequence includes calcareous coarse breccias of serpentinized gabbros and tonalite.

  20. Scope and construction of a gas and oil atlas series of the Gulf of Mexico: Examples from Texas offshore lower Miocene plays

    SciTech Connect

    Seni, S.J.; Desselle, B.A.; Standen, A.

    1994-12-31

    An atlas series about the offshore northern Gulf of Mexico will group gas and oil reservoirs into subregional plays and will display reservoir data on a computerized geographical information system. The atlas series will provide critically compiled reservoir engineering data to help the private sector explore and develop hydrocarbons and to help the public sector analyze the hydrocarbon endowment in this basin. In this report, we cover aspects of the play-analysis procedure and provide specific examples of lower Miocene plays from the upper Texas coast and Federal Outer Continental Shelf (OCS). Play analysis emphasizes using broad classes of structural style, depositional style and environments, and defining attributes to group reservoirs into plays. To date, we have identified 4 Oligocene and 25 Miocene plays in Texas State offshore waters and 115 plays in the Federal OCS. Texas State offshore plays are gas prone (cumulative production 3.7 TcF) and are preferentially trapped in rollover anticlines. Miocene plays include submarine-fan Lenticulina sandstones; progradational Dicorbis b., Siphonina d., Marginulina a., and Lenticulina sandstones; transgressive sandstones associated with a barrier-bar system in the Matagorda Area; and transgressive Amphistegina B sandstones. Particularly productive gas-prone plays are progradational Sihonina d. deltas in the High Island Area and progradational Marginulia a. shelf and deltaic sandstones in the Matagorda Island and Brazos Areas.

  1. Diagenesis of the Almond sandstone in the Washakie Basin

    SciTech Connect

    Yin, Peigui; Liu, Jie; Surdam, C.R. . Dept. of Geology and Geophysics)

    1992-01-01

    The marginal marine and nonmarine Almond sandstones are mostly sublitharenite, litharenite, and lithic arkose. The sandstones are fine-to very-fine-grained, and are well-sorted. The framework composition, authigenic minerals, and porosity and permeability distributions in the Almond sandstones are different below and above 8,000 feet, resulting in a variation in hydrocarbon reservoir types. The shallow conventional reservoirs are permeable, producing both liquid oil and gas, whereas the deep gas-bearing sandstones are very tight and overpressured. Porosity of the shallow Almond sandstones have been significantly enhanced by dissolution of the feldspar grains and lithic fragments. Quartz overgrowth cement and authigenic clay rims have occluded most of the intergranular pores, as well as the previously leached pores. The Almond sandstones have been buried deeper than their present depths. The sandstones in each part of the Washakie Basin have experienced different uplift and subsidence. Reconstruction of the burial history and diagenetic modeling are essential steps for understanding the diagenetic evolution of the Almond sandstones.

  2. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  3. Osteomalacia caused by tumors in facies cranii mimicking rheumatoid arthritis.

    PubMed

    Xian-Ling, Wang; Jian-Ming, Ba; Wen-Wen, Zhong; Zhao-Hui, Lü; Jing-Tao, Dou; Ju-Ming, Lu; Yi-Ming, Mu

    2012-08-01

    Tumor-induced osteomalacia (TIO) is an extremely rare metabolic bone disease and the occult offending tumor arising in facies cranii is even more uncommon. In this report, we described 2 middle-aged females with TIO caused by the tumor in facies cranii, which had ever been misdiagnosed as rheumatoid arthritis. Case 1 was present with diffuse bone pain and muscle weakness for 4 years, as well as esotropia in the right eye for 1 month. Case 2 was present with progressive bone pain in low back and hip for 2 years. Biochemical studies both showed persistent hypophosphatemia and urinary over wasting phosphate. Radiological examinations revealed the infiltrative mass in right apex partis petrosae ossis temporalis in case 1, and the soft mass in left nasal cavity and ethmoid sinuses in case 2, respectively. The offending tumors were resected completely in case 2, however, incompletely in case 1. Pathology examination revealed mixed connective tissue variant phosphaturic mesenchymal tumors. In conclusion, TIO should be presumed in patients presenting with unexplained persistent hypophosphatemia osteomalacia, also a thorough detection for tumor in facies cranii should be performed.

  4. Comparison of four approaches to a rock facies classification problem

    USGS Publications Warehouse

    Dubois, M.K.; Bohling, G.C.; Chakrabarti, S.

    2007-01-01

    In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.

  5. Facies Analysis and b-Value for Operationally Induced Microseismicity

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Davidsen, J.; Maghsoudi, S.

    2015-12-01

    Operationally induced microseismicity reveals brittle failure processes that occur during hydraulic fracturing stimulation of a rockmass. The b-value of the magnitude-frequency distribution is commonly used to characterize the relative abundance of high- to low-magnitude events. In contrast to earthquake fault systems with b ~ 1, microseismicity that is directly associated with hydraulic fracturing is typically characterized by b > 1.5. Recent studies show that such unusually high b-values may be primarily controlled by scaling properties of mechanical bed thickness within the treatment zone, since the occurrence of fracture arrest at bedding boundaries gives rise to stratabound fracture networks. Stress variations also influence the b-value. These concepts provide a framework for microseismic facies analysis, a novel approach for interpretation of microseismicity that facilitates delineation of lithofacies units and stress compartments for characterization of unconventional reservoirs. Microseismic facies units are recognized on the basis of clustering analysis and recognition of distinct sets of microseismic attributes, which include b-value (and other magnitude statistics), duration, transience, seismic moment density and seismic moment release rate in addition to commonly reported characteristics of azimuth and dimensions. A case study is presented, in which microseismic facies analysis is applied to characterize an unconventional reservoir.

  6. Pre-Pliocene history and depositional facies, Nile Delta, Egypt

    SciTech Connect

    Harms, J.C.; Wray, J.L.

    1988-08-01

    The Nile delta area has a long history of subsidence and deposition that is inferred to extend back to Jurassic or earlier times. Depositional environments, rates of subsidence, and structural events are quite varied during this time span. Deposition was dominated by platform-to-basin carbonate facies from Jurassic to Eocene time and by detrital sediments from the Oligocene onward. Deposits are truly deltaic, in the sense of representing focused deposition at the shoreline by a large integrated river, only from latest Miocene time onward. A probable transition from continental to oceanic crust typical of the southern Mediterranean margin is overlain in the delta area by Mesozoic platform carbonates that appear to change in seismic data northward into slope and basinal facies. This platform margin, which trends east-west through the central delta, is reflected in later stratigraphic and structural characteristics; very thick Tertiary deposits, bathyal facies of Oligocene to Pliocene age, and large rotated fault blocks of Miocene strata occur only north of this margin.

  7. Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration

    USGS Publications Warehouse

    Bowen, B.B.; Ochoa, R.I.; Wilkens, N.D.; Brophy, J.; Lovell, T.R.; Fischietto, N.; Medina, C.R.; Rupp, J.A.

    2011-01-01

    The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (>2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  8. Provenance of sandstones in the Golconda terrane, north central Nevada

    SciTech Connect

    Jones, E.A. )

    1991-02-01

    The upper Paleozoic Golconda terrane of north-central Nevada is a composite of several structurally bounded subterranes made of clastic, volcanic, and carbonate rocks. The clastic rocks provide important clues for the interpretation of the provenance and paleogeographic settings of the different lithologic assemblages found in these subterranes. Two petrographically distinct sandstones are identified in the Golconda terrane in the Osgood Mountains and the Hot springs Range of north-central Nevada. The sandstone of the Mississippian Farrel Canyon Formation, part of the Dry Hills subterrane, is characterized by quartzose and sedimentary and lithic-rich clasts with a small feldspar component. in contrast, the sandstone of the Permian Poverty Peak (II) subterrane is a silty quartzarenite with no lithic component, and a very limited feldspar component. The sandstone of the Farrel Canyon Formation is similar to nonvolcanic sandstones reported from elsewhere in the Golconda terrane. Modal data reflect a provenance of a recycled orogen and permit the interpretation that it could have been derived from the antler orogen as has been proposed for other sandstones of the golconda terrane. The sandstone of the Poverty Peak (II) subterrane is more mature than any of the other sandstones in either the Golconda terrane, the Antler overlap sequence, or the Antler foreland basin sequence. Modal data put the Poverty Peak (II) sandstone in the continental block provenance category. The distinct extrabasinal provenances represented in these different sandstones support the idea that the Golconda basin was made up of complex paleogeographic settings, which included multiple sources of extrabasinal sediment.

  9. NARSTO Texas Final Report

    Atmospheric Science Data Center

    2013-03-06

    Final Report for the Texas PM2.5 Sampling and Analysis Study (March 11, 1997, through March 12, 1998) ... files: Section 1: Introduction and Section 2: Sampling Network (PDF) Section 3: Data Base Structure (PDF) ...

  10. Paluxy of the Central Basin-East Texas

    SciTech Connect

    Presley, M.W. )

    1993-09-01

    The Paluxy Formation (Lower Cretaceous) has been a consistent sandstone exploration objective in the central East Texas basin, occurring at moderate depths on the order of 5000-8000 ft with oil in reservoirs with good permeability and porosity and reserves in the range of 200,000 to 500,000 bbl per well. Since the 1940s, the pace of Paluxy field discovery has been steady, generally a new field or two every one or two years, and there is every reason to believe that there is continued potential for the Paluxy in the future. The central part of the East Texas basin, in Smith County and adjacent areas, has complex structure with numerous salt domes and intervening sediment wedges (turtles) that formed during movement of the salt. Paluxy oil and gas in this area occurs mainly in combination structural-stratigraphic traps along normal faults that cut turtles. Major exploration trends in the central basin include (1) the Lindale turtle with a number of widely spaced fields, generally with only a few wells but with relatively good per-well reserves, (2) the Tyler turtle with the largest fields and some of the most prolific Paluxy production in the central basin, (3) the Flint and Irene turtles with relatively thin sandstones and modest production, (4) the Lane Chapel turtle with some exciting new Paluxy discoveries, and (5) the rim areas of salt domes.

  11. Dilatant hardening of fluid-saturated sandstone

    NASA Astrophysics Data System (ADS)

    Makhnenko, Roman Y.; Labuz, Joseph F.

    2015-02-01

    The presence of pore fluid in rock affects both the elastic and inelastic deformation processes, yet laboratory testing is typically performed on dry material even though in situ the rock is often saturated. Techniques were developed for testing fluid-saturated porous rock under the limiting conditions of drained, undrained, and unjacketed response. Confined compression experiments, both conventional triaxial and plane strain, were performed on water-saturated Berea sandstone to investigate poroelastic and inelastic behavior. Measured drained response was used to calibrate an elasto-plastic constitutive model that predicts undrained inelastic deformation. The experimental data show good agreement with the model: dilatant hardening in undrained triaxial and plane strain compression tests under constant mean stress was predicted and observed.

  12. National Uranium Resource Evaluation: Sherman Quadrangle, Texas and Oklahoma

    SciTech Connect

    Hobday, D.K.; Rose, F.G. Jr.

    1982-08-01

    Uranium favorability of the Sherman Quadrangle, Texas and Oklahoma, was evaluated using National Uranium Resource Evaluation criteria. Surface and subsurface geologic studies were supplemented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. A total of 1537 rock, soil, and stream-sediment samples were analyzed for 30 elements. Environments favorable for sandstone-type uranium deposits are present in the Cretaceous Antlers and Woodbine Formations, Pennsylvanian arkoses, and the Permian Wichita-Albany Group. The Antlers Formation is locally radioactive; and rock, stream-sediment, and ground-water samples show uranium enrichment. Dip-oriented sand belts may contain subsurface uranium deposits. Arkosic wedges in the Pennsylvanian Strawn, Canyon, and Cisco Groups were partially derived from a favorable Wichita Mountain source, were highly permeable, and contained downdip reductants; gamma-ray logs showed some anomalies. The Permian Wichita-Albany Group contained small uranium occurrences. The Woodbine Formation had an excellent uranium source in updip volcaniclastic correlatives, good permeability, and organic precipitants; but there is little direct evidence of uranium occurrences. Environments considered unfavorable for uranium deposits are limestones and shales of Cambrian to Pennsylvanian age, Pennsylvanian sandstones derived from a Ouachita source, Lower Cretaceous shales, limestones, and sandstones, Upper Cretaceous marine strata, and sparse Cenozoic sediments. Unevaluated environments include Precambrian granites and metasediments of the buried Muenster Arch.

  13. Bob West field: Extending upper Wilcox production in south Texas

    SciTech Connect

    Montgomery, S.L.

    1997-05-01

    Discovered in 1990 near the southern limit of the upper Wilcox gas-producing trend in south Texas, Bob West field is the largest pool to date in this trend, with probable reserves of up to 1 Tcf. The field produces from seven major sandstone {open_quotes}packages,{close_quotes} comprising 27 individual reservoirs and distributed over 3500 productive acres. The sandstones represent either fluvial/deltaic deposits or delta-margin barrier bar and strand-plain sediments. Porosities range up to 20%, but permeabilities are low, commonly less than 1.5 md. Artificial stimulation is therefore required to establish commercial rates of production. Bob West lies on a faulted anticline between two major growth-fault structures, with several stages of structural development evident. Such development has directly affected sandstone thickness. Rates of production are higher at Bob West than at other upper Wilcox fields due to commingling of zones, large-scale fracture treatments, and directional drilling. Discovery at Bob West has significant implications for renewed exploration in this part of the upper Wilcox gas trend.

  14. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  15. Facies analysis of yedoma thermokarst lakes on the northern Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Farquharson, Louise; Anthony, Katey Walter; Bigelow, Nancy; Edwards, Mary; Grosse, Guido

    2016-07-01

    Thermokarst lakes develop as a result of the thaw and collapse of ice-rich, permanently frozen ground (permafrost). Of particular sedimentological importance are thermokarst lakes forming in late Pleistocene icy silt (yedoma), which dramatically alter the land surface by lowering surface elevation and redistributing upland sediment into lower basins. Our study provides the first description of yedoma thermokarst lake sedimentology based on the cross-basin sampling of an existing lake. We present lake sediment facies descriptions based on data from sediment cores from two thermokarst lakes of medium depth, Claudi and Jaeger (informal names), which formed in previously non thermokarst-affected upland yedoma on the northern Seward Peninsula, Alaska. We identify four prominent facies using sedimentological, biogeochemical, and macrofossil indicators: a massive silt lacking aquatic macrofossils and other aquatic indicators situated below a sub-lacustrine unconformity (Facies 1); two basal deposits: interbedded organic silt and chaotic silt (Facies 2-3); and a silt-rich mud (Facies 4). Facies 1 is interpreted as yedoma that has thawed during lake formation. Facies 3 formed adjacent to the margin due to thaw and collapse events from the lake shore. Material from Facies 3 was reworked by wave action to form Facies 2 in a medium energy margin environment. Facies 4 formed in a lower energy environment toward the lake basin center. This facies classification and description should enhance our ability (i) to interpret the spatial and temporal development of lakes and (ii) to reconstruct long-term patterns of landscape change.

  16. Wettability Behavior of Crude Oil-Silica Nanofluids-Sandstone Systems

    NASA Astrophysics Data System (ADS)

    Bai, Lingyun; Li, Chunyan; Pales, Ashley; Huibers, Britta; Ladner, David; Daigle, Hugh; Darnault, Christophe

    2016-04-01

    Mobilizing and recovering crude oils from geological formations is critical for the management and exploitation of petroleum reservoirs. Nanoparticles, with their unique physico-chemical properties can increase the efficiency of enhanced oil recovery (EOR) by decreasing interfacial tension (IFT) between the oil and aqueous phase systems, and altering rock wettability. Our research examines the potential use of nanoparticles as a means of EOR by studying the influence of silicon oxide (SIO2) nanoparticles on the wettability and interfacial tension of different crude oil-silica nanofluids-sandstone systems. We designed nanofluid treatments to manipulate changes in wettability of Berea and Boise sandstones simulating petroleum reservoir. Experiments were performed to measure the IFT and wettability involving different concentrations of nanoparticles with and without the addition of surfactant to determine which nanofluids produced the most favorable wettability changes for optimal EOR with light crude oil (e.g., West Texas, API: 40), medium crude oil (Prudhoe Bay, API: 28), and heavy crude oil (e.g., Lloydminster, API: 20). We investigated the addition of Tween 20 nonionic surfactant to the nanoparticle dispersions - made from SiO2 nanoparticles - that allows the optimum mobility in porous media through optimization of interfacial tension (IFT) and contact angle, and conducted tests. Batch studies were conducted to measure the IFT and wettability of the nanofluids of different range of nanoparticle concentrations (0-0.1 wt. %) in different reservoir conditions, i.e. brine and brine-surfactant systems made with 5% brine and 2CMC of Tween 20 nonionic surfactants. The dynamic behavior of IFT was monitored using a pendant drop method. Five percent brine-nanoparticle systems containing 0.001 and 0.01 wt.% of nanoparticles resulted in a significant decrease of IFT for light and medium crude oils, while the highest decrease of IFT for heavy crude oil was observed with 0.1 wt

  17. Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Marenssi, Sergio A.; Net, Laura I.; Santillana, Sergio N.

    2002-07-01

    The Eocene La Meseta Formation is the youngest exposed unit of the back-arc James Ross Basin, Antarctic Peninsula, cropping out in Seymour (Marambio) Island. The formation comprises 720 m of clastic sedimentary rocks of deltaic, estuarine and shallow marine origin. It was subdivided into six unconformity-based units (Valle de Las Focas, Acantilados, Campamento, Cucullaea I, Cucullaea II and Submeseta Allomembers) grouped into three main facies associations. Facies association I represents valley-confined deposition in a progradational/aggradational tide-dominated and wave-influenced delta front/delta plain environment. Facies association II includes tidal channels, mixed tidal flats, tidal inlets and deltas, washover and beach environments. Facies association III represents nonconfined tide- and storm-influenced nearshore environments. La Meseta Formation sandstones are quartzofeldspathic with some hybrid arenites (glauconite and carbonate bioclasts-rich). Sandstone detrital modes are subdivided into two distinctive petrofacies: the low quartz petrofacies (petrofacies I, Q<55% and L>12%), interpreted to retain the original provenance signal, and the high quartz petrofacies (petrofacies II, Q>55% and L<12%), representing the reworking product of the former after selective elimination of the more labile components. Petrofacies I sandstone framework grains were mainly derived from a dissected magmatic arc and an associated metamorphic belt. Textural evidence for recycling of some grains (e.g. garnet) from older sedimentary units during valley incision is not conclusive. Changes in the relative participation of source areas during the evolution of the incised-valley system are evaluated from the relative proportions of lithic fragments and monomineralic clasts derived from each rock type. Two lithic assemblages were recognized. The mixed lithic assemblage (Rv/Rm+Rp<1.4) shows participation of all rock types; it represented valley-confined environments, either during

  18. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.

    2011-12-01

    Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric concentrations of carbon dioxide (CO2). Given the type, abundance, and accessibility of geologic characterization data, different reservoir modeling techniques can be utilized to build a site model. However, petrophysical properties of a formation can be modeled with simplifying assumptions or with greater detail, the later requiring sophisticated modeling techniques supported by additional data. In GCS where cost of data collection needs to be minimized, will detailed (expensive) reservoir modeling efforts lead to much improved model predictive capability? Is there an optimal level of detail in the reservoir model sufficient for prediction purposes? In Wyoming, GCS into the Nugget Sandstone is proposed. This formation is a deep (>13,000 ft) saline aquifer deposited in eolian environments, exhibiting permeability heterogeneity at multiple scales. Based on a set of characterization data, this study utilizes multiple, increasingly complex reservoir modeling techniques to create a suite of reservoir models including a multiscale, non-stationary heterogeneous model conditioned to a soft depositional model (i.e., training image), a geostatistical (stationary) facies model without conditioning, a geostatistical (stationary) petrophysical model ignoring facies, and finally, a homogeneous model ignoring all aspects of sub-aquifer heterogeneity. All models are built at regional scale with a high-resolution grid (245,133,140 cells) from which a set of local simulation models (448,000 grid cells) are extracted. These are considered alternative conceptual models with which pilot-scale CO2 injection is simulated (50 year duration at 1/10 Mt per year). A computationally efficient sensitivity analysis (SA) is conducted for all models based on a Plackett-Burman Design of Experiment metric. The SA systematically varies key parameters of the models (e.g., variogram structure and principal axes of intrinsic

  19. Linkage between fluid-rock-interactions and facial, petrographical, and geochemical properties of Buntsandstein aquifer sandstones of the Thuringian Basin, Central Germany

    NASA Astrophysics Data System (ADS)

    Hilse, U.; Beyer, D.; Kunkel, C.; Aehnelt, M.; Pudlo, D.; Voigt, T.; Gaupp, R.

    2012-04-01

    This study is part of a collaborative research project examining the basin wide movement of fluids in the subsurface (INFLUINS - integrated fluid dynamics in sediment basins). The Lower Triassic Buntsandstein is a major aquifer in Thuringia and adjacent areas in central Germany. The sediments exhibit an overall trend of base level and associated environmental changes. In the Lower Buntsandstein, deposition started with sediments indicating a playa-like setting. The Middle Buntsandstein consists of sediments of wide floodplains with very shallow rivers and eolian reworking in the lower part, and of deeper, long-ranged braided to meandering river systems in the upper part. Outcrop samples and core material were used for investigations and following discussion. For understanding fluid-rock-interactions in these sediments it is important to investigate the linkage between facies, rock composition, and mineral surfaces exposed to the pore space, as well as bulk rock and mineral chemistry. Compared to the clay rich lacustrine sediments of the Lower Buntsandstein the more porous fluvial and eolian sandstones of the Middle Buntsandstein represent better pathways for fluid migration in the present and past. The lacustrine and fluvial sandstones are mostly arkoses and subarkoses, whereas the eolian sandstones are often characterized by quartzarenitic composition. Facies variations and associated compositional differences are reflected in the geochemical composition of the rocks determined by ICP-MS/OES and XRF measurements. Sandstones of the Lower Buntsandstein are characterized by high contents of e.g. Al, Na, K, Fe, and Li, caused by the enrichment of clays and feldspars in the lacustrine sediments. Due to their higher compositional maturity, the fluvial (and eolian) sediments of the Middle Buntsandstein exhibit an increase of stable minerals towards the top, which is also reflected in geochemical data (increasing Si by decreasing Al, Na, K). By scanning electron

  20. Sodium-hydroxide solution treatment on sandstone cores

    SciTech Connect

    Lee, S.J.

    1984-01-01

    This research was performed to study the effect of sodium hydroxide solution on the sandstone core samples and to develop a method whereby the permeability of the samples could be increased by the injection of sodium hydroxide solution. This work should provide the first step in developing a technique that can be used in the stimulation of oil and gas wells. A series of tests was conducted in which sodium hydroxide solution with concentrations ranging from 0.25 N to 2.00 N was injected into a number of Berea sandstone cores. The tests were conducted at room temperature and at 180{degree}F. In some cases the core sample were damaged by the injection of fresh water which resulted in a marked reduction in the permeability of the cores prior to the injection of sodium hydroxide solution. Based on laboratory testing with measurements of uniaxial compressive strength, SEM examination and X-ray analysis, it was found that sodium hydroxide interacted with sandstone to promote (1) partial dissolution of the sandstone minerals; (2) sandstone weight loss; (3) increased porosity; (4) weakening of the sandstone cores; and (5) changes in permeability. The interaction increased with increasing temperature and increasing sodium hydroxide concentration. However, at concentrations higher than 1.00 N, the degree of increase in permeability was not as large even though the sandstone weight loss and the increase in porosity did increase.

  1. Depositional environments and diagenetic features of a Cretaceous clastic sequence, Fox Hills Sandstone of Northern Great Plains Province

    SciTech Connect

    Wilde, E.M.

    1986-08-01

    The Fox Hills Sandstone, youngest formation of the Montana Group, is a geographically extensive, thin unit that is composed primarily of silty sandstone and shale. This formation records the final withdrawal of the Upper Cretaceous epicontinental sea from the Western Interior of the US. It extends from central Canada southward through Montana, the Dakotas, Wyoming, and Colorado. This typical shoreline sequence is exposed along the flanks of the Cedar Creek anticline, which trends southeastward from eastern Montana into North and South Dakota. The upper Fox Hills consists of stacked, upward-fining, trough to planar cross-bedded sandstone bodies. These sequences grade laterally and vertically into interbedded clay and silt units containing root casts and are interpreted as deposits of a braided-stream system. A matrix mineral assemblage of chlorite, montmorillonite, calcite, and minor dolomite is characteristic of distributary channels and river mouth-bar facies. The lower Fox Hills consists of either irregularly stacked upward-coarsening, trough cross-bedded sand sequences or massive sand bodies separated by erosional surfaces. Outcrops locally contain the trace fossil Ophiomorpha or limestone concretions containing marine to brackish-water fossils, and have been interpreted as deposits of a rapidly advancing shoreline and strand plain. In the matrix, illite, kaolinite, and montmorillonite with minor calcite characterize beach, subtidal, and crevasse-splay environments. Diagenetic features include quartz overgrowths, clay alterations of potassium feldspar and rock fragments, and authigenic clay rims. Petrographic evidence indicates multiple source areas for these sediments and the primary influence of depositional environments on clay formation.

  2. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  3. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir.

    SciTech Connect

    Allison, M.L.

    1997-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial- deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) evaluation of the Ivie Creek case-study area and (2) technology transfer. The Ivie Creek case-study evaluation work during the quarter focused on the two parasequence sets, the Kf-1 and Kf-2, in the lower Ferron Sandstone. This work included: (1) clinoform characterization, (2) parasequence characterization from elevation and isopach maps, and (3) three-dimensional facies modeling. Scaled photomosaic panels from the Ivie Creek amphitheater (south-facing outcrop belt) and Quitchupah Canyon (Fig. 1) provide a deterministic framework for two apparent-dip cross sections. These panels along with other photomosaic coverage and data from five drill holes, ten stratigraphic sections, and 22 permeability transacts (Fig. 1), acquired during two field seasons, provided the necessary information for this geologic evaluation and creation of the models to be used

  4. Sequence stratigraphic re-interpretation of [open quotes]stray[close quotes] sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    SciTech Connect

    Hampson, G.J.; Howell, J.A.; Flint, S.S. )

    1996-01-01

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.

  5. Sequence stratigraphic re-interpretation of {open_quotes}stray{close_quotes} sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    SciTech Connect

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-12-31

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.

  6. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    USGS Publications Warehouse

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  7. A two scale analysis of tight sandstones

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Davy, C. A.; Song, Y.; Troadec, D.; Hauss, G.; Skoczylas, F.

    2015-12-01

    Tight sandstones have a low porosity and a very small permeability K. Available models for K do not compare well with measurements. These sandstones are made of SiO_2 grains, with a typical size of several hundreds of micron. These grains are separated by a network of micro-cracks, with sizes ranging between microns down to tens of nm. Therefore, the structure can be schematized by Voronoi polyhedra separated by plane and permeable polygonal micro-cracks. Our goal is to estimate K based on a two scale analysis and to compare the results to measurements. For a particular sample [2], local measurements on several scales include FIB/SEM [3], CMT and 2D SEM. FIB/SEM is selected because the peak pore size given by Mercury Intrusion Porosimetry is of 350nm. FIB/SEM imaging (with 50 nm voxel size) identifies an individual crack of 180nm average opening, whereas CMT provides a connected porosity (individual crack) for 60 nm voxel size, of 4 micron average opening. Numerical modelling is performed by combining the micro-crack network scale (given by 2D SEM) and the 3D micro-crack scale (given by either FIB/SEM or CMT). Estimates of the micro-crack density are derived from 2D SEM trace maps by counting the intersections with scanlines, the surface density of traces, and the number of fracture intersections. K is deduced by using a semi empirical formula valid for identical, isotropic and uniformly distributed fractures [1]. This value is proportional to the micro-crack transmissivity sigma. Sigma is determined by solving the Stokes equation in the micro-cracks measured by FIB/SEM or CMT. K is obtained by combining the two previous results. Good correlation with measured values on centimetric plugs is found when using sigma from CMT data. The results are discussed and further research is proposed. [1] Adler et al, Fractured porous media, Oxford Univ. Press, 2012. [2] Duan et al, Int. J. Rock Mech. Mining Sci., 65, p75, 2014. [3] Song et al, Marine and Petroleum Eng., 65, p63

  8. Origin of quartz cement in the Tirrawarra Sandstone, Southern Cooper Basin, South Australia

    SciTech Connect

    Rezaee, M.R.; Tingate, P.R.

    1997-01-01

    Quartz cement in siliciclastic sequences is commonly a major diagenetic phase that affects hydrocarbon reservoir quality. Quartz cement is the most abundant authigenic mineral in the fluvio-deltaic Tirrawarra Sandstone and plays an important role in controlling reservoir quality. Petrographic, fluid inclusion, electron microprobe and cathodoluminescence (CL) data from the quartz cement indicate multiple stages of cementation at different temperatures and suggest more than one silica source. CL observations indicate up to six stages of quartz cement in some samples. The stages of quartz cement can be classified into three zones: an innermost zone of brown-luminescing cement (Z1), a middle zone of bright blue-luminescing cement (Z2) and an outer zone of brown-luminescing cement (Z3). Dead oil or bitumen is trapped between Z2 and Z3, indicating that Z3 formed after oil migration commenced. Measurements of homogenization temperatures from fluid inclusions in quartz overgrowths indicate that quartz cement precipitated over a temperature range of 65 to 130 C. Microprobe analysis shows a consistent variation in aluminum between each quartz cement zone. Fluid-inclusion precipitation temperatures and aluminum content have been used to help identify the silica sources for different zones of cement. Considering the temperature of precipitation, very low aluminum content, and the presence of Z3 cement in facies prone to stylolitization, the silica source for the cement is likely to have been pressure solution of detrital quartz at stylolites and grain contacts.

  9. Chromite in Lower Pennsylvanian Nuttall sandstone from West Virginia - Possible Blue Ridge province source

    SciTech Connect

    O'Connor, J.T. )

    1989-08-01

    Detrital chromite grains from heavy mineral separates of three samples of the Lower Pennsylvanian Nuttall Sandstone Member of the New River Formation were examined by use of a reflected-light petrographic microscope, a scanning electron microscope, and an electron microprobe. Some textures observed microscopically in the chromite grains are similar to those in chromite grains in dunite from the Blue Ridge province of North Carolina that has undergone regional metamorphism. Additional exsolution features are also observed in the chromites of this study. The major-oxide compositions of the detrital chromite grains vary more widely than those of the chromites of the Blue Ridge, possibly due to a larger sampling base. The detrital grain compositions (Cr/(Cr + Al), Mg/(Mg + Fe{sup +2})) plot near the fields of the Blue Ridge chromites, although the appearance of both more aluminum-rich and magnesium-poor compositions possibly indicate a higher facies of metamorphism than the Blue Ridge samples studied to date.

  10. 77 FR 26534 - Texas Eastern Transmission, LP; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Energy Regulatory Commission Texas Eastern Transmission, LP; Notice of Application Take notice that on April 19, 2012, Texas Eastern Transmission, LP (Texas Eastern), 5400 Westheimer Court, Houston, Texas... associated ancillary facilities in Montgomery County, Texas. Specifically, Texas Eastern proposes to...

  11. Trace fossil analysis of lacustrine facies and basins

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.

    1998-01-01

    Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of

  12. Nature and Origin of Cretaceous Carbon-rich Facies

    NASA Astrophysics Data System (ADS)

    Force, Eric

    Nature and Origin of Cretaceous Carbon-rich Facies is a symposium volume and shows the weaknesses endemic to its genre. One could ignore the book and its shortcomings if the topic were less promising. But the book attempts to cover an advance in the science of geology as intriguing as any since plate tectonics. After seven years since the “ocean anoxic event” concept was broached, it is time for a comprehensive volume on the subject. The niche is still open; this volume doesn't fill it.

  13. Muddy and dolomitic rip-up clasts in Triassic fluvial sandstones: Origin and impact on potential reservoir properties (Argana Basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Henares, Saturnina; Arribas, Jose; Cultrone, Giuseppe; Viseras, Cesar

    2016-06-01

    The significance of rip-up clasts as sandstone framework grains is frequently neglected in the literature being considered as accessory components in bulk sandstone composition. However, this study highlights the great value of muddy and dolomitic rip-up clast occurrence as: (a) information source about low preservation potential from floodplain deposits and (b) key element controlling host sandstone diagenetic evolution and thus ultimate reservoir quality. High-resolution petrographic analysis on Triassic fluvial sandstones from Argana Basin (T6 and T7/T8 units) highlights the significance of different types of rip-up clasts as intrabasinal framework components of continental sediments from arid climates. On the basis of their composition and ductility, three main types are distinguished: (a) muddy rip-up clasts, (b) dolomitic muddy rip-up clasts and (c) dolomite crystalline rip-up clasts. Spatial distribution of different types is strongly facies-related according to grain size. Origin of rip-up clasts is related to erosion of coeval phreatic dolocretes, in different development stages, and associated muddy floodplain sediments. Cloudy cores with abundant inclusions and clear outer rims of dolomite crystals suggest a first replacive and a subsequent displacive growth, respectively. Dolomite crystals are almost stoichiometric. This composition is very similar to that of early sandstone dolomite cement, supporting phreatic dolocretes as dolomite origin in both situations. Sandstone diagenesis is dominated by mechanical compaction and dolomite cementation. A direct correlation exists between: (1) muddy rip-up clast abundance and early reduction of primary porosity by compaction with irreversible loss of intergranular volume (IGV); and (2) occurrence of dolomitic rip-up clasts and dolomite cement nucleation in host sandstone, occluding adjacent pores but preserving IGV. Both processes affect reservoir quality by generation of vertical and 3D fluid flow baffles and

  14. Facies analysis and depositional environment of the Ames Marine Member of the Conemaugh Group in the Appalachian Basin

    SciTech Connect

    Al-Qayim, B.A.

    1983-01-01

    The lithologic and paleontological aspects for fifty localities of the Ames Marine Member were examined. The regional stratigraphic reconstruction shows that it is variably composed of limestone and shale, and often associated with a thin basal coal seam. A generalized, composite stratigraphic section of the Ames Member consists of the following units from top to bottom: the Grafton Sandstone, Nonmarine Shale, Upper Ames Shale, Upper Ames Limestone, Middle Ames Shale, Lower Ames Limestone, Lower Ames Shale, Ames Coal, Nonmarine Silty Shale, and Harlem Coal. Harlem coal is commonly the basal coal in Ohio, and the Ames Coal is common in Pennsylvania and West Virginia. Insoluble residue analysis of 223 samples shows that quartz and glauconite are the major and significant residues. The major petrographic components of the Ames rocks are bioclastic grains of echinoderm, brachiopods, molluscs, bryozoa, and foraminifera in a matrix variably composed of clay and calcium carbonate. A quantitative microfacies study applying factor and cluster analysis reveals five basin-wide biofacies and four lithofacies reflecting a gradient from shoreline to an offshore position. The areal and vertical distribution of the different facies reflects the transgression-regression history of the Ames Cycle. A uniform slow eustatic rise of sea level with an early rapid transgression was responsible for the deposition of most of the Ames marine section. The small, upper, underdeveloped regressive section suggests a rapid regression by active prograding deltaic deposits which rapidly terminated the marine conditions over most the the Appalachian Basin.

  15. Salt and ice crystallisation in porous sandstones

    NASA Astrophysics Data System (ADS)

    Ruedrich, Joerg; Siegesmund, Siegfried

    2007-03-01

    Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.

  16. Permeability evolution in sandstone: Digital rock approach

    NASA Astrophysics Data System (ADS)

    Kameda, Ayako

    Permeability is perhaps one of the most important yet elusive reservoir properties, since it poorly correlates with elastic properties, and as a result, cannot be mapped remotely. Physical permeability measurements may be augmented or even partially replaced by numerical experiments, provided that a numerical simulation accurately mimics the physical process. Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it has to be practical and easily repeatable, i.e., implemented on standard hardware and in real time. This condition reduces the feasible size of a digital sample to just a few grains across. Will the results be meaningful for a larger rock volume? The answer is that small fragments of medium- to high-porosity sandstone, such as cuttings, which are not statistically representative of a larger sample, cannot be used to numerically calculate the exact porosity and permeability of the sample. However, by using a significant number of such small fragments, it may be possible to establish a site-specific permeability-porosity trend, which can be used to estimate the absolute permeability from independent porosity data, obtained in the well or inferred from seismic measurements.

  17. Pressure sensitivity of low permeability sandstones

    USGS Publications Warehouse

    Kilmer, N.H.; Morrow, N.R.; Pitman, J.K.

    1987-01-01

    Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.

  18. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  19. Transforming Developmental Education in Texas

    ERIC Educational Resources Information Center

    Journal of Developmental Education, 2014

    2014-01-01

    In recent years, with support from the Texas Legislature, the Texas Higher Education Coordinating Board has funded various developmental education initiatives, including research and evaluation efforts, to help Texas public institutions of higher education provide more effective programs and services to underprepared students. Based on evaluation…

  20. The Texas Ranger of Testing.

    ERIC Educational Resources Information Center

    Zlatos, Bill

    1996-01-01

    Texas takes test security seriously. Joe Lucio, the Texas Ranger of testing, investigates security breaches of the Texas Assessment of Academic Skills--a mandatory, high-stakes examination. Students cheat mainly on the test required for graduation. Educators cheat by helping test-takers. Lucio's low-key, persistent investigative style usually…

  1. Texas Almanac, 2002-2003.

    ERIC Educational Resources Information Center

    Ramos, Mary G., Ed.

    The 61st edition of the "Texas Almanac" has a reputation as the definitive source for Texas information since 1857. It contains details of the Census 2000 official population count, including statewide, county and town counts, plus an analysis of the numbers by experts at Texas's State Data Center. It includes information about politics,…

  2. Modeling CO2 distribution in a heterogeneous sandstone reservoir: the Johansen Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Sundal, Anja; Miri, Rohaldin; Petter Nystuen, Johan; Dypvik, Henning; Aagaard, Per

    2013-04-01

    The last few years there has been broad attention towards finding permanent storage options for CO2. The Norwegian continental margin holds great potential for storage in saline aquifers. Common for many of these reservoir candidates, however, is that geological data are sparse relative to thoroughly mapped hydrocarbon reservoirs in the region. Scenario modeling provides a method for estimating reservoir performances for potential CO2 storage sites and for testing injection strategies. This approach is particularly useful in the evaluation of uncertainties related to reservoir properties and geometry. In this study we have tested the effect of geological heterogeneities in the Johansen Formation, which is a laterally extensive sandstone and saline aquifer at burial depths of 2 - 4 km, proposed as a suitable candidate for CO2 storage by Norwegian authorities. The central parts of the Johansen Formation are underlying the operating hydrocarbon field Troll. In order not to interfere with ongoing gas production, a potential CO2 injection well should be located at a safe distance from the gas reservoir, which consequently implies areas presently without well control. From 3D seismic data, prediction of spatial extent of sandstone is possible to a certain degree, whereas intra-reservoir flow baffles such as draping mudstone beds and calcite cemented layers are below seismic resolution. The number and lateral extent of flow baffles, as well as porosity- and permeability distributions are dependent of sedimentary facies and diagenesis. The interpretation of depositional environment and burial history is thus of crucial importance. A suite of scenario models was established for a potential injection area south of the Troll field. The model grids where made in Petrel based on our interpretations of seismic data, wire line logs, core and cuttings samples. Using Eclipse 300 the distribution of CO2 is modeled for different geological settings; with and without the presence of

  3. Blueschist-facies metamorphism related to regional thrust faulting

    USGS Publications Warehouse

    Blake, M.C.; Irwin, W.P.; Coleman, R.G.

    1969-01-01

    Rocks of the blueschist (glaucophane schist) facies occur throughout the world in narrow tectonic belts associated with ultramafic rocks. In the Coast Range province of California, blueschist rocks are devloped in the eugeosynclinal Franciscan Formation of Late Mesozoic age. The blueschist rocks form a narrow belt for more than 800 km along the eastern margin of this province and commonly are separated from rocks of an overlying thrust plate by serpentinite. Increasing metamorphism upward toward the thrust fault is indicated mineralogically by a transition from pumpellyite to lawsonite and texturally by a transition from metagraywacke to schist. The blueschist metamorphism probably occurred during thrusting in a zone of anomalously high water pressure in the lower plate along the sole of the thrust fault. This tectonic mode of origin for blueschist differs from the generally accepted hypothesis involving extreme depth of burial. Other belts of blueschist-facies rocks, including the Sanbagawa belt of Japan, the marginal synclinal belt of New Zealand, and the blueschist-ultramafic belts of Venezuela, Kamchatka, Ural mountains, and New Caledonia have similar geologic relations and might be explained in the same manner. ?? 1969.

  4. Diagenesis Along Fractures in an Eolian Sandstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Yen, A. S.; Rampe, E. B.; Grotzinger, J. P.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Downs, R.; Morris, R. V.; Morrison, S. M.; Vaniman, D. T.; Gellert, R.; Sutter, B.; Treiman, A. H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring sedimentary deposits in Gale crater since August 2012. The rover has traversed up section through approx.100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation lies unconformable over a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Mineralogy of the unaltered Stimson sandstone consists of plagioclase feldspar, pyroxenes, and magnetite with minor abundances of hematite, and Ca-sulfates (anhydrite, bassanite). Unaltered sandstone has a composition similar to the average Mars crustal composition. Alteration "halos" occur adjacent to fractures in the Stimson. Fluids passing through these fractures have altered the chemistry and mineralogy of the sandstone. Silicon and S enrichments and depletions in Al, Fe, Mg, Na, K, Ni and Mn suggest aqueous alteration in an open hydrologic system. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes, but less abundant in the altered compared to the unaltered Stimson sandstone and lower pyroxene/plagioclase feldspar. The mineralogy and geochemistry of the altered sandstone suggest a complicated history with several (many?) episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).

  5. The Middle Jurassic Entrada Sandstone near Gallup, New Mexico

    USGS Publications Warehouse

    Robertson, J.F.; O'Sullivan, R. B.

    2001-01-01

    Near Gallup, New Mexico, the Middle Jurassic Entrada Sandstone consists of, in ascending order, the Iyanbito Member, the Rehoboth Member, and an upper sandstone member. The Rehoboth Member is named herein to replace the middle siltstone member, with a type section located 26 km east of Gallup. The Iyanbito Member has been erroneously equated with the Wingate Sandstone of northeast Arizona, and the Rehoboth Member has been miscorrelated with the Dewey Bridge Member of the Entrada in Utah. The Dewey Bridge is an older unit that does not extend into New Mexico. The Iyanbito Member, east of Gallup, overlies the J-2 unconformity and the eroded tops of the Owl Rock and Petrified Forest Members of the Chinle Formation. The Wingate Sandstone of the Lower Jurassic Glen Canyon Group overlies the J-0 unconformity and the underlying Rock Point Member (topmost unit) of the Chinle Formation in northeast Arizona. Both the Wingate Sandstone and the Rock Point Member are missing east of Gallup below the J-2 unconformity. Similarly, the Wingate is missing southwest of Gallup, near Lupton, Arizona, but the Rock Point Member is present and underlies the Iyanbito from Zuni northward to Toadlena, New Mexico. The Wingate and other formations of the Glen Canyon Group thin and wedge out southward and eastward in northeast Arizona. The J-2 unconformity truncates the Wingate Sandstone and the underlying J-0 unconformity, 5 km north of Toadlena.

  6. Reservoir properties of submarine- fan facies: Great Valley sequence, California.

    USGS Publications Warehouse

    McLean, H.

    1981-01-01

    Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author

  7. Stable isotope (C and N) and sedimentary facies analyses of the Cantwell Formation, Denali National Park, Alaska as indicators of Maastrichtian paleoenvironment

    NASA Astrophysics Data System (ADS)

    Salazar Jaramillo, S.; Fowell, S. J.; Wooller, M. J.; Mccarthy, P. J.; Benowitz, J.

    2012-12-01

    Sedimentary facies and stable isotope analyses of Lower Cantwell Formation outcrops on the East Fork of the Toklat River in Denali National Park, Alaska, reveal a correlation between positive δ13C excursions and carbonaceous facies. 238U/206Pb zircon dating of a bentonite layer from our measured sections yields a crystallization age of 69.5 ± 0.69 Ma, indicating that dinosaur tracks identified in this part of the Cantwell Formation are of early Maastrichtian age. This date establishes the coeval nature of dinosaur bones from the Prince Creek Formation on Alaska's North Slope, allows reconstruction of Late Cretaceous climate gradients, and brackets the age of the Lower Cantwell-Upper Cantwell unconformity (~69 Ma to ~60 Ma) linked to the final docking of the Wrangell Composite Terrane. The Late Cretaceous Cantwell Formation is composed of nonmarine sandstone, siltstone, shale, carbonaceous mudstone and, locally, weakly developed paleosols. Facies associations are interpreted as levees, crevasse channels, crevasse splays, and floodplains, which were part of an anastomosed river system. δ13C, δ15N, C/N and TOC values of bulk organic matter were measured in order to reconstruct the local paleoenvironment and facilitate chemostratigraphic correlation with dinosaur-bearing strata on Alaska's North Slope. C/N ratios fall between 5 and 33, indicating that the organic matter is likely comprised of terrestrial plants and lacustrine algae. Throughout the 123 m section, δ13C values of bulk organic matter from sandstone, siltstone, and shale range between -27.1 and -24.9‰. Wood fragments and bulk organic samples from carbonaceous mudstone have higher TOC values and more positive δ13C values, ranging from -24.1 to -22.4‰. Positive δ13C excursions could reflect one or a combination of: 1) changes in composition of the vegetation (e.g., conifers vs. more mixed organic matter); 2) changes in sources of organic material (lacustrine vs. terrestrial); 3) changes in past

  8. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  9. Dynamic triggering during rupture nucleation in sandstone

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Chanard, Kristel; Latour, Soumaya; Petrelis, François; Hatano, Takahiro; Mair, Karen; Vinciguerra, Sergio

    2016-04-01

    Fluid induced stress perturbations in the crust at seismogenic depths can be caused by various sources, such as deglaciation unloading, magmatic intrusion or fluid injection and withdrawal. Numbers of studies have robustly shown their link to earthquake triggering. However, the role of small periodic stress variations induced by solid earth and oceanic tides or seasonal hydrology in the seismic cycle, of the order of a few kPa, remains unclear. Indeed, the existence or absence of correlation between these loading phenomena and earthquakes have been equally proposed in the literature. To investigate this question, we performed a set of triaxial deformation experiments on porous water-saturated Fontainebleau sandstones. Rock samples were loaded by the combined action of steps of constant stress (creep), intended to simulate tectonic loading and small sinusoidal pore pressure variations with a range of amplitudes, analogous to tides or seasonal loading. All tests were conducted at a regulated temperature of 35C and a constant 35 MPa confining pressure. Our experimental results show that (1) pore pressure oscillations do not seem to influence the deformation rate at which the rock fails, (2) they correlate with acoustic emissions. Even more interestingly, we observe a progressive increase of the correlation coefficient in time as the rock approaches failure. The correlation coefficient is also sensitive to the amplitude of pore pressure oscillations as larger oscillations produce higher correlation levels. Finally, we show that, in the last hours of creep before failure, acoustic emissions occur significantly more when the pore pressure is at its lowest. This suggest that the correlation of small stress perturbations and acoustic emissions depend on the state stress of a rock and the amplitude of the perturbations and that emissions occur more likely when cracks are unclamped.

  10. Depositional sequence stratigraphy and architecture of the cretaceous ferron sandstone: Implications for coal and coalbed methane resources - A field excursion

    USGS Publications Warehouse

    Garrison, J.R.; Van Den, Bergh; Barker, C.E.; Tabet, D.E.

    1997-01-01

    This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops

  11. Texas Hunter Education Manual.

    ERIC Educational Resources Information Center

    Hall, Steve

    This handbook serves as a reference for the mandatory hunter education course in Texas. The "Introduction" explains hunter education's goal to produce safe, knowledgeable, responsible, and informed hunters. It also gives information related to hunting opportunities, administration, and management. Chapter 2, "Our Hunting Heritage," gives a…

  12. Library Laws of Texas.

    ERIC Educational Resources Information Center

    Getz, Richard E., Comp.

    Compiled to provide a central reference point for all legislative information pertaining to libraries in the State of Texas, this publication includes all pertinent legislation as amended through the 71st Legislature, 1989, Regular Session. This update of the 1980 edition has been expanded to include statutes pertaining to the school and academic…

  13. Library Laws of Texas.

    ERIC Educational Resources Information Center

    Seidenberg, Ed, Ed.

    Compiled to provide a central reference point for all legislative information pertaining to libraries in the state of Texas, this publication includes all pertinent legislation as amended through the 66th Legislature, Regular Session, 1979. It contains articles dealing specifically with archives, buildings and property, city libraries, non-profit…

  14. Texas and SREB

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2009

    2009-01-01

    The Southern Regional Education Board (SREB) is a nonprofit organization that works collaboratively with Texas and 15 other member states to improve education at every level--from pre-K to postdoctoral study--through many effective programs and initiatives. SREB's "Challenge to Lead" Goals for Education, which call for the region to lead the…

  15. Tornado from Texas.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1996-01-01

    Santa Fe School Superintendent Yvonne Gonzales, the "Texas Tornado," was hired to fix a 40% student-dropout rate and a white/Hispanic gap in achievement test scores. Gonzales is an avid integrationist; relies on humor, appeasement, and persuasion tactics; and has alienated some school employees by increasing central office administrators. (MLH)

  16. Outdoor Education in Texas.

    ERIC Educational Resources Information Center

    Myers, Ray H.

    In Dallas in 1970, high school outdoor education began as a cocurricular woods and waters boys' club sponsored by a community sportsman. Within one year, it grew into a fully accredited, coeducational, academic course with a curriculum devoted to the study of wildlife in Texas, ecology, conservation, hunting, firearm safety, fishing, boating and…

  17. Trouble at Texas Southern

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    On the night of December 4, 2004, a Texas Southern University (TSU) student named Ashley Sloan was gunned down near campus, struck in the temple by a bullet after leaving a party with her friends. The murder prompted an outpouring of accusations concerning poor campus security. For many Houstonians, the shooting raised old fears of the…

  18. East Texas Quilts.

    ERIC Educational Resources Information Center

    Whiteside, Karen, Ed.

    1986-01-01

    Patchwork quilting is an original folk art in the United States. Pilgrims first used worn out scraps of cloth to make bed covers in an age of scarcity. Featured here are stories on East Texas Quilts, their origins, the love and hard work which goes into the making of a quilt (Ira Barr and others). The techniques needed to construct a quilt are…

  19. Texas-Oklahoma

    Atmospheric Science Data Center

    2014-05-15

    article title:  Texas-Oklahoma Border     ... important resources for farming, ranching, public drinking water, hydroelectric power, and recreation. Both originate in New Mexico and ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  20. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  1. The Woodlands, Texas.

    ERIC Educational Resources Information Center

    McHaney, Larry J.; Bernhardt, Jerry

    1988-01-01

    The authors describe the "central project" concept for implementing technology education while addressing education reform. The central project is a topic around which students, teachers, administrators, and the community focus their energies as a team. At McCullough High School (Texas), the central project involved design and development of a…

  2. Wind powering America - Texas

    SciTech Connect

    O'Dell, K.

    2000-04-13

    This fact sheet contains a description of the wind energy resources in the state of Texas and the state's efforts to develop wind energy production, green power, and net metering programs. The fact sheet also includes a list of contacts for those interested in obtaining more information.

  3. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  4. The role of diagenetic studies in flow-unit modeling: San Andres formation, Yoakum County, Texas

    SciTech Connect

    Henderson, S. )

    1994-03-01

    The Permian San Andres Formation represents one of the most prolific hydrocarbon-producing intervals of the Permian basin. Dolostone lithofacies intercalated with thin evaporites accommodate highly compartmentalized reservoirs resulting from complex depositional and diagenetic histories. This compartmentalization often facilitates the use of these reservoirs in flow-unit studies. Perhaps more important than the relationship of productive intervals to depositional facies is the degree to which diagenetic processes have influenced reservoir properties. Detailed petrographic evaluation of the reservoir in question, though often overlooked, should be an integral part of flow-unit studies. Once a diagenetic sequence is established, the information may be incorporated in to the facies model to better understand how to subdivide the reservoir. Such an investigation has been conducted on the San Andres Formation in Reeves field of southeastern Yoakum County, Texas. Here, multistage diagenetic overprints are superimposed on depositional facies that vary in degree of lateral extent, thereby complicating the geometries of individual productive zones within the reservoir. Analysis of the reservoir reveals that Reeves San Andres sediments were subjected to dominant diagenetic processes, including dolomitization and sulfate implacement, both of which are major factors in porosity preservation, and a variety of minor processes that have had little effect on reservoir quality. The recognition of diagenetic facies, and understanding of the processes that have created them, and identification of the implications of these processes on reservoir properties is a vital part of any flow-unit study.

  5. Subsurface Glen Rose reef trend in east Texas and west-central Louisiana

    SciTech Connect

    Adams, G.S.

    1983-03-01

    The subsurface Glen Rose reef trend in east Texas and west-central Louisiana (Lower Cretaceous Comanchean) is a regressive carbonate complex deposited on a broad shallow water shelf. The Glen Rose reef trend can be differentiated into two separate reef tracts that prograded seaward over a slowly subsiding shelf. It remains to be seen whether the Glen Rose reefs are actual framework reefs or mounds of transported material. Reef facies include poorly sorted caprinidcoral grainstones, moderately sorted peloid and oncolite packstones and grainstones, and well-sorted, very fine grained skeletal grainstones. Coated grains, abraded skeletal fragments, scoured bedding surfaces, and minor cross-beds are evidence for deposition of the reef facies in a high-energy shoal setting. The reefal buildups grade laterally into low-energy shallow water wackestones and mudstones containing toucasids, orbitolinids, and serpulid burrows. Porosities associated with the reefal buildups appear facies controlled. Caprinid-coral packstones and grainstones exhibit intraparticle, moldic, and vuggy porosities of 10 to 15%. Pinpoint microporosity of 5 to 10% are found within the finegrained skeletal grainstones. Fracture porosity enhances permeability in several facies. Moldic and vuggy porosity types are generally secondary whereas intraparticle porosity may be preserved primary. Coarse equant calcite commonly occludes intraparticle, moldic, vuggy, and fracture porosities. Dolomitization within the reef limestones may have acted to create or preserve porosities. Poor production from the Glen Rose reef trend has been attributed to the lack of structural closure.

  6. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding-line system from the Itararé Group (Paraná Basin), southern Brazil

    NASA Astrophysics Data System (ADS)

    Aquino, Carolina Danielski; Buso, Victoria Valdez; Faccini, Ubiratan Ferrucio; Milana, Juan Pablo; Paim, Paulo Sergio Gomes

    2016-04-01

    During the Late Paleozoic, the Gondwana supercontinent was affected by multiple glacial and deglacial episodes known as "The Late Paleozoic Ice Age" (LPIA). In Brazil, the evidence of this episode is recorded mainly by widespread glacial deposits preserved in the Paraná Basin that contain the most extensive record of glaciation (Itararé Group) in Gondwana. The Pennsylvanian to early Permian glaciogenic deposits of the Itararé Group (Paraná Basin) are widely known and cover an extensive area in southern Brazil. In the Doutor Pedrinho area (Santa Catarina state, southern Brazil), three glacial cycles of glacier advance and retreat were described. The focus of this article is to detail the base of the second glacial episodes or Sequence II. The entire sequence records a deglacial system tract that is represented by a proximal glacial grounding-line system covered by marine mudstones and shales associated with a rapid flooding of the proglacial area. This study deals with the ice proximal grounding-line systems herein interpreted according to lab model named plane-wall jet with jump. Detailed facies analysis allowed the identification of several facies ranging from boulder-rich conglomerates to fine-grained sandstones. No fine-grained deposits such as siltstone or shale were recorded. According to this model, the deposits are a product of a supercritical plane-wall outflow jet that changes to a subcritical jet downflow from a hydraulic jump. The hydraulic jump forms an important energy boundary that is indicated by an abrupt change in grain size and cut-and-fill structures that occur at the middle-fan. The sedimentary facies and facies associations show a downflow trend that can be subdivided into three distinct stages of flow development: (1) a zone of flow establishment (ZFE), (2) a zone of transition (ZFT), and (3) an established zone (ZEF). The proximal discharge is characterized by hyperconcentrated-to-concentrated flow due to the high energy and sediment

  7. Catalogue of Texas spiders

    PubMed Central

    Dean, David Allen

    2016-01-01

    Abstract This catalogue lists 1,084 species of spiders (three identified to genus only) in 311 genera from 53 families currently recorded from Texas and is based on the “Bibliography of Texas Spiders” published by Bea Vogel in 1970. The online list of species can be found at http://pecanspiders.tamu.edu/spidersoftexas.htm. Many taxonomic revisions have since been published, particularly in the families Araneidae, Gnaphosidae and Leptonetidae. Many genera in other families have been revised. The Anyphaenidae, Ctenidae, Hahniidae, Nesticidae, Sicariidae and Tetragnathidae were also revised. Several families have been added and others split up. Several genera of Corinnidae were transferred to Phrurolithidae and Trachelidae. Two genera from Miturgidae were transferred to Eutichuridae. Zoridae was synonymized under Miturgidae. A single species formerly in Amaurobiidae is now in the Family Amphinectidae. Some trapdoor spiders in the family Ctenizidae have been transferred to Euctenizidae. Gertsch and Mulaik started a list of Texas spiders in 1940. In a letter from Willis J. Gertsch dated October 20, 1982, he stated “Years ago a first listing of the Texas fauna was published by me based largely on Stanley Mulaik material, but it had to be abandoned because of other tasks.” This paper is a compendium of the spiders of Texas with distribution, habitat, collecting method and other data available from revisions and collections. This includes many records and unpublished data (including data from three unpublished studies). One of these studies included 16,000 adult spiders belonging to 177 species in 29 families. All specimens in that study were measured and results are in the appendix. Hidalgo County has 340 species recorded with Brazos County at 323 and Travis County at 314 species. These reflect the amount of collecting in the area. PMID:27103878

  8. Catalogue of Texas spiders.

    PubMed

    Dean, David Allen

    2016-01-01

    This catalogue lists 1,084 species of spiders (three identified to genus only) in 311 genera from 53 families currently recorded from Texas and is based on the "Bibliography of Texas Spiders" published by Bea Vogel in 1970. The online list of species can be found at http://pecanspiders.tamu.edu/spidersoftexas.htm. Many taxonomic revisions have since been published, particularly in the families Araneidae, Gnaphosidae and Leptonetidae. Many genera in other families have been revised. The Anyphaenidae, Ctenidae, Hahniidae, Nesticidae, Sicariidae and Tetragnathidae were also revised. Several families have been added and others split up. Several genera of Corinnidae were transferred to Phrurolithidae and Trachelidae. Two genera from Miturgidae were transferred to Eutichuridae. Zoridae was synonymized under Miturgidae. A single species formerly in Amaurobiidae is now in the Family Amphinectidae. Some trapdoor spiders in the family Ctenizidae have been transferred to Euctenizidae. Gertsch and Mulaik started a list of Texas spiders in 1940. In a letter from Willis J. Gertsch dated October 20, 1982, he stated "Years ago a first listing of the Texas fauna was published by me based largely on Stanley Mulaik material, but it had to be abandoned because of other tasks." This paper is a compendium of the spiders of Texas with distribution, habitat, collecting method and other data available from revisions and collections. This includes many records and unpublished data (including data from three unpublished studies). One of these studies included 16,000 adult spiders belonging to 177 species in 29 families. All specimens in that study were measured and results are in the appendix. Hidalgo County has 340 species recorded with Brazos County at 323 and Travis County at 314 species. These reflect the amount of collecting in the area. PMID:27103878

  9. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K. )

    1996-01-01

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  10. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K.

    1996-12-31

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  11. Sandstone Diagenesis at Gale Crater, Mars, As Observed By Curiosity

    NASA Astrophysics Data System (ADS)

    Siebach, K. L.; Grotzinger, J. P.; McLennan, S. M.; Hurowitz, J.; Kah, L. C.; Edgett, K. S.; Williams, R. M. E.; Wiens, R. C.; Schieber, J.

    2014-12-01

    The Mars Science Laboratory rover, Curiosity, has encountered a significant number of poorly-sorted and very well-lithified sandstones along its traverse on the floor of Gale Crater. We use images from the hand-lens imager (MAHLI) and elemental chemistry from the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) and the alpha-particle x-ray spectrometer (APXS) to begin to constrain the diagenetic history of these sandstones, including lithification and possible later dissolution. Investigation of MAHLI images reveals that the sediments are poorly-sorted and show very low apparent porosity, generally less than ~5%. However, in some cases, such as the Gillespie Lake sandstone identified in Yellowknife Bay, this apparent porosity includes a significant fraction of void spaces larger than typical sediment grain sizes (~30% by number or 75% of void spaces by area). One possible explanation of these larger pits is that they represent recent removal of soft intraclasts by eolian abrasion. Another possibility is that later diagenetic fluids caused dissolution of more soluble grains, and production of secondary porosity. Investigation into the elemental chemistry of the sandstones has shown that they have a relatively unaltered basaltic bulk composition in spite of possessing a variety of secondary minerals and amorphous material, indicating isochemical diagenetic processes. The chemistry and mineralogy of the cement is not immediately evident based on the initial analyses; there is not a high percentage of salts or evaporative minerals that may easily cement near-surface sandstones. Furthermore, these sandstones lack textures and compositions consistent with pedogenic processes, such as calcrete, silcrete, or ferricrete. Instead, they may record burial and cementation at depth. Cement composition may be constrained through comparison to terrestrial basaltic sandstones, and studying chemical variations along ChemCam and APXS transects of the rocks.

  12. Alisitos Formation calcareous facies - Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-04-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of Baja California bounding the Peninsula Range batholith. Lithologically, this formation is formed by volcanic breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic barrier reef behind an island arc. Such conditions pertained south of the Agua Blanca fault and extended to El Arco, Baja California. Based on field observation and petrologic analysis in the Alisitos limestone, an attempt has been made to re-create the environmental condition in the Punta China and San Fernando, Baja California, sites.

  13. Alisitos Formation, calcareous facies: Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-07-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of the peninsula of Baja California bounding the Peninsular Range batholith. Lithologically, this formation is formed by volcanic-breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during the tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic reef barrier, behind an island arc. Such conditions existed south of the Agua Blanca fault and extended to El Arco, Baja California. Based upon field observations and petrological analysis of the Alisitos limestone, an attempt is made to recreate the environmental condition in the Punta China and San Fernando, Baja California, sites.

  14. Post-granulite facies fluid infiltration in the Adirondack Mountains

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1988-06-01

    Granulite facies lithologies from the Adirondack Mountains of New York contain alteration assemblages composed dominantly of calcite +/- chlorite +/- sericite. These assemblages document fluid infiltration at middle to upper crustal levels. Cathodoluminescence of samples from the Marcy anorthosite massif indicates that the late fluid infiltration is more widespread than initially indicated by transmitted-light petrography alone. Samples that appear unaltered in transmitted light show extensive anastomosing veins of calcite (< 0.05 mm wide) along grain boundaries, in crosscutting fractures, and along mineral cleavages. The presence of the retrograde calcite documents paleopermeability in crystalline rocks and is related to the formation of high-density CO/sub 2/-rich fluid inclusions. Recognition of this process has important implications for studies of granulite genesis and the geophysical properties of the crust.

  15. Latest Jurassic-early Cretaceous regressive facies, northeast Africa craton

    SciTech Connect

    van Houten, F.B.

    1980-06-01

    Nonmarine to paralic detrital deposits accumulated in six large basins between Algeria and the Arabo-Nubian shield during major regression in latest Jurassic and Early Cretaceous time. The Ghadames Sirte (north-central Libya), and Northern (Egypt) basins lay along the cratonic margin of northeastern Africa. The Murzuk, Kufra, and Southern (Egypt) basins lay in the south within the craton. Data for reconstructing distribution, facies, and thickness of relevant sequences are adequate for the three northern basins only. High detrital influx near the end of Jurassic time and in mid-Cretaceous time produced regressive nubian facies composed largely of low-sinuosity stream and fahdelta deposits. In the west and southwest the Ghadames, Murzuk, and Kufra basins were filled with a few hundred meters of detritus after long-continued earlier Mesozoic aggradation. In northern Egypt the regressive sequence succeeded earlier Mesozoic marine sedimentation; in the Sirte and Southern basins correlative deposits accumulated on Precambrian and Variscan terranes after earlier Mesozoic uplift and erosion. Waning of detrital influx into southern Tunisia and adjacent Libya in the west and into Israel in the east initiated an Albian to early Cenomanian transgression of Tethys. By late Cenomanian time it had flooded the entire cratonic margin, and spread southward into the Murzuk and Southern basins, as well as onto the Arabo-Nubian shield. Latest Jurassic-earliest Cretaceous, mid-Cretaceous, and Late Cretaceous transgressions across northeastern Africa recorded in these sequences may reflect worldwide eustatic sea-level rises. In contrast, renewed large supply of detritus during each regression and a comparable subsidence history of intracratonic and marginal basins imply regional tectonic control. 6 figures.

  16. Development geology study of Weber sandstone, Rangely field, Colorado

    SciTech Connect

    Jackson, W.D.; Bowker, K.

    1989-09-01

    The Pennsylvanian-Permian Weber Sandstone formation is the major producing horizon at the giant Rangely field, Rio Blanco County, Colorado. The Weber has been separated into six lithofacies using core descriptions, core analyses, optical and scanning-electron microscopy, x-ray diffraction, and special-core analyses. Two of the lithofacies (eolian) are productive. The subarkosic laminated sandstones (which have the best reservoir quality) have an average Boyle's Law porosity of 9.7%. Permeability varies directionally on a small scale because of differential cementation within the graded laminae; the very fine-grained portion of the laminae is more tightly cemented by carbonate minerals than are the fine-grained portions. Permeability along the laminae averages 1.2 md; permeability across the laminae is less than 1 md. The second productive lithofacies is massive (bioturbated) and more thoroughly cemented than the first; it is also composed of fine and very fine-grained sandstones. These massive subarkosic sandstones have an average porosity of 7% and permeability averaging less than 1 md. Fractures alter permeability in portions of the field. The remaining four lithofacies (fluvial) are not productive and act as intraformational permeability barriers. Arkosic sandstones, arkosic siltstones, shales, and rare carbonates comprise this group. The relationship of the lithofacies to the depositional environment and the recognition of them on electric logs has allowed correlations across the field. This has proven an important contribution to the management of the current CO{sub 2} flood.

  17. Numerical analysis of sandstone composition, provenance, and paleogeography

    SciTech Connect

    Smosma, R.; Bruner, K.R.; Burns, A.

    1999-09-01

    Cretaceous deltaic sandstones of the National Petroleum Reserve in Alaska exhibit an extreme variability in their mineral makeup. A series of numerical techniques, however, provides some order to the petrographic characteristics of these complex rocks. Ten mineral constituents occur in the sandstones, including quartz, chert, feldspar, mica, and organic matter, plus rock fragments of volcanics, carbonates, shale, phyllite, and schist. A mixing coefficient quantities the degree of heterogeneity in each sample. Hierarchical cluster analysis then groups sandstones on the basis of similarities among all ten mineral components--in the Alaskan example, six groupings characterized mainly by the different rock fragments. Multidimensional scaling shows how the clusters relate to one another and arranges them along compositional gradients--two trends in Alaska based on varying proportions of metamorphic/volcanic and shale/carbonate rock fragments. The resulting sandstone clusters and petrographic gradients can be mapped across the study area and compared with the stratigraphic section. This study confirms the presence of three different source areas that provided diverse sediment to the Cretaceous deltas as well as the general transport directions and distances. In addition, the sand composition is shown to have changed over time, probably related to erosional unroofing in the source areas. This combination of multivariate-analysis techniques proves to be a powerful tool, revealing subtle spatial and temporal relationships among the sandstones and allowing one to enhance provenance and paleogeographic conclusions made from compositional data.

  18. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones.

    PubMed

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-08-01

    Transport behavior and fate of engineered silver nanoparticles (AgNP) in the subsurface is of major interest concerning soil and groundwater protection in order to avoid groundwater contamination of vital resources. Sandstone aquifers are important groundwater resources which are frequently used for public water supply in many regions of the world. The objective of this study is to get a better understanding of AgNP transport behavior in partially fractured sandstones. We executed AgNP transport studies on partially fissured sandstone drilling cores in laboratory experiments. The AgNP concentration and AgNP size in the effluent were analyzed using flow field-flow fractionation mainly. We employed inverse mathematical models on the measured AgNP breakthrough curves to identify and quantify relevant transport processes. Physicochemical filtration, time-dependent blocking due to filling of favorable attachment sites and colloid-facilitated transport were identified as the major processes for AgNP mobility. Physicochemical filtration was found to depend on solute chemistry, mineralogy, pore size distribution and probably on physical and chemical heterogeneity. Compared to AgNP transport in undisturbed sandstone matrix reported in the literature, their mobility in partially fissured sandstone is enhanced probably due to larger void spaces and higher hydraulic conductivity.

  19. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  20. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  1. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    NASA Astrophysics Data System (ADS)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  2. Geologic Sequestration of CO2 and Associated H2S and SO2 in Bedded Sandstone-Shale Sequences

    NASA Astrophysics Data System (ADS)

    Xu, T.; Apps, J. A.; Pruess, K.

    2003-12-01

    The injection of CO2 and associated acid gases such as H2S and SO2 into deep sedimentary aquifers is a means by which net anthropogenic atmospheric emissions of greenhouse gases might be reduced. Aquifer host rock aluminosilicate minerals alter very slowly under ambient conditions and their study is not amenable to laboratory experiment. We therefore developed a numerical model to investigate the fate of CO2 and other acid gases in bedded sandstone-shale sequences using hydrogeologic properties and mineral compositions characteristic of Texas Gulf Coast sediments. The simulations were performed using the reactive fluid flow and geochemical transport code, TOUGHREACT, to analyze mass transfer between sandstone and shale layers, the consequent immobilization of gases through mineral precipitation, and the impact of co-contaminated H2S and SO2 gases on CO2 sequestration. The gas sequestration capacity by both aqueous and mineral phases was evaluated. Porosity changes due to mineral dissolution and precipitation were also monitored. The simulations provide useful insights into potential sequestration processes, and their controlling conditions and parameters during long-term containment of acid gases in deep sedimentary formations.

  3. Spatial Persistence of Macropores and Authigenic Clays in a Reservoir Sandstone: Implications for Enhanced Oil Recovery and CO2 Storage

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2015-12-01

    Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Effective Thermal Conductivity Modeling of Sandstones: SVM Framework Analysis

    NASA Astrophysics Data System (ADS)

    Rostami, Alireza; Masoudi, Mohammad; Ghaderi-Ardakani, Alireza; Arabloo, Milad; Amani, Mahmood

    2016-06-01

    Among the most significant physical characteristics of porous media, the effective thermal conductivity (ETC) is used for estimating the thermal enhanced oil recovery process efficiency, hydrocarbon reservoir thermal design, and numerical simulation. This paper reports the implementation of an innovative least square support vector machine (LS-SVM) algorithm for the development of enhanced model capable of predicting the ETCs of dry sandstones. By means of several statistical parameters, the validity of the presented model was evaluated. The prediction of the developed model for determining the ETCs of dry sandstones was in excellent agreement with the reported data with a coefficient of determination value ({R}2) of 0.983 and an average absolute relative deviation of 0.35 %. Results from present research show that the proposed LS-SVM model is robust, reliable, and efficient in calculating the ETCs of sandstones.

  5. Plane shock wave studies of Westerly granite and Nugget sandstone

    SciTech Connect

    Larson, D.B.; Anderson, G.D.

    1980-12-01

    Plane shock wave experiments were performed by using a light-gas gun on dry and water-saturated Westerly granite and dry Nugget sandstone. Changes in the slopes of the shock velocity versus particle velocity curves at 2 to 3 GPa and 1 to 2 GPa for dry granite and for dry sandstone, respectively, are attributed to the onset of pore collapse. However, there is little apparent loss of shear strength in either dry rock over the stress range of the experiments (i.e., 9.3 GPa in Westerly granite and 9.2 GPa in Nugget sandstone). Agreement between the shock wave data and quasistatic, uniaxial strain data for the dry rock implies the absence of rate-dependence in uniaxial strain. The shock data on saturated granite agree well with those for dry granite, thus suggesting there was no loss in shear strength as a result of pore pressure buildup.

  6. Optical coherence tomography for vulnerability assessment of sandstone.

    PubMed

    Bemand, Elizabeth; Liang, Haida

    2013-05-10

    Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1 cm s(-1) to 10(-6) cm s(-1), covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious.

  7. Corpus Christi, Texas

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This near vertical view of the south Texas coast shows the city of Corpus Christi (28.0N, 97.0W) and Corpus Christi Bay. Mustang Island and the Gulf of Mexico are seen in the Southeast corner of the view. The Nueces River flows into the bay from the west. The light toned squiggly lines in Corpus Christi Bay are mud trails caused by shrimp boats dragging their nets along the shallow bottom of the bay.

  8. San Antonio, Texas, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This sharp, cloud free view of San Antonio, Texas (29.5N, 98.5W) illustrates the classic pattern of western cities. The city has a late nineteenth century Anglo grid pattern overlaid onto an earlier, less regular Hispanic settlement. A well marked central business district having streets laid out north/south and east/west is surrounded by blocks of suburban homes and small businesses set between the older colonial radial transportation routes.

  9. Human lead absorption -- Texas.

    PubMed

    1997-09-19

    In December 1971, the City-County Health Department in El Paso, Texas, discovered that an ore smelter in El Paso was discharging large quantities of lead and other metallic wastes into the air. Between 1969 and 1971, this smelter had released 1,116 tons of lead, 560 tons of zinc, 12 tons of cadmium, and 1.2 tons of arsenic into the atmosphere through its stacks.

  10. Libraries in Texas: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/texas.html Libraries in Texas To use the sharing features on ... Amarillo Texas Tech University Health Sciences Center Harrington Library of the Health Sciences 1400 Wallace Boulevard Amarillo, ...

  11. Thunderstorm, Texas Gulf Coast, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.

  12. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  13. Diagenetic pathways for sandstones: The role of initial composition

    SciTech Connect

    Harris, N.B.

    1995-09-01

    The initial composition of a clastic section is critical in determining the diagenetic reactions that a sandstone will undergo during burial, reactions which strongly influence its reservoir properties. The role of initial composition is illustrated for Middle Jurassic sandstones of northwest Europe (including the Brent sandstone of the North Sea) and Tertiary sandstones of the Gulf of Mexico. The composition of the former evolves from arkose to quartz arenite, with massive dissolution first of plagioclase and subsequently K-feldspar. As the bulk composition changes, the suite of clay minerals changes from kaolinite-dominated to illite-dominated, suite of clay minerals changes from kaolinite-dominated to illite-dominated, typically accompanied by a pronounced decrease in permeability. The Gulf of Mexico sandstones are also initially arkoses. Their composition, however, evolves toward a mixture of quartz and compositionally pure albite. Kaolinite remains the dominant authigenic clay within the sandstones; however detrital clays change from a Na-rich, smectitic mixed layer clay to a K-rich, illitic mixed layer clay. The contrasting diagenetic pathways result from differing mineralogy in the clastic section. The smectite-rich mudstones in the Gulf of Mexico provide a powerful sink for potassium and source of sodium. The resulting low potassium activity results in K-feldspar dissolution; it also prevents illite formation, while high sodium activity stabilizes albite. The Middle Jurassic clastic section in northwest Europe contains relatively little smectite, thus lacks the potassium sink and sodium source. Sodium activity is low, so plagioclases preferentially dissolve. K-feldspars also dissolve, but the potassium here is available for illite formation.

  14. Microbial contamination of two urban sandstone aquifers in the UK.

    PubMed

    Powell, Karen L; Taylor, Richard G; Cronin, Aidan A; Barrett, Mike H; Pedley, Steve; Sellwood, Jane; Trowsdale, Sam A; Lerner, David N

    2003-01-01

    Development of urban groundwater has historically been constrained by concerns about its quality. Rising urban water tables and overabstraction from rural aquifers in the UK have led to a renewed interest in urban groundwater, particularly the possibility of finding water of acceptable quality at depth. This study assessed the microbial quality of groundwater collected from depth-specific intervals over a 15-month period within the Permo-Triassic Sherwood Sandstone aquifers underlying the cities of Nottingham and Birmingham. Sewage-derived bacteria (thermotolerant coliforms, faecal streptococci and sulphite-reducing clostridia) and viruses (enteroviruses, Norwalk-like viruses, coliphage) were regularly detected to depths of 60 m in the unconfined sandstone and to a depth of 91 m in the confined sandstone. Microbial concentrations varied temporally and spatially but increased frequency of contamination with depth coincided with geological heterogeneities such as fissures and mudstone bands. Significantly, detection of Norwalk-like viruses and Coxsackievirus B4 in groundwater corresponded with seasonal variations in virus discharge to the sewer system. The observation of low levels of sewage-derived microbial contaminants at depth in the Triassic Sandstone aquifer is explained by the movement of infinitesimal proportions of bulk (macroscopic) groundwater flow along preferential pathways (e.g., fissures, bedding planes). The existence of very high microbial populations at source (raw sewage) and their extremely low detection limits at the receptor (multilevel piezometer) enable these statistically extreme (microscopic) flows to be traced. Rapid penetration of microbial contaminants into sandstone aquifers, not previously reported, highlights the vulnerability of sandstone aquifers to microbial contamination. PMID:12502063

  15. Microbial contamination of two urban sandstone aquifers in the UK.

    PubMed

    Powell, Karen L; Taylor, Richard G; Cronin, Aidan A; Barrett, Mike H; Pedley, Steve; Sellwood, Jane; Trowsdale, Sam A; Lerner, David N

    2003-01-01

    Development of urban groundwater has historically been constrained by concerns about its quality. Rising urban water tables and overabstraction from rural aquifers in the UK have led to a renewed interest in urban groundwater, particularly the possibility of finding water of acceptable quality at depth. This study assessed the microbial quality of groundwater collected from depth-specific intervals over a 15-month period within the Permo-Triassic Sherwood Sandstone aquifers underlying the cities of Nottingham and Birmingham. Sewage-derived bacteria (thermotolerant coliforms, faecal streptococci and sulphite-reducing clostridia) and viruses (enteroviruses, Norwalk-like viruses, coliphage) were regularly detected to depths of 60 m in the unconfined sandstone and to a depth of 91 m in the confined sandstone. Microbial concentrations varied temporally and spatially but increased frequency of contamination with depth coincided with geological heterogeneities such as fissures and mudstone bands. Significantly, detection of Norwalk-like viruses and Coxsackievirus B4 in groundwater corresponded with seasonal variations in virus discharge to the sewer system. The observation of low levels of sewage-derived microbial contaminants at depth in the Triassic Sandstone aquifer is explained by the movement of infinitesimal proportions of bulk (macroscopic) groundwater flow along preferential pathways (e.g., fissures, bedding planes). The existence of very high microbial populations at source (raw sewage) and their extremely low detection limits at the receptor (multilevel piezometer) enable these statistically extreme (microscopic) flows to be traced. Rapid penetration of microbial contaminants into sandstone aquifers, not previously reported, highlights the vulnerability of sandstone aquifers to microbial contamination.

  16. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-02-15

    We assessed spatial distribution of total dissolved solids (TDS) in shallow (<50 m), intermediate (50-150 m), and deep (>150 m) municipal (domestic and public supply) wells in nine major aquifers in Texas for the 1960s-1970s and 1990s-2000s periods using geochemical data obtained from the Texas Water Development Board. For both time periods, the highest median groundwater TDS concentrations in shallow wells were found in the Ogallala and Pecos Valley aquifers and that in the deep wells were found in the Trinity aquifer. In the Ogallala, Pecos Valley, Seymour and Gulf Coast aquifers, >60% of observations from shallow wells exceeded the secondary maximum contaminant level (SMCL) for TDS (500 mg L(-1)) in both time periods. In the Trinity aquifer, 72% of deep water quality observations exceeded the SMCL in the 1990s-2000s as compared to 64% observations in the 1960s-1970s. In the Ogallala, Edwards-Trinity (plateau), and Edwards (Balcones Fault Zone) aquifers, extent of salinization decreased significantly (p<0.05) with well depth, indicating surficial salinity sources. Geochemical ratios revealed strong adverse effects of chloride (Cl(-)) and sulfate (SO4(2-)) on groundwater salinization throughout the state. Persistent salinity hotspots were identified in west (southern Ogallala, north-west Edwards-Trinity (plateau) and Pecos Valley aquifers), north central (Trinity-downdip aquifer) and south (southern Gulf Coast aquifer) Texas. In west Texas, mixed cation SO4-Cl facies led to groundwater salinization, as compared to Na-Cl facies in the southern Gulf Coast, and Ca-Na-HCO3 and Na-HCO3 facies transitioning to Na-Cl facies in the Trinity-downdip regions. Groundwater mixing ensuing from cross-formational flow, seepage from saline plumes and playas, evaporative enrichment, and irrigation return flow had led to progressive groundwater salinization in west Texas, as compared to ion-exchange processes in the north-central Texas, and seawater intrusion coupled with salt

  17. A new bee species that excavates sandstone nests.

    PubMed

    Orr, Michael C; Griswold, Terry; Pitts, James P; Parker, Frank D

    2016-09-12

    Humanity has long been fascinated by animals with apparently unfavorable lifestyles [1]. Nesting habits are especially important because they can limit where organisms live, thereby driving population, community, and even ecosystem dynamics [2]. The question arises, then, why bees nest in active termite mounds [3] or on the rim of degassing volcanoes, seemingly preferring such hardship [4]. Here, we present a new bee species that excavates sandstone nests, Anthophora (Anthophoroides) pueblo Orr (described in Supplemental Information, published with this article online), despite the challenges already inherent to desert life. Ultimately, the benefits of nesting in sandstone appear to outweigh the associated costs in this system. PMID:27623257

  18. Hydrogeology of the Potsdam Sandstone in northern New York

    USGS Publications Warehouse

    Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

    2010-01-01

    The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends

  19. Natural and Laboratory-Induced Compaction Bands in Aztec Sandstone

    NASA Astrophysics Data System (ADS)

    Haimson, B. C.; Lee, H.

    2002-12-01

    The Aztec sandstone used in this research is from the Valley of Fire State Park area, Nevada. This Jurassic aeolian sandstone is extremely weak (uniaxial compressive strength of 1-2 MPa); porosity averages 26%; grains are subrounded and have a bimodal size distribution (0.1 mm and 0.5 mm); its mineral composition (K. Sternlof, personal comm.) is 93% quartz, 5% k-spar, and 2% kaolinite, Fe carbonate and others; grain bonding is primarily through suturing. Sternlof et al. (EOS, November, 2001) observed substantial exposure of mainly compactive deformation bands in the Aztec sandstone. We studied an SEM image of a compaction band found in a hand sample of the Aztec sandstone. We also conducted a drilling test in a 130x130x180 mm prismatic specimen subjected to a preset far-field true triaxial stress condition (\\sigmah = 15 MPa, \\sigmav = 25 MPa, \\sigmaH = 40 MPa). Drilling of a 20 mm dia. vertical hole created a long fracture-like thin tabular breakout along the \\sigmah springline and perpendicular to \\sigmaH direction. SEM analysis of the zones ahead of the breakout tips revealed narrow bands of presumed debonded intact grains interspersed with grain fragments. We infer that the fragments were formed from multiple splitting or crushing of compacted grains in the band of high compressive stress concentration developed along the \\sigmah springline. SEM images away from the breakout tip surroundings showed no such fragments. SEM study of the natural compaction band showed a similar arrangement of mainly intact grains surrounded by grain fragments. Using the Optimas optical software package, we found the percentage of pore area within the band ahead of the breakout tips to average 17%; outside of this zone it was 23%. In the natural compaction band pore area occupied 8.5% of the band; in the host rock adjacent to the compaction band it averaged 19%. These readings strongly suggest porosity reduction due to compaction in both cases. The close resemblance between the

  20. On cavity flow permeability testing of a sandstone.

    PubMed

    Selvadurai, P A; Selvadurai, A P S

    2007-01-01

    This paper describes a laboratory experiment designed to measure the bulk permeability of a cuboidal sample of sandstone measuring approximately 450 mm(2) in plan area and 508 mm in height. The relatively large dimensions of the sandstone specimen allow the determination of the permeability of the material by creating a central cavity that can be pressurized to maintain a constant flow rate. The paper describes the experimental details and the test procedure, and discusses the computational and analytic approaches that have been used to interpret the test results.

  1. A new bee species that excavates sandstone nests.

    PubMed

    Orr, Michael C; Griswold, Terry; Pitts, James P; Parker, Frank D

    2016-09-12

    Humanity has long been fascinated by animals with apparently unfavorable lifestyles [1]. Nesting habits are especially important because they can limit where organisms live, thereby driving population, community, and even ecosystem dynamics [2]. The question arises, then, why bees nest in active termite mounds [3] or on the rim of degassing volcanoes, seemingly preferring such hardship [4]. Here, we present a new bee species that excavates sandstone nests, Anthophora (Anthophoroides) pueblo Orr (described in Supplemental Information, published with this article online), despite the challenges already inherent to desert life. Ultimately, the benefits of nesting in sandstone appear to outweigh the associated costs in this system.

  2. A Lower Ordovician sponge/algal facies in the southern United States and its counterparts elsewhere in North America

    SciTech Connect

    Alberstadt, L. ); Repetski, J.E. )

    1989-06-01

    Subsurface Ordovician rocks in the Black Warrior Basin, Mississippi Embayment, and the eastern part of the Arkoma Basin reflect a different depositional history than coeval rocks exposed in the Nashville Basin, Ozark Dome, and southern Appalachians. The succession consists of four informal lithologic units. From top to bottom these are: (1) Stones River limestones, (2) upper dolostone, (3) sponge/algal limestones characterized by the presence of Nuia, and (4) lower dolostone. Of these, the sponge/algal limestone unit is the most atypical. It has a conspicuous biotic assemblage which can be recognized petrographically in well cuttings. The diagnostic fossil allochems are: sponges, sponge spicules, Nuia, Girvanella, and Sphaerocodium. Conodonts from the sponge/algal limestones are probably entirely Early Ordovician (Canadian) and include cold- and deep-water species found in the North Atlantic Province, whereas those in the overlying dolostones represent exclusively warm-water, shelf environments. The conodonts in the Black Warrior Basin suggest that an unconformity between Lower and Middle Ordovician carbonates (Knox unconformity) does not exist in much of that region. The sponge/algal limestones represent a different facies than their coeval shelf rocks in the interior of the continent. The limestone contains a distinctive biotic assemblage recognized in Lower Ordovician rocks in Newfoundland, in the Arbuckle and Wichita mountains of Oklahoma, in West Texas, and in the Great Basin of Nevada and Utah.

  3. Decision model for assessment of sandstone uranium deposits. National Uranium Resource Evaluation. Final report

    SciTech Connect

    Golabi, K.; Kulkarni, R.B.; Chervn, V.B.

    1982-11-01

    The main objective of the National Uranium Resource Evaluation (NURE) program is an estimation of the uranium resources of the United States. To achieve this objective, a geologic evaluation and resource assessment program was initiated using NTMS 2/sup 0/ quadrangles as the basic work unit. The evaluation activity commences with data collection within th 2/sup 0/ quadrangles in order to identify and delineate geologic environments that are favorable for the occurrence of uranium deposits. A favorable environment is depicted as a geologic setting that has the potential for containing at least 100 tons of U/sub 3/O/sub 8/ in rocks whose uranium grade exceeds 100 ppM. Geologic field reconnaissance, hydrochemical and stream sediment reconnaissance, aerial radiometric and magnetic surveys, and logging are the principal means by which favorable environments are identified. The principal investigator of each evaluation team is required to classify a favorable environments according to a preliminary classification of uranium occurrences and favorable environments. Based on this information the uranium potential in each quadrangle is estimated. The scope of this study is limited to development of an assessment procedure and a Bayesian decision model for estimating the endowed area A/sub e/ for three sandstone type uranium deposits: Wyoming roll-type, South Texas roll-type, and Uravan/Salt Wash tabular type deposits.

  4. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  5. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  6. Imaging Sand Bars using 3D GPR in an Outcrop Reservoir Analog: Cretaceous Ferron Sandstone, South-East Utah

    NASA Astrophysics Data System (ADS)

    Aziz, A. S.; Stewart, R. R.; Ullah, M. S.; Bhattacharya, J.

    2015-12-01

    Outcrop analog studies provide crucial information on geometry and facies patterns to improve the understanding of the complex subsurface reservoir architecture for enhanced oil recovery (EOR) planning during field development. Ground-penetrating radar (GPR) has greatly facilitated analog outcrop study progress by bridging the gap in image resolution between seismic and well data. A 3D GPR survey was conducted to visualize architectural elements of friction-dominated distributary mouth bars within proximal delta front deposits in Cretaceous Ferron Sandstone at the top of the Notom Delta in south-east Utah. Sensors and Software's Noggin 250 MHz system was used over a 25 m x 15 m grid. We employed a spatial sampling of 0.5 m for the inline (dip direction) and 1.5 m for the crossline (strike direction). Standard processing flows including time-zero correction, dewow, gain, background subtraction and 2D migration were used to increase the signal-to-noise ratio. Formation velocity estimates from the hyperbola matching yielded 0.131 m/ns which is comparable to the literature velocity of about 0.125 m/ns. The calculated average dielectric constant (directly related to volumetric water content) is 5.2 matches unsaturated sandstone. The depth of GPR penetration is limited to approximately 3 m - likely due to the compaction/carbonate cementation in the rock and interbedded layers of finer-grained material contributing to higher attenuation of the GPR signal. The vertical resolution is about 0.125 m, enabling the imaging of the dune-scale cross sets (15-20 cm thickness). Calculation of the medium porosity via an adapted Wyllie Time Average equation yields 7.8 % which is consistent with the average porosity (5-10%) obtained from the literature. Bedding diagrams from local cliff exposures in the previous studies show gently NE dipping accretion of single large foresets that were interpreted as small-scale unit bars, the amalgamation of which resulted in the progradation of

  7. The planning, execution, and evaluation of acid treatments in sandstone formations

    SciTech Connect

    McLeod, H.O.; Ledlow, L.B.; Till, M.V.

    1983-10-01

    Pretreatment analysis, job planning, and well preparation lead to acidizing success in sandstones with permeabilities greater than 50 md. Formation mineral analysis improves success in sandstones with lower permeabilities. Injection pressure responses to acid injection provide data for onsite decisions.

  8. Source facies and oil families of the Malay Basin, Malaysia

    SciTech Connect

    Creaney, S.; Hussein, A.H. ); Curry, D.J.; Bohacs, K.M. ); Hassan, R. )

    1994-07-01

    The Malay Basin consists of a number of separate petroleum systems, driven exclusively by nonmarine source rocks. These systems range from lower Oligocene to middle Miocene and show a progression from lacustrine-dominated source facies in the lower Oligocene to lower Miocene section to coastal plain/delta plain coal-related sources in the lower to middle Miocene section. Two lacustrine sources are recognized in the older section, and multiple source/reservoir pairs are recognized in the younger coaly section. The lacustrine sources can be recognized using well-log analysis combined with detailed core and sidewall core sampling. Chemically, they are characterized by low pristane/phytane ratios, low oleanane contents, and a general absence of resin-derived terpanes. These sources have TOCs in the 1.0-4.0% range and hydrogen indices of up to 750. In contrast, the coal-related sources are chemically distinct with pristane/phytane ratios of up to 8, very high oleanane contents, and often abundant resinous compounds. All these sources are generally overmature in the basin center and immature toward the basin margin. The oils sourced from all sources in the Malay Basin are generally low in sulfur and of very high economic value. Detailed biomarker analysis of the oils in the Malay Basin has allowed the recognition of families associated with the above sources and demonstrated that oil migration has been largely strata parallel with little cross-stratal mixing of families.

  9. Nature and origin of fluids in granulite facies metamorphism

    NASA Technical Reports Server (NTRS)

    Newton, R. C.

    1988-01-01

    The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.

  10. Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)

    NASA Astrophysics Data System (ADS)

    Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco

    2016-04-01

    Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.

  11. Early Tertiary subsidence and sedimentary facies - Northern Sirte Basin, Libya

    SciTech Connect

    Gumati, Y.D.; Kanes, W.H.

    1985-12-01

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type. 14 figures.

  12. Early Tertiary subsidence and sedimentary facies - northern Sirte Basin, Libya

    SciTech Connect

    Gumati, Y.D.; Kanes, W.H.

    1985-01-01

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. These conditions were probably assisted by contemporaneous faulting along structurally weak hinge lines where the dominant structural elements are normal step faults. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type.

  13. A depositional model for late Jurassic Reef Building in the East Texas Basin

    SciTech Connect

    Norwood, E.M.; Brinton, L.

    1996-12-31

    The authors propose a depositional setting for the Upper Jurassic reef facies occurring at the upper Cotton Valley Lime, (Gilmer) sequence boundary in the East Texas Basin. The development of uncommonly thick, microbially bound reefal buildups positioned near the western margin of the basin was controlled by sea-level variations and gravity faulting, suggested to be concurrent. Gas bearing reefs occur as isolated features along faulted margins and have been successfully located using 3-D seismic. Reefs of this type and age appear to be rare in their occurrence worldwide. Structurally generated circumstances facilitated margin bypass of terrigenous clastics shed from the north and west. Protection from clastic influx contributed to conditions required for development of the 400 feet of reefal buildup penetrated by the Marathon Oil Company Poth No. 1 during early 1993. Core from this well provides insight into character, composition, and depositional setting of reefs along the western flank of the East Texas Basin during Late Jurassic time.

  14. A depositional model for late Jurassic Reef Building in the East Texas Basin

    SciTech Connect

    Norwood, E.M. ); Brinton, L. )

    1996-01-01

    The authors propose a depositional setting for the Upper Jurassic reef facies occurring at the upper Cotton Valley Lime, (Gilmer) sequence boundary in the East Texas Basin. The development of uncommonly thick, microbially bound reefal buildups positioned near the western margin of the basin was controlled by sea-level variations and gravity faulting, suggested to be concurrent. Gas bearing reefs occur as isolated features along faulted margins and have been successfully located using 3-D seismic. Reefs of this type and age appear to be rare in their occurrence worldwide. Structurally generated circumstances facilitated margin bypass of terrigenous clastics shed from the north and west. Protection from clastic influx contributed to conditions required for development of the 400 feet of reefal buildup penetrated by the Marathon Oil Company Poth No. 1 during early 1993. Core from this well provides insight into character, composition, and depositional setting of reefs along the western flank of the East Texas Basin during Late Jurassic time.

  15. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    SciTech Connect

    Land, L.S.; Milliken, K.L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14000 ft (4267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  16. The making of a sandstone colossus: Tectonically and climatically induced flushing of 'Nubian' sands in the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Luthi, Stefan M.; Hagadorn, James W.; Donselaar, Marinus E.

    2013-04-01

    Massive 'Nubian' sandstones of Cambro-Ordovician age drape most of the Arabian and northern African tectonic plates and preserve a sensitive record of how continental margins evolve under greenhouse conditions. These strata also contain important aquifers, petroleum reservoirs, and archaeological monuments such as Petra, and they were formed by a geologically sudden and long-lasting influx of >500,000 km3 of predominantly quartz sand. The cause and timing of this continent-scale sedimentation event were so far unknown. Here we constrain the depositional history of these strata and hypothesize that poleward migration of the Gondwanan supercontinent out of the horse latitudes caused a five-fold increase in sedimentation rates and buildup of one of the largest epicratonic sand wedges in earth history. Geohistorical sedimentation and subsidence modeling of these sandstones is presented, based on sedimentologic, biostratigraphic, basement paleotopographic, facies, and tectonic dip analyses of a well-preserved paleoslope-axial transect of 542-462 million-year-old strata in Jordan. This region experienced a ~25 m/Ma increase in sedimentation rate over ~30 Ma, concomitant with near-equilibrium plate subsidence response. Sedimentary rocks in the studied sequences exhibit coeval compositional variations that suggest a change in sedimentation style from immature to ultramature clastics. Our results are internally consistent with movement of a continent from an arid subtropical high toward a wet subpolar low, which would have caused widespread flushing of hypermature sands sourced from the interior of the African-Nubian Shield toward the continent margin.

  17. Depositional facies and diagenetic history of Trenton Limestone in northern Indiana

    SciTech Connect

    Fara, D.R.; Keith, B.D.

    1984-12-01

    Subsurface cores were studied petrographically to determine the facies and diagenetic history of the Trenton Limestone on a regional scale in northern Indiana. The Trenton Limestone is a yellowish olive-gray fossiliferous limestone, which is replaced by a light-gray dolostone in northern Indiana. Facies composing the Trenton are: 1) bryozoan-echinoderm packstone, 2) bryozoan-echinoderm grainstone, 3) bryozoan packstone to wackestone, 4) lime mudstone, and 5) dolostone. The bryozoan-echinoderm packstone is the major facies. Coarse-grained (1-4 mm) grainstones are typically 1 ft (30 cm) thick, have abrupt bases, and become muddy upward. They are considered storm deposits. Hardgrounds occur throughout the limestone facies, but they are most numerous toward the base. These facies indicate deposition below wave base, interrupted by periods of high energy during storms. Fossiliferous white and gray chert nodules are scattered throughout the unit. Also found in the limestone facies are prevalent stylolites and microstylolites, an indication of chemical compaction. The dolostone facies consists of coarsely crystalline (0.4 mm) idiotopic dolomite. Pyrite is associated with the dolomite. Porosity, found only in the dolostone, is discontinuous and characterized as intercrystalline, vuggy, and moldic. Porous zones are commonly oil stained or have been plugged by poikilotopic selentic gypsum. Minor amounts of celestite are found as cavity fillings.

  18. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  19. Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada

    SciTech Connect

    Gallegos, D.M.; Snyder, W.S.; Spinosa, C. )

    1991-02-01

    Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain by basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.

  20. A new bee species that excavates sandstone nests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many wonder why animals act in seemingly injurious ways. Understanding the behavior of pollinators such as bees is especially important because of the necessary ecosystem service they provide. The new species Anthophora pueblo, discovered excavating sandstone nests, provides a model system for addre...

  1. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  2. A complex investigation of building sandstones from Saxony (Germany)

    SciTech Connect

    Goetze, Jens Siedel, Heiner

    2007-11-15

    The present paper provides a methodology for the investigation and characterization of building sandstones. This analytical scheme was designed for distinguishing mature arenites, which in general show very similar properties and are difficult to distinguish. This is shown for Cretaceous sandstones from various occurrences in Saxony (Germany), which have been used for centuries as building materials. The procedure is mainly based on the combination of macroscopic rock description, thin section polarizing microscopy (phase composition, texture, grain-size distribution) and cathodoluminescence (CL) microscopy (quartz types, feldspar and kaolinite content) coupled with image analysis, scanning electron microscopy (accessories, pore cement, diagenetic grain surface features), and analysis of pore space data. Sometimes, additional data from X-ray diffraction or chemical analyses (major and trace elements) can be used. Especially in the case of quartz rich arenites, CL is a powerful tool for provenance analysis. The detailed analysis of sandstone material in most cases allows us to assign historically used building material to a specific sandstone occurrence. These results are important for both interpreting the weathering behaviour of the building material and the conservation, reconstruction and stone replacement of historical monuments.

  3. Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica

    NASA Technical Reports Server (NTRS)

    Hale, M. E.; Friedmann, E. I. (Principal Investigator)

    1987-01-01

    The epilithic lichen flora on the Beacon sandstone formation in Victoria Land consists of seven species: Acarospora gwynnii Dodge & Rudolph, Buellia grisea Dodge & Baker, B. pallida Dodge & Baker, Carbonea capsulata (Dodge & Baker) Hale comb. nov., Lecanora fuscobrunnea Dodge & Baker, Lecidea cancriformis Dodge & Baker, and L. siplei Dodge & Baker. The typification of the species is given along with descriptions and distribution in Antarctica.

  4. Evidence for preferential flow through sandstone aquifers in Southern Wisconsin

    USGS Publications Warehouse

    Swanson, S.K.; Bahr, J.M.; Bradbury, K.R.; Anderson, K.M.

    2006-01-01

    Sandstones often escape extensive hydrogeologic characterization due to their high primary porosity and perceived homogeneity of permeability. This study provides evidence for laterally extensive, high permeability zones in the Tunnel City Group, an undeformed, Cambrian-aged sandstone unit that exists in the subsurface throughout much of central and southern Wisconsin, USA. Several discrete high-permeability zones were identified in boreholes using flow logging and slug tests, and the interconnectedness of the features was tested using a site-specific numerical model for springs in the region. Explicit incorporation of a high-permeability layer leads to improvements in the flux calibration over simulations that lack the features, thus supporting the hydraulic continuity of high-permeability zones in the sandstone aquifer over tens of kilometers. The results suggest that stratigraphically controlled heterogeneities like contrasts in lithology or bedding-plane fractures, which have been shown to strongly influence the flow of groundwater in more heterogeneous sedimentary rocks, may also deserve close examination in sandstone aquifers. ?? 2005 Elsevier B.V. All rights reserved.

  5. Negative feedback between stress and erosion: origin of sandstone landforms

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Soukup, Jan; Vaculikova, Jana; Filippi, Michal; Schweigstillova, Jana; Mayo, Alan; Masin, David; Kletetschka, Gunther; Rihosek, Jaroslav

    2015-04-01

    Weathering and erosion of sandstone produces spectacular landforms such as arches, alcoves, pedestal rocks and pillars. The effect of gravity loading stress has been overlooked or assumed to increase the landform's weathering rate. Here we show by physical and numerical modeling, and field observations of locked sands and sandstones that an increase in stress within the landform reduces weathering and erosion. Material with insufficient loading is rapidly removed by weathering process and the remaining load bearing landform structure is protected by the fabric interlocking mechanism. As the landform evolves the increased stress inhibits erosion from raindrop impact, flowing water and slaking, and retards surface retreat caused by salt and frost weathering. Planar discontinuities in sandstone and negative feedback between stress and weathering/erosion processes are sufficient conditions to create above-mentioned landforms. Our experiments are able to reproduce natural shapes including arches, alcoves, pedestal rocks and pillars using landform material and mimicking natural processes. The proposed negative feedback mechanism is supported by a numerical model of stress pattern in landforms. We conclude that stress field is the primary control of the shape evolution of sandstone landforms.

  6. Organic matter and sandstone-type uranium deposits: a primer

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic material is intimately associated with sandstone-type uranium deposits in the western United States.. This report gives details of the types of organic matter and their possible role in producing a uranium deposit. These steps include mobilization of uranium from igneous rocks, transportation from the surface, concentration by organic matter, reduction by organic matter, and preservation of the uranium deposit.

  7. Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica.

    PubMed

    Hale, M E

    1987-01-01

    The epilithic lichen flora on the Beacon sandstone formation in Victoria Land consists of seven species: Acarospora gwynnii Dodge & Rudolph, Buellia grisea Dodge & Baker, B. pallida Dodge & Baker, Carbonea capsulata (Dodge & Baker) Hale comb. nov., Lecanora fuscobrunnea Dodge & Baker, Lecidea cancriformis Dodge & Baker, and L. siplei Dodge & Baker. The typification of the species is given along with descriptions and distribution in Antarctica.

  8. Transport properties of a Bentheim sandstone under deformation.

    PubMed

    Jasinski, L; Sangaré, D; Adler, P M; Mourzenko, V V; Thovert, J-F; Gland, N; Békri, S

    2015-01-01

    The mechanical and transport properties of a Bentheim sandstone are studied both experimentally and numerically. Three classical classes of loads are applied to a sample whose permeability is measured. The elasticity and the Stokes equations are discretized on unstructured tetrahedral meshes which precisely follow the deformations of the sample. Numerical results are presented, discussed, and compared to the available experimental data.

  9. Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured fluid production

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Tyler, N.

    1983-01-01

    The intrinsic properties of the genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs in the Gulf Coast region were systematically investigated classified, and differentiated. The following topics are coverd: structural and stratigraphic limits of sandstone reservoirs, characteristics and dimensions of Gulf Coast sandstones; fault-compartment areas; comparison of production and geologic estimates of aquifer fluid volume; geologic setting and reservoir characteristics, Wells of Opportunity; internal properties of sandstones; and implications for geopressured fluid production. (MHR)

  10. Texas Education Miracle No Mirage.

    ERIC Educational Resources Information Center

    Greene, Jay P.

    2000-01-01

    Defends the significant increases seen in Texas student achievement during the 1990s, addressing attacks on the validity of these improvements. Supports the governor's emphasis on accountability testing because of its positive results, concluding that the Texas Assessment of Academic Skills holds students and schools accountable and provides…

  11. CBTE: The Ayes of Texas

    ERIC Educational Resources Information Center

    Houston, W. Robert; Howsam, Robert B.

    1974-01-01

    A heated controversy occurred when the Texas State Board of Education mandated competency based teacher education (CBTE) for all of the State's 66 teacher preparatory institutions. This is an account of developments in Texas by two major proponents of CBTE. (Author/JF)

  12. Texas Coastal Cleanup Report, 1986.

    ERIC Educational Resources Information Center

    O'Hara, Kathryn; And Others

    During the 1986 Coastweek, a national event dedicated to improvement of the marine environment, a large beach cleanup was organized on the Texas coast. The goals of the cleanup were to create public awareness of the problems caused by marine debris, and to collect data on the types and quantities of debris found on the Texas coastline. The…

  13. Overview: Research Funding in Texas

    ERIC Educational Resources Information Center

    Texas Higher Education Coordinating Board, 2009

    2009-01-01

    Obtaining more federal funds is the expressed research goal in "Closing the Gaps by 2015." It states: By 2015, increase the level of federal science and engineering research and development obligations to Texas institutions to 6.5 percent of obligations to higher education institutions across the nation. In 2006, Texas institutions of higher…

  14. Tech Prep Consortia in Texas.

    ERIC Educational Resources Information Center

    Opp, Ronald D.

    The Tech Prep (TP) program is designed to provide a seamless transition for students between the high school, community college, and four-year college levels so that students can make an easier transition from school to work. In Texas, TP has developed differently from the programs of other states. Texas policy makers created a tri-agency…

  15. An experimental study of iron release from red sandstones

    NASA Astrophysics Data System (ADS)

    Purser, Gemma; Rochelle, Christopher; Rushton, Jeremy; Pearce, Jonathan

    2014-05-01

    An experimental study has been conducted to better understand the features of a natural CO2 -rich system at Saltwash Graben, Utah, USA. This site is associated with numerous CO2 rich springs linked to faults and fractures. In this area, a key feature of the red Entrada sandstone formation is the presence of significant rock bleaching (iron reduction and mobilisation) that occurs subparallel to bedding, typically at the base of large sandstone units and adjacent to some subvertical fractures. The difference in total iron content between the bleached and unbleached sandstones is very small, with the bleached sandstone containing slightly less total iron. In contrast to widely-reported regional bleaching, attributed to hydrocarbon accumulations towards structural crests, it has been suggested that the bleaching may be associated with the presence of modern day CO2 in the area and we sought to test this. Laboratory experiments were conducted to assess reaction processes that may have caused the observed iron reduction and mobilisation. Fixed volume batch reactors, containing either small cores of red or bleached sandstone were exposed to representative local ground waters (a dilute or a saline fluid), which were pressurised with either CO2 or N2 (the latter as a control) to 50 bar and placed inside an oven at 40° C to simulate subsurface conditions . The experiments ran for up to nine months with fluids being sampled periodically, though solids were only analysed once experiments were completed. Very little reaction was found to occur in the presence of CO2. It seems possible therefore that the modern CO2 rich fluids were not the cause of the sandstone bleaching. The study therefore assessed how the presence of reducing agents such as methane (CH4) and hydrogen sulphide (H2S) may result in the bleaching of the bulk sandstone. H2S was introduced into the experiments as a breakdown product of thioacetamide (0.1% v/v fluid containing thioacetamide was added to the

  16. Provenance of Mesozoic Sandstones in the Banda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Hall, R.

    2014-12-01

    Quartz-rich sandstones in the Banda Arc islands of Tanimbar, Babar, Timor and Sumba are equivalent of Mesozoic sandstones on the Australian margin where they are important hydrocarbon reservoirs. They have been exposed by on-going collision providing an opportunity to study their provenance. Previous studies suggested that rivers draining Australia provided most input. New light mineral, heavy mineral and detrital zircon data provide information on sources of sediments and constraints on palaeogeographic models. Conventional light mineral plots of sandstones from the islands typically show a recycled orogen and continental block origin, consistent with an Australian source. However many of the sandstones are texturally immature. Many samples also contain volcanic quartz and volcanic lithic fragments. Heavy mineral assemblages of most samples contain material from acid igneous and metamorphic rocks, with few indications of mafic or ultramafic sources. Rounded ultrastable minerals are typical, but these are commonly mixed with angular grains. Detrital zircon (LA-ICP-MS) U-Pb ages range from Archean to Mesozoic, but variations in age populations indicate differences in source areas along the Banda Arc in locality and time. We recognise distinctive Permo-Triassic, older Palaeozoic and Proterozoic ages characteristic of a Bird's Head, New Guinea, acid igneous source and this component diminishes from east to west. On Tanimbar and Babar, sediment came from both Australia and the Bird's Head. Sandstones in Timor have immature textures and show differences from east to west. They contain zircons derived from the Birds Head, as well as Precambrian zircons suggesting a northern Australian origin. In contrast, immature textures, heavy minerals and Cretaceous zircon ages in rocks from Sumba suggest that they were mainly derived from metamorphic sources. Mesozoic to Archean zircons indicate derivation from Australian crust that had collided in Sulawesi during the Cretaceous.

  17. National uranium resource evaluation: McAllen and Brownsville Quadrangles, Texas

    SciTech Connect

    Charepon, A J; Stauber, A J

    1982-06-01

    The McAllen and Brownsville Quadrangles, Texas, were evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. The environments were selected according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, of locations of aerial radiometric anomalies, of surface exposures, and of locations of anomalous hydrogeochemical and stream-sediment reconnaissance data and collation of information on uranium exploration. Subsurface evaluation of selected geologic units was accomplished by using electric and gamma-ray well logs to construct maps and construct maps and cross sections. In the McAllen Quadrangle, an environment favorable for Texas roll-type sandstone uranium deposits is identified in 36 areas in the Goliad, Fleming-Oakville, Catahoula-Frio, and Whitsett Formations. All other units in both quadrangles are considered unfavorable.

  18. Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas

    USGS Publications Warehouse

    Cobban, W.A.; Hook, S.C.; McKinney, K.C.

    2008-01-01

    Updated age assignments and new collections of molluscan fossils from lower Cenomanian through upper Campanian strata in Texas permit a much refined biostratigraphic correlation with the rocks of New Mexico and the Western Interior. Generic names of many Late Cretaceous ammonites and inoceramid bivalves from Texas are updated to permit this correlation. Strata correlated in the west-to-east transect include the lower Cenomanian Beartooth Quartzite and Sarten Sandstone of southwest New Mexico, and the Eagle Mountains Formation, Del Rio Clay, Buda Limestone, and. basal beds of the Chispa Summit, Ojinaga, and Boquillas Formations of the Texas-Mexico border area. Middle Cenomanian strata are lacking in southwestern New Mexico but are present in the lower parts of the Chispa Summit and Boquillas Formations in southwest Texas. Upper Cenomanian and lower Turonian rocks are present at many localities in New Mexico and Texas in the Mancos Shale and Chispa Summit, Ojinaga, and Boquillas Formations. Middle Turonian and younger rocks seem to be entirely nonmarine in southwestern New Mexico, but they are marine in the Rio Grande area in the Chispa. Summit, Ojinaga, and Boquillas Formations. The upper part of the Chispa Summit and Boquillas contain late Turonian fossils. Rocks of Coniacian and Santonian age are present high in the Chispa Summit, Ojinaga, and Boquillas Formations, and in the lower part of the Austin. The San Carlos, Aguja, Pen, and Austin Formations contain fossils of Campanian age. Fossils representing at least 38 Upper Cretaceous ammonite zones are present along the transect. Collections made in recent years in southwestern New Mexico and at Sierra de Cristo Rey just west of downtown El Paso, Texas, have been well treated and do not need revision. Taxonomic names and zonations published in the pre-1970 literature on the Rio Grande area of Texas have been updated. New fossil collections from the Big Bend National Park, Texas, allow for a much refined correlation

  19. Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Alissa, A.; Carr, T.R.

    2002-01-01

    Integrated ichnologic, sedimentologic, and stratigraphic studies of cores and well logs from Lower Pennsylvanian oil and gas reservoirs (lower Morrow Sandstone, southwest Kansas) allow distinction between fluvio-estuarine and open marine deposits in the Gentzler and Arroyo fields. The fluvio-estuarine facies assemblage is composed of both interfluve and valley-fill deposits, encompassing a variety of depositional environments such as fluvial channel, interfluve paleosol, bay head delta, estuary bay, restricted tidal flat, intertidal channel, and estuary mouth. Deposition in a brackish-water estuarine valley is supported by the presence of a low diversity, opportunistic, impoverished marine ichnofaunal assemblage dominated by infaunal structures, representing an example of a mixed, depauperate Cruziana and Skolithos ichnofacies. Overall distribution of ichnofossils along the estuarine valley was mainly controlled by the salinity gradient, with other parameters, such as oxygenation, substrate and energy, acting at a more local scale. The lower Morrow estuarine system displays the classical tripartite division of wave-dominated estuaries (i.e. seaward-marine sand plug, fine-grained central bay, and sandy landward zone), but tidal action is also recorded. The estuarine valley displays a northwest-southeast trend, draining to the open sea in the southeast. Recognition of valley-fill sandstones in the lower Morrow has implications for reservoir characterization. While the open marine model predicts a "layer-cake" style of facies distribution as a consequence of strandline shoreline progradation, identification of valley-fill sequences points to more compartmentalized reservoirs, due to the heterogeneity created by valley incision and subsequent infill. The open-marine facies assemblage comprises upper, middle, and lower shoreface; offshore transition; offshore; and shelf deposits. In contrast to the estuarine assemblage, open marine ichnofaunas are characterized by a

  20. Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA

    NASA Astrophysics Data System (ADS)

    Buatois, Luis A.; Mángano, M. Gabriela; Alissa, Abdulrahman; Carr, Timothy R.

    2002-09-01

    Integrated ichnologic, sedimentologic, and stratigraphic studies of cores and well logs from Lower Pennsylvanian oil and gas reservoirs (lower Morrow Sandstone, southwest Kansas) allow distinction between fluvio-estuarine and open marine deposits in the Gentzler and Arroyo fields. The fluvio-estuarine facies assemblage is composed of both interfluve and valley-fill deposits, encompassing a variety of depositional environments such as fluvial channel, interfluve paleosol, bay head delta, estuary bay, restricted tidal flat, intertidal channel, and estuary mouth. Deposition in a brackish-water estuarine valley is supported by the presence of a low diversity, opportunistic, impoverished marine ichnofaunal assemblage dominated by infaunal structures, representing an example of a mixed, depauperate Cruziana and Skolithos ichnofacies. Overall distribution of ichnofossils along the estuarine valley was mainly controlled by the salinity gradient, with other parameters, such as oxygenation, substrate and energy, acting at a more local scale. The lower Morrow estuarine system displays the classical tripartite division of wave-dominated estuaries (i.e. seaward-marine sand plug, fine-grained central bay, and sandy landward zone), but tidal action is also recorded. The estuarine valley displays a northwest-southeast trend, draining to the open sea in the southeast. Recognition of valley-fill sandstones in the lower Morrow has implications for reservoir characterization. While the open marine model predicts a "layer-cake" style of facies distribution as a consequence of strandline shoreline progradation, identification of valley-fill sequences points to more compartmentalized reservoirs, due to the heterogeneity created by valley incision and subsequent infill. The open-marine facies assemblage comprises upper, middle, and lower shoreface; offshore transition; offshore; and shelf deposits. In contrast to the estuarine assemblage, open marine ichnofaunas are characterized by a

  1. The Texas We Create: State of Texas Children 2012--Texas KIDS COUNT Annual Data Book

    ERIC Educational Resources Information Center

    Deviney, Frances; Hattemer, Kori

    2012-01-01

    The 2012 data book explores how our kids have fared during the last decade--some outcomes are positive, some negative. But positive or negative outcomes for kids don't just happen. They are the inevitable results of effective or failed policy choices. The State of Texas Children 2012 combines data and policy to tell the story of Texas kids. It's…

  2. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Abouelresh, Mohamed; Slatt, Roger

    2011-12-01

    A long held geologic paradigm is that mudrocks and shales are basically the product of `hemipelagic rain' of silt- and/or clay-sized, detrital, biogenic and particulate organic particles onto the ocean floor over long intervals of time. However, recently published experimental and field-based studies have revealed a plethora of micro-sedimentary features that indicate these common fine-grained rocks also could have been transported and/or reworked by unidirectional currents. In this paper, we add to this growing body of knowledge by describing such features from the Paleozoic Barnett Shale in the Fort Worth Basin, Texas, U.S.A. which suggests transport and deposition was from hyperpycnal, turbidity, storm and/or contour currents, in addition to hemipelagic rain. On the basis of a variety of sedimentary textures and structures, six main sedimentary facies have been defined from four 0.3 meter intervals in a 68m (223 ft) long Barnett Shale core: massive mudstone, rhythmic mudstone, ripple and low-angle laminated mudstone, graded mudstone, clay-rich facies, and spicule-rich facies. Current-induced features of these facies include mm- to cmscale cross- and parallel-laminations, scour surfaces, clastic/biogenic particle alignment, and normal- and inverse-size grading. A spectrum of vertical facies transitions and bed types indicate deposition from waxing-waning flows rather than from steady `rain' of particles to the sea floor. Detrital sponge spicule-rich facies suggests transport to the marine environment as hypopycnal or hyperpycnal flows and reversal in buoyancy by transformation from concentrated to dilute flows; alternatively the spicules could have originated by submarine slumping in front of contemporaneous shallow marine sponge reefs, and then transported basinward as turbidity current flows. The occurrence of dispersed biogenic/organic remains and inversely size graded mudstones also support a hyperpycnal and/or turbidity flow origin for a significant part of

  3. Phase distribution and flow mechanism in an amphibolite facies ultramylonite

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger

    2014-05-01

    Rocks deforming by diffusion creep, are usually characterized by a small grain size, a weak or no crystallographic preferred orientation and an anti-correlated phase distribution of which the latter gives the most revealing insight into the active deformation mechanism. The present study focuses on the phase distribution in an amphibolite facies ultramylonite from a several meters wide shear zone within the Nordmannvik Nappe of the Norwegian Caledonides. In the shear zone, a granulite facies protolith is transformed to a fine grained matrix of quartz (50%), biotite (20%), white mica (20%), oligoclase (7%) and ilmenite/titanite with grain sizes below 10 μm (eq. diameter). Large grains of garnet, white mica and plagioclase form porphyroclasts. At high matrix proportions white mica and plagioclase porphyroclasts are less abundant. The matrix shows a homogeneous fabric and shows a strong anti-correlation of phases. Quartz forms single grains or clusters, which are at most a few grains thick, with a long axis inclined at 30 - 60° to the foliation, antithetic to the sense of shear. Quartz clusters have a regular spacing of ~30 μm, separated by biotite-stacks and oligoclase. White mica forms parallel to the foliation and replaces longer biotite grains (during shearing of the mica). Concurrently new biotite grows at those quartz grain boundaries, which are oriented at a high angle to the foliation. Only adjacent to porphyroclasts, the matrix homogeneity is disturbed. Biotite and plagioclase are depleted in the compressional sector and grow in the extensional sector. Correspondingly, garnet porphyroclasts have newly grown Ca-rich rims in compressional sectors and signs of dissolution in extensional ones. Thermodynamic modeling suggests that the modal composition of the matrix and the Ca-rich garnet rims form the stable assemblage. The microstructural positions of the phases can be related to the kinematics of granular flow. The alignment of quartz grains into clusters

  4. Anthropogenic effects on sedimentary facies in Lake Baldeney, West Germany

    NASA Astrophysics Data System (ADS)

    Neumann-Mahlkau, Peter; Niehaus, Heinz Theo

    1983-12-01

    Analysis of well logs of Lake Baldeney, a reservoir of the Ruhr River, yields four facies factors that reflect the effect of anthropogenic processes on the sediment. First, the sedimentation rate is directly related to the subsidence caused by mining. The extent of the subsidence was such that the sediment load of the river could not compensate for the sinking of the lake bottom. Discharged sediment filled about one-fifth of the basin within 40 years. In certain areas of the basin the sedimentation rate reached up to 10 cm per year. Second, the grain-size distribution of the sediment was influenced by long-term and short-term events. During the subsidence, grain-size distribution remained relatively constant. The destruction of the Möhne River dam during World War II resulted in the presence of an extremely large grain size as evidenced by the so-called Möhnelage. The filling of the lake after 1961 was accompanied by a continual increase in medium grain size. Third, until 1975, the mode of the lake sediment reflects the effect of mining in the vicinity of the lake. High coal content can be traced to its origin. The introduction of modern production processes, modernization of coal dressing, and hydraulic hauling is documented in the sediment. Finally, the heavy metal content of the sediment corresponds to the industrial development in the drainage area the Ruhr River. The accumulation of Cd reached an extreme concentration, exceeding the natural content by a thousand times. Variation in concentration reflects an increase in industrial production, as well as measures undertaken to restore water quality.

  5. The influence of complex intra- and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes

    NASA Astrophysics Data System (ADS)

    Porritt, Lucy A.; Cas, Ray A. F.

    2011-08-01

    The Koala kimberlite, Northwest Territories, Canada, is a small pipe-like body that was emplaced into the Archean Koala granodiorite batholith and the overlying Cretaceous to Tertiary sediments at ~53 Ma. Koala is predominantly in-filled by a series of six distinct clastic deposits, the lowermost of which has been intruded by a late stage coherent kimberlite body. The clastic facies are easily distinguished from each other by variations in texture, and in the abundance and distribution of the dominant components. From facies analysis, we infer that the pipe was initially partially filled by a massive, poorly sorted, matrix-supported, olivine-rich lapilli tuff formed from a collapsing eruption column during the waning stage of the pipe-forming eruption. This unit is overlain by a granodiorite cobble-boulder breccia and a massive, poorly sorted, mud-rich pebbly-sandstone. These deposits represent post-eruptive gravitational collapse of the unstable pipe walls and mass wasting of tephra forming the crater rim. The crater then filled with water within which ~20 m of non-kimberlitic, wood-rich, silty sand accumulated, representing up to 47,000 years of quiescence. The upper two units in the Koala pipe are both olivine rich and show distinct grain-size grading. These units are interpreted to have been deposited sub-aqueously, from pyroclastic flows sourced from one or more other kimberlite volcanoes. The uppermost units in the Koala pipe highlight the likelihood that some kimberlite pipes may be only partially filled by their own eruptive products at the cessation of volcanic activity, enabling them to act as depocentres for pyroclastic and sedimentary deposits from the surrounding volcanic landscape. Recognition of these exotic kimberlite deposits has implications for kimberlite eruption and emplacement processes.

  6. A Model of Evolution of Fault Structure in Porous Sandstone Reflecting the Effect of Geometric Irregularities Associated with Early-Formed Segment Linkages

    NASA Astrophysics Data System (ADS)

    Schafer, K. W.; Johnson, B.

    2001-12-01

    We propose a model of the early evolution of the structure of strike-slip faults in porous sandstone based upon detailed maps of faults with small displacements (mm to decimeters) in the Hickory Sandstone in central Texas and the Navajo Sandstone near Moab, UT. We assume faults at a given site follow similar evolutionary paths and infer relative timing of formation of fault elements using cross cutting and high-angle abutment relationships. Faults consist of a network of hard-linked smaller segments. The number of fault segments varies along a fault and qualitatively become more numerous and preferentially clustered with increasing displacement. Lacunarity analyses and variograms of spatial density of fault segments quantitatively document the clustering of fault segments. Consistent with earlier work, we infer that faults evolve in the initial stage by linkage of an early-formed array of en echelon small faults that typically step opposite to the sense of shear. Linkage is by one of two geometrically and kinematically distinct linkage structures. With increasing fault displacement, new fault segments are preferentially added in close proximity to or within the early linkages. Accreted segments typically are arcuate and abut earlier segments at a high angle. Consequently, the spatial density of fault segments varies episodically along the fault. Early linkage structures represent geometric irregularities (roughness) along the evolving fault that we interpret to result in geometric stress concentrations that preferentially localize formation of new fault segments. This conceptual model does not demand the commonly assumed strain-hardening of the gouge of individual fault segments in order to explain the evolving complexity of fault structure with increasing displacement. The lack of an implied strain-hardening behavior is consistent with laboratory-scale fault development in porous sandstone.

  7. Charter Schools in Texas: An Overview

    ERIC Educational Resources Information Center

    Penning, Francisco; Slate, John R.

    2011-01-01

    In this article we analyzed the literature regarding charter schools in the State of Texas. We specifically examined the evolution of the charter school movement in Texas. Moreover, data regarding the effectiveness/ineffectiveness of charter schools in Texas were discussed. Our overview of Texas charter schools, given their widespread presence in…

  8. Water supply and needs for West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  9. 77 FR 58025 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943 Texas Regulatory Program AGENCY... the Texas regulatory program (Texas program) under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). Texas proposed revisions to its regulations regarding annual permit...

  10. Texas Affordable Baccalaureate Program: A Collaboration between the Texas Higher Education Coordinating Board, South Texas College, and Texas A&M University-Commerce. CBE Case Study

    ERIC Educational Resources Information Center

    Klein-Collins, Rebecca; Glancey, Kathleen

    2015-01-01

    This case study is part of a series on newer competency-based degree programs that have been emerging in recent years. In January 2014, the Texas Higher Education Coordinating Board (THECB), South Texas College (STC), and Texas A&M University-Commerce (A&M Commerce) launched the Texas Affordable Baccalaureate Program, the state's first…

  11. Geometries and Facies Distributions in Yellowstone's Siliceous Hotsprings: Implications for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2001-01-01

    Synthesis of features from several siliceous hotsprings yields a relatively simple facies model. This model facilitates our ability to recognize these hotsprings in the terrestrial and probably extraterrestrial rock record. Additional information is contained in the original extended abstract.

  12. Upper Devonian transitional shale facies of western Appalachian basin of southeastern Ohio

    SciTech Connect

    Baranoski, M.T.; Riley, R.A.

    1987-09-01

    Transitional facies have been mapped in five Upper Devonian shale units using geophysical logs from southeastern Ohio. Each facies is a north-northeast-trending zone that parallels the paleodepositional strike of the Appalachian basin during the Late Devonian. The facies are defined by the interfingering of gray and greenish-gray siltstones and shales from the east with black shale from the west. Structure and isopach mapping indicate penecontemporaneous faulting and subsequent filling along faults with sediments in the form of coalescing lobate bodies. Penecontemporaneous faulting may be related to sediment loading of the Catskill delta. The relative position of the transitional facies may indicate the western penetration of far-distal turbidites of the Catskill delta into an anoxic portion of the Appalachian basin.

  13. Facies analysis and seismic stratigraphic interpretation of cored Paleocene carbonate sequence in Block III, Lake Maracaibo, Venezuela

    SciTech Connect

    Rodriguez, A.; Rampazzo, M. )

    1988-02-01

    The cored Paleocene carbonate sequence found in wells VLC-812 and VLC-950, together with ditch samples from wells VLC-750 and VLC-693 in Block III, Lake Maracaibo, present a recurrent lithology which can be represented in seven sedimentary facies groups. The recognized facies range from a mollusk-rudstone to a sandy oolitic grainstone. The most important facies is a highly porous, oil-bearing grainstone. The above-mentioned facies were grouped into a facies assemblage which was then interpreted in terms of its depositional environment. A genetic facies model was constructed in order to explain lateral and vertical facies changes and for regional prediction purposes. This facies model predicts a commercial porosity development in a preferred orientation in the Block III area. A seismic-stratigraphic interpretation, which took into account the sedimentary facies model, documents a paleoshoreline at the time of the oolitic grainstone sedimentation. This finding confirmed the favorable prospective zones proposed by the sedimentary facies model for better porosity development in the carbonate sequence. This sedimentary facies/seismic-stratigraphic model can form the basis for hydrocarbon exploitation and exploration for carbonate rocks with similar geological characteristics and most importantly can be used where there are widely spaced wells.

  14. Depositional processes and facies of Trail Fan sandflat: Death Valley, California

    SciTech Connect

    Malicse, A.E.; Mazzullo, J.M.; Eide, M.G. )

    1992-01-01

    A study was conducted of the alluvial fan to playa transition along Trail fan in Death Valley, California with the primary objectives of documenting sedimentary facies and textural features of so-called arid region sandflat. The study involved description of sedimentary structures along trenches and meter-deep cores, description of surficial bedforms, and collection of samples for lithological analyses. Surficial features of Trail Fan sandflat gradually change downdip as a function of texture, ground water depth, and runoff. They include: (1) tongues of mudflows; (2) shallow braided channels that taper out into mudflat or coalesced into single channels; (3) puffy grounds; and (4) flat-smooth surface of the mudflat. The sediment's texture shows a fining downdip trend except when the surface are draped by mudflows. Four facies are distinguished downdip from the alluvial fan to playa mudflat. Facies 1 consists of massive, light gray, matrix to grain supported gravel, and is interpreted as debris flow or streamflow deposit. Facies 2 consists of thin-bedded (0.6--0.06 m), tan, massive, gravelly mud and is interpreted as mudflow deposit. Facies 2 consists of repeated sequences of thick-bedded (0.15 to 0.3 m), massive to planar stratified, graveliferous sand with mud drape and is interpreted as poorly sorted sheetflood or streamflow deposit. Facies 4 consist of light gray, planar laminated, coarsening upward mud to muddy sand, and is interpreted as mudflat facies. This study shows that arid region sandflat facies is a mosaic of mudflow, debris flow, sheetflood and streamflow deposits and is more complex than previous sandflat models described.

  15. Facies stratigraphy and relative sea-level history - Upper Cretaceous Eutaw formation, central and eastern Alabama

    SciTech Connect

    King, D.T. Jr. )

    1990-09-01

    The Upper Cretaceous (late Santonian-early Campanian) Eutaw Formation crops out in an east west-striking belt in the inner Coastal Plain of Alabama. Facies arrangement within the Eutaw indicates a regional paleoshoreline having depositional strike approximately parallel to and coincident with the present outcrop belt. The Eutaw Formation (40 to 120 m thick) rests disconformably on incised valleys (a type 1 unconformity) occurring at the top of the underlying Cenomanian-early Turonian nonmarine Tuscaloosa Formation. The Eutaw is topped by an erosional discontinuity that has slight relief and a discontinuous conglomeratic lag. In the outcrop and shallow subsurface, the Eutaw Formation has four main paralic and nearshore facies that are arranged in two discontinuity-bounded genetic packages of facies (or parasequences) both of which developed in a single eustatic cycle. The Eutaw facies are: carbonaceous and ostried-rich clayey silts (= back barrier); planar, trough, and low-angle cross-bedded medium-fine sands (= barrier island); fossiliferous bioturbated fine sands (= lower shoreface); and calcareous clays, silts, and sands (= inner shelf). The lower genetic package of the Eutaw Formation is bounded below by the tuscaloosa disconformity (a flooding surface) and is bounded above by a low-relief intraformational facies discontinuity. The intraformational facies discontinuity is likely a parasequence boundary developed at maximum eustatic high-stand in latest Santonian. The lower genetic package is mainly a transgressive sequence of back-barrier, barrier-island, lower-shoreface, and inner-shelf facies. The upper genetic package is mainly a progradational sequence encompassing the same set of facies as the lower genetic package.

  16. Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, Stephen; Faryad, Shah Wali; Mosazai, Amir Mohammad

    2015-08-01

    The Kabul Block is an elongate crustal fragment which cuts across the Afghan Central Blocks, adjoining the Indian and Eurasian continents. Bounded by major strike slip faults and ophiolitic material thrust onto either side, the block contains a strongly metamorphosed basement consisting of some of the only quantifiably Proterozoic rocks south of the Herat-Panjshir Suture Zone. The basement rocks crop-out extensively in the vicinity of Kabul City and consist predominantly of migmatites, gneisses, schists and small amounts of higher-grade granulite-facies rocks. Granulite-facies assemblages were identified in felsic and mafic siliceous rocks as well as impure carbonates. Granulite-facies conditions are recorded by the presence of orthopyroxene overgrowing biotite in felsic rocks; by orthopyroxene overgrowing amphibole in mafic rocks and by the presence of olivine and clinohumite in the marbles. The granulite-facies assemblages are overprinted by a younger amphibolite-facies event that is characterized by the growth of garnet at the expense of the granulite-facies phases. Pressure-temperature (P-T) conditions for the granulite-facies event of around 850 °C and up to 7 kbar were calculated through conventional thermobarometry and phase equilibria modeling. The younger, amphibolite-facies event shows moderately higher pressures of up to 8.5 kbar at around 600 °C. This metamorphism likely corresponds to the dominant metamorphic event within the basement of the Kabul Block. The results of this work are combined with the litho-stratigraphic relations and recent geochronological dating to analyze envisaged Paleoproterozoic and Neoproterozoic metamorphic events in the Kabul Block.

  17. Jurassic Beach: A depositional facies model for smackover stratigraphic traps in the Ark-La-Tex

    SciTech Connect

    Brown, T.; Green, M.; Bruno, L.

    1994-12-31

    State Line field, Union County, Arkansas, produces oil from a five-well stratigraphic trap at 8,900 ft. Conventional cores were cut in all wells. Core studies show that the trapping porosity pinch-out is a facies change from lower foreshore to ooid beach. Sedimentation occurred along a high-energy coastline. Thus, the depositional setting at State Line field differs from the commonly accepted {open_quotes}oolite bar{close_quotes} model used for many other fields in the trend. Four facies were delineated: (1) siliciclastic lagoon (Buckner Formation), (2) ooid beach, (3) oncoid-ooid lower foreshore, and (4) patch reef. Intergranular porosity is facies selective, found mainly in the poorly sorted lower foreshore facies. Cross-stratification and the absence of lime mud indicate high-energy conditions. Porosity and permeability in the lower foreshore facies average 10.9 percent and 496 md, respectively. The ooid beach facies is characterized by well-sorted, crossbedded, and massive ooid grainstones that tend to be extensively calcite cemented. Porosity and permeability values are generally below 2 percent and 1 md, respectively, although they can be higher adjacent to porous lower foreshore strata. The top of the Smackover is a transition from high-energy, sandy ooid beach (grainstone) to low-permeability, lagoonal siliciclastics, which seal the reservoir. Depositional features suggesting tidal channels at the east and west ends of the field support a bench and/or barrier island interpretation. Coral-algal boundstones of the patch reef facies are thin, local, and not of reservoir quality. The value of predicting reservoir trends from cores is shown by a successful 400-ft sidetrack away from a borehole with no reservoir facies or oil shows. A slabbed {open_quotes}piece of the rock{close_quotes} can pay off in Smackover development.

  18. Jurassic beach: A depositional facies model for Smackover traps in the Ark la Tex

    SciTech Connect

    Brown, T.; Bruno, L.; Green, M.

    1994-09-01

    State Line field, Union County, Arkansas, produces oil from a five-well stratigraphic trap at 8900 ft. Conventional cores were cut in all wells. Core studies show the trapping porosity pinch-out is a facies change from lower foreshore to ooid beach. Sedimentation occurred along a high-energy coastline. Thus, the depositional setting at State Line field differs from the commonly accepted {open_quotes}oolite bar{close_quotes} model used for many other fields in the trend. Four main facies were delineated: (1) siliciclastic lagoon (Buckner Formation), (2) ooid beach, (3) oncoid-ooid lower foreshore, and (4) patch reef. Intergranular porosity is facies selective, found mainly in the poorly sorted lower foreshore facies. Cross-stratification and the absence of lime mud indicate high-energy conditions. Porosity and permeability in the lower foreshore facies average 10.9% and 496 md, respectively. The ooid beach facies is characterized by well-sorted, cross-bedded, and massive ooid grainstones that tend to be extensively calcite cemented. Porosity and permeability values are generally below 2% and 1 md, respectively, although they can be higher adjacent to porous lower foreshore strata. The top of the Smackover is a transition from high-energy, sandy ooid beach (grainstone) to low-permeability, lagoonal siliciclastics, which seal the reservoir. Depositional features suggesting tidal channels at the east and west ends of the field support a beach and/or barrier island interpretation. Coral-algal boundstones of the patch reef facies are thin, local, and not of reservoir quality. The value of predicting reservoir trends from cores is shown by a successful 400-ft sidetrack away from a borehole with no reservoir facies or oil shows. A slashed {open_quotes}piece of the rock{close_quotes} can pay off in Smackover development.

  19. Traces of the heritage arising from the Macelj sandstone

    NASA Astrophysics Data System (ADS)

    Golež, Mateja

    2014-05-01

    The landscape of Southeast Slovenia and its stone heritage principally reveal itself through various Miocene sandstones. The most frequently found type on the borderline between Slovenia and Croatia, i.e. east of Rogatec, is the micaceous-quartz Macelj sandstone. This rock ranges in colour from greenish grey to bluish grey and yellowish, depending on the content of glauconite, which colours it green. In its composition, the rock is a heterogeneous mixture of grains of quartz, dolomite, muscovite, microcline, anorthite and glauconite. The average size of grains is 300μm. In cross-section, they are oblong, semi-rounded or round. The mechanical-physical and durability properties of the Macelj sandstone, which have been characterised pursuant to the applicable standards for natural stone, reveal that the rock exhibits poor resistance to active substances from the atmosphere, particularly in the presence of salt. In the surroundings of Rogatec, there are around 45 abandoned quarries of the Macelj sandstone, which are the result of the exploitation of this mineral resource from the 17th century on. The local quarrymen earned their bread until 1957, when the Kambrus quarry industry closed down. From the original use of this mineral resource as construction and decorative material, the useful value of the Macelj sandstone expanded during the development of the metals industry to the manufacture of large and small grindstones for the needs of the domestic and international market. Therefore, traces of quarrying can not only be seen in the disused quarries, but also in the rich architectural heritage of Rogatec and its surroundings, the stone furniture - from portals, window frames, wells, various troughs, pavements to stone walls - and other. The living quarrying heritage slowly passed into oblivion after World War II, although the analysis of the social image of the people residing in Rogatec and its surroundings revealed that there was an average of one stonemason in

  20. Texas floods of 1940

    USGS Publications Warehouse

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  1. Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs

    SciTech Connect

    Harris, P.M.; Kowalik, W.S.

    1995-08-01

    Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portions of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.

  2. Submarine ramp facies model for delta-fed, sand-rich turbidite systems

    SciTech Connect

    Heller, P.L.; Dickinson, W.R.

    1985-06-01

    Some sandy turbidite successions contain facies that differ in significant ways from those predicted by the canyonfed submarine fan depositional model. The key differences are the absence of a master slope channel or canyon through which sediment is transported to the basin, and the lack of facies segregation into distinct channel and overbank or interchannel facies associations within the turbidite sequence. These types of sequences can be better described using a delta-fed submarine ramp depositional model. The primary components of this model are: a sandy deltaic system that has prograded to the shelf-slope break; an abbreviated section of mud-rich slope deposits traversed by multiple shallow channels that transport sand from the delta front to the deeper basin; very sandy proximal ramp deposits composed dominantly of laterally continuous sheets of Facies B turbidites; and less sandy distal ramp deposits characterized by an increase in the abundance of Facies C and D turbidites. Ramp turbidites characteristically display statistically random patterns of bed thickness. Submarine ramp development requires rapid sediment accumulation (>800 ft or 250 m/m.y.) in turbidite basins of shallow to moderate depth where deltaic progradation is rapid enough to mask the structural relief along basin margins. The delta-fed submarine ramp facies model may be useful in describing short-lived sandy depositonal episodes in some rapidly aggrading and prograding basinal sequences. As such, they represent one member in a spectrum of submarine fan depositional styles.

  3. Stratigraphy and correlation of Upper Triassic strata between west Texas and eastern New Mexico

    SciTech Connect

    Lucas, S.G. ); Anderson, O.J. )

    1992-04-01

    Lithostratigraphy and vertebrate biochronology allow precise correlation of Upper Triassic strata between west Texas and eastern New Mexico. Upper Triassic strata are well exposed in west Texas from Oldham to Scurry counties, and are assigned to the Dockum Formation of the Chinle Group. Fossil vertebrates from the Camp Springs and Tecovas Members are of late Carnian age, whereas those from the Copper Member are of early Norian age. Upper Triassic strata in east-central New Mexico, across the Llano Estacado from the west Texas outcrops, correlate as follows: Camper Springs = lower Santa Rose; Tecovas = upper Santa Rosa/Garita Creek; Trujillo = Trujillo ('Cuervo'); Cooper = lower Bull Canyon. Upper Triassic strata in southeastern New Mexico and in Howard and adjacent counties in Texas are the lower Santa Rosa/Camper Springs overlain by mudstones and sandstones that contain late Carnian vertebrates and are informally termed upper member of Dockum Formation. Available data refute several long-held ideas about the Upper Triassic of west Texas. These data demonstrate that: (1) there is a pervasive unconformity at the base of the Dockum Formation that represents much of Triassic time; (2) the Trujillo Member is not correlative with the Santa Rosa of eastern New Mexico: Trujillo is a medial Dockum unit, whereas Santa Rosa is at the base of the Upper Triassic section; (3) very little Dockum mudrock was deposited in lakes; and (4) Dockum rivers flowed almost exclusively to the north, northwest, and west, so there was no closed depositional basin in west Texas during the Late Triassic.

  4. Depositional systems and Karst geology of the Ellenburger group (lower ordovician), subsurface West Texas

    SciTech Connect

    Kerans, C.

    1990-01-01

    The Ellenburger Group of Texas contains estimated reserves of 1.15 billion barrels of oil and 2.2 billion barrels of oil equivalent. Despite its economic significance, comparatively little is known about the subsurface Ellenburger in West Texas; thus, this book presents a regional model of Ellenburger deposition and diagenesis. Using associations of lithologies and sedimentary structures observed in core, the author identified six depositional systems in the Ellenburger: fan delta-marginal marine, lower tidal flat, high-energy restricted shelf, low-energy restricted shelf, upper tidal flat, and open shallow water shelf. Diagenesis was dominated by three major styles of dolomitization: very fine crystalline dolomite (5-20 {mu}m), in tidal-flat facies; fine to medium crystalline dolomite (20-100 {mu}m), widespread in all facies; and coarse crystalline replacement mosaic dolomite and saddle dolomite cement, which formed in a burial setting after pre-Simpson karst formation and before Pennsylvanian faulting, uplift, and erosion. Other diagenetic events were karst-related dissolution episodes associated with repeated uplift and exposure and subsequent dedolomitization of the Ellenburger platform.

  5. Lower and middle Guadalupian shelf carbonates, eastern margin of Central Basin platform, Permian basin, west Texas

    SciTech Connect

    Ward, R.F.; Chalcraft, R.G.

    1988-01-01

    Lower and middle Guadalupian shelf carbonates serve as the reservoir for a nearly continuous band of oil fields extending 100 mi along the eastern margin of the Central Basin platform of west Texas. Approximately 5 billion bbl of oil have been produced from stratigraphic-structural traps within the Upper Permian (Gaudalupian Series) dolomites of the San Andrea and Grayburg Formations in Upton, Crane, Ector, Pecos, and Andrews Counties, Texas. The San Andrea and Grayburg Formations are cyclical shallowing-upward carbonate sequences of open shelf through sabkha facies whose depositional strike parallels the eastern margin of the Central Basin platform. Porosity and permeability of reservoir rock are governed by diagenetic processes such as dolomitization, anhydrite porosity occlusion, leaching, silicification, and authigenic clay formation. Self sediments are primarily burrowed wackestones and packstones that locally contain pelletal, skeletal, and ooid grainstones. Typical subtidal shelf sediments are capped by algal-laminated dolomite, nodular anhydritic dolomite, and bedded anhydrite. The fauna is normally sparse and dominated by foraminifera and algae. Less common faunal components include pelecypods, crinoids, sponges, Bryozoa, brachiopods, gastropods, and coral that are associated with the development of small scattered patch reefs. Lowering the sea level during the early Guadalpian initiated basinward progradation of San Andres carbonate facies with hydrocarbon reservoirs best developed in shallow self fusulinid wackestones to packstone and oolitic grainstone. Reservoir dolomites of the Grayburg formation are present east of San Andres fields with optimal reservoir properties occurring near the San Andreas outer shelf margin.

  6. New model of succession of Middle and Late Pennsylvanian fossil communities in north Texas, Mid-Continent, and Appalachians with implications on black shale controversy

    SciTech Connect

    Boardman, D.R. II; Yancey, T.E.; Mapes, R.H.; Malinky, J.M.

    1983-03-01

    A new model for the succession of Pennsylvanian fossil communities, preserved in cyclothems, is proposed on the basis of more than 200 fossil localities in the Mid-Continent, Appalachians, and north Texas. Early models for Mid-Continent cyclothems placed the black shales in shallow water, with maximum transgression at the fusulinid-bearing zone in the overlying limestone. The most recent model proposed that the black phosphatic shales, which commonly occur between two subtidal carbonates, are widespread and laterally continuous over great distances and represent maximum transgression. The black phosphatic shales contain: ammonoids; inarticulate brachiopods; radiolarians; conularids; shark material and abundant and diverse conodonts. The black shales grade vertically and laterally into dark gray-black shales which contain many of the same pelagic and epipelagic forms found in the phosphatic black shales. This facies contains the deepest water benthic community. Most of these forms are immature, pyritized, and generally are preserved as molds. The dark gray-black facies grades into a medium gray shale facies which contains a mature molluscan fauna. The medium gray shale grades into a lighter gray facies, which is dominated by brachiopods, crinoids, and corals, with occasional bivalves and gastropods. (These facies are interpreted as being a moderate to shallow depth shelf community). The brachiopid-crinoid community is succeeded by shallow water communities which may have occupied shoreline, lagoonal, bay, interdeltaic, or shallow prodeltaic environments.

  7. A "Fossil Vadose Zone" from the Triassic Cooper Canyon Formation (Dockum Group) of West Texas

    NASA Astrophysics Data System (ADS)

    Holt, R. M.; Hughes, E.; Hubbell, J. M.; Grisak, G.; Cook, S.; Pickens, J.; Griffith, B. C.

    2008-12-01

    Hydrogeologic investigations at a proposed low-level radioactive waste disposal facility in Andrews County, Texas, have revealed evidence of a "fossil vadose zone" present within the redbeds of the Cooper Canyon Formation. The Cooper Canyon Formation is the uppermost stratigraphic unit in the Triassic Dockum Group in the study area and consists of very low permeability claystone and mudstone with several areally extensive siltstone/sandstone interbeds. Piezometers installed within two of the siltstone/sandstone zones show that water levels can rise up to about 20 m above the top of the zones and that uppermost of these zones is locally unsaturated. Waters in these zones have radiometric age dates of about 16,000 years. Recently twelve boreholes were drilled into the Cooper Canyon, cored, and sampled for in situ water potential (the sum of the matric and osmotic potential) and other hydraulic properties including moisture content, porosity, electrical conductivity of a saturated paste (EC), and chloride content. Water potential and saturation data show that Cooper Canyon mudstones are unsaturated to depths greater than 110 m with water potentials typically ranging from -2 MPa to -5 MPa. Very low water potentials (less than -1 MPa) occur within 0.1 m to 1 m of the upper and lower contacts of the siltstone/sandstone zones. Hydraulic gradients are outward from the siltstone/sandstone zones, and water potential values in the mudstones show one or more minima. These conditions preclude vertical flow between the land surface and underlying units and between siltstone/sandstone zones. The average air-entry pressure for Cooper Canyon rocks is about -1 MPa, and water saturation averages 83%. Chloride concentration profiles show a strong bulge in the sediments and rocks above the Cooper Canyon suggesting that very little Holocene recharge has reached the redbeds. Chloride concentrations within the siltstone/sandstone zones are higher than the surrounding mudstones, indicating

  8. Comparative thermometry on pelitic rocks and marbles of the Llano uplift, Texas

    SciTech Connect

    Letargo, C.M.R.; Lamb, W.M. . Dept. of Geology)

    1992-01-01

    The Llano Uplift in central Texas is a Grenville-aged metamorphic complex consisting of amphibolite facies assemblages whose development has been attributed to the emplacement of granite plutons between 1.0--1.1 Ga. Temperatures have been obtained from garnet-biotite, garnet-ilmenite, and calcite-dolomite pairs as well as from various silicate equilibria. Application of these geothermometers yield consistent results and are thus indicative of peak conditions attending the amphibolite facies metamorphism. Temperature determined using garnet-biotite and garnet-ilmenite thermometry compare favorably with calcite-dolomite temperatures obtained from marbles in contact with granite plutons in the southeastern part of the uplift. The highest calcite-dolomite temperatures of [approximately]600 C are obtained from marbles containing an isobarically invariant assemblage consisting of calcite + dolomite + diopside + tremolite + forsterite. At pressures of 2--3 kbar, this isobarically invariant assemblage will be stable at a temperature range of [approximately]600--650 C. Also in close proximity to granites in the southeast uplift is the assemblage muscovite + quartz + k-feldspar + sillimanite [approximately] andalusite which indicate T 650 C and P 2.5 kbar. Assemblages consisting of garnet + sillimanite + quartz + plagioclase (GASP) and garnet + rutile + ilmenite + plagioclase + quartz (GRIPS) are currently being studied to provide additional constraints on pressures of amphibolite facies metamorphism.

  9. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995

    SciTech Connect

    Dunn, T.L.

    1996-03-01

    This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  10. Comparative study between Botucatu and Berea sandstone properties

    NASA Astrophysics Data System (ADS)

    Cardoso, Oldemar Ribeiro; Balaban, Rosangela de Carvalho

    2015-10-01

    The aim of the present study is the analysis and comparison between Berea and Botucatu sandstone, concerning the problems with regard to the loss of permeability or water sensitivity or loss of hydraulic conductivity due to the presence of swelling or non-swelling clays. Some porous volumes of synthetic seawater of different salinities were displaced through the porous media of Berea and Botucatu formations. It was observed that even the plugs of Berea, with no-swelling clays in their composition, had the permeability reduced as soon as the brine salinity reached a lower limit. As expected, the same occurred with the Botucatu sandstone samples, however, in this case,the sensitivity to the low salinity was much more effective.

  11. Chemically induced strength changes in sandstone. Report of Investigations/1993

    SciTech Connect

    Stroud, W.P.; Dolinar, D.R.

    1993-01-01

    Chemical alteration of the compressive strength of sandstone has been investigated by the U.S. Bureau of Mines (USBM). Successful development of this technology would offer an attractive alternative to the methods now used for stress control in mines. Sandstone cores were stressed to failure under uniaxial compression at two different strain rates. Specimens saturated with either distilled or tap water showed an average 14% reduction in stress at failure compared with those dried in vacuum. Samples saturated with dilute solutions of aluminum chloride, hydrochloric acid, and polyethylene oxide showed no statistically significant difference in failure stress compared with those saturated with water. By contrast, compressive strength of the cores was increased some 7% by saturation with the nonpolar solvent carbon tetrachloride. No correlation was found between zeta potential and compressive strength.

  12. Fractures and stresses in Bone Spring sandstones. Final report

    SciTech Connect

    Warpinski, N.R.; Sattler, A.R.; Lorenz, J.C.; Northrop, D.A.

    1992-06-01

    This project was a collaboration between Sandia National Laboratories and the Harvey E. Yates Company (Heyco), Roswell, NM, conducted under the auspices of Department of Energy`s Oil Recovery Technology Partnership. The project applied Sandia perspectives on the effects of natural fractures, stress, and sedimentology for the stimulation and production of low permeability gas reservoirs to low permeability oil reservoirs, such as those typified by the Bone Spring sandstones of the Delaware Basin, southeast New Mexico. This report details the results and analyses obtained in 1990 from core, logs, stress, and other data taken from three additional development wells. An overall summary gives results from all five wells studied in this project in 1989--1990. Most of the results presented are believed to be new information for the Bone Spring sandstones.

  13. Pore-throat sizes in sandstones, siltstones, and shales: Reply

    USGS Publications Warehouse

    Nelson, Philip H.

    2011-01-01

    In his discussion of my article (Nelson, 2009), W. K. Camp takes issue with the concept that buoyancy is not the dominant force in forming and maintaining the distribution of gas in tight-gas accumulations (Camp, 2011). I will restrict my response to the issues he raised regarding buoyant versus nonbuoyant drive and to a few comments regarding water saturation and production. I claim that the pressure generated in petroleum source rocks (Pg), instead of the buoyancy pressure (Pb), provides the energy to charge most tight sandstones with gas. The arguments are fourfold: (1) buoyant columns of sufficient height seldom exist in low-permeability sand-shale sequences, (2) tight-gas systems display a pressure profile that declines instead of increases upward, (3) gas is pervasive in overpressured systems, and (4) source rocks can generate pore pressures sufficiently high to charge tight sandstones.

  14. Sandstone petrography of the Nanushuk Group and Torok Formation

    SciTech Connect

    Bartsch-Winkler, S.; Huffman, A.C. Jr.

    1989-01-01

    Surface and subsurface samples of sandstone from the Lower and Upper Cretaceous Nanushuk Group and the Lower Cretaceous Torok Formation were examined to determine the textural and mineralogical factors that might indicate their source and affect reservoir characteristics. The samples were collected from scattered outcrops (samples number 1075 through 5475), from measured sections in the western and central outcrop belts, and from the subsurface. The stratigraphic sections in the Nanushuk Group range in depositional setting from fluvial through deltaic to shallow marine and show variations in texture, composition, and diagenetic alteration. Sampling was not systematic; rather, it concentrated on the coarser grained, thicker sandstone beds, which are of greater interest from the standpoint of provenance and potential petroleum reservoirs; most surface samples examined were from the fluvial and deltaic regimes; the thicker beds were frequently sampled at several horizons. Modal analyses were performed on a total of 199 thin sections, and observations on the textural details were made on many more samples.

  15. True Tri-axial testing of Castlegate Sandstone

    NASA Astrophysics Data System (ADS)

    Ingraham, M. D.; Issen, K.; Holcomb, D.

    2009-12-01

    Deformation bands in high porosity sandstone are an important geological feature for geologists and petroleum engineers; however, their formation is not fully understood. Axisymmetric compression, the common test for this material, is not sufficient to fully evaluate localization criteria. This study seeks to investigate the influence of the second principal stress on the failure and the formation of deformation bands in Castlegate sandstone. Experimental results from tests run in the axisymmetric compression stress state, as well as a stress state between axisymmetric compression and pure shear will be presented. Samples are tested using a custom triaxial testing rig at Sandia National Laboratories capable of applying stresses up to 400 MPa. Acoustic emissions are used to locate deformation bands should they not be visible on the specimen exterior. It is suspected that the second invariant of stress has a strong contribution to the failure mode and band formation. These results could have significant bearing on petroleum extraction as well as carbon dioxide sequestration.

  16. Duplex structures connecting fault segments in Entrada Sandstone

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Zhao, Guozhu; Johnson, Arvid M.

    All stages in the development of a duplex structure—from isolated, stepped fault segments, to segments joined by a single ramp, to segments joined by tens of ramps—are preserved along strike-slip and normal faults in Entrada Sandstone in Arches National Park, Utah. Bedding is either absent or at a high angle to the duplex-like structures in Entrada Sandstone, thus it had no significant role in constraining their geometry. We can reproduce the essential features of a duplex structure along a normal fault with mechanical and kinematic models previously used to simulate duplex structures along thrust faults. However the models do not account for the amount of observed thickening at the step where the structure forms. This suggests that the geometry of duplex-like structures along these strike-slip faults may be a result of interaction between the fault segments.

  17. NMR spectroscopic examination of shocked sandstone from Meteor Crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B.; Kirkpatrick, R.J.

    1993-08-01

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions.

  18. NMR spectroscopic examination of shocked sandstone from meteor crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B. ); Kirkpatrick, R.J. )

    1994-07-10

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions. [copyright] 1994 American Institute of Physics

  19. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    NASA Astrophysics Data System (ADS)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    Tufas are widely scattered in northern England, being concentrated in areas of limestone (Carboniferous and Permian), where there are springs, seepages, streams and waterfalls with waters supersatured in respect of calcite. Some deposits are clearly related to faults. Tufas have been examined in Gordale and Malham (SW Yorkshire), Teesdale and Weardale (Co. Durham), Sunderland (Tyne & Wear) and Great Asby Fell (Cumbria). A variety of tufa types are developed: spring-related pisoids and moss tufa, fluviatile barrage and waterfall tufa, and seepage and spring tufa with microbial oncoids in a paludal setting. We present preliminary data and observations on tufa in the Teesdale area, which forms along the valley-side adjacent to the River Tees. Locally here, a tiny stream draining agricultural land runs over a sandstone outcrop at the top of a 30 metre high slope; water descends the 30-60 degrees slope, creating tiny waterfalls and pools across an area reaching 10 metres wide, on the way down towards the river. Three main facies are recognizable in the tufa deposits: carbonate crusts, moss tufa and pisoids. In the upper part of the slope tufa occurs as sub-vertical 0.5-5 cm thick carbonate crusts forming "sheets" with a bulbous external surface covered by a green biofilm, with some insect larvae. Encrustations form upon surfaces of rock exposures and pebbles, and coat plant fragments (leaves, twigs, pine cones). Tufa precipitation, particularly on mosses, liverworts and leaves (moss tufa), creates a series of rimmed pools, a few decimetres across and centimetres deep. Apart from the presence of moss, which gives the tufa has a vacuolar texture, the main constituents are cyanobacteria and diatoms. The moss tufa deposit may reach a metre or more in height and several metres in width, notably towards the base of the slope, adjacent to the river. Within the small pools on the slope, pisoids and partially calcified plant remains accumulate. They also occur abundantly in the

  20. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    NASA Astrophysics Data System (ADS)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    Tufas are widely scattered in northern England, being concentrated in areas of limestone (Carboniferous and Permian), where there are springs, seepages, streams and waterfalls with waters supersatured in respect of calcite. Some deposits are clearly related to faults. Tufas have been examined in Gordale and Malham (SW Yorkshire), Teesdale and Weardale (Co. Durham), Sunderland (Tyne & Wear) and Great Asby Fell (Cumbria). A variety of tufa types are developed: spring-related pisoids and moss tufa, fluviatile barrage and waterfall tufa, and seepage and spring tufa with microbial oncoids in a paludal setting. We present preliminary data and observations on tufa in the Teesdale area, which forms along the valley-side adjacent to the River Tees. Locally here, a tiny stream draining agricultural land runs over a sandstone outcrop at the top of a 30 metre high slope; water descends the 30-60 degrees slope, creating tiny waterfalls and pools across an area reaching 10 metres wide, on the way down towards the river. Three main facies are recognizable in the tufa deposits: carbonate crusts, moss tufa and pisoids. In the upper part of the slope tufa occurs as sub-vertical 0.5-5 cm thick carbonate crusts forming "sheets" with a bulbous external surface covered by a green biofilm, with some insect larvae. Encrustations form upon surfaces of rock exposures and pebbles, and coat plant fragments (leaves, twigs, pine cones). Tufa precipitation, particularly on mosses, liverworts and leaves (moss tufa), creates a series of rimmed pools, a few decimetres across and centimetres deep. Apart from the presence of moss, which gives the tufa has a vacuolar texture, the main constituents are cyanobacteria and diatoms. The moss tufa deposit may reach a metre or more in height and several metres in width, notably towards the base of the slope, adjacent to the river. Within the small pools on the slope, pisoids and partially calcified plant remains accumulate. They also occur abundantly in the

  1. Experimental flow-through study of artificial diagenesis in sandstones

    SciTech Connect

    Donahoe, R.J.; Leard, L.E.

    1986-05-01

    During petroleum reservoir development and production, various fluids are injected into well bores. Because these fluids differ compositionally from the reservoir rock pore fluids, induced fluid/rock interactions can range from none to extreme in their effect on reservoir rock properties. These induced reactions, considered artificial diagenesis, can be studied using a new low-temperature flow-through hydrothermal apparatus. The flow-through apparatus is presented as an alternative to conventional high-temperature, high-pressure permeameters for studying water/rock interactions. This equipment is designed to study water/rock interactions under variable fluid-flow rate (0.0005-10 ml/min), temperature (50/sup 0/-300/sup 0/C), and pressure (50-500 bar) conditions; to allow in-situ measurements of permeability; and to accommodate packed column or 1-in. diameter core samples. An experimental and computational study was conducted at 250/sup 0/C to investigate the effects of fluid flow rate, fluid composition, and sandstone mineralogy on disaggregated sandstone sample alteration mineralogy and permeability. Three series of flow-through experiments were conducted with the following variables: (1) sandstone composition (quartzarenite, 2 arkose); (2) fluid composition (distilled, deionized water and aqueous solutions of HF/HCl and NaOH); and (3) fluid-flow rate (0.001-1 ml/min). Preliminary results from these experiments are presented. The variables listed above are discussed in terms of their effect on sandstone alteration mineralogy and permeability. In addition, computer chemical-equilibrium programs used to model these man-made diagenetic systems are evaluated.

  2. Haynesville sandstone reservoirs in the Updip Jurassic trend of Alabama

    SciTech Connect

    Kugler, R.L.; Mink, R.M.

    1994-09-01

    Subsequent to the 1986 drilling of the 1 Carolyn McCollough Unit 1-13 well, which initiated production from the Frisco City sand of the Haynesville Formation in Monroe County, Alabama, seven Haynesville fields have been established in Covington, Escambia, and Monroe counties. Initial flow rates of several hundred BOPD are typical for wells in these fields, and maximum rates exceed 2000 BOPD in North Frisco City field. As of August 1993, these fields produced more than 3,400,000 bbl of oil and 4,000,000 mcf of gas from depths of 12,000 to 13,000 ft. Haynesville sandstone reservoirs are concentrated in two distinct areas: (1) an eastern area (Hickory Branch, North Rome, and West Falco fields; API oil gravity = 40{degrees}) in the Conecuh embayment and (2) a western area (Frisco City, North Frisco City, southeast Frisco City, and Megargel fields; API oil gravity = 58-59{degrees}) on the Conecuh ridge complex. Eastern fields are productive from Haynesville sandstone, which is not continuous with the two distinct, productive sandstone bodies in western fields, the Frisco City sand and the Megargel sand. Hydrocarbon traps are structural or combination traps associated with basement paleohighs. Reservoir bodies generally consist of conglomerate (igneous clasts in western fields; limestone clasts in eastern fields), sandstone (subarkose-arkose), and shale (some of which is red) in stacked fining-upward sequences. Shale at the tops of these sequences is bioturbated. These marine strata were deposited in shoal-water braid-delta fronts. Petrophysical properties differ between the two areas. Maximum and average permeability in western fields (k{sub max} = 2000 md; k{sub ave} = 850-1800 md) is an order of magnitude higher than in eastern fields. The distribution of diagenetic components, including a variety of carbonate minerals, evaporate minerals (anhydrite and halite in western fields), and carbonate-replaced pseudomatrix, commonly is related to depositional architecture.

  3. Controls on CO2 Mineralization in Volcanogenic Sandstone Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Zhang, S.; DePaolo, D. J.; Xu, T.; Voltolini, M.

    2013-12-01

    We proposed to use volcanogenic sandstones for CO2 sequestration. Such sandstones with a relatively high percentage of volcanic rock fragments (VRF) could be a promising target for CO2 seq