Science.gov

Sample records for sandwich panels loaded

  1. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  2. Precast concrete sandwich panels subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  3. Deformation and fracture of impulsively loaded sandwich panels

    NASA Astrophysics Data System (ADS)

    Wadley, H. N. G.; Børvik, T.; Olovsson, L.; Wetzel, J. J.; Dharmasena, K. P.; Hopperstad, O. S.; Deshpande, V. S.; Hutchinson, J. W.

    2013-02-01

    Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying

  4. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  5. Structural Response of Marine Sandwich Panels to Uniform Pressure Loading

    DTIC Science & Technology

    1990-06-01

    PROPERTIES OF SANDWICH PANEL FACES ............. 110 4 .2. P A N E L T E ST S...10 5 Figure 3-57: Comparison of Panel Lower Face Strain Rates During Static P ressu re T est...C yclic P ressure T est ................................................................................... 106 Figure 3-59: Comparison of Panel Lower

  6. Precast/Prestressed Concrete Experiments Performance on Non-Load Bearing Sandwich Wall Panels

    DTIC Science & Technology

    2011-01-01

    AFRL-RX-TY-TR-2011-0021 PRECAST /PRESTRESSED CONCRETE EXPERIMENTS PERFORMANCE ON NON-LOAD BEARING SANDWICH WALL PANELS Clay J. Naito...2008 -- 20-NOV-2010 Precast /Prestressed Concrete Experiments Performance on Non-Loadbearing Sandwich Wall Panels FA8903-08-D-8768-0002 99999F GOVT F0...conducted by AFRL and the Portland Cement Association (PCA) on the performance of insulated concrete wall panels. The purpose of the research is to

  7. Preliminary weight and costs of sandwich panels to distribute concentrated loads

    NASA Technical Reports Server (NTRS)

    Belleman, G.; Mccarty, J. E.

    1976-01-01

    Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.

  8. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Martakos, G.; Andreasen, J. H.; Berggreen, C.; Thomsen, O. T.

    2017-02-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect of the embedded crack arresters was evaluated in terms of the achieved enhancement of the damage tolerance of the tested sandwich panels. A finite element (FE) model of the experimental setup was used for predicting propagation rates and direction of the crack growth. The FE simulation was based on the adoption of linear fracture mechanics and a fatigue propagation law (i.e. Paris law) to predict the residual fatigue life-time and behaviour of the test specimens. Finally, a comparison between the experimental results and the numerical simulations was made to validate the numerical predictions as well as the overall performance of the crack arresters.

  9. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  10. Simulation of Prestressed Concrete Sandwich Panels Subjected to Blast Loads (Preprint)

    DTIC Science & Technology

    2010-02-01

    insulated concrete sandwich wall panels through ultimate capacity. The experimental program used for model development and validation involved...This paper discusses simulation methodology used to analyze static and dynamic behavior of foam insulated concrete sandwich wall panels through... wall construction, the sandwich panel, is comprised of two concrete wythes separated by a layer of foam insulation. The concrete wythes can be

  11. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    SciTech Connect

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  12. Determination of critical loads for cylindrical sandwich panels of composite materials under two-sided compression and shear

    NASA Astrophysics Data System (ADS)

    Rubina, A. L.; Krashakov, Yu. F.

    The problem of determining the critical buckling stress of symmetric and nonsymmetric sandwich panels loaded in two-sided compression and shear is investigated analytically. The governing equation is obtained by solving equations of balance of forces and moments for an element of a sandwich structure in the case of buckling. The solution is based on the general assumptions of the theory of thin shallow shells. The results of the study can be used to optimize the structure of sandwich panels.

  13. Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.

  14. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    PubMed Central

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  15. Indentation of Foam-Based Polymer Composite Sandwich Beams and Panels Under Static Loading

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2009-06-01

    Foam core composite sandwich structures are highly susceptible to damage when subjected to localized loading. Therefore, thorough study of the role of factors such as face sheet thickness, indentor diameter value, and crosshead displacement rate in indentation events is important. The objective of the present work is to investigate experimentally and numerically the influence of these factors on the nonlinear static indentation behavior of sandwich beams and panels consisting of glass fiber/resin face sheets and PVC (polyvinylchloride) foam core. Static indentation tests are carried out on sandwich composite beam and panel specimens using steel cylindrical and spherical indentors, respectively. Numerical models are developed for simulating the mechanical response of sandwich structures subjected to localized indentation beyond the limit of elastic deformation in the foam core. In this relation, the *CRUSHABLE FOAM and the *CRUSHABLE FOAM HARDENING options in the ABAQUS finite element program system are used. The numerical analysis results demonstrate good agreement with experimental data. It is found that increasing the face sheet thickness and indentor diameter value leads to increase in the load (for a given displacement). It is shown also that the indentation behavior does not exhibit sensitivity to crosshead displacement rate over the conditions considered in the present work.

  16. Damage Characteristics and Residual Strength of Composite Sandwich Panels Impacted with and Without Compression Loading

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1998-01-01

    The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.

  17. Thermal-Diode Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  18. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    NASA Astrophysics Data System (ADS)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  19. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  20. Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation

    DTIC Science & Technology

    2012-12-01

    damage causing potential of the blast impulse. Though metal sandwich panels have been used for a long time in aircraft and other light weight struc...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052...foil are very close, bilinear elastoplastic mate- rial model with very low tangent modulus is a reasonable approximation. The adhesive is modeled as

  1. Structural Analysis of Sandwich Foam Panels

    SciTech Connect

    Kosny, Jan; Huo, X. Sharon

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  2. A Numerical Study on the Effect of Facesheet-Core Disbonds on the Buckling Load of Curved Honeycomb Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Myers, David E.; Bednarcyk, Brett A.; Krivanek, Thomas M.

    2015-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance approach for the next-generation Space Launch System heavy lift vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method. Facesheet and core nodes in a predetermined circular region were detached to simulate a disbond induced via low-speed impact between the outer mold line facesheet and honeycomb core. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. A significant change in the slope of the edge load-deflection response was used to determine the onset of global buckling and corresponding buckling load.

  3. Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, D.

    1993-01-01

    The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.

  4. Buckling Analysis of Debonded Sandwich Panel Under Compression

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Wang, John T.

    1995-01-01

    A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.

  5. Finite Element Simulation and Assessment of Single-Degree-of-Freedom Prediction Methodology for Insulated Concrete Sandwich Panels Subjected to Blast Loads

    DTIC Science & Technology

    2011-02-01

    tests referenced in this report. 2.3. Precast /Prestressed Sandwich Wall Panels The typical configuration of concrete sandwich wall panels is two...Sandwich Wall Panels,” Journal of the Precast /Prestressed Concrete Institute, 42 (2). PCI Industry Handbook Committee (2004). PCI Design Handbook...the Composite Behavior of Precast Concrete Sandwich Wall Panels,” PCI Journal, Precast /Prestressed Concrete Institute, Vol. 48, No. 2, March-April

  6. Buckling optimisation of sandwich cylindrical panels

    NASA Astrophysics Data System (ADS)

    Abouhamzeh, M.; Sadighi, M.

    2016-06-01

    In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.

  7. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  8. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOEpatents

    Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  9. Development and Evaluation of Stitched Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)

    2001-01-01

    This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.

  10. Response of Honeycomb Core Sandwich Panel with Minimum Gage GFRP Face-Sheets to Compression Loading After Impact

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2011-01-01

    A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.

  11. Evaluation of Shear Tie Connectors for Use in Insulated Concrete Sandwich Panels

    DTIC Science & Technology

    2009-12-01

    of non-load bearing precast /prestressed or tilt-up concrete sandwich wall panels (WP) are examined. These components are used extensively in modern...prestress wall panels, precast wall panels, tilt-up wall panels, concrete insulted wall systems U U U UU 37 Paul Sheppard Reset i Table of...illustrate this concept, the blast resistances of non-load bearing precast /prestressed or tilt-up concrete sandwich wall panels were examined. These

  12. The extended high-order sandwich panel theory

    NASA Astrophysics Data System (ADS)

    Phan, Catherine N.

    The contribution of this thesis is an extended high-order sandwich panel theory (EHSAPT) for sandwich beams/wide panels, in which the axial stresses are taken into account as well as the shear and transverse normal stresses in the core, and its validation. The general nonlinear formulation of EHSAPT is given in Chapter 2. Validation of the present theory is made by comparison with elasticity solutions and experimental data. The accuracy of EHSAPT is assessed for the standard class of structural analysis problems which include: static loading, static instability (global buckling and wrinkling), free vibrations, and dynamic loading. In Chapter 3 the static response to a half-sine distributed load applied to the top face sheet of a simply supported sandwich beam/wide panel is solved. Validation is made with elasticity, and Euler-Bernoulli beam, first order shear deformation theory, and HSAPT were also included for comparison. In Chapter 4 the static global buckling critical load is determined for a simply supported sandwich beam/wide panel under edgewise loading. Validation is made with elasticity, and Allen's formula and HSAPT are included for comparison. In Chapter 5 the static wrinkling critical load of a simply supported sandwich beam/wide panel is investigated. Validation includes comparison with elasticity, experimental results reported in literature, and recently acquired experimental results. Results using Hoff-Mautner's wrinkling formula and HSAPT are also shown. In Chapter 6 the free vibrations of a simply supported sandwich beam/wide panel are explored, and the predicted antisymmetric and symmetric natural frequencies are compared to experimental results found in the literature and with elasticity. The last validation of EHSAPT is made for the dynamic response to a half-sine distributed load with an exponential time decay applied to the top face sheet of a simply supported sandwich beam. Results are compared with elasticity. The response from using HSAPT is

  13. Noise transmission by viscoelastic sandwich panels

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1977-01-01

    An analytical study on low frequency noise transmission into rectangular enclosures by viscoelastic sandwich panels is presented. Soft compressible cores with dilatational modes and hard incompressible cores with dilatational modes neglected are considered as limiting cases of core stiffness. It is reported that these panels can effect significant noise reduction.

  14. Supersonic flutter of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Shiau, Le-Chung

    1992-12-01

    A flutter-motion equation is presently derived for a 2D composite sandwich panel considering the total lateral displacement of the plate as the sum of the displacement due to bending of the plate, and that which is due to shear deformation at the core. The effects of core thickness and stacking sequence of the faces on the flutter boundary of the plate are discussed; it is shown that the sandwich panel greatly improves the flutter boundary over that of a composite laminate panel, provided it has sufficient core thickness.

  15. Face Sheet/Core Disbond Growth in Honeycomb Sandwich Panels Subjected to Ground-Air-Ground Pressurization and In-Plane Loading

    NASA Technical Reports Server (NTRS)

    Chen, Zhi M.; Krueger, Ronald; Rinker, Martin

    2015-01-01

    Typical damage modes in light honeycomb sandwich structures include face sheet/core disbonding and core fracture, both of which can pose a threat to the structural integrity of a component. These damage modes are of particular interest to aviation certification authorities since several in-service occurrences, such as rudder structural failure and other control surface malfunctions, have been attributed to face sheet/core disbonding. Extensive studies have shown that face sheet/core disbonding and core fracture can lead to damage propagation caused by internal pressure changes in the core. The increasing use of composite sandwich construction in aircraft applications makes it vitally important to understand the effect of ground-air-ground (GAG) cycles and conditions such as maneuver and gust loads on face sheet/core disbonding. The objective of the present study was to use a fracture mechanics based approach developed earlier to evaluate the loading at the disbond front caused by ground-air-ground pressurization and in-plane loading. A honeycomb sandwich panel containing a circular disbond at one face sheet/core interface was modeled with three-dimensional (3D) solid finite elements. The disbond was modeled as a discrete discontinuity and the strain energy release rate along the disbond front was computed using the Virtual Crack Closure Technique (VCCT). Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed. The commercial finite element analysis software, Abaqus/Standard, was used for the analyses. The recursive pressure-deformation coupling problem was solved by representing the entrapped air in the honeycomb cells as filled cavities in Abaqus/Standard. The results show that disbond size, face sheet thickness and core thickness are important parameters that determine crack tip loading at the disbond front. Further, the pressure

  16. Size Effects in Impact Damage of Composite Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Jackson, Wade

    2003-01-01

    Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.

  17. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  18. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  19. Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Ludwiczak, Damian

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.

  20. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  1. Impact damage in aircraft composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  2. Evaluation of a Composite Sandwich Fuselage Side Panel with Damage and Subjected to Internal Pressure

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Bodine, Jerry; Dopker, Bernhard

    1997-01-01

    The results from an experimental and analytical study of a composite sandwich fuselage side panel for a transport aircraft are presented. The panel has two window cutouts and three frames, and has been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on the graphite-epoxy sandwich panel with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. The two-frame panel was damaged by cutting a notch that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. The two panel configurations successfully satisfied all design load requirements in the experimental part of the study, and the three-frame and two-frame panel responses are fully explained by the analysis results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in.-wide frame spacing to further reduce aircraft fuselage structural weight.

  3. Wave propagation in sandwich panels with a poroelastic core.

    PubMed

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez

    2014-05-01

    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.

  4. Effects of bonding stiffness on thermal stresses in sandwich panels

    NASA Astrophysics Data System (ADS)

    Hussein, R.; Fazio, P.; Ha, K.

    1992-10-01

    Sandwich panels made of thin skins and a lightweight core expand and/or bow when subjected to temperature changes. The significance of induced thermal stresses in the panels depends on material properties. The effects of bonding layers on these stresses were not investigated in available works on the structural analysis of sandwich panels. This paper presents elasticity solutions for thermal stresses in sandwich panels with interlayer slip. The effects of finite bonding stiffnesses on the structural behavior of the panels are investigated. The numerical results show that the bonding stiffness, up to a certain level, has a strong effect on panel structural response. The answer to what constitutes perfect bonding is best answered in terms of the ratio of the core stiffness to the bonding stiffness. A heat chamber is designed and used to test sandwich specimens under different temperature changes. The experimental values for normal stresses in the skins are in good agreement with the present theory.

  5. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  6. High Temperature Residual Properties of Carbon Fiber Composite Sandwich Panel with Pyramidal Truss Cores

    NASA Astrophysics Data System (ADS)

    Liu, Jiayi; Zhou, Zhengong; Wu, Linzhi; Ma, Li; Pan, Shidong

    2013-08-01

    A study on the mechanical property degradation of carbon fiber composite sandwich panel with pyramidal truss cores by high temperature exposure is performed. Analytical formulae for the residual bending strength of composite sandwich panel after thermal exposure are presented for possible competing failure modes. The composite sandwich panels were fabricated from unidirectional carbon/epoxy prepreg, and were exposed to different temperatures for different time. The bending properties of the exposed specimens were measured by three-point bending tests. Then the effect of high temperature exposure on the bending properties and damage mechanism were analyzed. The results have shown that the residual bending strength of composite sandwich panels decreased with increasing exposure temperature and time, which was caused by the degradation of the matrix property and fiber-matrix interface property at high temperature. The effect of thermal exposure on failure mode of composite sandwich panel was observed as well. The measured failure loads showed good agreement with the analytical predictions. It is expected that this study can provide useful information on the design and application of carbon fiber composite sandwich panel at high temperature.

  7. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  8. Hypervelocity impact response of honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Schäfer, Frank; Putzar, Robin

    2010-02-01

    Man-made orbital poses a serious threat to spacecraft that are launched to operate in Earth orbit because it can strike such spacecraft at very high velocities and consequently damage mission-critical systems. This paper describes the findings of a study whose objective was to develop a system of empirical equations that can be used to predict the trajectories and spread of the debris clouds that exit the rear facesheet following a high speed perforating impact of a honeycomb sandwich panel (HC/SP). These equations are based on a database containing the results of nearly 400 tests from 13 previously published papers and reports. Overall the correlation coefficient values for the various regression equations obtained are fairly reasonable, and range from near 60% to well above 90%. This indicates that the chosen forms of the equations are a good fit to the data, and that they are capable of picking up most of the variations in the data that result from changes in test conditions. These equations can now be used to estimate the amount of mass in a debris cloud if an HC/SP is perforated by a high speed impact, where this mass will travel, and what spacecraft components will be impacted by it. This information can then be fed into a risk assessment code to calculate the probability of spacecraft failure under a prescribed set of impact conditions.

  9. Composite panels based on woven sandwich-fabric preforms

    NASA Astrophysics Data System (ADS)

    van Vuure, Aart Willem

    A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of

  10. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  11. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  12. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat-load levels. The heat-pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat-pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low-distortion large area structures (e.g., space antennas) and laser mirrors.

  13. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    SciTech Connect

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  14. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  15. Development of a finite element model for the simulation of parabolic impact of sandwich panels

    NASA Astrophysics Data System (ADS)

    Ram Ramakrishnan, Karthik; Guérard, Sandra; Mahéo, Laurent; Shankar, Krishna; Viot, Philippe

    2015-09-01

    Sandwich panels are lightweight structures of two thin high strength facesheets bonded to either side of a thick low density core such as foams and honeycombs. It is necessary to study the impact response of sandwich structures in order to ensure the reliability and safety of these structures. The response of sandwich panels to impact loading is usually studied for impact at normal angle of incidence. In real engineering situations, the structures are more frequently loaded at some oblique angle or with a complex trajectory. It is easy to carry out normal impact tests using devices like the drop tower, but impacts at oblique angles are difficult to characterise experimentally. A tri-dimensional impact device called Hexapod has been developed to experimentally study the impact loading of sandwich plates with a parabolic trajectory. The Hexapod is a modified Gough-Stewart platform that can be moved independently in the six degrees of freedom, corresponding to three translation axes and three rotation axes. In this paper, an approach for modelling the parabolic impact of sandwich structures with thin metallic facesheets and polymer foam core using commercial finite element code LS-DYNA software is presented. The results of the FE model of sandwich panels are compared with experimental data in terms of the time history of vertical and horizontal components of force. A comparison of the strain history obtained from Digital Image Correlation and LS-Dyna model are also presented.

  16. Failure mechanisms in composite panels subjected to underwater impulsive loads

    NASA Astrophysics Data System (ADS)

    Latourte, Félix; Grégoire, David; Zenkert, Dan; Wei, Xiaoding; Espinosa, Horacio D.

    2011-08-01

    This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass ( I0/ M¯>170 m s -1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s -1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal

  17. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  18. Design of highly damage-tolerant sandwich panels

    NASA Astrophysics Data System (ADS)

    Hiel, Clement; Ishai, Ori

    The effects of different fabrication procedures to increase the damage tolerance of sandwich panels were studied. Baseline panels consisted of a 25.4 mm premolded core, surfaced with 177 C cure film adhesive and carbon-bismaleimide prepreg which were subsequently cocured onto the core. It was found that panels with a prefabricated skin, which was subsequently bonded onto the core with room temperature cure adhesive, showed greatly increased damage tolerance.

  19. Optimization of the curing process of a sandwich panel

    NASA Astrophysics Data System (ADS)

    Phyo Maung, Pyi; Tatarnikov, O.; Malysheva, G.

    2016-10-01

    This study presented finite element modelling and experimental measurements of temperatures during the autoclave curing of the T-50 aircraft wing sandwich panel. This panel consists of upper and lower carbon fibre based laminates and an aluminium foil honeycomb. The finite element modelling was performed using the Femap-Nastran product. During processing, the temperature at various points on the surface of the panel was measured using the thermocouples. The finite element method simulated the thermal conditions and determined the temperatures in the different parts of the panel for a full cycle of the curing process. A comparison of the calculated and experimental data shows that their difference does not exceed 6%.

  20. Compression Response of a Sandwich Fuselage Keel Panel With and Without Damage

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1997-01-01

    Results are presented from an experimental and analytical study of a sandwich fuselage keel panel with and without damage. The fuselage keel panel is constructed of graphite-epoxy skins bonded to a honeycomb core, and is representative of a highly loaded fuselage keel structure. The face sheets of the panel contain several terminated or dropped plies along the length of the panel. The results presented provide a better understanding of the load distribution in damaged and undamaged thick-face-sheet composite sandwich structure with dropped plies and of the failure mechanisms of such structure in the presence of low-speed impact damage and discrete-source damage. The impact-damage condition studied corresponds to barely visible impact damage (BVID), and the discrete-source damage condition studied is a notch machined through both face sheets. Results are presented from an impact-damage screening study conducted on another panel of the same design to determine the impact energy necessary to inflict BVID on the panel. Results are presented from compression tests of the panel in three conditions: undamaged; BVID in two locations; and BVID in two locations and a notch through both face sheets. Surface strains in the face sheets of the undamaged panel and the notched panel obtained experimentally are compared with finite element analysis results. The experimental and analytical results suggest that for the damage conditions studied, discrete-source damage influences the structural performance more than BVID.

  1. Methods for Assessing Honeycomb Sandwich Panel Wrinkling Failures

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F.; Dial, William B.; Bednarcyk, Brett A.

    2012-01-01

    Efficient closed-form methods for predicting the facesheet wrinkling failure mode in sandwich panels are assessed. Comparisons were made with finite element model predictions for facesheet wrinkling, and a validated closed-form method was implemented in the HyperSizer structure sizing software.

  2. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  3. Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading

    SciTech Connect

    Baker, D.J.

    1996-04-01

    The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.

  4. Flexural Strength of Functionally Graded Nanotube Reinforced Sandwich Spherical Panel

    NASA Astrophysics Data System (ADS)

    Mahapatra, Trupti R.; Mehar, Kulmani; Panda, Subrata K.; Dewangan, S.; Dash, Sushmita

    2017-02-01

    The flexural behaviour of the functionally graded sandwich spherical panel under uniform thermal environment has been investigated in the present work. The face sheets of the sandwich structure are made by the functionally graded carbon nanotube reinforced material and the core face is made by the isotropic and homogeneous material. The material properties of both the fiber and matrix are assumed to be temperature dependent. The sandwich panel model is developed in the framework of the first order shear deformation theory and the governing equation of motion is derived using the variational principle. For the discretization purpose a suitable shell element has been employed from the ANSYS library and the responses are computed using a parametric design language (APDL) coding. The performance and accuracy of the developed model has been established through the convergence and validation by comparing the obtained results with previously published results. Finally, the influence of different geometrical parameters and material properties on the flexural behaviour of the sandwich spherical panel in thermal environment has been investigated through various numerical illustrations and discussed in details.

  5. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  6. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  7. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.

  8. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  9. Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5

    NASA Technical Reports Server (NTRS)

    Merlette, J. B.

    1972-01-01

    Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  10. Gravity sag of sandwich panel assemblies as applied to precision cathode strip chamber structural design

    SciTech Connect

    Horvath, J.

    1993-09-16

    The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ``gap frame`` connection is explained.

  11. Prediction of the ballistic limit of an aluminium sandwich panel

    NASA Astrophysics Data System (ADS)

    Campbell, J.; De Vuyst, T.; Vignjevic, R.; Hughes, K.

    2016-08-01

    This paper presents research on modelling the impact of a 150g projectile on a 35mm thick aluminium sandwich panel. The objective of the work is a predictive modelling capability for the ballistic limit of the panel. A predictive modelling capability supports the design of capture and deorbit missions for large items of space debris such as satellites and rocket upper stages. A detailed explicit finite element model was built using the LSDYNA software and results were compared with experimental data for the projectile exit velocity to establish key parameters. The primary parameters influencing the model behaviour were the strength and failure of the aluminium face sheets and the friction between projectile and panel. The model results showed good agreement with experimental results for ogive nose projectiles, but overestimated the exit velocity for flat nose projectiles.

  12. Fatigue and impact properties of metal honeycomb sandwich panel

    NASA Astrophysics Data System (ADS)

    Zou, Guang ping; Lu, Jie; Liang, Jun; Chang, Zhong liang

    2008-11-01

    Honeycomb sandwich structures are significant to be used as applied to thermal protection system on reusable launch vehicle. In this paper the fatigue and impact properties of a novel metallic thermal protection material have been investigated and predicted at room temperature. A series of strength tests are carried out to obtain parameters firstly for further experiments. A set of tension-tension stress fatigue tests and impact tests based on split-Hopkinson pressure bar are carried out. Different high strain rate impact experiments are accomplished. The curves of dynamical stress, strain and strain rate are obtained. Also the cell units images after impact are presented. The results show the fatigue properties of honeycomb sandwich panels are comparatively better. And it has the advantages of anti-impact resistance and high, energy absorption capability.

  13. Performance and Characterization of Shear Ties for Use in Insulated Precast Concrete Sandwich Wall Panels

    DTIC Science & Technology

    2010-11-01

    AFRL-RX-TY-TP-2010-0082 PERFORMANCE AND CHARACTERIZATION OF SHEAR TIES FOR USE IN INSULATED PRECAST CONCRETE SANDWICH WALL PANELS...of Shear Ties for Use in Insulated Precast Concrete Sandwich Wall Panels (PREPRINT) FA8903-08-D-8768-0002 0909999F GOVT F0 QF101000 #Naito, Clay...PERFORMANCE AND CHARACTERIZATION OF SHEAR TIES FOR USE IN 1 INSULATED PRECAST CONCRETE SANDWICH WALL PANELS 2 Clay Naito1, John Hoemann2, Mark Beacraft3

  14. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression is investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. An adhesive bond study resulted in the selection of a suitable cure cycle for FM 34 polyimide film adhesive and, a bonding technique using a liquid cell edge version of that adhesive resulted in considerable mass savings. Tensile and compressive material properties of the facings, quasiisotropic, symmetric, laminates (0, +45,90,-45)s of Celion/PMR-15, were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) usng the sandwich beam flexure test method. Results indicate the Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 1006.5 sq cm. 156 sq in., had quasiisotropic symmetric facings (0, + or - 45,90)s and a glass/polyimide honeycomb core (HRH-327-3/8-4).

  15. Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Chan, Monica Kar

    There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.

  16. Thermomechanical response of metal foam sandwich panels for structural thermal protection systems in hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Rakow, Joseph F.

    Sandwich panels with metal foam cores are proposed for load-bearing structural components in actively cooled thermal protection systems for aerospace vehicles. Prototype acreage metal foam sandwich panels (MFSP's) are constructed and analyzed with the central goal of characterizing the thermomechanical response of the system. MFSP's are subjected to uniform temperature fields and equibiaxial loading in a novel experimental load frame. The load frame exploits the mismatch of coefficients of thermal expansion and allows for thermostructural experimentation without the endemic conflict of thermal and mechanical boundary conditions. Back-to-back strain gages and distributed thermocouples capture the in-plane response of the panels, including buckling and elastic-plastic post-buckling. The out-of-plane response is captured via moire interferometry, which provides a visualization of evolving mode shapes throughout the post-buckling regime. The experimental results agree with an analytical prediction for critical temperatures in sandwich panels based on a Rayleigh-Ritz minimization of the energy functional for a Reissner-Mindlin plate. In addition, a three-dimensional finite element model of the non-linear thermomechanical response of the panel-frame experimental system is developed and the results are shown to agree well with the experimentally identified response of MFSP's. Central to analytical and numerical characterization of MFSP's is an understanding of the response of metal foam under shear loading. The shear response of metal foam is captured experimentally, providing density-dependent relationships for material stiffness, strength, and energy absorption. Speckle photography is employed to identify microstructural size effects in the distribution of strain throughout metal foam under shear loading. In addition, a micromechanical model is established for the density-dependent shear modulus of metal foam, which allows for the coupling of cell-level imperfections

  17. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  18. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    NASA Astrophysics Data System (ADS)

    Dimassi, M. A.; Brauner, C.; Herrmann, A. S.

    2016-03-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence.

  19. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  20. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  1. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  2. Nondestructive and Strain Testing of Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Goyings, Ryan

    In April 2006, Sikorsky Aircraft received a contract from the United States Marine Corps (USMC) to develop a successor to their CH-53E heavy-lift helicopter. The new designation is the CH-53K "Super Stallion" and provides increased operating capabilities through the use of design revisions that incorporate extensive use of carbon fiber composites and composite sandwich panels. "The CH-53K will have five times the capability at half of the operational cost of the aircraft it's replacing. It will be the most capable helicopter ever produced. With more than twice the combat radius of the CH-53E, the CH-53K uses mature technology to deliver a fully shipboard compatible platform to meet current and future Marine Corps requirements". Upon introduction, it will be the largest rotary wing aircraft in the United States Department of Defense. The USMC will incorporate the CH-53K into the Joint Operations Concept of Full Spectrum Dominance and Sea Power 21 thereby enabling rapid, decisive operations and the early termination of conflict by projecting and sustaining forces to distant anti-access, area-denial environments. Even with an increased lift capability, the CH-53K is a slow moving, low flying helicopter susceptible to damage from small arms fire. There is no field level composite repair capability within any maintained documents published by the Department of Defense. Purdue University has developed a field level rapid repair technique capable of returning strength and integrity to damaged carbon composite structural components. The patch is made from carbon fiber weave that is applied using a field capable Vacuum Assisted Resin Transfer Molding (VARTM). This thesis seeks to validate, using nondestructive testing methods and strain monitoring, the manufacturing, damage, and repair process of composite sandwich panels representative of the CH-53K structural panels.

  3. Free-edge effects in a cylindrical sandwich panel with a flexible core and laminated composite face sheets

    NASA Astrophysics Data System (ADS)

    Afshin, M.; Sadighi, M.; Shakeri, M.

    2010-12-01

    In the present study, the static response of cylindrical sandwich panels with a flexible core is investigated. The face sheets are considered as composite laminates with a cross-ply lay-up and the core as a flexible elastic medium. The flexibility of the low-strength core leads to high stress concentrations in terms of peeling stresses between the face sheets and the core at edges of the sandwich panel. To take into account the compressibility of the core and to determine the free-edge stresses of sandwich structures accurately, the Reddy layerwise theory (LWT) is used in this paper. The paper outlines the mathematical formulation, along with a numerical study, of a cylindrical sandwich panel with two simply supported and two free edges under a transverse load. The formulation includes the derivation of field equations along with boundary conditions. A Levy-type solution procedure is performed to determine the distributions of stresses and strains. In the numerical study, first a comparison is made with results from the commercial finite-element software ANSYS to verify the LWT results. Finally, a parametric study is conducted, and the effect caused by varying different parameters, such as the radii of curvature and the core to face sheet thickness ratio, on the results are investigated. The results obtained demonstrate a good agreement between LWT and FEM solutions and show increasing interlaminar stresses in the free edge of the sandwich panel

  4. A Finite Element Analysis for Predicting the Residual Compressive Strength of Impact-Damaged Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  5. A Finite Element Analysis for Predicting the Residual Compression Strength of Impact-Damaged Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  6. Compression After Impact Experiments and Analysis on Honeycomb Core Sandwich Panels with Thin Facesheets

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.

    2011-01-01

    A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.

  7. Sandwiched structural panel having a bi-directional core structure

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1995-01-01

    A structural panel assembly has a bi-directional core structure sandwiched between and secured to a pair of outer side wall members. The core structure is formed from first and second perpendicular series of elongated strip members having crenelated configurations. The strip members in the first series thereof are transversely interwoven with the strip members in the second series thereof in a manner such that crest portions of the strip members in the first series overlie and oppose trough portions of the strip members in the second series, and trough portions of the strip members in the first series underlie and oppose crest portions of the strip members in the second series. The crest portions of all of the strip members lie generally in a first plane and are secured to the inner side of one of the panel assembly outer side walls, and the trough portions of all of the strip members lie generally in a second plane and are secured to the inner side of the other panel assembly outer side wall.

  8. Experimental, Theoretical and Numerical Investigation of the Flexural Behaviour of the Composite Sandwich Panels with PVC Foam Core

    NASA Astrophysics Data System (ADS)

    Mostafa, A.; Shankar, K.; Morozov, E. V.

    2014-08-01

    This study presents the main results of an experimental, theoretical and numerical investigation on the flexural behaviour and failure mode of composite sandwich panels primarily developed for marine applications. The face sheets of the sandwich panels are made up of glass fibre reinforced polymer (GFRP), while polyvinylchloride (PVC) foam was used as core material. Four-point bending test was carried out to investigate the flexural behaviour of the sandwich panel under quasi static load. The finite element (FE) analysis taking into account the cohesive nature of the skin-core interaction as well as the geometry and materials nonlinearity was performed, while a classical beam theory was used to estimate the flexural response. Although the FE results accurately represented the initial and post yield flexural response, the theoretical one restricted to the initial response of the sandwich panel due to the linearity assumptions. Core shear failure associate with skin-core debonding close to the loading points was the dominant failure mode observed experimentally and validated numerically and theoretically.

  9. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  10. Predictions of thermal buckling strengths of hypersonic aircraft sandwich panels using minimum potential energy and finite element methods

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1995-01-01

    Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.

  11. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    PubMed

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems.

  12. Parametric results for heat transfer across honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Sahakian, J.

    1981-01-01

    The problem of heat transfer across honeycomb sandwich panels is theoretically investigated. The basic objective is to predict the rear surface temperature as a function of time when the front surface is exposed to a prescribed heat flux; the faces are bounded by planar sheets so that the air circulation in the honeycomb cells is bounded and contained. The influence of the air circulation on convective heat transfer is explicitly included. Drawing upon previous investigators' results that indicated various relations for the Nusselt numbers vs Rayleigh numbers in different regimes of the aspect ratio (defined as the ratio of the cell height to cell width), parametric calculations are performed to predict the rear surface temperatures. Chemical degradation of the material, especially the glue holding the face material on the end, is important but has not yet been included. The results indicate that decreasing the cell width, increasing the cell wall thickness and increasing the cell height all have beneficial effects upon the heat transfer; i.e., all of these variations reduce rear surface temperature for a given time for a prescribed heat flux on the front surface.

  13. Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal sandwich panels with gradient geometry

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mostafa; Boldrin, Luca; Scarpa, Fabrizio; Neild, Simon; Patsias, Sophoclis

    2016-05-01

    The work describes the vibroacoustic behavior of anti-tetrachiral and auxetic hexagonal gradient sandwich panels using homogenized finite element models to determine the mechanical properties of the auxetic structures, the natural frequencies and radiated sound power level of sandwich panels made by the auxetic cores. The mechanical properties and the vibroacoustic behavior of auxetic hexagonal sandwich panels are investigated as a benchmark. The radiated sound power level of the structure over the frequency range of 0-1000 Hz is minimized by modifying the core geometry of the gradient auxetic sandwich panels. Several excitation cases are considered. First-order and random optimization methods are used for the minimization of radiated sound power level of the structures. The results of this study present significant insights into the design of auxetic structures with respect to their vibroacoustical properties.

  14. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-11-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  15. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  16. Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.

    2016-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.

  17. Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.

    2010-01-01

    The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.

  18. Thermostructural Behavior of a Hypersonic Aircraft Sandwich Panel Subjected to Heating on One Side

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1997-01-01

    Thermostructural analysis was performed on a heated titanium honeycomb-core sandwich panel. The sandwich panel was supported at its four edges with spar-like substructures that acted as heat sinks, which are generally not considered in the classical analysis. One side of the panel was heated to high temperature to simulate aerodynamic heating during hypersonic flight. Two types of surface heating were considered: (1) flat-temperature profile, which ignores the effect of edge heat sinks, and (2) dome-shaped-temperature profile, which approximates the actual surface temperature distribution associated with the existence of edge heat sinks. The finite-element method was used to calculate the deformation field and thermal stress distributions in the face sheets and core of the sandwich panel. The detailed thermal stress distributions in the sandwich panel are presented, and critical stress regions are identified. The study shows how the magnitudes of those critical stresses and their locations change with different heating and edge conditions. This technical report presents comprehensive, three-dimensional graphical displays of thermal stress distributions in every part of a titanium honeycomb-core sandwich panel subjected to hypersonic heating on one side. The plots offer quick visualization of the structural response of the panel and are very useful for hot structures designers to identify the critical stress regions.

  19. Thermo-structural optimization of all-metallic prismatic sandwich panels

    NASA Astrophysics Data System (ADS)

    Valdevit, Lorenzo

    All-metallic sandwich panels with prismatic cores offer tremendous potential for thermostructural applications, due to their exceptional bending response together with the possibility of driving a fluid through their open cores, thus enabling active cooling. This thesis offers a complete thermo-mechanical characterization of prismatic panels with both corrugated and diamond cores, with main emphasis on geometric optimization. For the mechanical study, the panel geometry is analytically optimized for minimum weight under any combination of bending and transverse shear force. For longitudinal loadings (i.e. bending axis parallel to the core corrugation direction), corrugated panels show excellent performance, equivalent to the best concepts available; for transverse loadings (i.e. bending axis perpendicular to the corrugation direction), this goal is achieved with diamond core designs. Failure maps are constructed based on the analytical model to provide easy visualization of the failure modes and allow immediate identification of optimal designs. Such maps are used to design a selected number of experiments, with the three-fold goal of (i) validating the analytical model, (ii) exploring the behavior subsequent to failure initiation (thus assessing the robustness of the chosen designs), and (iii) check the reliability of numerical simulations in capturing limit loads and deformation modes. Good agreement is achieved among analytical, computational and experimental results. In order to assess the active cooling performance of prismatic panels, a scenario is envisioned where a uniform heat flux is impinging on one face, with the rest of the panel being thermally insulated; under these conditions, all the heat flux is transferred to a cooling fluid flowing through the core channels. At any given level of the pressure drop, the panel geometry is optimized for maximum transferred heat flux subject to a temperature constraint on the structure. Although very large optimal

  20. An h-p Finite Element Vibration Analysis of Open Conical Sandwich Panels and Conical Sandwich Frusta

    NASA Astrophysics Data System (ADS)

    BARDELL, N. S.; LANGLEY, R. S.; DUNSDON, J. M.; AGLIETTI, G. S.

    1999-09-01

    The vibration study of a general three-layer conical sandwich panel based on theh -p version of the finite element method is presented in this paper. No restriction is placed on the degree of curvature of the shell, thereby relaxing the strictures associated with shallow shell theory. The methodology incorporates a new set of trigonometric functions to provide the element p -enrichment, and elements may be joined together to model either open conical panels, or complete conical frusta (circumferentially connected, but open at each end). The full range of classical boundary conditions, which includes free, clamped, simply supported and shear diaphragm edges, may be applied in any combination to open and closed panels, thereby facilitating the study of a wide range of conical sandwich shells. The convergence properties of this element have been established for different combinations of the h - and p -parameters, thereby assuring its integrity for more general use. Since very little work has been reported on the vibration characteristic of either circumferentially closed or open conical sandwich panels, the main thrust of this work has been to present and validate an efficient modelling technique, rather than to perform numerous parameter and/or sensitivity studies. To this end, some new results are presented and subsequently validated using a commercially available finite element package. It is shown that for results of comparable accuracy, models constructed using the h-p formulation require significantly fewer degrees of freedom than those assembled using the commercial package. Some preliminary experimental results are also included for completeness.

  1. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  2. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  3. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    NASA Astrophysics Data System (ADS)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  4. Distortion-free single point imaging of multi-layered composite sandwich panel structures.

    PubMed

    Marble, Andrew E; Mastikhin, Igor V; MacGregor, Rod P; Akl, Mohamad; LaPlante, Gabriel; Colpitts, Bruce G; Lee-Sullivan, Pearl; Balcom, Bruce J

    2004-05-01

    The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy 'skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures.

  5. Effect of applied magnetic field on sound transmission loss of MR-based sandwich panels

    NASA Astrophysics Data System (ADS)

    Hemmatian, Masoud; Sedaghati, Ramin

    2017-02-01

    This study aims to investigate the sound transmission loss (STL) capability of sandwich panels treated with Magnetorheological (MR) fluids at low frequencies. An experimental setup has been designed to investigate the effect of the intensity of applied magnetic field on the natural frequencies and STL of a clamped circular panel. It is shown that the fundamental natural frequency of the MR sandwich panel increases in proportion to the applied magnetic field. In addition, the STL of the panel at the resonance frequency increases as the magnetic field is amplified. Furthermore, the classical plate theory and Ritz method have been utilized to develop the governing equations of motion of the finite multilayered circular panels comprising two elastic face sheets and MR fluid core layer. The radiated sound power from the panel is derived using Rayleigh integral as a function of the transverse velocity of the panel which is subsequently used to evaluate the STL. The theoretical study is validated comparing the simulation results with the experimental measurements. Experimental and analytical parametric study have also been conducted to study the effect of the core layers’ thickness on the natural frequency and the STL of sandwich panel.

  6. Vibration and acoustic properties of honeycomb sandwich structures subject to variable incident plane-wave angle pressure loads

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxue

    Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the

  7. Design, fabrication and test of liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Camarda, C. J.

    1983-01-01

    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich panel construction, were fabricated and tested. The designs utilize two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and potassium or sodium as the working fluid. Panels were tested by radiant heating, and the results indicate successful heat pipe operation at temperatures of approximately 922K (1200F). These panels, in addition to solving potential thermal stress problems in an Airframe-Integrated Scramjet Engine, have potential applications as cold plates for electronic component cooling, as radiators for space platforms, and as low distortion, large area structures.

  8. Long-term hygrothermal effects on damage tolerance of hybrid composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement; Luft, Michael

    1995-01-01

    A sandwich construction, composed of hybrid carbon-glass fiber-reinforced plastic skins and a syntactic foam core, was selected as the design concept for a wind tunnel compressor blade application, where high damage tolerance and durability are of major importance. Beam specimens were prepared from open-edge and encapsulated sandwich panels which had previously been immersed in water at different temperatures for periods of up to about two years in the extreme case. Moisture absorption and strength characteristics, as related to time of exposure to hygrothermal conditions, were evaluated for the sandwich specimens and their constituents (skins and foam). After different exposure periods, low-velocity impact damage was inflicted on most sandwich specimens and damage characteristics were related to impact energy. Eventually, the residual compressive strengths of the damaged (and undamaged) beams were determined flexurally. Test results show that exposure to hygrothermal conditions leads to significant strength reductions for foam specimens and open-edge sandwich panels, compared with reference specimens stored at room temperature. In the case of skin specimens and for beams prepared from encapsulated sanwich panels that had previously been exposed to hygrothermal conditions, moisture absorption was found to improve strength as related to the reference case. The beneficial effect of moisture on skin performance was, however, limited to moisture contents below 1% (at 50 C and lower temperatures). Above this moisture level and at higher temperatures, strength degradation of the skin seems to prevail.

  9. Blast and Fragment Protective Sandwich Panel Concepts for Stainless Steel Monohull Designs

    DTIC Science & Technology

    2008-10-21

    topologies, accessibility to inner nodes in the panel, scale issues, and safety issues. Evaluation could include round robin testing of full scale...experimental geometry (see Figure 1): where Vb is the impact velocity, / and s are the acoustic impedances of the fluid and of the solid respec- tively, and D...machined to round specimens 305 mm in diameter (see Figure 3). The total thickness of the sandwich panels was 13.97 mm and the relative density of the

  10. Computationally Efficient Finite Element Analysis Method Incorporating Virtual Equivalent Projected Model For Metallic Sandwich Panels With Pyramidal Truss Cores

    NASA Astrophysics Data System (ADS)

    Seong, Dae-Yong; Jung, ChangGyun; Yang, Dong-Yol

    2007-05-01

    Metallic sandwich panels composed of two face sheets and cores with low relative density have lightweight characteristics and various static and dynamic load bearing functions. To predict the forming characteristics, performance, and formability of these structured materials, full 3D modeling and analysis involving tremendous computational time and memory are required. Some constitutive continuum models including homogenization approaches to solve these problems have limitations with respect to the prediction of local buckling of face sheets and inner structures. In this work, a computationally efficient FE-analysis method incorporating a virtual equivalent projected model that enables the simulation of local buckling modes is newly introduced for analysis of metallic sandwich panels. Two-dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries that have anisotropic stiffness, yield strength, and hardening function. The sizes and isotropic properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of the full model. The 3-point bending processes with quasi-two-dimensional loads and boundary conditions are simulated to establish the validity of the proposed method. The deformed shapes and load-displacement curves of the virtual equivalent projected model are found to be almost the same as those of a full three-dimensional FE-analysis while reducing computational time drastically.

  11. Computationally Efficient Finite Element Analysis Method Incorporating Virtual Equivalent Projected Model For Metallic Sandwich Panels With Pyramidal Truss Cores

    SciTech Connect

    Seong, Dae-Yong; Jung, Chang Gyun; Yang, Dong-Yol

    2007-05-17

    Metallic sandwich panels composed of two face sheets and cores with low relative density have lightweight characteristics and various static and dynamic load bearing functions. To predict the forming characteristics, performance, and formability of these structured materials, full 3D modeling and analysis involving tremendous computational time and memory are required. Some constitutive continuum models including homogenization approaches to solve these problems have limitations with respect to the prediction of local buckling of face sheets and inner structures. In this work, a computationally efficient FE-analysis method incorporating a virtual equivalent projected model that enables the simulation of local buckling modes is newly introduced for analysis of metallic sandwich panels. Two-dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries that have anisotropic stiffness, yield strength, and hardening function. The sizes and isotropic properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of the full model. The 3-point bending processes with quasi-two-dimensional loads and boundary conditions are simulated to establish the validity of the proposed method. The deformed shapes and load-displacement curves of the virtual equivalent projected model are found to be almost the same as those of a full three-dimensional FE-analysis while reducing computational time drastically.

  12. Analysis and Testing of a Tapered End Connection for Laser Welded Steel Sandwich Panels

    DTIC Science & Technology

    2009-08-15

    reduced distortion lessens or eliminates the need for straightening and rework . Cost-effective, and weight efficient designs are the result. As with...Structural Engineering Vol 67, pp. 159-166. 26. Vel, S.S., Caccese, V., Zhao.,H, 2005, Elastic coupling effects in tapered sandwich panels with laminated

  13. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  14. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  15. Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel

    NASA Astrophysics Data System (ADS)

    Gulsine Ozdemir, Nazli; Scarpa, Fabrizio; Craciun, Monica; Remillat, Chrystel; Lira, Cristian; Jagessur, Yogesh; Da Rocha-Schmidt, Luiz

    2015-12-01

    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic (TP) nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes.

  16. Fabrication and development of several heat pipe honeycomb sandwich panel concepts

    NASA Astrophysics Data System (ADS)

    Tanzer, H. J.

    1982-06-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  17. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  18. Open-Mode Debonding Analysis of Curved Sandwich Panels Subjected to Heating and Cryogenic Cooling on Opposite Faces

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1999-01-01

    Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.

  19. Analysis of propagation characteristics of flexural wave in honeycomb sandwich panel and design of loudspeaker for radiating inclined sound

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2015-07-01

    A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On

  20. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  1. Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: Effect of inherent material damping

    NASA Astrophysics Data System (ADS)

    Arunkumar, M. P.; Jagadeesh, M.; Pitchaimani, Jeyaraj; Gangadharan, K. V.; Babu, M. C. Lenin

    2016-11-01

    This paper presents the results of numerical studies carried out on vibro-acoustic and sound transmission loss behaviour of aluminium honeycomb core sandwich panel with fibre reinforced plastic (FRP) facings. Layered structural shell element with equivalent orthotropic elastic properties of core and orthotropic properties of FRP facing layer is used to predict the free and forced vibration characteristics. Followed by this, acoustic response and transmission loss characteristics are obtained using Rayleigh integral. Vibration and acoustic characteristics of FRP sandwich panels are compared with aluminium sandwich panels. The result reveals that FRP panel has better vibro-acoustic and transmission loss characteristics due to high stiffness and inherent material damping associated with them. Resonant amplitudes of the response are fully controlled by modal damping factors calculated based on modal strain energy. It is also demonstrated that FRP panel can be used to replace the aluminium panel without losing acoustic comfort with nearly 40 percent weight reduction.

  2. Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis

    NASA Technical Reports Server (NTRS)

    Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.

  3. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  4. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    NASA Technical Reports Server (NTRS)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  5. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  6. Thermomechanical postbuckling of geometrically imperfect anisotropic flat and doubly curved sandwich panels

    NASA Astrophysics Data System (ADS)

    Hause, Terry John

    Sandwich structures constitute basic components of advanced supersonic/hypersonic flight and launch vehicles. These advanced flight vehicles operate in hostile environments consisting of high temperature, moisture, and pressure fields. As a result, these structures are exposed to large lateral pressures, large compressive edge loads, and high temperature gradients which can create large stresses and strains within the structure and can produce the instability of the structure. This creates the need for a better understanding of the behavior of these structures under these complex loading conditions. Moreover, a better understanding of the load carrying capacity of sandwich structures constitutes an essential step towards a more rational design and exploitation of these constructions. In order to address these issues, a comprehensive geometrically non-linear theory of doubly curved sandwich structures constructed of anisotropic laminated face sheets with an orthotropic core under various loadings for simply supported edge conditions is developed. The effects of the radii of curvature, initial geometric imperfections, pressure, uniaxial compressive edge loads, biaxial edge loading consisting of compressive/tensile edge loads, end thermal loads will be analyzed. The effect of the structural tailoring of the facesheets upon the load carrying capacity of the structure under these various loading conditions are analyzed. In addition, the movability/immovability of the unloaded edges and the end-shortening are examined. To pursue this study, two different formulations of the theory are developed. One of these formulations is referred to as the mixed formulation, while the second formulation is referred to as the displacement formulation. Several results are presented encompassing buckling, postbuckling, and stress/strain analysis in conjunction with the application of the structural tailoring technique. The great effects of this technique are explored. Moreover

  7. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  8. Compression After Impact on Honeycomb Core Sandwich Panels With Thin Facesheets. Part 1; Experiments

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part one, the subject of the current paper, is focused on the experimental testing. Of interest are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of specimens, which were identical with the exception of the density of the honeycomb core, were tested. Static indentation and low velocity impact using a drop tower are used to study damage formation in these materials. A series of highly instrumented CAI tests was then completed. New techniques used to observe CAI response and failure include high speed video photography, as well as digital image correlation (DIC) for full-field deformation measurement. Two CAI failure modes, indentation propagation, and crack propagation, were observed. From the results, it can be concluded that the CAI failure mode of these panels depends solely on the honeycomb core density.

  9. An Experimental Investigation of Sandwich Flat Panels Under Low Velocity Impact.

    DTIC Science & Technology

    1994-12-01

    adhesive also contribute to damage in some cases . xvii AN EXPERIMENTAL INVESTIGATION OF SANDWICH PANELS UNDER LOW VELOCITY IMPACT Introduction 1.1...properties of the adhesive and core were determined from the manufacturers specification. In the case of the core, the curves shown in Figure 2.4 and...In this case , the 90° layer is defined as the two 90* plies in the middle of the lay-up. The upper portion of the core beneath the impact site in the 0

  10. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  11. Low-energy impact resistance of graphite-epoxy plates and ALS honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Hui, David

    1989-01-01

    Low energy impact may be potentially dangerous for many highly optimized stiff structures. Impact by foreign objects such as birds, ice, and runways stones or dropping of tools occur frequently and the resulting damage and stress concentrations may be unacceptable from a designer's standpoint. The barely visible, yet potentially dangerous dents due to impact of foreign objects on the Advanced Launch System (ALS) structure are studied. Of particular interest is the computation of the maximum peak impact force for a given impactor mass and initial velocity. The theoretical impact forces will be compared with the experimental dropweight results for the ALS face sheets alone as well as the ALS honeycomb sandwich panels.

  12. Lamb wave-based BVID imaging for a curved composite sandwich panel

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2017-02-01

    Composite sandwich structures, consisting of a low density core sandwiched between two laminated facesheets, have been widely used in various aerospace structures. A new Lamb wave-based imaging condition, which will be referred to as the inverse incident wave energy (IIWE) imaging criterion, is proposed in this paper to resolve the situations where the incident wave energy weakly penetrates into the damaged area in the upper facesheet region. Current imaging conditions by analyzing wavefield reconstructed from laser Doppler vibrometer (LDV) scanning have been proven to be adequate for imaging damage in layered composite laminates. In this research, those current imaging conditions were applied and compared in the composite foam structures for barely visible impact damage (BVID). A piezoelectric wafer was used to excite Lamb waves into the structure and a LDV was used to scan the potential damaged areas in the upper facesheet of the panel. A BVID site in a curved composite sandwich foam aileron was inspected using various wavefield analysis methods and the damage images were compared with C-scan images. A few imaging conditions that are effective for this BVID site are identified when the incident waves have difficulties penetrating into the damaged region.

  13. Thermal stability tests of CFRP sandwich panels for far infrared astronomy

    NASA Technical Reports Server (NTRS)

    Hoffmann, W. F.; Helwig, G.; Scheulen, D.

    1986-01-01

    An account is given of fabrication methods and low temperature figure tests for CFRP sandwich panels, in order to ascertain their applicability to ultralightweight 3-m aperture primary mirrors for balloon-borne sub-mm and far-IF telescopes that must maintain a 1-2 micron rms surface figure accuracy at -40 to -50 C. Optical figure measurements on the first two of a series of four 0.5-m test panels, replicated to a spherical surface, show a radius-of-curvature change and astigmatism down to -60 C; this approximately follows the composite's theoretical predictions and implies that material and process control is excellent, so that the large scale changes observed can be compensated for.

  14. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 3; 8-ply Out-of-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.

  15. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  16. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    SciTech Connect

    Brown, Alexander; Jernigan, Dann A.; Dodd, Amanda B.

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  17. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 2: Sandwich panel resin system development

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Arnold, D. B.; Johnson, G. A.

    1979-01-01

    A NASA-funded program is described which aims to develop a resin system for use in the construction of lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke and gas emission, and toxicity (FS&T) characteristics superior to the existing epoxy resin. Candidate resins studied were phenolic, polyimide, and bismaleimide. Based on the results of a series of FS&T as well as mechanical and aesthetic property tests, a phenolic resin was chosen as the superior material. Material and process specifications covering the phenolic resin based materials were prepared and a method of rating sandwich panel performance was developed.

  18. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  19. Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.

    2014-06-01

    The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.

  20. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.

  1. Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact

    PubMed Central

    Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526

  2. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    PubMed

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  3. Acoustic Analysis of a Sandwich Non Metallic Panel for Roofs by FEM and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Rabanal, F. P. Alvarez

    2007-12-01

    In this paper we have studied the acoustic behavior of a sandwich non metallic panel for roofs by the finite element method (FEM). This new field of analysis is the fully coupled solution of fluid flows with structural interactions, commonly referred to as fluid-structure interaction (FSI). It is the natural next step to take in the simulation of mechanical systems. The finite element analysis of acoustic-fluid/structure interactions using potential-based or displacement-based Lagrangian formulations is now well established. The non-linearity is due to the `fluid-structure interaction' (FSI) that governs the problem. In a very considerable range of problems the fluid displacement remains small while interaction is substantial. In this category falls our problem, in which the structural motion influence and react with the generation of pressures in two reverberation rooms. The characteristic of acoustic insulation of the panel is calculated basing on the pressures for different frequencies and points in the transmission rooms. Finally the conclusions reached are shown.

  4. Response of long shallow cylindrical panels to radial line loads

    NASA Technical Reports Server (NTRS)

    Johnson, E. R.; Hyer, M. W.; Carper, D. M.

    1984-01-01

    The large displacement static response of shallow orthotropic panels subjected to lateral loading is examined both theoretically and experimentally. The panels are circular cylindrical open shells which are also thin and long. The straight edges are simply supported at a fixed distance apart, and the curved edges are free. The lateral load is a spatially uniform line load acting along the generator direction of the cylinder, and is directed radially inward toward the center of curvature. The load induces a circumferential thrust, and the panel can, and does, snap-through to an inverted configuration at the buckling load. The effect of load position on the response is also examined. The test panels discussed in the paper are /(90/0)3/S graphite-epoxy laminates. Nominal dimensions are a radius of 60 in., a thickness of 0.060 in., and an arc length of 12 in. Very good agreement between theory and experiment is achieved.

  5. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 2; 6-Ply In-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Meyers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Dixon, Genevieve D.

    2013-01-01

    Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3- by 5-ft panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, IM7/977-3 facesheets (referred to as Panels B-1 and B-2). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional (3-D) effects on the compressive response of the panel.

  6. Comparison of decentralized velocity feedback control for thin homogeneous and stiff sandwich panels using electrodynamic proof-mass actuators

    NASA Astrophysics Data System (ADS)

    Rohlfing, J.; Gardonio, P.; Thompson, D. J.

    2011-02-01

    Theoretical and experimental work is presented to compare the effect of decentralised velocity feedback control on thin homogeneous and sandwich panels. The decentralised control system consists of five control units, which are composed of a proof-mass electrodynamic actuator with an accelerometer underneath its footprint and an analogue controller. The stability of the feedback loops is analysed by considering the sensor-actuator open-loop frequency response function of each control unit and the eigenvalues of the fully populated matrix of open-loop frequency response functions between the five sensors and five actuators. The control performance is then analysed in terms of the time-averaged total kinetic energy and total sound power radiated by the two panels. The results show that for a stiff sandwich panel higher stable feedback gains can be implemented than on a thin homogeneous panel of comparable weight per unit area. Moreover the implementation of decentralised velocity feedback can offset some of the undesirable sound transmission properties of lightweight sandwich structures by efficiently reducing structural vibration and sound power radiation in the mid audio frequency range.

  7. Health Monitoring for Reliability Testing of Metallic Sandwich Panels Using Integrated Active Sensing with Dual Actuator-Sensor Pairs and the Method of Virtual Forces to Identify Damage

    NASA Astrophysics Data System (ADS)

    Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar

    2008-02-01

    A vibration-based health monitoring technique is implemented to detect simulated damage in a sandwich metallic honeycomb under combined acoustic and thermal loading. Two types of damage are introduced into a gamma titanium aluminide panel; simulated oxidation damage in the form of a local mass addition and simulated bolt damage with a change in bolt torque. An active sensing approach is used to measure frequency response functions between a piezo-stack actuator with force measurement and high-frequency accelerometers. The measured frequency response function matrix is then used to estimate the virtual force due to damage. Temperatures up to 300 °F and sound pressures up to 110 dB are considered. It is shown that the measurement of damage changes with combined loading. For example, temperature changes cause bolt damage to be more apparent in the virtual force due to the effects of temperature on the attachment boundary conditions and to the temperature gradient across the panel causing global bending. Similarly, acoustic loading is shown to enhance the detection of simulated mass damage due to larger motions produced on the panel.

  8. Dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loads

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Ye, Nan; Li, Dacheng

    2017-01-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick 3003 H18 aluminum corrugated core and 5A06 face sheets subjected to underwater impulsive loadings are studied experimentally in this paper. The dynamic deformations of plates are captured with the the 3D digital imaging correlation method (DIC). The results affirm the peak deflection during the processes of dynamic deformation and the residual maximum deflection for post-mortem plates show a linear trend with the impulses per areal mass, and show sensitivity to the change of impulses. Inhomogeneous deformation for corrugated sandwich plates are show uneven rather than the perfect parabolic shapes reported in previous studies. With the increasing of intensities for impulsive loadings, the failure modes can be observed more complicated from the initial plastic deformation to debonding and crack. This paper provides valid data to quantify the peak deflection, residual deflection and failure modes as functions of impulses and geometric parameters in the future work.

  9. Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.

  10. Damping Properties of Sandwich Truss Core Structures by Strain Energy Method

    NASA Astrophysics Data System (ADS)

    Wesolowski, M.; Rucevskis, S.; Janeliukstis, R.; Polanski, M.

    2015-11-01

    Sandwich panel structures with stiff face sheets and cellular cores are widely used to support dynamic loads. Combining face sheets made of carbon fibre reinforced plastics (CFRPs) with an aluminium pyramidal truss improves the damping performance of the structure due to viscoelastic character of CRFP composites. To predict the damping characteristics of the pyramidal truss core sandwich panel the strain energy method is adopted. The procedure for evaluating the damping of the sandwich panel was performed using commercial finite element software NASTRAN and MATLAB. Non-contact vibration tests were performed on the real sandwich panels in order to extract the modal characteristics and compare them with the numerical predictions.

  11. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  12. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  13. Flutter of a sandwich cylindrical shell supported with annular ribs and loaded with axial forces

    NASA Astrophysics Data System (ADS)

    Bakulin, V. N.; Volkov, E. N.; Nedbaj, A. Ya.

    2015-08-01

    The supersonic flutter of a sandwich cylindrical shell supported from within with annular ribs and loaded with axial forces on the end faces is investigated. The shell motion is described by the equations of the theory of sandwich orthotropic shells. The solution of the equations is sought as a trigonometric series with respect to the axial coordinate. With the help of the Bubnov—Galerkin method, this problem is reduced to the set of algebraic equations for the analysis of the stability of which one uses the Routh—Hurwits criterion. By a numerical example, the effect of the number and the heights of the ribs on the critical velocity of the flow around the shell is shown.

  14. Analysis of Composite Panels Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1999-01-01

    The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.

  15. Enhancements of Tow-Steering Design Techniques: Design of Rectangular Panel Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Tatting, Brian F.; Setoodeh, Shahriar; Gurdal, Zafer

    2005-01-01

    An extension to existing design tools that utilize tow-steering is presented which is used to investigate the use of elastic tailoring for a flat panel with a central hole under combined loads of compression and shear. The elastic tailoring is characterized by tow-steering within individual lamina as well as a novel approach based on selective reinforcement, which attempts to minimize compliance through the use of Cellular Automata design concepts. The selective reinforcement designs lack any consideration of manufacturing constraints, so a new tow-steered path definition was developed to translate the prototype selective reinforcement designs into manufacturable plies. The minimum weight design of a flat panel under combined loading was based on a model provided by NASA-Langley personnel and analyzed by STAGS within the OLGA design environment. Baseline designs using traditional straight fiber plies were generated, as well as tow-steered designs which incorporated parallel, tow-drop, and overlap plies within the laminate. These results indicated that the overlap method provided the best improvement with regards to weight and performance as compared to traditional constant stiffness monocoque panels, though the laminates did not measure up to similar designs from the literature using sandwich and isogrid constructions. Further design studies were conducted using various numbers of the selective reinforcement plies at the core and outer surface of the laminate. None of these configurations exhibited notable advantages with regard to weight or buckling performance. This was due to the fact that the minimization of the compliance tended to direct the major stresses toward the center of the panel, which decreased the ability of the structure to withstand loads leading to instability.

  16. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  17. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  18. Damage Evolution in Composite Materials and Sandwich Structures Under Impulse Loading

    NASA Astrophysics Data System (ADS)

    Silva, Michael Lee

    Damage evolution in composite materials is a rather complex phenomenon. There are numerous failure modes in composite materials stemming from the interaction of the various constituent materials and the particular loading conditions. This thesis is concerned with investigating damage evolution in sandwich structures under repeated transient loading conditions associated with impulse loading due to hull slamming of high-speed marine craft. To fully understand the complex stress interactions, a full field technique to reveal stress or strain is required. Several full field techniques exist but are limited to materials with particular optical properties. A full field technique applicable to most materials is known as thermoelastic stress analysis (TSA) and reveals the variation in sum of principal stresses of a cyclically loaded sample by correlating the stresses to a small temperature change occurring at the loading frequency. Digital image correlation (DIC) is another noncontact full field technique that reveals the deformation field by tracking the motion of subsets of a random speckle pattern during the loading cycles. A novel experimental technique to aid in the study of damage progression that combines TSA and DIC simultaneously utilizing a single infrared camera is presented in this thesis. A technique to reliably perform DIC with an infrared (IR) camera is developed utilizing variable emissivity paint. The thermal data can then be corrected for rigid-body motion and deformation such that each pixel represents the same material point in all frames. TSA is then performed on this corrected data, reducing motion blur and increasing accuracy. This combined method with a single infrared camera has several advantages, including a straightforward experimental setup without the need to correct for geometric effects of two spatially separate cameras. Additionally, there is no need for external lighting in TSA as the measured electromagnetic radiation is emitted by the

  19. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.

    2004-01-01

    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful

  20. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  1. Load-dependent Optimization of Honeycombs for Sandwich Components - New Possibilities by Using Additive Layer Manufacturing

    NASA Astrophysics Data System (ADS)

    Riss, Fabian; Schilp, Johannes; Reinhart, Gunther

    Due to their feasible geometric complexity, additive layer manufacturing (ALM) processes show a highpotential for the production of lightweight components.Therefore, ALM processes enable the realization of bionic-designedcomponents like honeycombs, which are optimized depending upon load and outer boundary conditions.This optimization is based on a closed-loop, three-steps methodology: At first, each honeycomb is conformed to the surface of the part. Secondly, the structure is optimizedfor lightweight design.It is possible to achieve a homogeneous stress distribution in the part by varying the wall thickness, honeycombdiameter and the amount of honeycombs, depending on the subjected stresses and strains. At last, the functional components like threads or bearing carriers are integrated directly into the honeycomb core.Using all these steps as an iterative process, it is possible to reduce the mass of sandwich components about 50 percent compared to conventional approaches.

  2. Frequency domain analysis of the random loading of cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1994-01-01

    The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.

  3. Modified Mode-I Cracked Sandwich Beam (CSB) Fracture Test

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Shivakumar, K. N.

    2001-01-01

    Five composite sandwich panels were fabricated using vacuum assisted resin transfer molding (VARTM). Four of these panels had E-glass/vinylester facesheets and one had carbon/epoxy facesheets. The sandwich panels had different density PVC foam cores. The four E-glass panels had core densities of 80, 100, 130, 200 kg/cu m. The sandwich with carbon/epoxy 3 facesheets had a core with density of 100 kg/cu m. Fracture tests were conducted using a modified Cracked Sandwich Beam (CSB) test configuration. Load displacement curves were obtained for loading and unloading of the specimens during crack growth. Various increments of crack growth were monitored. Critical Strain Energy Release Rates (SERR) were determined from the tests using the area method. The critical values of SERR can be considered the fracture toughness of the sandwich material. The fracture toughness ranged 367 J/sq m to 1350 J/sq m over the range of core densities. These results are compared to the Mode-I fracture toughness of the PVC foam core materials and values obtained for foam-cored sandwiches using the TSD specimen. Finite-element analyses (FEA) were performed for the test configuration and Strain Energy Release Rates were calculated using the Virtual Crack Closure Technique (VCCT). The SERR values determined from the FEA were scaled to the fracture loads, or critical loads, obtained from the modified CSB tests. These critical loads were in close agreement with the test values.

  4. Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Shanshuai; Li, Shuhui; Li, Zhimin

    2013-12-01

    The spherical sandwich sheet (S-S-S) is generally used in the aerospace industry, for example, the airplane, the rocket's fairing, the spacecraft and the satellite for the purpose of heat-insulation, weight-saving and dimension-reducing. The stability of the S-S-S is of general concern because of its particularly thin but large size. For some S-S-S used in fuel tank storing liquid oxygen of the rocket, it must be facing low temperature down to about -183 °C. Low temperature condition affects the stability of the S-S-S and then causes buckling of the structure. In this paper, a finite element (FE) model is established for evaluating the stability of the S-S-S via the sequential coupling mode. The material mechanical properties related to temperature are concerned in the FE model. The buckling modes and critical buckling loading are predicted accurately, since the FE model includes heat transfer simulating, thermal stress computing, buckling and post buckling process. It is found that the thermal stress generated from the low temperature loading reduces the critical buckling loading and changes the buckling modes of the S-S-S.

  5. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 1: 8-Ply In-Autoclave Facesheets. Part 1; 8-Ply In-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Pineda, Evan J.; Zalewski, Bart F.; Kosareo, Daniel N.; Kellas, Sotiris

    2013-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Space Launch Systems program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3.00- by 5.00-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analysis was performed to predict the compressive response of the 3.00- by 5.00-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, IM7/977-3 facesheets (referred to Panel A). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber misalignments, and three-dimensional (3 D) effects on the compressive response of the panel.

  6. Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1973-01-01

    The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.

  7. Localised Effects in Sandwich Structures with Internal Core Junctions:Modelling and Experimental Characterisation of Load Response, Failure and Fatigue

    NASA Astrophysics Data System (ADS)

    Johannes, Martin; Thomsen, Ole Thybo

    The objective is to provide an overview of the mechanisms which determine the occurrence and severity of localized bending effects in sandwich structures. It is known from analytical and numerical modelling that local effects lead to an increase of the face bending stresses as well as the core shear and transverse normal stresses. The modelling and experimental characterisation of local effects in sandwich structures will be addressed based on the simple and generic case of sandwich structures with internal core junctions under general shear, bending and in-plane loading conditions. The issue of failure and fatigue phenomena induced by the presence of core junctions will be discussed in detail, with the inclusion of recent theoretical and experimental results.

  8. Effect of Initial Geometrical Imperfection on the Buckling Load of Cylindrical Sandwich Shells Under Axial Compression

    NASA Astrophysics Data System (ADS)

    Casado, Victor M.; Hinsch, Svend; Garcia, Jesus Gomez; Castro, Saullo G. P.

    2014-06-01

    The impact of geometrical imperfections on the general instability of laminated cylindrical sandwich shells was assessed by means of a numerical investigation. Five forms of 'ideal' initial geometrical imperfection patterns were studied: eigen-mode shaped, axisymmetric dimple, geometric dimple, single perturbation load and single stress-free dimple. Implementation of such imperfections, despite their simplicity, can provide a method for predicting lower-bound buckling loads during the preliminary design phase, when the structural defects of the real hardware are unknown. Numerical prediction of the non- linear instability of the cylinders under axial compression was performed using the finite element method. A typical launcher Inter Stage Skirt (ISS) structure is used as the basis for the chosen geometry and materials. In order to make design and qualification tests more affordable, it is common to use representative sub-scaled hardware. This paper verifies the validity of the chosen sub-scaling method of an ISS cylindrical shell. Buckling mechanisms are described and the different lower-bound methods are discussed.

  9. Structural Response of Compression-Loaded, Tow-Placed, Variable Stiffness Panels

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Guerdal, Zafer; Starnes, James H., Jr.

    2002-01-01

    Results of an analytical and experimental study to characterize the structural response of two compression-loaded variable stiffness composite panels are presented and discussed. These variable stiffness panels are advanced composite structures, in which tows are laid down along precise curvilinear paths within each ply and the fiber orientation angle varies continuously throughout each ply. The panels are manufactured from AS4/977-3 graphite-epoxy pre-preg material using an advanced tow placement system. Both variable stiffness panels have the same layup, but one panel has overlapping tow bands and the other panel has a constant-thickness laminate. A baseline cross-ply panel is also analyzed and tested for comparative purposes. Tests performed on the variable stiffness panels show a linear prebuckling load-deflection response, followed by a nonlinear response to failure at loads between 4 and 53 percent greater than the baseline panel failure load. The structural response of the variable stiffness panels is also evaluated using finite element analyses. Nonlinear analyses of the variable stiffness panels are performed which include mechanical and thermal prestresses. Results from analyses that include thermal prestress conditions correlate well with measured variable stiffness panel results. The predicted response of the baseline panel also correlates well with measured results.

  10. Nonlinear and Buckling Behavior of Curved Panels Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2001-01-01

    The results of an analytical study of the nonlinear and buckling response characteristics of curved panels subjected to combined loads are presented. Aluminum and laminated composite panels are considered in the study and a flat and shallow curved panel configurations are considered as well. The panels are subjected to combined axial compression and transverse tension or compression loads or combined axial compression and inplane shear loads. Results illustrating the effects of various combined load states on the buckling response of the panels are presented. In addition, results illustrating the effects of laminate orthotropy and anisotropy and panel curvature on the panel response are presented. The results indicate that panel curvature can have a significant effect on the nonlinear and buckling behavior of the panels subjected to combined loads. Results are included that show that geometrically perfect panels do not exhibit bifurcation points for some combined loads. Results are also presented that show the effects of laminate orthotropy and anisotropy on the interaction of combined loads.

  11. Thin stainless steel sandwich structural panels all welded by laser technology

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Nenci, Fabio; Chiasera, Albino; Guadio, Maurizio

    1997-08-01

    This paper reports the results obtained by employing materials such as austenitic stainless steel (AISI 304) sheets, with different face thicknesses and core geometry's, usually some trapezoidal ones. A ROFIN SINAR C.W.CO2 laser has been used as a fast axial flow source and a 1500 W max power level to weld the many bases of the corrugated cores to the external faces has been utilized. Four different constructional solutions, for the preparation of some new modular structural elements, with one or two beads for each welded base, have been experimented. Each modular structure has sizes 300 mm wide, 700 mm length and 60 mm height. After studying many different mechanical clampings, the best one has been realized. So, eight different constructional solutions and different operative sequences of the welds have been made. All this for evaluating the effect of the weld sequence on the distortion of the panel and for obtaining different localization of the residual stresses on the structural element.

  12. Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1981-01-01

    The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present.

  13. Importance of anisotropy on design of compression-loaded composite corrugated panels

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Young, Richard D.

    1990-01-01

    An investigation is conducted of the importance of anisotropic terms in the design of composite corrugated panels, for a range of axial compressive load intensities. The two panel configurations treated were panels with tailored laminates and panels with a continuous laminate; both are of interest to aircraft designers and prone to anisotropic effects which are of as-yet undetermined extent. The importance of the anisotropic terms is measured by the difference between the design load and the buckling load obtained from the ultimate structural analysis.

  14. Experimental investigation of wood fibre cement composite wall panel under axial loading

    NASA Astrophysics Data System (ADS)

    Sadia Mahzabin, Mst; Hamid, Roszilah

    2015-04-01

    Wood fibre cement (WFC) composite wall panels were cast and tested under axial load with 4/6 wood/cement ratio, 0.8 water/cement ratio, three chemical additives and horizontal and vertical reinforcement. Other panels with the same mix design proportion without reinforcement were also tested and compared with the commercially available WFC composite Duralite boards. An experimental result for the Duralite boards, the specimen showed quick failure with lower loading value and also with axial deformation. The WFC panel without reinforcement showed more brittle type of failure in that they were unable to sustain any more loading after reaching the maximum load. The failure for the WFC panel with reinforcement was gradual and this behaviour was attributed to the presence of steel as they act like bridges between cracks preventing sudden failure. The WFC panels without reinforcement results are higher than the theoretical value and also higher than the Duralite board panels.

  15. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  16. The structural behavior of a graphite-polymide honeycomb sandwich panel with quasi-isotropic face sheets and an orthotropic core

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Hagaman, J. A.

    1979-01-01

    The results of a series of tests of graphite-polyimide honeycomb sandwich panels are presented. The panels were 1.22 m long, 0.508 m wide, and approximately 13.3 m thick. The face sheets were a T-300/PMR-15 fabric in a quasi-isotropic layup and were 0.279 mm thick. The core was Hexcel HRH 327-3/16 - 4.0 glass reinforced polyimide honeycomb, 12.7 mm thick. Three panels were used in the test: one was cut into smaller pieces for testing as beam, compression, and shear specimens; a second panel was used for plate bending tests; the third panel was used for in-plane stability tests. Presented are the experimental results of four point bending tests, short block compression tests, core transverse shear modulus, three point bending tests, vibration tests, plate bending tests, and panel stability tests. The results of the first three tests are used to predict the results of some of the other tests. The predictions and experimental results are compared, and the agreement is quite good.

  17. Buckling Behavior of Compression-Loaded Quasi-Isotropic Curved Panels with a Circular Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Britt, Vicki O.; Nemeth, Michael P.

    1999-01-01

    Results from a numerical and experimental study of the response of compression-loaded quasi-isotropic curved panels with a centrally located circular cutout are presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code. The effects of cutout size, panel curvature and initial geo- metric imperfections on the overall response of compression-loaded panels are described. In addition, results are presented from a numerical parametric study that indicate the effects of elastic circumferential edge restraints on the prebuckling and buckling response of a selected panel and these numerical results are compared to experimentally measured results. These restraints are used to identify the effects of circumferential edge restraints that are introduced by the test fixture that was used in the present study. It is shown that circumferential edge restraints can introduce substantial nonlinear prebuckling deformations into shallow compression-loaded curved panels that can results in a significant increase in buckling load.

  18. Sizing-stiffened composite panels loaded in the postbuckling range

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Dickson, J. N.

    1984-01-01

    Stiffened panels are widely used in aircraft structures such as wing covers, fuselages, control surfaces, spar webs, bulkheads, and floors. The detailed sizing of minimum-weight stiffened panels involves many considerations. Use of composite materials introduces additional complexities. Many potential modes of failure exist. Analyses for these modes are often not trivial, especially for those involving large out-of-plane displacements. Accurate analyses of all potential failure modes are essential. Numerous practical constraints arise from manufacturing/cost considerations and from damage tolerance, durability, and stiffness requirements. The number of design variables can be large when lamina thicknesses and stacking sequence are being optimized. A significant burden is placed on the sizing code due to the complex analyses, practical constraints, and number of design variables. On the other hand, sizing weight-efficient panels without the aid of an automated procedure is almost out of the question. The sizing code postbuckled Open-Stiffener Optimum Panels (POSTOP) has been developed to aid in the design of minimum-weight panels subject to the considerations mentioned above. Developed for postbuckled composite panels, POSTOP may be used for buckling resistant panels and metallic panels as well. The COPES/CONMIN optimizer is used in POSTOP although other options such as those in the ADS system could be substituted with relative ease. The basic elements of POSTOP are shown. Some of these elements and usage of the program are described.

  19. Buckling tests of three 4.6 meter diameter aluminum honeycomb sandwich conical shells loaded under external pressure

    NASA Technical Reports Server (NTRS)

    Anderson, J. K.; Davis, R. C.

    1975-01-01

    Three aluminum honeycomb sandwich conical shells with a 120 apex angle and a 4.6-m (15.0-ft) base diameter were loaded to failure by a uniform external pressure. The cones differed from one another only in the thickness of their respective face sheets. Test specimen details, test procedure, and test results are discussed. Both buckling and prebuckling data are compared with appropriate theoretical predictions, and good agreement was obtained between test and theory. Extensive imperfection measurements were made and reported on the three cones in the as fabricated condition.

  20. Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.

    2004-01-01

    A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.

  1. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges

    PubMed Central

    Qi, Yujun; Fang, Hai; Liu, Weiqing

    2016-01-01

    Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel. PMID:26871435

  2. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges.

    PubMed

    Qi, Yujun; Fang, Hai; Liu, Weiqing

    2016-01-01

    Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel.

  3. Specification for Sandwich Panels B and C Layer MDT Supports D0 Upgrade Forward Muon Tracking System

    SciTech Connect

    Levand, T.; /Fermilab

    1999-05-21

    The panels will be used to fabricate B and C layer MDT octant supports. The octant support arrangements can be seen on the accompanying figures, Fig 1 and Fig 2. Currently we are considering buying 60 inch wide rectangular panels and cutting and splicing them-to-the octant shape. Proposals for octant panels cut to size and panels of different width will be considered.

  4. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  5. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woong; Jang, Beom Seon; Kim, Yong Tai; Chun, Kwang San

    2013-09-01

    The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  6. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  7. Evaluation of a Compression-Loaded-Stitched-Multi-Bay Fuselage Panel With Barely Visible Impact Damage

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Li, Ji-An

    2005-01-01

    The experimental results from a stitched VaRTM carbon-epoxy composite panel tested under uni-axial compression loading are presented along with nonlinear finite element analysis prediction of the response. The curved panel is divided by frames and stringers into six bays with a column of three bays along the compressive loading direction. The frames are supported at the frame ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field-displacement measurement technique that utilizes a camera-based-stereo-vision system was used to record the displacements. The panel was loaded to 1.5 times the predicted initial buckling load (1st bay buckling load, P(sub er) from the nonlinear finite element analysis and then was removed from the test machine for impact testing. After impacting with 20 ft-lbs of energy using a spherical impactor to produce barely visible damage the panel was loaded in compression until failure. The buckling load of the first bay to buckle was 97% of the buckling load before impact. The stitching constrained the impact damage from growing during the loading to failure. Impact damage had very little overall effect on panel stiffness. Panel stiffness measured by the full-field-displacement technique indicated a 13% loss in stiffness after impact. The panel failed at 1.64 times the first panel buckling load. The barely visible impact damage did not grow noticeably as the panel failed by global instability due to stringer-web terminations at the frame locations. The predictions from the nonlinear analysis of the finite element modeling of the entire specimen were very effective in the capture of the initial buckling and global behavior of the panel. In addition, the prediction highlighted the weakness of the panel under compression due to stringer web terminations. Both the test results and the nonlinear

  8. Analysis of the Space Shuttle Orbiter skin panels under simulated hydrodynamic loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Fasanella, Edwin L.; Jones, Lisa E.

    1988-01-01

    The Space Shuttle orbiter skin panels were analyzed under pressure loads simulating hydrodynamic loads to determine their capability to sustain a potential ditching and to determine pressures that typically would produce failures. Two Dynamic Crash Analysis of Structures (DYCAST) finite element models were used. One model was used to represent skin panels (bays) in the center body, while a second model was used to analyze a fuselage bay in the wing region of the orbiter. From an assessment of the DYCAST nonlinear computer results, it is concluded that the probability is extremely high that most, if not all, of the lower skin panels would rupture under ditching conditions. Extremely high pressure loads which are produced under hydrodynamic planning conditions far exceed the very low predicted failure pressures for the skin panels. Consequently, a ditching of the orbiter is not considered to have a high probability of success and should not be considered a means of emergency landing unless no other option exists.

  9. Tow-Steered Panels With Holes Subjected to Compression or Shear Loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2005-01-01

    Tailoring composite laminates to vary the fiber orientations within a fiber layer of a laminate to address non-uniform stress states and provide structural advantages such as the alteration of principal load paths has potential application to future low-cost, light-weight structures for commercial transport aircraft. Evaluation of this approach requires the determination of the effectiveness of stiffness tailoring through the use of curvilinear fiber paths in flat panels including the reduction of stress concentrations around the holes and the increase in load carrying capability. Panels were designed through the use of an optimization code using a genetic algorithm and fabricated using a tow-steering approach. Manufacturing limitations, such as the radius of curvature of tows the machine could support, avoidance of wrinkling of fibers and minimization of gaps between fibers were considered in the design process. Variable stiffness tow-steered panels constructed with curvilinear fiber paths were fabricated so that the design methodology could be verified through experimentation. Finite element analysis where each element s stacking sequence was accurately defined is used to verify the behavior predicted based on the design code. Experiments on variable stiffness flat panels with central circular holes were conducted with the panels loaded in axial compression or shear. Tape and tow-steered panels are used to demonstrate the buckling, post-buckling and failure behavior of elastically tailored panels. The experimental results presented establish the buckling performance improvements attainable by elastic tailoring of composite laminates.

  10. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  11. Dynamic Fracture of Nanocomposites and Response of Fiber Composite Panels to Shock Loading

    NASA Astrophysics Data System (ADS)

    Shukla, Arun

    2009-06-01

    This lecture will present studies on the response of novel engineering materials to extreme dynamic loadings. In particular, the talk will focus on the behavior of sandwich composite materials to shock loading and dynamic fracture of nano-composite materials. Results from an experimental study on the response of sandwich materials to controlled blast loading will be presented. In this study, a shock tube facility was utilized to apply blast loading to simply supported plates of E-glass vinyl ester/PVC foam sandwich composite materials. Pressure sensors were mounted at the end of the muzzle section of the shock tube to measure the incident pressure and the reflected pressure profiles during the experiment. A high speed digital camera was utilized to capture the real time side deformation of the materials, as well as the development and progression of damage. Macroscopic and microscopic examination was then implemented to study the post-mortem damage. Conclusions on the relative performance of sandwich composites under blast loadings will also be discussed. Results from an experimental investigation conducted to evaluate the mechanical properties of novel materials fabricated using nano sized particles in polymer matrix will also be presented. Unsaturated polyester resin specimens embedded with small loadings of nano sized particles of TiO2 and Al2O3 were fabricated using a direct ultrasonification method to study the effects of nanosized particles on nanocomposite fracture properties. The ultrasonification method employed produced nanocomposites with excellent particle dispersion as verified by TEM. Experiments were conducted to investigate the dynamic crack initiation and rapid crack propagation in theses particle reinforced materials. High-speed digital imaging was employed along with dynamic photoelasticity to obtain real time, full-field quantification of the stress field associated with the dynamic fracture process. Birefringent coatings were used to conduct

  12. Compression-Loaded Composite Panels With Elastic Edge Restraints and Initial Prestress

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2005-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  13. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  14. A Load Shortening Curve Library for Longitudinally Stiffened Panels

    DTIC Science & Technology

    2010-08-01

    curves. These are compared with similar curves calculated using nonlinear FEA and using design formulas published by the International Association...of parameters values used in load-shortening curve libraries ........................... 7 Table 3: Nonlinear solution strategy...direct assessment with nonlinear finite element analysis (FEA) first reported by Chen et al. [9]. A recent study comparing the ultimate strengths of

  15. 308 Building electrical load list and panel schedules

    SciTech Connect

    Giamberardini, S.J.

    1994-09-13

    This report contains two lists. The first lists equipment, load location, source of power, and breaker identification. The second compiles the same information but in a different format, namely, for each power source, the breaker, equipment, and location is given. Building 308 is part of the Fuels and Materials Examination Facility which houses the Secure Automated Fabrication process line for fabrication of reactor fuels and the Breeder Processing Engineering Test for processing Fast Flux Test Facility fuel to demonstrate closure of the fuel cycle.

  16. Design and Evaluation of Composite Fuselage Panels Subjected to Combined Loading Conditions

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rouse, Marshall

    1998-01-01

    Methodologies used in industry for designing transport aircraft composite fuselage structures are discussed. Several aspects of the design methodologies are based on assumptions from metallic fuselage technology which requires that full-scale structures be tested with the actual loading conditions to validate the designs. Composite panels which represent crown and side regions of a fuselage structure are designed using this approach and tested in biaxial tension. Descriptions of the state-of-the-art test facilities used for this structural evaluation are presented. These facilities include a pressure-box test machine and a D-box test fixture in a combined loads test machine which are part of a Combined Loads Test System (COLTS). Nonlinear analysis results for a reference shell and a stiffened composite panel tested in the pressure-box test machine with and without damage are presented. The analytical and test results are compared to assess the ability of the pressure-box test machine to simulate a shell stress state with and without damage. A combined loads test machine for testing aircraft primary structures is described. This test machine includes a D-box test fixture to accommodate curved stiffened panels and the design features of this test fixture are presented. Finite element analysis results for a curved panel to be tested in the D-box test fixture are also discussed.

  17. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  18. Water ingress detection in honeycomb sandwich panels by passive infrared thermography using a high-resolution thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Brault, L.; Marcotte, F.; Genest, M.; Farley, V.; Maldague, X.

    2012-06-01

    Water ingress in honeycomb structures is of great concern for the civil and military aerospace industries. Pressure and temperature variations during take-off and landing produce considerable stress on aircraft structures, promoting moisture ingress (by diffusion through fibers or by direct ingress through voids, cracks or unsealed joints) into the core. The presence of water (or other fluids such as kerosene, hydraulic fluid and de-icing agents) in any of its forms (gas vapor, liquid or ice) promotes corrosion, cell breakage, and induce composite layer delaminations and skin disbonds. In this study, testing specimens were produced from unserviceable parts from military aircraft. In order to simulate atmospheric conditions during landing, selected core areas were filled with measured quantities of water and then frozen in a cold chamber. The specimens were then removed from the chamber and monitored for over 20 minutes as they warm up using a cooled high-resolution infrared camera. Results have shown that detection and quantification of water ingress on honeycomb sandwich structures by passive infrared thermography is possible using a HD mid-wave infrared cameras for volumes of water as low as 0.2 ml and from a distance as far as 20 m from the target.

  19. Development of beryllium honeycomb sandwich composite for structural and other related applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Grant, L. A.

    1972-01-01

    The feasibility of fabricating large beryllium honeycomb panels was demonstrated. Both flat and curved sandwich structures were manufactured using practical, braze bonding techniques. The processes developed prove that metallurgically assembled beryllium honeycomb panels show decided potential where rigid, lightweight structures are required. Three panels, each 10 square feet in surface area, were fabricated, and radiographically inspected to determine integrity. This examination revealed a 97 percent braze in the final panel. It is believed that ceramic dies for forming and brazing would facilitate the fabrication techniques for higher production rates. Ceramic dies would yield a lower thermal gradient in the panel during the braze cycle. This would eliminate the small amount of face sheet wrinkling present in the panels. Hot forming the various panel components demonstrated efficient manufacturing techniques for scaling up and producing large numbers of hot formed beryllium components and panels. The beryllium honeycomb panel demonstrated very good vibrational loading characteristics under test with desirable damping characteristics.

  20. Experimental Study of Deformation and of Effective Width in Axially Loaded Sheet-stringer Panels

    NASA Technical Reports Server (NTRS)

    Ramberg, Walter; MCPHERSON ALBERT E; Levy, Sam

    1939-01-01

    The deformation of two sheet-stringer panels subjected to end compression under carefully controlled end conditions was measured at a number of points and at a number of loads, most of which were above the load at which the sheet had begun to buckle. The two panels were identical except for the sheet, which was 0.70-inch 24st alclad for specimen 1 and 0.025-inch 24st aluminum alloy for specimen 6. A technique was developed for attaching Tuckerman optical strain gauges to the sheet without disturbing the strain distribution in the sheet by the method of attachment. This technique was used to explore the strain distribution in the sheet at various loads. The twisting and the bending of the stringers was measured by means of pointers attached to the stringers. The shape of the buckles in the sheet of specimen 6 was recorded at two loads by means of plaster casts. The sheet and the stringer loads at failure are compared with the corresponding loads for five similar panels tested at the Navy Model Basin. A detailed comparison is made between the measured deformation of the buckled sheet and the deformation calculated from approximate theories for the deformation in a rectangular sheet with freely supported edges buckling under end compression advanced by Timoshenko, Frankland, and Marguerre. The measured effective width for the specimens is compared with the effective width given by nine different relations for effective width as a function of the edge stress divided by the buckling stress of the sheet. The analysis of the measured stringer deformation is confined to an application of Southwell's method of plotting deformation against deformation over load. It was concluded that the stringer failure in both specimens were due to an instability in which the stringer was simultaneously twisted and bent as a column.

  1. Application of Wave Propagation and Vibration-based Structural Health Monitoring Techniques to Friction Stir Welded Plate and Sandwich Honeycomb Panel

    NASA Astrophysics Data System (ADS)

    Sundararaman, S.; White, J. R.; Adams, D. E.; Jata, K. V.

    2007-03-01

    Wave propagation and vibration-based structural health monitoring methodologies are presented to detect, locate and quantify dent/crack, thermal debond, and corrosion damage in a solid aluminum friction stir weld plate and a sandwich honeycomb thermal protection panel. A wave propagation based method can identify small defects because propagating waves typically consist of small wavelengths while a vibration-based scheme is better equipped to quantify damage over wide areas of large structures. Near-real time online diagnostics is achieved by using localized sensing (wave propagation) and distributed sensing (vibration-based) in an active measurement array. Sensor/actuator arrays have been developed to implement these techniques and portable health management systems have been developed based on the combination of damage detection algorithms, active sensing, and graphical user interfaces. Propagating waves are shown to have a heightened sensitivity to damage located at the anti-nodes of a friction stir wed plate forced by low frequency environmental vibrations. Measurement of the input forcing in the vibration-based method is shown to enable damage quantification.

  2. Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; McGowan, David M.; Davila, Carlos G.

    1999-01-01

    A progressive failure analysis method based on shell elements is developed for the computation of damage initiation and growth in stiffened thick-skin stitched graphite-epoxy panels loaded in axial compression. The analysis method involves a step-by-step simulation of material degradation based on ply-level failure mechanisms. High computational efficiency is derived from the use of superposed layers of shell elements to model each ply orientation in the laminate. Multiple integration points through the thickness are used to obtain the correct bending effects through the thickness without the need for ply-by-ply evaluations of the state of the material. The analysis results are compared with experimental results for three stiffened panels with notches oriented at 0, 15 and 30 degrees to the panel width dimension. A parametric study is performed to investigate the damage growth retardation characteristics of the Kevlar stitch lines in the pan

  3. Identifying and Characterizing Discrepancies Between Test and Analysis Results of Compression-Loaded Panels

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2005-01-01

    Results from a study to identify and characterize discrepancies between validation tests and high-fidelity analyses of compression-loaded panels are presented. First, potential sources of the discrepancies in both the experimental method and corresponding high-fidelity analysis models were identified. Then, a series of laboratory tests and numerical simulations were conducted to quantify the discrepancies and develop test and analysis methods to account for the discrepancies. The results indicate that the discrepancies between the validation tests and high-fidelity analyses can be attributed to imperfections in the test fixture and specimen geometry; test-fixture-induced changes in specimen geometry; and test-fixture-induced friction on the loaded edges of the test specimen. The results also show that accurate predictions of the panel response can be obtained when these specimen imperfections and edge conditions are accounted for in the analysis. The errors in the tests and analyses, and the methods used to characterize these errors are presented.

  4. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  5. Compressive strength after blast of sandwich composite materials.

    PubMed

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast.

  6. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick

    1993-01-01

    The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.

  7. Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on a rigorous buckling analysis

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Agranoff, N.; Anderson, M. S.

    1977-01-01

    A procedure is presented for designing uniaxially stiffened panels made of composite material and subjected to combined inplane loads. The procedure uses a rigorous buckling analysis and nonlinear mathematical programing techniques. Design studies carried out with the procedure consider hat-stiffened and corrugated panels made of graphite-epoxy material. Combined longitudinal compression and shear and combined longitudinal and transverse compression are the loadings used in the studies. The capability to tailor the buckling response of a panel is also explored. Finally, the adequacy of another, simpler, analysis-design procedure is examined.

  8. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  9. A Study on Response of a Contoured Composite Panel with Co-cured Stiffeners Under Transient Loading

    NASA Astrophysics Data System (ADS)

    Begum, Shahnaaz; Jain, Prakash Chand; Venkatesh, Siddu

    2016-07-01

    Composite materials are emerging to be the best applied materials for aerospace applications. With rapid improvement in computational facilities, it is now possible to design the best composite lay up for a particular kind of application. This paper presents the development of a Finite Element model of a contoured composite panel with co-cured stiffeners using Finite Element Simulation. Commercial package ANSYS 15.0 is used for this study. Such half contoured panels find wide application in Aerospace industry. The panel is hinged at one of the ends and dynamically loaded at the other end over a relatively small surface area by transverse load. The response of the panel is observed for variation in stresses, deflections and failure criteria. The panel is expected to rotate about the hinge point by 4° from the initial point. The transient response of the composite panel has been observed for expected load and two test load cases and results reported in this paper. Analysis has become useful input for the design of panel.

  10. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  11. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  12. An Analysis of Symmetric Reinforcement of Graphite/Epoxy Honeycomb Sandwich Panels with a Circular Cutout under Uniaxial Compressive Loading,

    DTIC Science & Technology

    1985-12-01

    composite structures very attractive, particularly to the aerospace designer. A. OBJECTIVES AND SCOPE This study was designed to investigate the effect...the surface of the layup plate, each difficult and expensive tasks, reinforcement was restricted to the outside surface of each facesheet. This study ...material constants. 34 )’ N- A fabric G/Ep prepreg material was chosen because it has been somewhat less studied than tape and because it is finding

  13. Piezoelectrically-induced guided wave propagation for health monitoring of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Song, Fei

    Honeycomb sandwich structures have been widely used in marine and aerospace applications due to their high strength/stiffness-to-weight ratio. However, an excessive load or repeated loading in the core tends to induce debonding along the skin-core interface, threatening the integrity and safety of the whole structure. This dissertation focuses on development of guided wave strategies for health monitoring of honeycomb sandwich structures, based on a piezoelectric actuator/sensor network. The honeycomb sandwich panels, which are composed of aluminum alloy (T6061) skins and hexagonal-celled Nomex core, are specifically considered in the study. First, elastic wave propagation mechanism in honeycomb sandwich structures is numerically and experimentally investigated, based on a piezoelectric actuator/sensor system. Influences of cell geometry parameters upon wave propagation are also discussed. Some wave propagation characteristics, such as wave group velocity dispersion relation and mode tuning capabilities, in the honeycomb composite panels are experimentally characterized. Secondly, effects of skin-core debonding upon the leaky guided wave propagation in honeycomb sandwich structures are studied by the finite element simulation. An appropriate signal difference coefficient is defined to represent the differential features caused by debonding. By means of probability analysis of differential features of transmitted guided waves and the image fusion, the final image of the structure is constructed with improved detection precision. A multilevel sensor network strategy is proposed to detect multiple debondings in the honeycomb sandwich structure. Thirdly, an analytical model considering coupled piezo-elastodynamics is developed to quantitatively describe dynamic load transfer between a surface-bonded piezoelectric wafer actuator and a prestressed plate. The finite element method is used to evaluate the accuracy of the analytical prediction. Effects of prestresses on the

  14. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  15. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    NASA Astrophysics Data System (ADS)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  16. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  17. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen; Shepherd, Micah; Koudela, Kevin; Wess, Denis; Snider, Royce; May, Carl; Kendrick, Phil; Lee, Edward; Cai, Liang-Wu

    2015-01-01

    A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for frequencies between 1 and 4 kHz where gear meshing noise from the transmission has the most impact on speech intelligibility. The roof section, framed by a grid of ribs, was originally constructed of a single honeycomb core/composite face sheet panel. The original panel has coincidence frequencies near 700 Hz, leading to poor TL across the frequency range of 1 to 4 kHz. To quiet the panel, the cross section was split into two thinner sandwich subpanels separated by an air gap. The air gap was sized to target the fundamental mass-spring-mass resonance of the double panel system to less than 500 Hz. The panels were designed to withstand structural loading from normal rotorcraft operation, as well as 'man-on-the-roof' static loads experienced during maintenance operations. Thin layers of VHB 9469 viscoelastomer from 3M were also included in the face sheet ply layups, increasing panel damping loss factors from about 0.01 to 0.05. Measurements in the NASA SALT facility show the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory simulates the measured performance quite well. Detailed finite element/boundary element modeling of the baseline panel simulates TL slightly more accurately, and also simulates structure-borne sound well.

  18. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  19. Deflection and stress analysis of stiffened orthotropic skew panels under uniform transverse loading

    NASA Astrophysics Data System (ADS)

    Tripathy, A. K.; Pang, Su-Seng

    Skew plates with different orientations behave in a manner quite different from those of rectangular plates. An analysis has been carried out for the deflections and stresses of plates with various skew angles subjected to uniformly distributed tranverse loads. It has been thought that the excess deflection at the rear tip of a cantilever plate can be reduced by applying stiffeners along the length of the plate. These stiffeners can also reduce the stresses at the root drastically. The skin-stringer connections in aircraft can be treated as a problem of this type. An investigation has been carried out on the stress and deflection characteristics of stiffened parallelogramic plates with different skew angles. The numerical solution with assumed displacement function was developed using a finite element analysis. Experiments using aluminum and Scotchply composite laminates were conducted to verify the results. Cantilever and simply supported boundary conditions were included in the analysis, and an optimized angular stiffener for a particular swept-back panel was achieved.

  20. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-02-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  1. The research of the solar panels-commutator-inverter-load system with the pulse-amplitude control

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K. N.; Issembergenov, N. T.

    2014-11-01

    The system "solar panels-commutator-inverter-load" with amplitude-impulse control was researched. It was shown that if the solar panels are located in a certain way at the input of the inverter, it will be possible to get multilevel voltage close to sine wave with the help of amplitude-impulse control of commutator at the output of inverter. Herewith the effect is saving of solar panels depending on the quantity of voltage level, and also the enhanced voltage distortion coefficient (THD). For instance, with 8-level of voltage 28,2% and THD=4,64%, with 13-level of voltage, 30,5% and THD=2,65%, and with 26-level of voltage 31,7% and THD=1,22%. The given results were obtained through computer modeling and experimental research.

  2. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  3. Sandwich construction

    NASA Astrophysics Data System (ADS)

    Marshall, A.

    A form of composites known as structural sandwich construction is presented in terms of materials used, design details for solving edging and attachment problems, and charts of design material analysis. Sandwich construction is used in nearly all commercial airliners and helicopters, and military air and space vehicles, and it is shown that this method can stiffen a structure without causing a weight increase. The facing material can be made of 2024 or 7075 aluminum alloy, titanium, or stainless steel, and the core material can be wood or foam. The properties of paper honeycomb and various aluminum alloy honeycombs are presented. Factors pertaining to adhesive materials are discussed, including products given off during cure, bonding pressure, and adaptability. Design requirements and manufacturing specifications are resolved using numerous suggestions.

  4. Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal.

    PubMed

    Xin, Shangjing; Zeng, Zhaoyang; Zhou, Xue; Luo, Wenjing; Shi, Xiaowen; Wang, Qun; Deng, Hongbing; Du, Yumin

    2017-02-15

    Biosorbents, such as algae and yeast, have been applied in heavy metal adsorption due to their low cost and efficacy. However, they cannot be recycled and reused after direct application, which may cause a secondary pollution. In this study, we used bio-electrospraying technique to immobilize Saccharomyces cerevisiae (a byproduct from food fermentation) onto the surface of poly(ε-caprolactone)/chitosan/rectorite ternary composites based nanofibrous mats. This technique not only combined the advantages of both S. cerevisiae (cheap) and nanofibers (large surface area) in heavy metal removal, but also made biosorbents easy to recollect and reuse. Layer-by-layer structured nanofibrous mats were also fabricated by alternating electrospinning and bio-electrospraying for a couple of times and loaded more S. cerevisiae for enhancing heavy metal biosorption. The morphology of S. cerevisiae loaded nanofibrous mats with different numbers of layers was observed. Biosorption assay was performed on PbNO3 solution under different pH values, contact time, initial concentrations of Pb(2+) and biosorbents weights, at last the elemental composition was measured before and after biosorption. The results showed that S. cerevisiae loaded nanofibrous mats had a biosorption capacity of Pb(2+) up to 238mg/g. Desorption assay indicated that these mats were reusable and maintained high biosorption capacity after three biosorption-desorption cycles.

  5. Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on simplified buckling equations

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Agranoff, N.

    1976-01-01

    An analytical procedure is presented for designing hat stiffened and corrugated panels made of composite material and subjected to longitudinal (in the direction of the stiffeners) compression and shear loadings. The procedure is based on nonlinear mathematical programming techniques and a simplified set of buckling equations. Design requirements considered are buckling, strength, and extensional and shear stiffness. The effects of specified thickness, variation of cross-section dimensions, stiffness requirements, local buckling boundary conditions, and the effect of combined compression and shear loadings are shown.

  6. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulus, M. M., Jr.

    1976-01-01

    Structural efficiency studies were made to determine the weight saving potential of graphite/epoxy composite structures for compression panel applications. Minimum weight hat-stiffened and open corrugation configurations were synthesized using a nonlinear mathematical programming technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience suggests that most of the theoretical weight saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  7. Comparisons of SHM Sensor Models with Empirical Test Data for Sandwich Composite Structures

    DTIC Science & Technology

    2011-09-01

    propagation in a honeycomb sandwich panel was done by Metis Design Inc. in collaboration with ARC NASA . The sandwich panel fabricated for this test...structures. Sandwich type composites are being studied for use in NASAs new heavy lift launch vehicle and flaw detection is crucial for safety and for...and at the Marshall Space Flight Center to examine acoustic wave propagating and the ability to detect intrinsic faults in sandwich type composite

  8. Plate Deformation Behavior of Polymer Matrix Composite-Ti Honeycomb-Metal Sandwiches for Pressurized Propulsion Component Applications

    NASA Technical Reports Server (NTRS)

    Bertelsen, William D.; Shin, E. eugene; Thesken, John C.; Sutter, James K.; Martin, Rich

    2004-01-01

    THe objectives are: 1. To experimentally validate bi-axial plate flexural performance of PMC-Ti H/C-A286 sandwich panels for the internally pressurized RBCC combustion chamber support structure. 2. To explore ASTM 2-D plate flexure test (D 6416) to simulate the internal pressure loading and to correlate the results with analytical and FE modeling based on 2-D flexure properties.

  9. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulas, M. M., Jr.

    1975-01-01

    Structural efficiency studies were made to determine the weight-saving potential of graphite/epoxy composite structures for compression panel applications. Minimum-weight hat-stiffened and open-corrugation configurations were synthesized using a nonlinear mathematical programing technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience to date suggests that most of the theoretical weight-saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  10. Free vibration of thermally loaded panels including initial imperfections and post-buckling effects

    NASA Technical Reports Server (NTRS)

    Murphy, K. D.; Virgin, L. N.; Rizzi, S. A.

    1994-01-01

    A combined theoretical and experimental approach is developed to consider the small amplitude free vibration characteristics of fully clamped panels under the influence of uniform heating. Included in this study are the effects of higher modes, in-plane boundary elasticity, initial imperfections, and post-buckling. Comparisons between theory and experiment reveal excellent agreement.

  11. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  12. Mechanics of Air-Inflated Drop-Stitch Fabric Panels Subject to Bending Loads

    DTIC Science & Technology

    2013-08-15

    materials such as textiles , elastomers, and flexible composites are used for the structure, significant load-carrying capacity per unit weight (or...Drop-Stitch Fabrics Finite Element Analysis Experimental Mechanics Technical Textiles 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...27 LIST OF ILLUSTRATIONS Figure Page 1 Example of a Drop-Stitch Fabric with Rubber- Laminated

  13. Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction

    NASA Technical Reports Server (NTRS)

    Appa, Kari; Smith, Michael J. C.

    1988-01-01

    This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.

  14. Post-buckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Souza, M. A.

    1993-01-01

    The static post-buckling of simply-supported flat panels exposed to a stationary nonuniform temperature field and subjected to a system of subcritical in-plane compressive edge loads is investigated. The study is performed within a refined theory of composite laminated plates incorporating the effect of transverse shear and the geometric nonlinearities. The influence played by a number of effects, among them transverse shear deformation, initial geometric imperfections, the character of the in-plane boundary conditions and thickness ratio are studied and a series of conclusions are outlined. The influence played by the complete temperature field (i.e., the uniform through thickness and thickness-wise gradient) as compared to the one induced by only the uniform one, is discussed and the peculiarities of the resulting post-buckling behaviors are enlightened.

  15. Random response and fatigue life of aircraft panels subjected to severe acoustic and thermal loads

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    The focus of this investigation is on the prediction of the fatigue life of aircraft panels subject to thermal effects and a severe random acoustic excitation. The prototypical equations for this problem, i.e. the single and double well Duffing oscillators subjected to a bandlimited white noise, are first considered. A review of some currently available spectral approaches, i.e. the Rayleigh approximation and the single spectral moment method both with and without Gaussianity correction, strongly suggests that an accurate prediction of the fatigue life for this nonlinear system requires a dedicated model. To this end, an approximation of the probability density function of the peaks of the stationary response of the Duffing oscillators is derived. This model is then used in conjunction with either a narrowband assumption or the single spectral moment methodology to yield a prediction of the fatigue life. The application of this approach to simulation data from a single/double well Duffing oscillator, as well as on the experimental response of an unbuckled panel, demonstrates the reliability of this novel approximation. Spectral approaches typically make use of the values of specific spectral moments and thus their application necessitates the availability of a reliable approximation of the power spectral density of the response considered (displacement or stress). Although of fundamental importance, the determination of the power spectrum of the response of nonlinear systems is a very difficult problem and it is only recently that successful techniques have been devised to estimate this function. Two such approaches are assessed here for the single degree of freedom Duffing oscillator and are modified to improve their accuracy and ease of use.

  16. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  17. Composite Sandwich Technologies Lighten Components

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Leveraging its private resources with several Small Business Innovation Research (SBIR) contracts with both NASA and the U.S. Department of Defense, WebCore Technologies LLC, of Miamisburg, Ohio, developed a fiber-reinforced foam sandwich panel it calls TYCOR that can be used for a wide variety of industrial and consumer applications. Testing at Glenn Research Center?s Ballistic Impact Facility demonstrated that the technology was able to exhibit excellent damage localization and stiffness during impact. The patented and trademarked material has found use in many demanding applications, including marine, ground transportation, mobile shelters, bridges, and most notably, wind turbines.

  18. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  19. Integration of Mechanics and Acoustics in a Sandwich Fuselage. Part IV

    NASA Astrophysics Data System (ADS)

    Tooren, M. J. L.; Krakers, L. A.; Beukers, A.

    2005-01-01

    Until now only the stiffened skin structural concept has been discussed. A different structural concept is the sandwich concept. Sandwiches consist out of layers. The outer layers are called facings and are generally thin and of high density. These facings are supposed to resist most of the edgewise loads and flat-wise bending moments. The inner layer is called the core and is generally rather thick and of low density. The task of the core is to separate and stabilize the two facings, transmit shear between the facings and provide most of the shear rigidity. For sandwich panels no stiffeners are needed. Therefore no mass will be lost in stiffeners resulting in a relative high value of mass per unit area of the skin which results in a better TL according to the mass law. Also the core can be made of a material with high insulation properties (acoustic and thermal). The number of discrete stiffeners can then be minimized, since they are only required at places where high concentrated forces have to be introduced (wing, landing gear, etc.) or diverted (from cut-outs). This can reduce the production and maintenance cost. So it can be concluded that the sandwich concept offers great potential for multidisciplinary fuselage design.

  20. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    EPA Science Inventory

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  1. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  2. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  3. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  4. An ultrasensitive sandwich-type electrochemical immunosensor based on signal amplification strategy of gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions.

    PubMed

    Li, Faying; Han, Jian; Jiang, Liping; Wang, Yulan; Li, Yueyun; Dong, Yunhui; Wei, Qin

    2015-06-15

    In this study, a novel and ultrasensitive sandwich-type electrochemical immunosensor was prepared for the quantitative detection of alpha fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker. Gold nanoparticles (Au NPs) functionalized magnetic multi-walled carbon nanotubes (MWCNTs-Fe3O4) were prepared and utilized for the adsorption of lead ions (Pb(2+)) and the secondary antibodies (Ab2). The resultant nanocomposites (Pb(2+)@Au@MWCNTs-Fe3O4) were used as the label for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) than MWCNTs, MWCNTs-Fe3O4 or Au@MWCNTs-Fe3O4 due to the synergetic effect presented in Pb(2+)@Au@MWCNTs-Fe3O4. Moreover, Au NPs were electrodeposited on the surface of glassy carbon electrode (GCE) for the effective immobilization of primary antibodies (Ab1). Under the optimal conditions, a linear range from 10 fg/mL to 100 ng/mL and a detection limit of 3.33 fg/mL were obtained. The proposed electrochemical sandwich-type immunosensor shows high sensitivity, good selectivity and stability for the quantitative detection of AFP, holding a great potential in clinical and diagnostic applications.

  5. Resistance of Concrete Masonry Walls With Membrane Catcher Systems Subjected to Blast Loading

    DTIC Science & Technology

    2010-12-01

    are made. sandwich panel, prestressed concrete , composite, test, explosive load U U U UU 22 Paul Sheppard Reset 1 Resistance of...AFRL-RX-TY-TP-2010-0090 RESISTANCE OF CONCRETE MASONRY WALLS WITH MEMBRANE CATCHER SYSTEMS SUBJECTED TO BLAST LOADING...Include area code) 29-DEC-2010 Refereed Journal Article 01-OCT-2008 -- 31-DEC-2009 Resistance of Concrete Masonry Walls With Membrane Catcher Systems

  6. Development, testing, and numerical modeling of a foam sandwich biocomposite

    NASA Astrophysics Data System (ADS)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  7. Buckling loads of stiffened panels subjected to combined longitudinal compression and shear: Results obtained with PASCO, EAL, and STAGS computer programs

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1984-01-01

    Buckling analyses used in PASCO are summarized with emphasis placed on the shear buckling analyses. The PASCO buckling analyses include the basic VIPASA analysis, which is essentially exact for longitudinal and transverse loads, and a smeared stiffener solution, which treats a stiffened panel as an orthotropic plate. Buckling results are then presented for seven stiffened panels loaded by combinations of longitudinal compression and shear. The buckling results were obtained with the PASCO, EAL, and STAGS computer programs. The EAL and STAGS solutions were obtained with a fine finite element mesh and are very accurate. These finite element solutions together with the PASCO results for pure longitudinal compression provide benchmark calculations to evaluate other analysis procedures.

  8. Flightweight radiantly and actively cooled panel: thermal and structural performance

    SciTech Connect

    Shore, C.P.; Nowak, R.J.; Kelly, H.N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft/sup 2/-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  9. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  10. Three-dimensional numerical modeling of composite panels subjected to underwater blast

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoding; Tran, Phuong; de Vaucorbeil, Alban; Ramaswamy, Ravi Bellur; Latourte, Felix; Espinosa, Horacio D.

    2013-06-01

    Designing lightweight high-performance materials that can sustain high impulsive loadings is of great interest for marine applications. In this study, a finite element fluid-structure interaction model was developed to understand the deformation and failure mechanisms of both monolithic and sandwich composite panels. Fiber (E-glass fiber) and matrix (vinylester resin) damage and degradation in individual unidirectional composite laminas were modeled using Hashin failure model. The delamination between laminas was modeled by a strain-rate sensitive cohesive law. In sandwich panels, core compaction (H250 PVC foam) is modeled by a crushable foam plasticity model with volumetric hardening and strain-rate sensitivity. The model-predicted deformation histories, fiber/matrix damage patterns, and inter-lamina delamination, in both monolithic and sandwich composite panels, were compared with experimental observations. The simulations demonstrated that the delamination process is strongly rate dependent, and that Hashin model captures the spatial distribution and magnitude of damage to a first-order approximation. The model also revealed that the foam plays an important role in improving panel performance by mitigating the transmitted impulse to the back-side face sheet while maintaining overall bending stiffness.

  11. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  12. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  13. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  14. Experimental evaluation of two 36 inch by 47 inch graphite/epoxy sandwich shear webs

    NASA Technical Reports Server (NTRS)

    Bush, H. G.

    1975-01-01

    The design is described and test of two large (36 in. x 47 in.) graphite/epoxy sandwich shear webs. One sandwich web was designed to exhibit strength failure of the facings at a shear load of 7638 lbs/in., which is a characteristic loading for the space shuttle orbiter main engine thrust beam structure. The second sandwich web was designed to exhibit general instability failure at a shear load of 5000 lbs/in., to identify problem areas of stability critical sandwich webs and to assess the adequacy of contemporary analysis techniques.

  15. Development of Quiet Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Klos, Jacob

    2009-01-01

    Sandwich honeycomb composite panels are lightweight and strong, and, therefore, provide a reasonable alternative to the aluminum ring framelstringer architecture currently used for most aircraft airframes. The drawback to honeycomb panels is that they radiate noise into the aircraft cabin very efficiently provoking the need for additional sound treatment which adds weight and reduces the material's cost advantage. A series of honeycomb panels were made which incorporated different design strategies aimed at reducing the honeycomb panels' radiation efficiency while at the same time maintaining its strength. The majority of the desi gns were centered around the concept of creatin g areas of reduced stiffness in the panel by adding voids and recesses to the core. The effort culminated with a reinforced./recessed panel which had 6 dB higher transmission loss than the baseline solid core panel while maintaining comparable strength.

  16. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  17. Modelling of crack deflection at core junctions in sandwich structures

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Andreasen, J. H.; Thomsen, O. T.

    2009-08-01

    The paper treats the problem of crack propagation in sandwich panels with interior core junctions. When a face-core interface crack approaches a trimaterial wedge, as it may occur at a sandwich core junction, two options exist for further crack advance; one is for the interface crack to penetrate the wedge along the face-core interface, and the second is deflection along the core junction interface. Crack deflection is highly relevant and a requirement for the functionality of a newly developed peel stopper for sandwich structures. The physical model presented in this paper enables the quantitative prediction of the ratio of the toughnesses of the two wedge interfaces required to control the crack propagation, and the derived results can be applied directly in future designs of sandwich structures. The solution strategy is based on finite element analysis (FEA), and a realistic engineering practice example of a tri-material composition corresponding to face and core materials is presented.

  18. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    DTIC Science & Technology

    1999-05-01

    cost manufacturing techniques to produce panels included; resin transfer molding ( RTM ), vacuum assisted resin infusion/transfer molding ( VARTM ), co...analysis conducted revealed that in terms of failure characteristics, the RTM / VARTM processed sandwich composites yielded similar performance as those...injection VARTM and vacuum assisted compression molding (VACM). Detailed experimental impact studies were performed under three scenarios low velocity

  19. Composite Cocured Modular Eggcrate-Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Magurany, Charles J.

    1995-01-01

    Lightweight composite-material (e.g., graphite fiber/epoxy matrix) cocured sandwich panels with eggcratelike cores developed for use as principal components of optical benches and other structures that support precise optical instruments. Structures offer greater thermal and mechanical stability. Advantages include easier fabrication and better mechanical properties.

  20. SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1993-01-01

    The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.

  1. Compressive Behavior of Frame-Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  2. Strain distribution in thin concrete pavement panels under three-point loading to failure with pre-pulse-pump Brillouin optical time domain analysis (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Cain, John; Chen, Yizheng; Huang, Ying; Chen, Genda; Palek, Leonard

    2015-04-01

    Thin concrete panels reinforced with alloy polymer macro-synthetic fibers have recently been introduced to rapidly and cost-effectively improve the driving condition of existing roadways by laying down a fabric sheet on the roadways, casting a thin layer of concrete, and then cutting the layer into panels. This study is aimed to understand the strain distribution and potential crack development of concrete panels under three-point loading. To this end, six full-size 6ft×6ft×3in concrete panels were tested to failure in the laboratory. They were instrumented with three types of single-mode optical fiber sensors whose performance and ability to measure the strain distribution and detect cracks were compared. Each optical fiber sensor was spliced and calibrated, and then attached to a fabric sheet using adhesive. A thin layer of mortar (0.25 ~ 0.5 in thick) was cast on the fabric sheet. The three types of distributed sensors were bare SM-28e+ fiber, SM-28e+ fiber with a tight buffer, and concrete crack cable, respectively. The concrete crack cable consisted of one SM-28e+ optical fiber with a tight buffer, one SM-28e+ optical fiber with a loose buffer for temperature compensation, and an outside protective tight sheath. Distributed strains were collected from the three optical fiber sensors with pre-pulse-pump Brillouin optical time domain analysis in room temperature. Among the three sensors, the bare fiber was observed to be most fragile during construction and operation, but most sensitive to strain change or micro-cracks. The concrete crack cable was most rugged, but not as sensitive to micro-cracks and robust in micro-crack measurement as the bare fiber. The ruggedness and sensitivity of the fiber with a tight buffer were in between the bare fiber and the concrete crack cable. The strain distribution resulted from the three optical sensors are in good agreement, and can be applied to successfully locate cracks in the concrete panels. It was observed that the

  3. Plate-fin panel heat exchanger and panel components thereof

    SciTech Connect

    Heronemus, W.E.

    1985-02-05

    A plate-fin panel for a heat exchanger may be either formed as an aluminum extrusion or fabricated from a corrugated metal sheet sandwiched between two flat metal sheets. The extruded aluminum version may be clad with protective sheet metal jackets made of, or coated with, a corrosion resistant Cu-Ni alloy. Individual panel sections can be joined together by tongue and groove engagement to obtain a total desired panel width if available extrusion press or rolling mill capacity is insufficient. The plate-fin panels are assembled into slotted headering plates, and a layer of synthetic plastics potting compound seals dissimilar metal joints against electrolytic corrosion as well as leakage and provides sufficient adhesive strength to reduce or eliminate the need for welding the panels to the headers. Mechanical brush or hydraulic jet apparatus is capable of continuously or intermittently cleaning slime or encrustations from all panel surfaces exposed to seawater.

  4. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  5. [Improvement of method of determining fluoroscopy loading factor in digital angiographic x-ray system with a flat panel detector].

    PubMed

    Sato, Hisaya; Kato, Kyoichi; Maruyama, Masahiro; Okada, Keigo; Miura, Yoshiaki; Nakanishi, Isao; Nitta, Masaru; Nakazawa, Yasuo

    2010-07-20

    A catheterization study and treatment of coronary arteriopathy are performed by investigating the coronary artery from different angles to find the region to be treated. In doing so, our system always started from the initial value of the loading factor, using this only for the first time, and the system started from the last loading factor the second time and later, at all angles. Therefore, depending on the angle, the loading factor at the start of fluoroscopy sometimes became unstable, and it took time to stabilize. This made the starting image too dark (undershoot x-ray condition) or fogged by halation (overshoot x-ray condition). With the system manufacturer, we developed a tube voltage and tube current setting method for the initial value of the loading factor. We installed software which preset the loading factor at the start of fluoroscopy depending on the angle, and an auto memory function of the last loading factor for each angle. This function allows the system to control the tube voltage and tube current for any angle. As a result, the system can acquire a more stabilized image from the start of fluoroscopy. This method of determining the initial loading factor is an effective way to stabilize the fluoroscopy image quickly.

  6. Vibroacoustic Model Validation for a Curved Honeycomb Composite Panel

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Robinson, Jay H.; Grosveld, Ferdinand W.

    2001-01-01

    Finite element and boundary element models are developed to investigate the vibroacoustic response of a curved honeycomb composite sidewall panel. Results from vibroacoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission facility are used to validate the numerical predictions. The sidewall panel is constructed from a flexible honeycomb core sandwiched between carbon fiber reinforced composite laminate face sheets. This type of construction is being used in the development of an all-composite aircraft fuselage. In contrast to conventional rib-stiffened aircraft fuselage structures, the composite panel has nominally uniform thickness resulting in a uniform distribution of mass and stiffness. Due to differences in the mass and stiffness distribution, the noise transmission mechanisms for the composite panel are expected to be substantially different from those of a conventional rib-stiffened structure. The development of accurate vibroacoustic models will aide in the understanding of the dominant noise transmission mechanisms and enable optimization studies to be performed that will determine the most beneficial noise control treatments. Finite element and boundary element models of the sidewall panel are described. Vibroacoustic response predictions are presented for forced vibration input and the results are compared with experimental data.

  7. Damage Tolerance Characterisitics of Composite Sandwich Structures

    DTIC Science & Technology

    2000-02-01

    and very simplified modelling Unit of the EH-101 helicopter is made of a composite skeleton of the damage introduced by impact; second, the evaluation...the delamination boundary. The Multi Point Constraint If the delamination growth data from the teflon strip element of NASTRAN is used for modelling ...component level. These kinds of tests are composite sandwich structures used by the helicopter industry, carried out not only to verify load paths and

  8. THE SANDWICH CONJECTURE,

    DTIC Science & Technology

    The ’Sandwich Conjecture’ (SC) was originally formulated by Wheeler and his coworkers. In the course of several years both the original author(s...If the SC were to hold, one would hope that the metric field can be quantized by Feynman integral methods. Quite apart from its bearing on

  9. Salads, Sandwiches and Desserts.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on salads, sandwiches, and desserts is designed to provide Marine food service personnel with a general background in the proper techniques for the preparation of these items. Introductory materials include specific information for MCI students and a…

  10. BMI Sandwich Wing Box Analysis and Test

    NASA Technical Reports Server (NTRS)

    Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.

    2000-01-01

    A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.

  11. An Investigation of Sheet-stiffener Panels Subjected to Compression Loads with Particular Reference to Torsionally Weak Stiffeners

    NASA Technical Reports Server (NTRS)

    Dunn, Louis G

    1940-01-01

    A total of 183 panel specimens of 24ST aluminum alloy with nominal thickness of 0.020, and 0.040 inch with extruded bulb-angle sections of 12 shapes spaced 4 and 5 inches as stiffeners were tested to obtain the buckling stress and the amplitude of the maximum wave when buckled. Bulb angles from 3 to 27 1/2 inches long were tested as pin-end columns. The experimental data are presented as stress-strain and column curves and in tabular form. Some comparisons with theoretical results are presented. Analytical methods are developed that make it possible for the designer to predict with reasonable accuracy the buckling stress and the maximum-wave amplitude of the sheet in stiffened-panel combinations. The scope of the tests was insufficient to formulate general design criteria but the results are presented as a guide for design and an indication of the type of theoretical and experimental work that is needed.

  12. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    NASA Technical Reports Server (NTRS)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.

  13. Approaches to Design and Evaluation of Sandwich Composites

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)

    2001-01-01

    This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.

  14. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Pilot Michael A. Baker, seated at the forward flight deck pilots station controls, eats a freefloating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker on Atlantis', Orbiter Vehicle (OV) 104's, flight deck are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel O9.

  15. Effects of Subzero Temperatures and Sea Water Immersion on Damage Initiation and Growth in Sandwich Composites

    DTIC Science & Technology

    2008-12-10

    single cantilever beam sandwich test. The TSD is perhaps 19 An improved methodology for measuring the interracial toughness of sandwich beams 3...measuring the interracial toughness of sandwich beams 5 Table 4.1. Material properties Glass face Glass face Carbon „ , ,, Loading L...which shows the relationship between reaction forces for an MSCB specimen with 12 ply glass face sheets at different crack lengths. It is observed

  16. Experimental study of acoustical characteristics of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Peters, Portia Renee

    Loss factor measurements were performed on sandwich panels to determine the effects of different skin and core materials on the acoustical properties. Results revealed inserting a viscoelastic material in the core's mid-plane resulted in the highest loss factor. Panels constructed with carbon-fiber skins exhibited larger loss factors than glass-fiber skins. Panels designed to achieve subsonic wave speed did not show a significant increase in loss factor above the coincidence frequency. The para-aramid core had a larger loss factor value than the meta-aramid core. Acoustic absorption coefficients were measured for honeycomb sandwiches designed to incorporate multiple sound-absorbing devices, including Helmholtz resonators and porous absorbers. The structures consisted of conventional honeycomb cores filled with closed-cell polyurethane foams of various densities and covered with perforated composite facesheets. Honeycomb cores filled with higher density foam resulted in higher absorption coefficients over the frequency range of 50 -- 1250 Hz. However, this trend was not observed at frequencies greater than 1250 Hz, where the honeycomb filled with the highest density foam yielded the lowest absorption coefficient among samples with foam-filled cores. The energy-recycling semi-active vibration suppression method (ERSA) was employed to determine the relationship between vibration suppression and acoustic damping for a honeycomb sandwich panel. Results indicated the ERSA method simultaneously reduced the sound transmitted through the panel and the panel vibration. The largest reduction in sound transmitted through the panel was 14.3% when the vibrations of the panel were reduced by 7.3%. The influence of different design parameters, such as core density, core material, and cell size on wave speeds of honeycomb sandwich structures was experimentally analyzed. Bending and shear wave speeds were measured and related to the transmission loss performance for various material

  17. Impact damage analysis of balsawood sandwich composite materials

    NASA Astrophysics Data System (ADS)

    Abdalslam, Suof Omran

    In this study, a new composite sandwich structure with a balsa wood core (end grain and regular balsa) in conjunction with E-glass/epoxy face sheets was proposed, fabricated, impact tested, and modeled. The behavior of the sandwich structure under low velocity impact and compression after impact was investigated. Low velocity impact tests were carried out by drop-weight impact tower at different energy levels (8J-35J) to evaluate the impact response of the sandwich structure. Visual inspection, destructive and non destructive evaluation methods have been conducted. For the sandwich plate with end grain core, the damage was very clear and can be visually detected. However, the damage in regular balsa core was not clearly visible and destructive evaluation method was used. Compression testing was done after subjecting the specimens to impact testing. Impact test results; load-time, load-deflection history and energy absorption for sandwich composites with two different cores, end grain and regular balsa were compared and they were investigated at three different impact energies. The results show that the sandwich structures with end grain core are able to withstand impact loading better than the regular balsa core because the higher stiffness of end grain core informs of sustaining higher load and higher overall energy. The results obtained from compression after impact testing show that the strengths of sandwich composites with end grain and regular balsa cores were reduced about 40% and 52%, respectively, after impact. These results were presented in terms of stress-strain curves for both damaged and undamaged specimens. Finite element analysis was conducted on the sandwich composite structure using LS-DYNA code to simulate impact test. A 3- D finite element model was developed and appropriate material properties were given to each component. The computational model was developed to predict the response of sandwich composite under dynamic loading. The experimental

  18. Sound radiation and transmission characteristics of finite composite panels

    NASA Astrophysics Data System (ADS)

    Patil, Avinash R.

    2000-10-01

    Laminated composite and sandwich composite panels are used widely in aircraft and space structures. Corrugated panels or bead-stiffened panels are used in building structures and automobiles. In these applications, the sound transmission through such panels is an important factor in their design. Their sound radiation characteristics are also important. These panels have been analyzed earlier mostly by assuming them to be of infinite size. But in real applications, only finite panels were used. The finite size of a panel affects its sound radiation below the critical frequency and consequently it also affects the resonant sound transmission through the panel. In the present work, such panels are analyzed considering their finite size. The analysis presented in this thesis is restricted to laminated composite panels, which have no coupling between bending and twisting. Corrugated panels with corrugations in only one direction were analyzed in this work. Sandwich composite panels, which have a symmetric configuration, were analyzed as well. Statistical Energy Analysis (SEA) was used for this purpose. The dispersion relations for laminated composite, sandwich composite and corrugated panels were studied. The phenomenon known as 'critical frequency band' was explained. Wavenumber diagrams were plotted for various frequencies. The mode count was obtained for the panels. A frequency averaged radiation efficiency was obtained from first principles. These results were used to calculate various SEA parameters. The transmission loss of the panels was predicted by using SEA and it is compared with the experimental results obtained by other researchers. The parametric analysis and optimization of a sandwich composite panel was carried out here. The analysis in this thesis is useful in the design of panels used for various engineering applications.

  19. Terahertz radiation from Josephson sandwiches

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2010-08-01

    Basic results are presented from a study of the Cerenkov emission of electromagnetic waves by solitary vortices and Swihart waves moving in a long Josephson sandwich embedded in a dielectric. The energy fluxes of the electromagnetic field along a long sandwich are examined. The magnitudes of the fluxes are compared over a wide range of frequencies and wave numbers of surface waves in the sandwich.

  20. Finite element analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures

    NASA Astrophysics Data System (ADS)

    Joshi, Hrishikesh Ravindra

    Honeycomb cellular materials are widely used in engineering applications due to their high strength to weight ratio and controllable effective mechanical properties. The effective properties are controlled by varying the geometry of the repetitive unit cells of honeycomb structure. Sandwich panels made of honeycomb cores are beneficial in many applications including vibration isolation and sound transmission reduction. Sandwich panels with standard honeycomb core configurations have previously been studied with regards to sound transmission behavior. It has been established that the auxetic honeycomb cores, having negative in-plane Poisson's ratio, exhibit higher sound transmission loss as compared to regular honeycomb cores. In this study, the vibration and sound transmission response of novel auxetic chiral honeycomb structures (both hexa-chiral and anti-tetra chiral), have been investigated in detail using finite element analysis with two-dimensional plane elasticity elements. Chiral honeycomb structures are made up of a linear tessellation of periodic unit cell, which consists of circular nodes of radius ' r ' connected to each other by tangent ligaments of length ' L '. The distance between two adjacent circular nodes is ' R '. These geometric parameters are tailored to obtain the chiral structure with desired effective mechanical properties of in-plane Poisson's ratio, Young's modulus and shear modulus. Results show that, for both the hexa-chiral and anti-tetra-chiral configurations with same thickness, structures with smaller node radius 'r' have higher in-plane negative Poisson's ratio, effective Young's modulus, and shear modulus. The Poisson's ratio of anti-tetra-chiral structure with small node radius and thickness is found to approach the limit of -1. A steady state dynamic response of the chiral honeycomb sandwich panel subjected to uniform pressure load on the bottom face-sheet is also investigated over a frequency range of 1 Hz to 2000 Hz. It is

  1. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  2. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement

    1992-01-01

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  3. Thermal-structural panel buckling tests

    NASA Technical Reports Server (NTRS)

    Thompson, Randolph C.; Richards, W. Lance

    1991-01-01

    The buckling characteristics of a titanium matrix composite hat-stiffened panel were experimentally examined for various combinations of thermal and mechanical loads. Panel failure was prevented by maintaining the applied loads below real-time critical buckling predictions. The test techniques used to apply the loads, minimize boundary were shown to compare well with a finite-element buckling analysis for previous panels. Comparisons between test predictions and analysis for this panel are ongoing.

  4. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  5. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  6. Experimental investigation of fiberglass sandwich composite bending behaviour after severe aging condition

    NASA Astrophysics Data System (ADS)

    Gambaro, Carla; Lertora, Enrico; Mandolfino, Chiara

    2016-10-01

    Fiber Reinforced Polymer (FRP) sandwich panels are increasing their application as structural and non-structural components in all kinds of construction. By varying the material and thickness of core and face sheets, it is possible to obtain sandwich structures with different properties and performance. In particular, their advantages as lightweight and high mechanical properties make them extremely suitable for the transport industry. One of the most critical aspects regarding composite materials for engineering application is their performance after hygrothermal aging. The panels used in this study are composed of low density core, made by thermosetting resin foam with microspheres and glass fibers rolled until obtaining the required thickness, and two face sheets of the same material but realized in high density. In this study, the authors focused on the bending behaviour of this kind of sandwich panel, as received and after severe aging cycles.

  7. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  8. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  9. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    DTIC Science & Technology

    2015-07-02

    Abstract A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for...loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory...accurately, and also simulates structure-borne sound well. Applied Research Laboratory Technical Report Acoustically Tailored Composite Rotorcraft

  10. Evaluation of modal-based damage detection techniques for composite aircraft sandwich structures

    NASA Astrophysics Data System (ADS)

    Oliver, J. A.; Kosmatka, J. B.

    2005-05-01

    Composite sandwich structures are important as structural components in modern lightweight aircraft, but are susceptible to catastrophic failure without obvious forewarning. Internal damage, such as disbonding between skin and core, is detrimental to the structures' strength and integrity and thus must be detected before reaching critical levels. However, highly directional low density cores, such as Nomex honeycomb, make the task of damage detection and health monitoring difficult. One possible method for detecting damage in composite sandwich structures, which seems to have received very little research attention, is analysis of global modal parameters. This study will investigate the viability of modal analysis techniques for detecting skin-core disbonds in carbon fiber-Nomex honeycomb sandwich panels through laboratory testing. A series of carbon fiber prepreg and Nomex honeycomb sandwich panels-representative of structural components used in lightweight composite airframes-were fabricated by means of autoclave co-cure. All panels were of equal dimensions and two were made with predetermined sizes of disbonded areas, created by substituting areas of Teflon release film in place of epoxy film adhesive during the cure. A laser vibrometer was used to capture frequency response functions (FRF) of all panels, and then real and imaginary FRFs at different locations on each plate and operating shapes for each plate were compared. Preliminary results suggest that vibration-based techniques hold promise for damage detection of composite sandwich structures.

  11. Modeling of Sandwich Sheets with Metallic Foam

    SciTech Connect

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-08-22

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  12. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  13. Prediction of Moisture Distribution in Closed Ribbed Panel for Roof

    NASA Astrophysics Data System (ADS)

    Kukule, A.; Rocens, K.

    2015-11-01

    Nowadays one of the possibilities to improve energy efficiency is the use of building elements with low air permeability, for example, sandwich panels with steel sheeting. However, these panels have one important disadvantage - a relatively small load-bearing capacity. This can be prevented by reinforcing the panel with antiseptized birch plywood ribs. For wood-based materials prediction of hygrothermal performance is important to avoid rot. Currently the methodology of ISO 13788:2012 is widely used assuming that moisture flux passes through the building envelope of any material. This assumption is not completely accurate with regard to a closed structure where no penetration of ambient humidity is possible. Therefore, in order to predict the distribution of moisture in such structure with the surfaces exposed to different temperatures and to assess the hazards of rot for plywood ribs, a methodology for closed building envelope is presented. To provide insight into expected results according to both methodologies, estimation for individual case with constant environmental conditions is given. According to the methodology for the closed building envelope no free water will occur. Therefore, it is believable that also no rot will be observed. This is contrary to the assessment according to the methodology of ISO 13788:2012, which predicts condensation.

  14. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  15. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  16. On the dynamic stability of multilayer sandwich plates

    NASA Technical Reports Server (NTRS)

    Salama, A. M.; Chen, J. C.

    1973-01-01

    Study of the dynamic stability of plates which are constructed of several alternating soft and hard layers and are subjected to time-dependent periodic in-plane loads. A theory that accounts for all of these effects is presented for multilayer sandwich plates. The plate thickness consists of (k - 1) orthotropic soft core layers sandwiched between k hard isotropic membrane layers, each of which may have a different thickness and elastic properties. It is assumed that the core layers carry only the transverse shear stresses, while the hard membrane layers carry the in-plane normal and shear stresses. The complementary variational principle for dynamics is used to derive the governing differential equations and the necessary boundary conditions for the dynamic stability of the sandwich plate. The equations governing the vibration of the plate and those governing its static stability are deduced from the more general equations for dynamic stability.

  17. Structural finite-element modeling strategies for conformal load-bearing antenna structure (CLAS) (Air Force contract F33615-C-93-3200)

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Alt, Kevin H.; Kudva, Jayanth N.; Kinslow, Robert W.; Goetz, Allan C.

    1997-06-01

    As the Wright Lab Air Force military contrast `Smart Skin Structures Technology Demonstration' (S3TD) Contract No. F33615-C-93-3200 draws toward conclusion, pertinent features of the program finite element modeling are presented. Analysis was performed to predict the structural performance of a complex multilayered composite panel that will be tested structurally (and electrically) for the final program deliverable. Application of finite element modeling to predict component load path and strain distribution in sandwich panel construction has been reported elsewhere in the literature for more standard applications. However, the unauthordox sandwich configuration lay-up posed by the quite revolutionary S3TD CLAS aircraft fuselage panel demonstration article merits further discussion. Difficulties with material selection, the stumbling block for many programs, are further exacerbated by conflicting material properties required to support simultaneous electrical and structural performance roles. The structural analysis challenge derives from S3TD's unique program goal, namely, to investigate load bearing antennas structural configurations, rather than conventional structurally inefficient `bolt in' installations, that have been the modus operandi for tactical aircraft antenna installations to date. Discussed below is a cost saving strategy where use of linear finite element analysis has been employed in the prediction of key structural parameters, and validated with risk reduction sub panel measurements, before proceeding to the final fabrication of a full scale 36 by 36 inch CLAS panel demonstration article.

  18. Preparation for foam composites. [using polybenzimidazole for fireproofing panels

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.

    1974-01-01

    Methods were developed for the fabrication of fire resistant panels utilizing polybenzimidazole (PBI) and Kerimid 601 resins along with glass, quartz, and Kevlar reinforcements. Stitched truss structure, both unfilled and filled with PBI foam, were successfully fabricated and tested. Second generation structures were then selected, fabricated, and tested, with a PBI/glass skin/PBI foam sandwich structure emerging as the optimum panel concept. Mechanical properties, smoke generation, and fire resistance were determined for the candidate panels.

  19. Buckling of cylindrical panels under axial compression

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Weller, T.; Agarwal, B. L.

    1976-01-01

    This paper investigates the effects of boundary conditions and panel width on the axially compressive buckling behavior of unstiffened, isotropic, circular cylindrical panels. Numerical results are presented for eight different sets of boundary conditions along the straight edges of the panels. For all sets of boundary conditions except one (SS1), the results show that the panel buckling loads monotonically approach the complete cylinder buckling load from above as the panel width is increased. Low buckling loads, sometimes less than half the complete cylinder buckling load, are found for simply supported panels with free in-plane edge displacements (SS1). It is observed that the prevention of circumferential edge displacement is the most important in-plane boundary condition from the point of view of increasing the buckling load; and that the prevention of edge rotation in the circumferential direction also significantly increases the buckling load.

  20. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  1. Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.

    2012-01-01

    Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.

  2. Design and Testing of an Active Core for Sandwich Panels

    DTIC Science & Technology

    2008-03-01

    some degrees of unimorph from the design. In the experiment, the current prototype, which is made of polycarbonate material and Nitinol spring...such as Nitinol , is chosen due to its greater shape memory strain (8.5%), practical fabrication technique, and is relatively in- expansive. 2.2... Nitinol and its volume fractions are 5%, 7.5%, and 10% of the total design domain. The artificial stiffness implemented at the top and bottom right hand

  3. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A 60 kg batch of Resin M751 was produced in pilot plant scale. The resin was delivered to the prepreg company as an NMP solution. 100 kg of glass-fabric prepregs were fabricated. Prepreg characteristics and curing cycles for laminate fabrication were provided. A new batch of Resin M756 (Code M756 - 2) was synthesized.

  4. Sandwich Cylinder Technology for Cryogenic Tank

    NASA Astrophysics Data System (ADS)

    Rambaud, Wladimir; Lukowiak, Denis; Damas, Alain; Michelot, David; Jousset, Frederic; Mercier, Antoine; Bouilly, Thibault; Leudiere, Vincent

    2014-06-01

    In the frame of the Research and Technology activities, CNES Launcher Directorate and EuroCryospace performed studies on cryogenic tank.Since 2009/2010, we realized analyses and tests on a promising technology for cryogenic tank submitted to high compressive loads. Indeed, the "Sandwich cylinder" (metallic shell, insulating core, composite shell) is a way to improve performance and costs with respect to classical structure. This concept presents specific stiffness behavior (advantageous stiffness/mass ratio) higher than an aluminum alloy structure and scalable thermal behavior.The relevancy of the Sandwich concept was first evaluated by calculation in comparison with 3 other cylinder architectures and then this R&T project was conducted from elementary characterizations to a buckling test of a representative demonstrator.The paper provides an overview of the different steps of the project and the main results obtained. Potential benefits for Ariane 6 launcher are also presented.The concept is submitted to ECSP patent and so, numerical values will not be present in the paper.

  5. A Study of Panel Loads and Centers of Pressure of Three Different Cruciform Aft-Tail Control Surfaces of a Wingless Missile from Mach 1.60 to 3.70

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Trescot, C. D., Jr.

    1980-01-01

    An investigation was made of the forces and moments on the cruciform aft-tail control surfaces of a wingless missile model to determine the variation of panel load and center of pressure with angle of attack, tail deflection, model roll angle, and Mach number. Also, a limited force-moment and surface-pressure investigation was made on a noncircular aft end. These investigations were made in a unitary plan wind tunnel at Mach numbers of 1.60, 2.36, and 3.70 and at a Reynolds number per meter of 6,600,000. The cruciform aft-tail results indicate very little variation in the center of pressure for the highly loaded windward tail. The noncircular aft-end test results indicate no significant effect of the fin unporting on the fin loads.

  6. Low temperature optical testing of CFRP telescope panels

    NASA Technical Reports Server (NTRS)

    Hoffmann, William F.; Woida, Patrick; Tysenn, Thomas

    1988-01-01

    Since 1984, low temperature optical tests were made of very lightweight mirror panels for use in balloon and space infrared and submillimeter telescopes. In order to accomplish this testing, an ambient pressure 0.5 meter test chamber operating from 20 to -80 C, developed techniques for measuring non-optical quality mirrors with phase modulation 10.6 micron interferometry, and created the interferogram reduction program. During the course of the program, nineteen mirrors from four manufactures were tested: carbon fiber reinforced plastic (CFRP) aluminum honeycomb sandwich panel mirrors, a CFRP sandwich panel with an added glass facesheet, and carbon fiber reinforced glass panels. The results of the panel development and test program are summarized.

  7. Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing Analysis

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.

    2014-01-01

    In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.

  8. Numerical analysis of sandwich beam with corrugated core under three-point bending

    SciTech Connect

    Wittenbeck, Leszek; Grygorowicz, Magdalena; Paczos, Piotr

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  9. Panel flutter

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1972-01-01

    Criteria are presented for the prediction of panel flutter, determination of its occurrence, design for its prevention, and evaluation of its severity. Theoretical analyses recommended for the prediction of flutter stability boundaries, vibration amplitudes, and frequencies for several types of panels are described. Vibration tests and wind tunnel tests are recommended for certain panels and environmental flow conditions to provide information for design of verification analysis. Appropriate design margins on flutter stability boundaries are given and general criteria are presented for evaluating the severity of possible short-duration, limited-amplitude panel flutter on nonreusable vehicles.

  10. Full scale GLARE fuselage panel tests

    NASA Technical Reports Server (NTRS)

    Vercammen, Roland W. A.; Ottens, Harold H.

    1996-01-01

    A GLARE fuselage panel, representative of the crown section of the Fokker 100 fuselage in front of the wing, was tested. The panels were loaded by air pressure resulting in tangential stress in the panel by axial loading, representative of both the cabin pressure and the fuselage bending due to taxiing and gust loading. A fatigue test, simulating 180000 flights, followed by static tests were performed. The panel was loaded to failure at 1.32 ultimate load. The test set-up, the uniform strain distribution of the panel, and the fatigue loads applied at high test frequency are described. The use of GLARE leads to a substantial weight reduction without affecting the fatigue static strength.

  11. Measuring Core/Facesheet Bond Toughness in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2006-01-01

    This study examines two test methods to evaluate the peel toughness of the skin to core debond of sandwich panels. The methods tested were the climbing drum (CD) peel test and the double cantilever beam (DCB) test. While the CD peel test is only intended for qualitative measurements, it is shown in this study that qualitative measurements can be performed and compare well with DCB test data. It is also shown that artificially stiffening the facesheets of a DCB specimen can cause the test to behave more like a flatwise tensile test than a peel test.

  12. Wire and Packing Tape Sandwiches

    ERIC Educational Resources Information Center

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  13. Concrete sandwich construction for energy conservation. Final report, October 1975-September 1978

    SciTech Connect

    Keeton, J.R.

    1980-03-01

    An abbreviated research study on use of shrinkage-compensating expansive concrete in sandwich-type wall and roof panels containing insulation at mid-thickness is described. The use of expansive concrete is shown to be a technically viable concept for eliminating shrinkage cracking, thus preventing moisture penetration which can reduce insulation effectiveness, cause deterioration of the insulating material, and accelerate steel corrosion. Embeddable resistance strain gages proved to be reliable for measuring expansion and subsequent shrinkage of the experimental panels. As a result of this study, a comprehensive research program is proposed for experimental verification of design and field control measures that will permit the use of shrinkage-compensating cement mortars in sandwich panel construction.

  14. Initial development of high-accuracy CFRP panel for DATE5 antenna

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  15. Panel methods

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok

    1993-10-01

    A comprehensive description of panel methods has been given to enable an understanding of the underlying theory and the basic structure of the panel codes for aerodynamic applications. Panel methods have seen peak activity in the industry and remain as yet the sole technique for efficient and practical computations on complex-aircraft configurations. The method of the linearized approach of solving flow problems is well proven and till the turn of the century panel methods will continue to remain as the workhorse for computing aerodynamic characteristics of aircraft shapes in the industry. The alternative Euler and Navier-Stokes solvers have yet to mature for applications to complex shapes, hence panel methods will be in the light for at least another decade.

  16. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  17. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  18. Tailoring the Acoustic Properties of Truss-Core Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Lee, Richard

    Undesirable cabin noise has an adverse physiological effect on passengers and crews in an aircraft. In order to reduce the noise level, a passive approach using a truss-core sandwich (TCS) panel as a sound insulator is proposed. Design guidelines and analysis methodologies were developed in order to explore the vibro-acoustic characteristics of TCS structure. Its sound isolation properties can be thereby assessed. Theoretical analyses show that the transmission-loss and sound radiation properties of a TCS structure can be represented by the root-mean-square velocity of its surface, and a beam structure analysis is sufficient to reveal many of the important aspects of TCS panel design. Using finite element analysis, a sensitivity study was performed to create design guidelines for TCS structures. Transmission-loss experiments show that the analytical and numerical analyses correctly predict the trend of TCS structure's vibro-acoustic performance.

  19. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-08-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  20. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  1. Solar panel

    SciTech Connect

    Bayles, B.R.

    1981-09-29

    A solar panel includes a base within which are mounted transversely extending conduits. A heat collector plate in the base is in heat conductive relationship with the conduits for the heating of a fluid medium. The base additionally supports a transparent cover outwardly spaced from the heat collector plate to provide a protective insulative air space over the plate. A manifold communicates one series of panels with those of an adjacent series. A modified base dispenses with a collector plate and is formed so as to define integral lengthwise extending passageways for the solar heated medium. Inserted nipples interconnect the passageways of adjacent panels.

  2. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  3. Integrally rigidized acoustic interior spacecraft panel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  4. Liver Panel

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Liver Panel Share this page: Was this page helpful? Also known as: Liver Profile; Liver Function Tests; LFTs Formal name: Hepatic ...

  5. Radially sandwiched cylindrical piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Fu, Zhiqiang; Zhang, Xiaoli; Wang, Yong; Hu, Jing

    2013-01-01

    A new type of radially sandwiched piezoelectric short cylindrical transducer is developed and its radial vibration is studied. The transducer is composed of a solid metal disk, a radially polarized piezoelectric ceramic short tube and a metal tube. The radial vibrations of the solid metal disk, the radially polarized piezoelectric tube and the metal tube are analyzed and their electromechanical equivalent circuits are introduced. Based on the mechanical boundary conditions among the metal disk, the piezoelectric tube and the metal tube, a three-port electromechanical equivalent circuit for the radially sandwiched transducer is obtained and the frequency equation is given. The theoretical relationship of the resonance and anti-resonance frequencies and the effective electromechanical coupling coefficient with the geometrical dimensions is analyzed. The radial vibration of the sandwiched transducer is simulated by using two different numerical methods. It is shown that the analytical resonance and anti-resonance frequencies are in good agreement with the numerically simulated results. The transducer is expected to be used in piezoelectric resonators, actuators and ultrasonic radiators in ultrasonic and underwater sound applications.

  6. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  7. Peak-power-point monitor for solar panel

    NASA Technical Reports Server (NTRS)

    Schloss, A. I.

    1972-01-01

    Attempt was made to determine solar cell panel peak power capability without disrupting power flow from panel. Separate solar cell strings were switched from panel circuits, and increasingly larger loads were added rapidly until peak power points were transversed. String wattage output was recorded and all stored string measurements summed together indicate peak power point in panel.

  8. Analytical comparison of three stiffened panel concepts

    NASA Technical Reports Server (NTRS)

    Maloney, Jill M.; Wu, K. Chauncey; Robinson, James C.

    1995-01-01

    Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.

  9. Development of lightweight fire retardant, low-smoke, high-strength, thermally stable aircraft floor paneling

    NASA Technical Reports Server (NTRS)

    Arnold, D. B.; Burnside, J. V.; Hajari, J. V.

    1976-01-01

    Fire resistance mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesives to Nomex honeycomb core. The test results were compared to proposed and current requirements for aircraft floor panel applications to demonstrate that the fire safety of the airplane could be improved without sacrificing mechanical performance of the aircraft floor panels.

  10. Analysis of panel dent resistance

    NASA Technical Reports Server (NTRS)

    Ni, C. M.

    1976-01-01

    An analytical technique for elastic-plastic deformation of panels was developed, which is employed to analyze the denting mechanisms of panels resulting from point projectile impacts and impulsive loadings. The correlations of analytical results with the experimental measurements are considered quite satisfactory. The effect of elastic springback on the dent resistance analysis is found to be very significant for the panel (122 cm x 60.9 cm x 0.076 cm) subjected to a point projectile impact at 16.45 m/sec. While the amount of springback decreases as the loading speed increases, the effect due to the strain rate hardening of material, such as low carbon steel, becomes more dominant and is demonstrated in the analysis of dent resistance of a rectangular steel plate impulsively loaded.

  11. Facesheet Wrinkling in Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Ley, Robert P.; Lin, Weichuan; Mbanefo, Uy

    1999-01-01

    The purpose of this paper is to provide a concise summary of the state-of-the-art for the analysis of the facesheet wrinkling mode of failure in sandwich structures. This document is not an exhaustive review of the published research related to facesheet wrinkling. Instead, a smaller number of key papers are reviewed in order to provide designers and analysts with a working understanding of the state-of-the-art. Designers and analysts should use this survey to guide their judgement when deciding which one of a wide variety of available facesheet wrinkling design formulas is applicable to a specific design problem.

  12. Dynamic toughness of composite steel-concrete structure of sandwich system

    SciTech Connect

    Iwata, Setsuo; Hattori, Yoichi

    1995-12-31

    Offshore structures should have a high degree of structural safety even under extreme environmental loadings. The authors have studied a composite steel-concrete structure of sandwich system for the strength members of huge offshore structures, where concrete is placed between steel plates. In the previous paper, the authors carried out both experimental and theoretical investigations into the strength of the composite structure. It was clarified that the composite structure has various excellent properties: the ultimate load-bearing capacity of the composite structure is very high and it can absorb a great deal of energy until failure under any type of loading conditions. In the present paper, the authors carried out both experimental and theoretical investigations into the dynamic toughness of the sandwich composite structures. Experiments were carried out using the two dimensional models of composite structure under high speed loading. A nonlinear analysis was developed to predict the toughness of sandwich beam under dynamic load. In the analysis, the material non linearities of both concrete and steel with strain rate. The nonlinear analysis accurately represented the behavior and toughness of the sandwich beam structure.

  13. Influence of Stacking Sequence on the Impact and Postimpact Bending Behavior of Hybrid Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Özen, M.

    2017-01-01

    A new hybrid sandwich structure was developed by using carbon, e-glass, and s-glass fabrics as reinforcement materials, an epoxy resin as the matrix material for face sheets, and a PVC foam as the core material. Six different configurations were prepared. Sandwich composites plates with different stacking sequences were subjected to low-speed impacts will energies of 7.5, 15, and 22.5 J. Their impact response is analyzed and reported in terms of the peak load as a function of impact energy. After impact tests, 3-point bending tests were conducted to determine the bending behavior of the sandwich composites after impacts in terms of their flexural strength. The results obtained showed that the use of carbon fabrics in the face sheets increased the peak loads for all the impact energies considered. The presence of carbon fibers in skin regions increased the flexural strength of the composites, but e-glass fibers decreased this strength.

  14. Panel Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Mid-Year Meeting, 1992

    1992-01-01

    Lists the speakers and summarizes the issues addressed for 12 panel sessions on topics related to networking, including libraries and national networks, federal national resources and energy programs, multimedia issues, telecommuting, remote image serving, accessing the Internet, library automation, scientific information, applications of Z39.50,…

  15. Media Panel.

    ERIC Educational Resources Information Center

    Marklund, Inger, Ed.; Hanse, Mona-Britt, Ed.

    1984-01-01

    The Swedish Media Panel is a research program about children and young persons and their use of mass media. The aim of the ten-year (1975-1985) project is to explain how media habits originate, how they change as children grow older, what factors on the part of children themselves and in their surroundings may be connected with a certain use of…

  16. Improving Strength of Postbuckled Panels Through Stitching

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2007-01-01

    The behavior of blade-stiffened graphite-epoxy panels with impact damage is examined to determine the effect of adding through-the-thickness stitches in the stiffener flange-to-skin interface. The influence of stitches is evaluated by examining buckling and failure for panels with failure loads up to 3.5 times greater than buckling loads. Analytical and experimental results from four configurations of panel specimens are presented. For each configuration, two panels were manufactured with skin and flanges held together with through-the-thickness stitches introduced prior to resin infusion and curing and one panel was manufactured with no stitches holding the flange to the skin. No mechanical fasteners were used for the assembly of any of these panels. Panels with and without low-speed impact damage were loaded to failure in compression. Buckling and failure modes are discussed. Stitching had little effect on buckling loads but increased the failure loads of impact-damaged panels by up to 30%.

  17. Mechanical properties characterization of composite sandwich materials intended for space antenna applications

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Vannucci, Raymond D.

    1986-01-01

    The composite materials proposed for use in the Advanced Communications Technology Satellite (ACTS) Program contains a new, high modulus graphite fiber as the reinforcement. A study was conducted to measure certain mechanical properties of the new fiber-reinforced material as well as of a composite-faced aluminum honeycomb sandwich structure. Properties were measured at -157, 22, and 121 C. Complete characterization of this material was not intended. Longitudinal tensile, picture-frame shear, short-beam shear, and flexural tests were performed on specimens of the composite face-sheet materials. Unidirectional, cross-plied, and quasi-isotropic fiber composite ply layup designs were fabricated and tested. These designs had been studied by using NASA's Integrated Composite Analyzer (ICAN) computer program. Flexural tests were conducted on (+/- 60/0 deg) sub s composite-faced sandwich structure material. Resistance strain gages were used to measure strains in the tensile, picture-frame, and sandwich flexural tests. The sandwich flexural strength was limited by the core strength at -157 and 22 C. The adhesive bond strength was the limiting factor at 121 C. Adhesive mechanical properties are reflected in sandwich structure flexural properties when the span-to-depth ratio is great enough to allow a significant shear effect on the load-deflection behavior of the sandwich beam. Most measured properties agreed satisfactorily with the properties predicted by ICAN.

  18. Design procedures for flutter-free surface panels

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Mcpherson, J. I.

    1977-01-01

    An approach for the design of lightweight external surface panel configurations to preclude panel flutter was developed. Design procedures were developed for flat orthotropic panels under the interacting influence of parameters such as support flexibility, inplane loads, pressure differential, and flow angularity. The basic relationships required to define these design procedures were based on theoretical panel flutter analyses. Where possible, the design procedures were verified through comparison with available experimental panel flutter data.

  19. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Calibration of an analytical thermal model for an epoxy-based composite sandwich design

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Davis, Darrell; Stuckey, Charles I.

    2001-02-01

    An epoxy-based sandwich configuration was designed to meet the structural and thermal requirements of a nose cap for the space shuttle solid rocket boosters (SRB's). This project was suspended in late 1999, but the information gathered during this work is unique in the sense that portions of graphite-epoxy layers were modeled at temperatures exceeding their glass transition temperatures. This work presents the results of the thermal model calibration efforts. A symmetric sandwich configuration was chosen that includes an inner and outer structural skin with a graphite-epoxy composite, Hexcel's AGP370-8H/3501-6 (AS4/3501-6), and a center epoxy-based syntactic core. 3M SC350G, that provides thermal protection. Each graphite-epoxy section consists of seven layers, each layer with a 0°, 90°, or +/-45° graphite fiber orientation. Three flat panels (0.305×0.483 m top view dimensions) using this sandwich construction were fabricated and exposed to an aerothermal environment in the Marshall Space Flight Center (MSFC) Improved Hot Gas Facility (IHGF). Each of these panels had ten interstitial thermocouples in the panel. The exact locations of the thermocouples and thickness of the different layers were determined by X-ray evaluation. A 1-D model was generated that used the outer surface IR measured temperature as a boundary condition, and the predicted temperatures were compared with the measured temperatures, calibrating the code. .

  1. Structural performance of two aerobrake hexagonal heat shield panel concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Dyess, James W.

    1992-01-01

    Structural sizing and performance are presented for two structural concepts for an aerobrake hexagonal heat shield panel. One concept features a sandwich construction with an aluminum honeycomb core and thin quasi-isotropic graphite-epoxy face sheets. The other concept features a skin-rib isogrid construction with thin quasi-isotropic graphite-epoxy skins and graphite-epoxy ribs oriented at 0, +60, and -60 degs along the panel. Linear static, linear bifurcation buckling, and nonlinear static analyses were performed to compare the structural performance of the two panel concepts and assess their feasibility for a lunar transfer vehicle aerobrake application.

  2. Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements

    NASA Astrophysics Data System (ADS)

    Vukicevic, S.; Vinter, I.; Vukicevic, D.

    1983-12-01

    Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.

  3. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  4. 61. Upper panel in cornerpower panel lcpa lower panel in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Upper panel in corner-power panel lcpa lower panel in corner-oxygen regeneration unit, at right-air conditioner control panel, on floor-bio-pack 45 for emergency breathing, looking northwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  5. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  6. Architectural Panels

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Alliance Wall Corporation's Whyteboard, a porcelain enamel on steel panels wall board, owes its color stability to a KIAC engineering background study to identify potential technologies and manufacturers of equipment which could be used to detect surface flaws. One result of the data base search was the purchase of a spectrocolorimeter which enables the company to control some 250 standard colors, and match special colors.

  7. Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Ratcliffe, James G.

    2006-01-01

    Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data

  8. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  9. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  10. Aptamer-based sandwich-type biosensors.

    PubMed

    Seo, Ho Bin; Gu, Man Bock

    2017-01-01

    Sandwich-type biosensor platforms have drawn lots of attentions due to its superior features, compared to other platforms, in terms of its stable and reproducible responses and easy enhancement in the detection sensitivity. The sandwich-type assays can be developed by utilizing a pair of receptors, which bind to the different sites of the same target. In this mini-review paper, the sandwich-type biosensors using either pairs of aptamers or aptamer-antibody pairs are reviewed in terms of its targets and platforms, the schematic designs, and their analytical performance.

  11. Analyses for Debonding of Stitched Composite Sandwich Structures Using Improved Constitutive Models

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Sleight, D. W.; Krishnamurthy, T.; Raju, I. S.

    2001-01-01

    A fracture mechanics analysis based on strain energy release rates is used to study the effect of stitching in bonded sandwich beam configurations. Finite elements are used to model the configurations. The stitches were modeled as discrete nonlinear spring elements with a compliance determined by experiment. The constitutive models were developed using the results of flatwise tension tests from sandwich material rather than monolithic material. The analyses show that increasing stitch stiffness, stitch density and debond length decrease strain energy release rates for a fixed applied load.

  12. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  13. Comparison of Numerical Models for Vibro-Acoustic Analysis of Structural Panels in Low Modal Density Range Engaging Air Layers

    NASA Astrophysics Data System (ADS)

    Chimeno-Manguan, M.; Martinz-Calvo, B.; Roibas-Millan, E.; Fajardo, P.; Simon, F.; Lopez-Diez, J.

    2012-07-01

    During launch, satellite and their equipment are subjected to loads of random nature and with a wide frequency range. Their vibro-acoustic response is an important issue to be analysed, for example for folded solar arrays and antennas. The main issue at low modal density is the modelling combinations engaging air layers, structures and external fluid. Depending on the modal density different methodologies, as FEM, BEM and SEA should be considered. This work focuses on the analysis of different combinations of the methodologies previously stated used in order to characterise the vibro-acoustic response of two rectangular sandwich structure panels isolated and engaging an air layer between them under a diffuse acoustic field. Focusing on the modelling of air layers, different models are proposed. To illustrate the phenomenology described and studied, experimental results from an acoustic test on an ARA-MKIII solar array in folded configuration are presented along with numerical results.

  14. POSTOP: Postbuckled open-stiffener optimum panels, user's manual

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Dickson, J. N.

    1984-01-01

    The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.

  15. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  16. Graphite/epoxy orthogrid panel fabrication

    NASA Technical Reports Server (NTRS)

    Lager, J. R.

    1978-01-01

    The structural concept considered for a spacecraft body structure is a grid stiffened skin with a skin laminate configuration and the stiffener grid geometry selected to best suit the design requirements. The orthogrid panel developed weighs 0.55 lb/sq ft and resisted an ultimate in-plane shear load of 545 lbf/in. The basic concept of a grid stiffener composite panel is that a relatively thin skin is reinforced with a gridwork of stiffeners so that the overall panel can resist design loads without becoming structurally unstable or being overstressed. The main feature of the orthogrid panel design is that it provides the potential for low cost structural panels when advanced to the production phase. The most innovative part of the fabrication method is the foam/fiberglass stiffener web grid billet fabrication and machining to size.

  17. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  18. Exploratory Investigation of Failure Mechanisms in Transition Regions between Solid Laminates and X-cor(registered tm) Truss Sandwich

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Paris, Isabelle L.

    2004-01-01

    Small sub-component specimens consisting of solid laminates at the ends that transition to X-cor(R) truss sandwich in the center, were tested in a combination of three point bending, uni-axial tension, and combined tension and bending. The failure process in the transition region was documented for each loading using digital video and high-resolution cameras. For the 3-point bending tests, most of the deformation occurred in the solid laminate regions on either end of the specimen. Some pin debonding from the skin of the X-cor(R) truss sandwich was observed in the transition region and was accompanied by audible "pings" throughout the loading. Tension loaded specimens failed in the sandwich skin in the middle of the gage length, accompanied by separation of the sandwich core from the back skin and by delamination between the top skin and bottom skin at the transition region. The pinging associated with pin debonding occurred as the load was increased. However, the frequency of the pinging exceeded any visual observations of pin debonding in the video of the transition region. For specimens tested in combined tension and bending, the greatest amount of pinging occurred during initial application of the axial load. High-resolution images in the transition region indicated that the pinging corresponded to pins debonding and buckling due to the through-thickness Poisson contraction of the specimen. This buckling continued to a much smaller extent as the transverse load was applied.

  19. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    NASA Astrophysics Data System (ADS)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  20. Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Test

    SciTech Connect

    Mata, H.; Fernandes, A. A.; Parente, M. P. L.; Jorge, R. Natal; Santos, A.; Valente, R. A. F.

    2011-05-04

    On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications, especially in automotive and aeronautical industries. This work is divided into two parts; in the first part the mathematical model used to describe the behavior of sandwich shells with metal cores form is presented and some numerical examples are presented. In the second part of this work, the numerical results are validated using the experimental results obtained from the mechanical experiments. Using the isotropic hardening crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Using this constitutive model, the uniaxial tensile test for this material was simulated, and a comparison with the experimental results was made.

  1. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  2. Panel Discussion

    NASA Astrophysics Data System (ADS)

    Langer, James

    1997-03-01

    Panelists: Arthur Bienenstock, Stanford University Cherry Ann Murray, Lucent Technologies Venkatesh Narayanamurti, University of California-Santa Barbara Paul Peercy, SEMI-SEMATECH Robert Richardson, Cornell University James Roberto, Oak Ridge National Laboratory The Board on Physics and Astronomy is undertaking a series of reassessments of all branches of physics as the foundation of a new physics survey. As part of this project, a Committee on Condensed Matter and Materials Physics has been established under the leadership of Venkatesh Narayanamurti of the University of California-Santa Barbara. The committee has been working since June on a study that will include an illustrative recounting of major recent achievements; identification of new opportunities and challenges facing the field; and articulation-for leaders in government, industry, universities, and the public at large-of the important roles played by the field in modern society. An especially urgent issue is how to maintain the intellectual vitality of condensed matter and materials physics, and its contributions to the well-being of the United States, in an era of limited resources. The forum will feature a panel of materials researchers who are members of the Committee on Condensed Matter and Materials Physics. They will give a brief report on the status of the study and engage in a dialogue with the audience about issues facing the condensed matter and materials physics community. Broad community input is vital to the success of the study. Please come and make your voice heard!

  3. Sandwich Composite, Syntactic Foam Core Based, Application for Space Structures

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Kaul, Raj K.; McMahon, William M.; Reinarts, Thomas

    2000-01-01

    The current Solid Rocket Booster (SRB) launch vehicle has several metal based components that require a Thermal Protective System (TPS) be applied to the exterior surface to ensure its structural integrity and to protect the interior hardware from aerodynamic heating. TPS materials have distinct disadvantages associated with their use. One disadvantage to the application of TPS is that it can act as a debris source to the Space Shuttle Orbiter during flight and it also adds weight to the system without directly contributing any structural strength. One of the specific areas examined under this program was to replace a metal/TPS system with polymer based composites. A polymer matrix based sandwich composite was developed which had both structural and insulative properties to meet the high aerodynamic structural and heating load survival requirements. The SRB Nose Cap was selected as a candidate for this application. The sandwich system being qualified for this application is a carbon/epoxy outer and inner skin with a high strength-low thermal conductivity syntactic foam core.

  4. Development of assembly techniques for fire resistant aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  5. Experimental and numerical analysis of defects in composite panels used in business aircrafts interior

    NASA Astrophysics Data System (ADS)

    Ruiz, Edu; Courteau-Godmaire, H.; Fotsing, R.; Billotte, C.; Levesque, M.

    2016-05-01

    This paper provides an optical characterization and numerical prediction of local deformations appearing on the visible side of composite sandwich panels used for interior furniture of business airplanes. During manufacturing of furniture panels, metallic inserts are bonded inside the sandwich panel using an epoxy adhesive. Surface defects appear on the visible side of the panels due to curing of the adhesive, but also because of temperature gradients and humidity during manufacturing and in service. This paper presents an optical characterization based on deflectometry principle, that allows qualitative and quantitative analyses of the surface deformations in 3-dimensions. In addition, this paper presents a parametric model based on finite elements to predict the formation of surface defects using ABAQUS. A comparison is presented between the experimental observations and numerical predictions with good agreement between them.

  6. Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.

    2015-01-01

    Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.

  7. Evaluation of Analysis Techniques for Fluted-Core Sandwich Cylinders

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Schultz, Marc R.

    2012-01-01

    Buckling-critical launch-vehicle structures require structural concepts that have high bending stiffness and low mass. Fluted-core, also known as truss-core, sandwich construction is one such concept. In an effort to identify an analysis method appropriate for the preliminary design of fluted-core cylinders, the current paper presents and compares results from several analysis techniques applied to a specific composite fluted-core test article. The analysis techniques are evaluated in terms of their ease of use and for their appropriateness at certain stages throughout a design analysis cycle (DAC). Current analysis techniques that provide accurate determination of the global buckling load are not readily applicable early in the DAC, such as during preliminary design, because they are too costly to run. An analytical approach that neglects transverse-shear deformation is easily applied during preliminary design, but the lack of transverse-shear deformation results in global buckling load predictions that are significantly higher than those from more detailed analysis methods. The current state of the art is either too complex to be applied for preliminary design, or is incapable of the accuracy required to determine global buckling loads for fluted-core cylinders. Therefore, it is necessary to develop an analytical method for calculating global buckling loads of fluted-core cylinders that includes transverse-shear deformations, and that can be easily incorporated in preliminary design.

  8. Stress analysis and buckling of J-stiffened graphite-epoxy panel

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1980-01-01

    A graphite epoxy shear panel with bonded on J stiffeners was investigated. The panel, loaded to buckling in a picture frame shear test is described. Two finite element models, each of which included the doubler material bonded to the panel skin under the stiffeners and at the panel edges, were used to make a stress analysis of the panel. The shear load distributions in the panel from two commonly used boundary conditions, applied shear load and applied displacement, were compared with the results from one of the finite element models that included the picture frame test fixture.

  9. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  10. The Accuracy of the ABAQUS FE Numerical Modeling for Sandwich Beams with Foam Core

    NASA Astrophysics Data System (ADS)

    Papakaliatakis, G. E.; Karavagelas, N.

    2009-08-01

    The foam of the sandwich core is a compressible material and in ABAQUS FEA is modelled using the crushable foam model. There are crushable foam models with volumetric hardening and with isotropic hardening in ABAQUS standard analysis and the same models for the ABAQUS explicit analysis, for isotropic compressible materials. Also, the Hill's plasticity model for general anisotropic incompressible solids, is available in ABAQUS. All the above modelling cases were performed for sandwich beams with composite faces and PVC foam cores. The specimens were subjected to three-point bending, under quasi-static loading, using the experimental load-deflection curves to compare with ABAQUS FEA predictions. The best modelling case is suggested.

  11. Reliability of stiffened structural panels: Two examples

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-01-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  12. Reliability of stiffened structural panels: Two examples

    NASA Astrophysics Data System (ADS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-12-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  13. Panel resonant behavior of wind turbine blades.

    SciTech Connect

    Paquette, Joshua A.; Griffith, Daniel Todd

    2010-03-01

    The principal design drivers in the certification of wind turbine blades are ultimate strength, fatigue resistance, adequate tip-tower clearance, and buckling resistance. Buckling resistance is typically strongly correlated to both ultimate strength and fatigue resistance. A composite shell with spar caps forms the airfoil shape of a blade and reinforcing shear webs are placed inside the blade to stiffen the blade in the flap-wise direction. The spar caps are dimensioned and the shear webs are placed so as to add stiffness to unsupported panel regions and reduce their length. The panels are not the major flap-wise load carrying element of a blade; however, they must be designed carefully to avoid buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static testing of blades under a simulated extreme loading condition. The focus of this paper is on the use of experimental modal analysis to measure localized resonances of the blade panels. It can be shown that the resonant behavior of these panels can also provide a means to evaluate buckling resistance by means of analytical or experimental modal analysis. Further, panel resonances have use in structural health monitoring by observing changes in modal parameters associated with panel resonances, and use in improving panel laminate model parameters by correlation with test data. In recent modal testing of wind turbine blades, a set of panel modes were measured. This paper will report on the findings of these tests and accompanying numerical and analytical modeling efforts aimed at investigating the potential uses of panel resonances for blade evaluation, health monitoring, and design.

  14. Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor); Klos, Jacob (Inventor)

    2012-01-01

    A method of making a composite panel having subsonic transverse wave speed characteristics which has first and second sheets sandwiching a core with at least one of the sheets being attached to the core at first regions thereof and unattached to the core at second regions thereof.

  15. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  16. Understanding Successful Sandwich Placements: A Bourdieusian Approach

    ERIC Educational Resources Information Center

    Clark, Martyn; Zukas, Miriam

    2016-01-01

    Sandwich placements and other integrated work and study schemes are increasingly advocated as a key means by which universities can promote students' employability. However, there is little understanding of how successful placements work in terms of facilitating learning and development. Drawing on three longitudinal case studies of students who…

  17. Feedback Sandwiches Affect Perceptions but Not Performance

    ERIC Educational Resources Information Center

    Parkes, Jay; Abercrombie, Sara; McCarty, Teresita

    2013-01-01

    The feedback sandwich technique-make positive comments; provide critique; end with positive comments-is commonly recommended to feedback givers despite scant evidence of its efficacy. These two studies (N = 20; N = 350) of written peer feedback with third-year medical students on clinical patient note-writing assignments indicate that students…

  18. Buckling prediction of panels using the vibration correlation technique

    NASA Astrophysics Data System (ADS)

    Abramovich, H.; Govich, D.; Grunwald, A.

    2015-10-01

    The Vibration Correlation Technique (VCT) for experimentally nondestructive determination of buckling loads of thin-walled structures is applied to stringer stiffened curved panels manufactured both from aluminum and laminated composite material. The modal behavior of the panels is investigated by exciting the structures using the modal hammer method. Natural frequencies of the panels are recorded as a function of the applied axial compression load. Unlike shell structures which present a non-stable post-buckling behavior, the stringer stiffened panels show a stable post-buckling behavior, enabling the measurement of the natural frequencies up to the actual experimental buckling load. The modal behavior of compressed panels is compared for reference to shells, yielding areas of applicability for VCT to predict efficiently the buckling loads of thin-walled structures. Guidelines are then formulated for the application of the VCT.

  19. Large Deformation Behavior of Long Shallow Cylindrical Composite Panels

    NASA Technical Reports Server (NTRS)

    Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.

    1991-01-01

    An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.

  20. Cooled Panel With Thermostats In All Passages

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Kelly, H. Neale

    1994-01-01

    Simple shape-memory-alloy or bimaterial thermostatic valve incorporated in each passage of multiple-passage cooled panel, according to proposal. Thermostatic valves all set to same opening/closing temperature, so they regulate flows in all passages to equalize or nearly equalize temperature across panel in presence of transient, nonuniform surface heating. Concept beneficial in application in which overheating causes damage and both overcooling and excessive circulation of coolant occurs in absence of regulation if cooling capacity of panel made large enough to handle peak heat load. Potential applications include cooled structures for advanced hypersonic aircraft and engines.

  1. Piezoactuation of sandwich plates with viscoelastic cores

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wereley, Norman M.

    1999-06-01

    Experimental and analytical validations of a Galerkin analysis of sandwich plates is presented in this paper. The 3-layered sandwich plate specimen consists of isotropic face-plates with surface bonded piezo-electric patch actuators, and a viscoelastic core. The experimental validation is conducted by testing sandwiched plates that are 67.31 cm (26.5') long, 52.07 cm (20.5') wide and nominally 0.16 cm (1/16') thick. The analysis includes the membrane and transverse energies in the face plates, and shear energies in the core. The shear modulus of the dissipative core is assumed to be complex and variant with frequency and temperature. The Golla-Hughes-McTavish (GHM) method is used to account for the frequency dependent properties of the viscoelastic core. Experiments have been conducted on sandwich plates with aluminum face-plates under clamped boundary conditions to validate the model for isotropic face-plates. Symmetric and asymmetric sandwiches have been tested. The maximum error in damped natural frequency predictions obtained via the assumed modes solutions is less than 11%. Analytical studies on the influence of the number of assumed modes in the Galerkin approximation, and the temperature variation, have been conducted. Error in the first plate bending mode is 112% when only a single in-plane mode is used; error reduces to 3.95% as the number of in-plane modes is increased to 25 in each of the in-plane directions. The study on the temperature influence shows that every plate mode has a corresponding temperature, wherein the loss factor is maximized.

  2. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  3. Characterization, Modeling, and Failure Analysis of Composite Structure Materials under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Werner, Brian Thomas

    Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential

  4. Pressure Testing of a Minimum Gauge PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.

    2011-01-01

    Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.

  5. Buckling Design and Analysis of a Payload Fairing One-Sixth Cylindrical Arc-Segment Panel

    NASA Technical Reports Server (NTRS)

    Kosareo, Daniel N.; Oliver, Stanley T.; Bednarcyk, Brett A.

    2013-01-01

    Design and analysis results are reported for a panel that is a 16th arc-segment of a full 33-ft diameter cylindrical barrel section of a payload fairing structure. Six such panels could be used to construct the fairing barrel, and, as such, compression buckling testing of a 16th arc-segment panel would serve as a validation test of the buckling analyses used to design the fairing panels. In this report, linear and nonlinear buckling analyses have been performed using finite element software for 16th arc-segment panels composed of aluminum honeycomb core with graphiteepoxy composite facesheets and an alternative fiber reinforced foam (FRF) composite sandwich design. The cross sections of both concepts were sized to represent realistic Space Launch Systems (SLS) Payload Fairing panels. Based on shell-based linear buckling analyses, smaller, more manageable buckling test panel dimensions were determined such that the panel would still be expected to buckle with a circumferential (as opposed to column-like) mode with significant separation between the first and second buckling modes. More detailed nonlinear buckling analyses were then conducted for honeycomb panels of various sizes using both Abaqus and ANSYS finite element codes, and for the smaller size panel, a solid-based finite element analysis was conducted. Finally, for the smaller size FRF panel, nonlinear buckling analysis was performed wherein geometric imperfections measured from an actual manufactured FRF were included. It was found that the measured imperfection did not significantly affect the panel's predicted buckling response

  6. Hypersonic panel flutter in a rarefied atmosphere

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1993-01-01

    Panel flutter is a form of dynamic aeroelastic instability resulting from the interaction between motion of an aircraft structural panel and the aerodynamic loads exerted on that panel by air flowing past one of the faces. It differs from lifting surface flutter in the sense that it is not usually catastrophic, the panel's motion being limited by nonlinear membrane stresses produced by the transverse displacement. Above some critical airflow condition, the linear instability grows to a limit cycle . The present investigation studies panel flutter in an aerodynamic regime known as 'free molecule flow', wherein intermolecular collisions can be neglected and loads are caused by interactions between individual molecules and the bounding surface. After collision with the panel, molecules may be reflected specularly or reemitted in diffuse fashion. Two parameters characterize this process: the 'momentum accommodation coefficient', which is the fraction of the specularly reflected molecules; and the ratio between the panel temperature and that of the free airstream. This model is relevant to the case of hypersonic flight vehicles traveling at very high altitudes and especially for panels oriented parallel to the airstream or in the vehicle's lee. Under these conditions the aerodynamic shear stress turns out to be considerably larger than the surface pressures, and shear effects must be included in the model. This is accomplished by means of distributed longitudinal and bending loads. The former can cause the panel to buckle. In the example of a simply-supported panel, it turns out that the second mode of free vibration tends to dominate the flutter solution, which is carried out by a Galerkin analysis. Several parametric studies are presented. They include the effects of (1) temperature ratio; (2) momentum accommodation coefficient; (3) spring parameters, which are associated with how the panel is connected to adjacent structures; (4) a parameter which relates compressive

  7. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  8. Shear buckling analysis of a hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1994-01-01

    A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local buckling and global buckling were analyzed. The global shear buckling load was found to be several times higher than the local shear buckling load. The classical shear buckling theory for a flat plate was found to be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear buckling loads thus obtained compare favorably with the results of finite element analysis.

  9. Hepatitis virus panel

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  10. Mechanical analysis of confectioning flaw of refractory alloy honeycomb sandwich structure

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Kong, Xianghao; Shi, Liping; Li, Mingwei

    2009-03-01

    Thermal protection system is one of the key technology of reusable launch vehicle (RLV). After C/C and ceramic-matrix composite used in space orbiter, one new-typed thermal protection systems (TPS)-ARMOR TPS is coming forth. ARMOR TPS is means adaptable, robust, metallic, operable, reusable TPS. The ARMOR TPS has many advantages, for example: fixing easily, longer life, good properties, short time of maintenance and service. The ARMOR TPS is one of important candidate structure of RLV. ARMOR thermal protection system in foreign countries for reusable launch vehicle is used instead of the traditional ceramic-matrix composite thermal protection system and C/C thermal protection system. Also the constituent feature of ARMOR thermal protection system is much better than the traditional TPS. In comparison with traditional TPS, the ARMOR TPS will be the best selection for all kinds of RLV. So the ARMOR thermal protection system will be used in aviation and spaceflight field more and more widely because of its much better performance. ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. The metal honeycomb sandwich structure is made using the technique of the whole braze welding. In the course of the vacuum high temperature braze welding, its surface will appear concave. The reasons which lead to the shortage are summarized and discussed. The difference of thermal expansion coefficient and pressure between the core and the panels may be the chief reasons. This paper will analyze the mechanics behavior of metal honeycomb sandwich structure in the course of the vacuum high temperature braze welding, then make sure the reasons and get a way to solve it. Haynes214 is a good material of face sheet at present. γ - TiAl and

  11. Thermographic Inspection of Metallic Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Taylor, John O.; Dupont, H. M.

    1998-01-01

    The X-33/VentureStar has a Thermal Protection System (TPS) consisting mainly of brazed metallic honeycomb sandwich structures. Inspection of these structures is changing as a result of the extremely thin (less than 200 microns) skins, the small critical defect size (less than 2 mm long by 100 microns wide) and the large number (more than 1000) of parts to be inspected. Pulsed Infrared Thermography has been determined to be the most appropriate inspection method for manufacturing inspection based on performance comparison with other methods, cost, schedule and other factors. The results of the assessment of the different methods will be summarized and data on the performance of the final production inspection system will be given. Finite difference thermal methods have been used to model the whole inspection process. Details of correlation between the models and experimental data will be given and data on the use of pulsed infrared thermography on other metallic honeycomb sandwich structures will be given.

  12. Compressive buckling analysis of hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Buckling analysis was performed on a hat-stiffened panel subjected to uniaxial compression. Both local buckling and global buckling were analyzed. It was found that the global buckling load was several times higher than the buckling load. The predicted local buckling loads compared favorably with both experimental data and finite-element analysis.

  13. A novel 3D sandwich structure of hybrid graphite nanosheets and silver nanowires as fillers for improved thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Zhou, Yongcun; Liu, Feng

    2017-01-01

    We explored a novel 3D sandwich structure of fillers in the polymer matrix to enhance thermal conductivity. A variety of fillers in the polymer matrix play a significant role in the physical properties of the composite. Fillers containing particle and line structures are popular, and enhance the thermal and electrical conductivities. Therefore, filler-based matrix network improves conductivity. We propose a sandwich structure consisting of hybrid graphite nanosheets (two dimensions), and silver nanowires (AgNWs) (one dimension), to create a 3D sandwich structure of polyimide matrix with improved thermal conductivity. Surface treatment of graphite and silver nanowires were conducted to reduce the dielectric constant of the composite. We designed the filler of 20 wt% resulting in a high thermal conductivity of 3.21 W m‑1 K‑1 with 15% C@SiO2 and 5% AgNWs@SiO2 filler loading. The novel combination and structure markedly enhanced the thermal conductivity of the composite.

  14. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  15. On the Rigidity in Bending of a Sandwich with Thick CFRP Facings and Thin Soft Core

    NASA Astrophysics Data System (ADS)

    Caprino, G.; Iaccarino, P.; Langella, A.; Lamboglia, A.

    2009-06-01

    Flexure tests in three-point bending were performed in the elastic domain on sandwich specimens whose facings were made of T800H/3900-2 laminates, and the core by a soft rubbery layer. The contribution of the shear and flexural deformations to the overall deflection was varied by varying the slenderness ratio. The rigidities yielded by the load-displacement curve were corrected for the indentation occurring at the points of load introduction, using an experimentally determined calibration curve. Due to the thinness of the sandwich, indentation negligibly affected the precision of the results, with the apparent rigidities differing from the actual ones by less than 2%. By an analytical formula previously developed for sandwich structures, a prediction of the rigidities in flexure was attempted, adopting elastic constants available in the literature. The correlation with the data points was poor, with the theoretical results largely overestimating the actual rigidities. However, the reliability of the closed-form formula was supported by finite element analysis, carried out modelling the facings by 2D plate elements, and the core by 3D brick elements. Through the formula, the core shear modulus was individuated as responsible of the discrepancies observed. Assuming a suitable value for this parameter, both the analytic solution and the finite element models were able to match with accuracy the rigidities measured.

  16. An enriched 1D finite element for the buckling analysis of sandwich beam-columns

    NASA Astrophysics Data System (ADS)

    Sad Saoud, Kahina; Le Grognec, Philippe

    2016-06-01

    Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

  17. Self-healing sandwich composite structures

    NASA Astrophysics Data System (ADS)

    Fugon, D.; Chen, C.; Peters, K.

    2012-04-01

    Previous research demonstrated that a thin self-healing layer is effective in recovering partial sandwich composite performance after an impact event. Many studies have been conducted that show the possibility of using Fiber Bragg Grating (FBG) sensors to monitor the cure of a resin through strain and temperature monitoring. For this experiment, FBG sensors were used to monitor the curing process of a self-healing layer within a twelve-layer fiberglass laminate after impact. First, five self-healing sandwich composite specimens were manufactured. FBG sensors were embedded between the fiberglass and foam core. Then the fiberglass laminate was impacted with the use of a drop tower and the curing process was monitored. The collected data was used to compare the cure of the resin and fiberglass alone to the cure of the resin from a self-healing specimen. For the low viscosity resin system tested, these changes were not sufficiently large to identify different polymerization states in the resin as it cured. These results indicate that applying different resin systems might increase the efficiency of the self-healing in the sandwich composites.

  18. Comprehensive metabolic panel

    MedlinePlus

    Metabolic panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... McPherson RA, Pincus MR. Disease/organ panels. McPherson RA, ... . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:appendix 7.

  19. Reinforced Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Akutagawa, Wesley; Wang, Taylor G.; Barber, Dan

    1989-01-01

    New honeycomb panel structure has increased strength and stiffness with little increase in weight. Some or all of walls of honeycomb cells reinforced with honeycomb panels having smaller cells, lightweight foam, or other reinforcing material. Strong, lightweight reinforced panels used in aircraft, car and truck bodies, cabinets for equipment and appliances, and buildings.

  20. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  1. Integrated Structural/Acoustic Modeling of Heterogeneous Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett, A.; Aboudi, Jacob; Arnold, Steven, M.; Pennline, James, A.

    2012-01-01

    A model for the dynamic response of heterogeneous media is presented. A given medium is discretized into a number of subvolumes, each of which may contain an elastic anisotropic material, void, or fluid, and time-dependent boundary conditions are applied to simulate impact or incident pressure waves. The full time-dependent displacement and stress response throughout the medium is then determined via an explicit solution procedure. The model is applied to simulate the coupled structural/acoustic response of foam core sandwich panels as well as aluminum panels with foam inserts. Emphasis is placed on the acoustic absorption performance of the panels versus weight and the effects of the arrangement of the materials and incident wave frequency.

  2. A general panel sizing computer code and its application to composite structural panels

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Stroud, W. J.

    1978-01-01

    A computer code for obtaining the dimensions of optimum (least mass) stiffened composite structural panels is described. The procedure, which is based on nonlinear mathematical programming and a rigorous buckling analysis, is applicable to general cross sections under general loading conditions causing buckling. A simplified method of accounting for bow-type imperfections is also included. Design studies in the form of structural efficiency charts for axial compression loading are made with the code for blade and hat stiffened panels. The effects on panel mass of imperfections, material strength limitations, and panel stiffness requirements are also examined. Comparisons with previously published experimental data show that accounting for imperfections improves correlation between theory and experiment.

  3. Buckling of eccentrically stringer-stiffened cylindrical panels under axial compression

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Agarwal, B. L.

    1976-01-01

    The paper presents numerical results, based on Donnell shell theory, for the axial compressive buckling loads for eccentrically stringer-stiffened circular cylindrical panels, in a study of the effect of boundary conditions and panel width on the buckling load. The two cases of inside and outside stiffeners were considered. The complete cylinder buckling load was reached only for panels under classical simply supported boundary conditions. The prevention of circumferential displacement is found to be the most important in-plane boundary condition from the point of view of increasing the buckling load. Clamping is found more effective in increasing the buckling loads of panels with free circumferential edge displacement than of panels with zero edge displacement. When panel width is equal to or greater than 180 deg, the panel buckling loads are within 10% of the complete cylinder load for all cases except one simply supported panel with outside stringers. Buckling loads were higher for outside stringers, except for very narrow panels that are restrained against circumferential edge displacement. Eccentricity effects are generally similar for clamped and simply supported panels with the same in-plane boundary conditions.

  4. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    NASA Astrophysics Data System (ADS)

    Setyawan, Paryanto Dwi; Sugiman, Saputra, Yudhi

    2016-03-01

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  5. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals

    NASA Astrophysics Data System (ADS)

    Mustapha, Samir; Ye, Lin; Dong, Xingjian; Alamdari, Mehrisadat Makki

    2016-08-01

    Barely visible indentation damage after quasi-static indentation in sandwich CF/EP composites was assessed using ultrasonic guided wave signals. Finite element analyses were conducted to investigate the interaction between guided waves and damage, further to assist in the selection process of the Lamb wave sensitive modes for debonding identification. Composite sandwich beams and panels structures were investigated. Using the beam structure, a damage index was defined based on the change in the peak magnitude of the captured wave signals before and after the indentation, and the damage index was correlated with the residual deformation (defined as the depth of the dent), that was further correlated with the amount of crushing within the core. Both A0 and S0 Lamb wave modes showed high sensitivity to the presence of barely visible indentation damage with residual deformation of 0.2 mm. Furthermore, barely visible indentation damage was assessed in composite sandwich panels after indenting to 3 and 5 mm, and the damage index was defined, based on (a) the peak magnitude of the wave signals before and after indentation or (b) the mismatch between the original and reconstructed wave signals based on a time-reversal algorithm, and was subsequently applied to locate the position of indentation.

  6. 20-kW solar photovoltaic flat-panel power system for an uninterruptible power-system load in El Paso, Texas. Phase II. System fabrication. Final report October 1, 1979-May 31, 1981

    SciTech Connect

    Risser, V.V.

    1981-12-01

    The system plans, construction, integration and test, and performance evaluation are discussed for the photovoltaic power supply at the Newman Power Station in El Paso, Texas. The system consists of 64 parallel-connected panels, each panel containing nine series-connected photovoltaic modules. The system is connected, through power monitoring equipment, to an existing DC bus that supplies uninterruptible power to a computer that controls the power generating equipment. The site is described and possible environmental hazards are assessed. Site preparation and the installation of the photovoltaic panels, electrical cabling, and instrumentation subsystems are described. System testing includes initial system checkout, module performance test, control system test. A training program for operators and maintenance personnel is briefly described, including visual aids. Performance data collection and analysis are described, and actual data are compared with a computer simulation. System drawings are included. (LEW)

  7. Safety Panel Resources

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2008-01-01

    The goal of this paper is to explore what resources are potentially available to safety panels and to provide some guidance on how to utilize those resources. While the examples used in this paper will concentrate on the Flight Equipment and Reliability Review Panel (FESRRP) and Extravehicular Activity (EVA) hardware that have come through that panel, as well as resources at Johnson Space Center, the paper will address how this applies to safety panels in general, and where possible cite examples for other safety panels.

  8. Utilization of localized panel resonant behavior in wind turbine blades.

    SciTech Connect

    Griffith, Daniel Todd

    2010-11-01

    The shear webs and laminates of core panels of wind turbine blades must be designed to avoid panel buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static loading of a blade to failure under a simulated extreme loading condition. This paper examines an alternative means for evaluating blade buckling resistance using non-destructive modal tests or FEA. In addition, panel resonances can be utilized for structural health monitoring by observing changes in the modal parameters of these panel resonances, which are only active in a portion of the blade that is susceptible to failure. Additionally, panel resonances are considered for updating of panel laminate model parameters by correlation with test data. During blade modal tests conducted at Sandia Labs, a series of panel modes with increasing complexity was observed. This paper reports on the findings of these tests, describes potential ways to utilize panel resonances for blade evaluation, health monitoring, and design, and reports recent numerical results to evaluate panel resonances for use in blade structural health assessment.

  9. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  10. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  11. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  12. Interactive optical panel

    DOEpatents

    Veligdan, James T.

    1995-10-03

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  13. Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    NASA Technical Reports Server (NTRS)

    Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2012-01-01

    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.

  14. Development of lightweight, fire-retardant, low-smoke, high-strength, thermally stable aircraft floor paneling

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Ougland, R. M.; Karch, R. J.

    1978-01-01

    Extensive fire resistance and mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesive to Nomex honeycomb and foam core. The test results were used to select a combination of materials that would improve the fire safety of the airplane without sacrificing mechanical performance of the aircraft floor panels. A test panel is being service evaluated in a commercial aircraft.

  15. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sandwich immunoassay (sIA) is an invaluable technique for concentrating, detecting, and quantifying target antigens. The two critical components required are a capture antibody and a detection antibody, each binding a different epitope on the target antigen. The specific antibodies incorporated...

  16. Development of the LANL sandwich test.

    SciTech Connect

    Hill, L. G.

    2001-01-01

    The Sandwich test is slab-variant of the ubiquitous copper cylinder test, and is used to obtain high explosive product equation-of-state information in the same manner as its predecessor. The motivation for slab geometry is (1) better high-pressure resolution, and (2) the ability to accommodate initial temperature extremes for solid explosive samples. The present design allows initial temperatures from -55 C to 75 C. The pros and cons of the two geometries we discussed, followed by a description of the mechanical design and instrumentation. gample data for several ambient PBX 9501 tests demonstrates excellent data quality and repeatability.

  17. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  18. Titanium honeycomb panel testing

    NASA Astrophysics Data System (ADS)

    Richards, W. L.; Thompson, Randolph C.

    The paper describes the procedures of thermal mechanical tests carried out at the NASA Dryden Flight Research Facility on two tianium honeycomb wing panels bonded using liquid interface diffusion (LID) technique, and presents the results of these tests. The 58.4 cm square panels consisted of two 0.152-cm-thick Ti 6-2-4-2 face sheets LID-bonded to a 1.9-cm-thick honeycomb core, with bearing plates fastened to the perimeter of the upper and the lower panel surfaces. The panels were instrumented with sensors for measuring surface temperature, strain, and deflections to 315 C and 482 C. Thermal stress levels representative of those encountered during aerodynamic heating were produced by heating the upper panel surface and restraining all four edges. After more than 100 thermal cycles from room temperature to 315 C and 50 cycles from room temperature to 482 C, no significant structural degradation was detected in the panels.

  19. Fixture for environmental exposure of structural materials under compression load

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Lisagor, W. B. (Inventor)

    1983-01-01

    A device for stressing a deformable material specimen consists of top plate and a bottom plate sandwiching a guide cylinder. The specimen is positioned on the bottom plate and attached to a load piston. Force is applied through the top plate into the guide cylinder. Once the specimen is loaded, the stress is maintained by tightening tie bolt nuts.

  20. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  1. PANEL LIBRARY AND EDITOR

    NASA Technical Reports Server (NTRS)

    Raible, E.

    1994-01-01

    The Panel Library and Editor is a graphical user interface (GUI) builder for the Silicon Graphics IRIS workstation family. The toolkit creates "widgets" which can be manipulated by the user. Its appearance is similar to that of the X-Windows System. The Panel Library is written in C and is used by programmers writing user-friendly mouse-driven applications for the IRIS. GUIs built using the Panel Library consist of "actuators" and "panels." Actuators are buttons, dials, sliders, or other mouse-driven symbols. Panels are groups of actuators that occupy separate windows on the IRIS workstation. The application user can alter variables in the graphics program, or fire off functions with a click on a button. The evolution of data values can be tracked with meters and strip charts, and dialog boxes with text processing can be built. Panels can be stored as icons when not in use. The Panel Editor is a program used to interactively create and test panel library interfaces in a simple and efficient way. The Panel Editor itself uses a panel library interface, so all actions are mouse driven. Extensive context-sensitive on-line help is provided. Programmers can graphically create and test the user interface without writing a single line of code. Once an interface is judged satisfactory, the Panel Editor will dump it out as a file of C code that can be used in an application. The Panel Library (v9.8) and Editor (v1.1) are written in C-Language (63%) and Scheme, a dialect of LISP, (37%) for Silicon Graphics 4D series workstations running IRIX 3.2 or higher. Approximately 10Mb of disk space is required once compiled. 1.5Mb of main memory is required to execute the panel editor. This program is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format for an IRIS, and includes a copy of XScheme, the public-domain Scheme interpreter used by the Panel Editor. The Panel Library Programmer's Manual is included on the distribution media. The Panel Library and

  2. Solar reflection panels

    DOEpatents

    Diver, Jr., Richard B.; Grossman, James W.; Reshetnik, Michael

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  3. Buckling characteristics of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Shideler, John L.; Fields, Roger A.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.

  4. Harvesting energy from the sun---photovoltaic panel apparatus

    NASA Astrophysics Data System (ADS)

    Riccio, David; Schier, Walter

    2011-04-01

    Two 11 cm x 18 cm photovoltaic panels are mounted on a modified ballistic pendulum apparatus that was retired from service in our labs. Its heavy base with pivoted arm provides a stable mount with angle adjustment. Residential PV panel installations group the panels both in series and in parallel, extract maximum power from these groupings, and deal with varying intensity due to changing light conditions. Measurements in the undergraduate lab with a bare light bulb simultaneously provide characteristic graphs of current vs voltage, power vs voltage, load resistance vs voltage for PV panels singly, in series, or in parallel. Also intensity dependence on angle and on distance to the light source are studied in the lab. A custom junction box with a variable load resistor connects the PV panels to PASCO's interface box with voltage and current leads. PASCO's Data Studio is used to record and analyze the graphs.

  5. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  6. Cherenkov radiation by Josephson vortex travelling in the long sandwich

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2009-03-01

    Vortex motion in the long Josephson sandwich embedded in dielectric media is described. It is shown that vortices traveling with velocities greater than the speed of light in the dielectric generate electromagnetic waves. Appearance of radiation is due to Cherenkov phenomenon. Radiation appearing at rather high vortex velocities has high enough frequencies. For typical sandwiches radiation frequencies fall on THz domain.

  7. Investigation of Orbital Debris Impacts on Shuttle Radiator Panels

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.; Lyons, Frankel; Herrin, Jason H.; Ryan, Shannon J.

    2009-01-01

    This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile

  8. Outbrief - Long Life Rocket Engine Panel

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2004-01-01

    This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.

  9. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  10. Refined Zigzag Theory for Laminated Composite and Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco

    2009-01-01

    A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.

  11. Static stability of a viscoelastically supported asymmetric sandwich beam with thermal gradient

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Bisoi, A.; Dash, P. R.; Pradhan, P. K.

    2014-09-01

    The static stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load and a steady, one-dimensional temperature gradient is investigated by computational method. The equations of motion and associated boundary conditions are obtained using the Hamilton's energy principle. Then, these equations of motion and the associated boundary conditions are non-dimensionalised. A set of Hill's equations is obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The static buckling loads are obtained from the Hill's equations. The effects of shear parameter, geometric parameters, core loss factors, and thermal gradient on the non-dimensional static buckling loads zones have been investigated.

  12. Weight comparisons of optimized stiffened, unstiffened, and sandwich cylindrical shells made from composite or aluminum materials

    NASA Technical Reports Server (NTRS)

    Agarwal, B. L.; Sobel, L. H.

    1976-01-01

    This work presents optimum designs for unstiffened, hat stringer-stiffened and honeycomb sandwich cylinders under axial compression. Optimization results for graphite-epoxy cylinders show about a 50 percent weight savings over corresponding optimized aluminum cylinders for a wide loading range. The inclusion of minimum gage considerations results in a significant weight penalty, especially for a lightly loaded cylinder. Effects of employing a smeared stiffener buckling theory in the optimization program are investigated through comparison of results obtained from a more accurate branched shell buckling computer code. It was found that the stiffener cross-sectional deformations, which are usually ignored in smeared stiffener theory, result in about a 30 percent lower buckling load for the graphite-epoxy hat stiffened cylinder.

  13. Compression strengths of advanced composites from a novel mini-sandwich beam

    SciTech Connect

    Crasto, A.S.; Kim, R.Y. )

    1991-04-01

    The intrinsic compression strength of advanced composites is difficult to measure, as the results often depend on the loading geometry and test conditions. Slight variations in specimen geometry can result in an eccentricity of the applied load with consequent specimen buckling. Complex test fixtures and specimen geometries have therefore been developed to avoid such premature failure under compressive loading. In spite of this, there is a large variation in reported strengths for some composites (notably those of intermediate-modulus carbon fibers), and failure strains are also significantly lower than those of the individual filaments. To better approximate the intrinsic composite compressive strength, a novel symmetric mini-sandwich beam was designed for testing. The beam has a composite skin (of variable thickness) on both sides of a neat resin core (of same material as the composite matrix). Unidirectional mini-sandwich specimens of AS4 and S-glass fibers in an epoxy matrix and AS4 in a PEEK matrix were tested in direct axial compression and four-point flexure. Failure occurred predominantly in the specimen gage section, at composite stresses and strains substantially higher than observed in corresponding tests on all composite-coupons. This paper discusses the fabrication and testing of these beams and analyzes the resulting compressive data and failure modes.

  14. Stereoscopic Flat Panel Display

    DTIC Science & Technology

    2004-12-01

    the display of stereo imagery have been demonstrated. Stereoscopic displays typically require the user to wear special headgear. Autostereoscopic ...components and the resulting changes in the encoding algorithm. Keywords: Stereoscopic display, LCD, 3D , polarization encoding, flat panel 1...panel display when viewing non-stereoscopic imagery or data. Remotely operated vehicles do not represent the only potential application for 3D

  15. Flexible optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

  16. SNP panels/Imputation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Participants from thirteen countries discussed services that Interbull can perform or recommendations that Interbull can make to promote harmonization and assist member countries in improving their genomic evaluations in regard to SNP panels and imputation. The panel recommended: A mechanism to shar...

  17. New mineral physics panels

    NASA Astrophysics Data System (ADS)

    The AGU Committee on Mineral Physics has formed itself into six panels. The committee chairman is Orson L. Anderson of the Department of Earth and Space Sciences, University of California, Los Angeles; foreign secretary is Robert Liebermann, Department of Earth and Space Sciences, State University of New York, Stony Brook. The six panels are as follows.

  18. Reinventing the solar panel

    SciTech Connect

    Scanlon, M.

    1995-08-01

    This article discusses new technology in solar panels. PowerSource is a solar collector which not only is less expensive than conventional panels to purchase and install, but also increases the electrical output by almost 20%. This article describes the results of testing this system.

  19. Aerosol Deposition and Solar Panel Performance

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  20. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  1. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  3. Selective Reinforcement to Enhance the Structural Performance of Metallic Compression Panels

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2004-01-01

    An experimental and analytical investigation of the influence of selective reinforcement on metallic panels with cutouts was conducted. Selective reinforcement was shown to be a weight effective concept for increasing structural performance of panels with cutouts designed to carry loads into the post-buckled regime. For instance, a selectively reinforced aluminum panel under shear load exhibited a 68 percent increase in specific-buckling load as compared to a geometrically comparable unreinforced aluminum panel. In comparison, a quasi-isotropic carbon-fiber-reinforced-polymer composite panel only produced a 45 percent higher specific-buckling load than the same unreinforced aluminum panel. Selective reinforcement offers the potential to tailor structural response through local strengthening and stiffening the structure for a broad range of structural application.

  4. Panel 5: Microbiology and Immunology Panel

    PubMed Central

    Murphy, Timothy F.; Chonmaitree, Tasnee; Barenkamp, Stephen; Kyd, Jennelle; Nokso-Koivisto, Johanna; Patel, Janak A.; Heikkinen, Terho; Yamanaka, Noboru; Ogra, Pearay; Swords, W. Edward; Sih, Tania; Pettigrew, Melinda M.

    2014-01-01

    Objective The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. Conclusion Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. Implications for Practice The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media. PMID:23536533

  5. Investigation of the Behavior of Thin-Walled Panels with Cutouts

    NASA Technical Reports Server (NTRS)

    Podorozhny, A. A.

    1946-01-01

    The present paper deals with the computation and methods of reinforcement of stiffened panels with cutouts under bending loads such as are applied to the sides of a fuselage. A comparison is maade between the computed and test results. Results are presented of tests on panels with cutouts under tensile and compressive loads.

  6. Design Methodology and Life Analysis of Postbuckled Metal and Composite Panels. Volume 1

    DTIC Science & Technology

    1985-12-01

    long fatigue lives at panel design limit load. In these designs, the panels were prevented from buckling during the level flight condition of a ...design of postbuckled panels where the operating strain levels are of the order of 2500-3500 pin/in. As a design tool, the semiempirical method- ology is...Figure 2.4. Therefore, composite compres- sion panel fatigue does not appear to be a concern in the 2500-3500 pin/in operating strain level typically

  7. Make Your Own Solar Panel.

    ERIC Educational Resources Information Center

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  8. Panel Flutter Constraints: Analytic Sensitivities and Approximations Including Planform Shape Design Variables

    NASA Technical Reports Server (NTRS)

    Livne, Eli; Mineau, David

    1997-01-01

    Analytical sensitivities of panel flutter constraints with respect to panel shape as well as thickness and material properties are derived and numerically tested. Cases of fixed in-plane loads and cases in which in-plane loads are variable (depending on panel and overall wing shape as well as material and sizing design variables) are considered. Accuracy of approximations and range of move limits required are studied in preparation for integration with nonlinear programming/approximation concept aeroelastic design synthesis methodology.

  9. "Inverse Sandwich" Complexes of Perhalogenated Cyclohexasilane

    SciTech Connect

    Dai, Xuliang; Shulz, Douglas; Braun, Christopher; Ugrinov, Angel; and Boudjouk, Philip

    2010-04-20

    Perhalogenated cyclohexasilanes, Si6X12 (X = Cl, Br), were prepared by reaction of Si6H12 with molecular chlorine or bromine in cold (-89 °C) dichloromethane. Single-crystal structural determination by X-ray analysis shows that the six silicon atoms comprising Si6Br12 adopt a chair conformation in the solid state. The addition of p-tolunitrile to Si6X12 (X = Cl, Br) leads to the rapid formation of colorless precipitates. Si6Br12 3 2(p-CH3C6H4CN) adopts an 'inverse sandwich' structure where the N atoms of the p-tolunitrile molecules are μ6 bonded and are located above and below the planar hexagonal Si6 ring. In conclusion, Si6X12 (X = Cl, Br) was synthesized by molecular halogenation of Si6H12 in high yield and good purity. Perhalogenated cyclohexasilanes react with p-tolunitrile to give 'inverse sandwich' adducts 3 and 4 with a planar Si6 ring upon coordination. Our future reports will detail dianionic adducts based on tetra-n-butylammonium halides as well as a monoanionic adamantyl azide adduct of Si6Cl12. It is straightforward to conceptualize the utility of Si6X12 ∙ Ln chemistry in molecular assembly of silicon-based clusters/tubes/wires. Thereby, we proffer that this constitutes a new landscape in Si chemistry.

  10. Flutter Research on Skin Panels

    NASA Technical Reports Server (NTRS)

    Kordes, Eldon E.; Tuovila, Weimer J.; Guy, Lawrence D.

    1960-01-01

    Representative experimental results are presented to show the current status of the panel flutter problem. Results are presented for unstiffened rectangular panels and for rectangular panels stiffened by corrugated backing. Flutter boundaries are established for all types of panels when considered on the basis of equivalent isotropic plates. The effects of Mach number, differential pressure, and aerodynamic heating on panel flutter are discussed. A flutter analysis of orthotropic panels is presented in the appendix.

  11. Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shengbing; Wang, Gang; Song, Yubao

    2016-12-01

    Piezoelectric shunting arrays are proposed to isolate low-frequency vibrations transmitted in sandwich plates. The performance is characterized through application of finite element method. The numerical result shows that a complete band gap, whose width is about 20 Hz, is produced in the desired low-frequency ranges. The band gap is induced by local resonances of the shunting circuits, whose location is strongly related to the inductance, while the resistance can broaden the band gap to some extent. Vibration experiments are conducted on a 1200 × 1000 × 15 mm aluminum honeycomb plate with two arrays of 5 × 5 shunted piezoelectric patches bonded on the surface panels. Significant attenuation is found in the experimental results, which agree well with the theoretical predictions. Consequently, the proposed idea is feasible and effective.

  12. Structural Performance of Aluminum and Stainless Steel Pyramidal Truss Core Sandwich Panels

    DTIC Science & Technology

    2009-07-01

    condition. The stainless steel core and facesheet components were vacuum brazed after the facesheets were sprayed with braze alloy Nicrobraz* 51 (Ni-25Cr...including brazing and laser spot welding. Typically, austenitic stainless steel (10–11) and age-hardenable aluminum alloys (12) have been used to...periodic cores have been described (3, 4). Initial efforts utilized investment casting of high-fluidity, nonferrous casting alloys (5–9). However

  13. Design Optimization and Testing of an Active Core for Sandwich Panels

    DTIC Science & Technology

    2009-07-01

    decided to employ servo motors as the actuator in this prototype test rather than using Nitinol spring actuators in the previous report. The servo...motors – although heavier than the Nitinol actuators, have several attractive attributes. Firstly servo motors have excellent respond time given they...are completely electrically actuated, whereas in the case of Nitinol actuators the actuation suffers a lag period for the Joule’s heating to take

  14. Doubly Curved Composite Sandwich Panels for Hybrid Composite/Metal Ship Structures

    DTIC Science & Technology

    2009-08-15

    twill with a surface weight of 298 g/m2, Owens Corning Knytex WR24-5x4 woven roving at 815 g/m , and Owens Corning M-8610 continuous filament mat at...Kilburn. 24. Thermoforming Technical Bulletin, Diab website. 42 25. Owens Corning . Kyntex Woven Rovings Technical Data Sheet. One Owens Corning Parkway

  15. Sound transmission through triple-panel structures lined with poroelastic materials

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  16. Conjoined Cochlear Models:. the Twamp and the Sandwich

    NASA Astrophysics Data System (ADS)

    Hubbard, Allyn

    2009-02-01

    A new model of the cochlea is created by joining parts of the traveling-wave amplifier (TWAMP) and the Sandwich models. The lossy, untuned traveling-wave line of the TWAMP is retained, but the TWAMP's tuned traveling-wave line is replaced by the Sandwich's traveling-wave line that represents the reticular lamina (RL) and scala tympani. The model combines stereocilliary forces, which act between the tectorial membrane (TM) and RL, with somatic outer hair cell forces that power the Sandwich.

  17. Test results from large wing and fuselage panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Voldman, Mike

    1993-01-01

    This paper presents the first results in an assessment of the strength, stiffness, and damage tolerance of stiffened wing and fuselage subcomponents. Under this NASA funded program, 10 large wing and fuselage panels, variously fabricated by automated tow placement and dry-stitched preform/resin transfer molding, are to be tested. The first test of an automated tow placement six-longeron fuselage panel under shear load was completed successfully. Using NASTRAN finite-element analysis the stiffness of the panel in the linear range prior to buckling was predicted within 3.5 percent. A nonlinear analysis predicted the buckling load within 10 percent and final failure load within 6 percent. The first test of a resin transfer molding six-stringer wing panel under compression was also completed. The panel failed unexpectedly in buckling because of inadequate supporting structure. The average strain was 0.43 percent with a line load of 20.3 kips per inch of width. This strain still exceeds the design allowable strains. Also, the stringers did not debond before failure, which is in contrast to the general behavior of unstitched panels.

  18. A novel sandwich-type traveling wave piezoelectric tracked mobile system.

    PubMed

    Wang, Liang; Shu, Chengyou; Zhang, Quan; Jin, Jiamei

    2017-03-01

    In this paper, a novel sandwich-type traveling wave piezoelectric tracked mobile system was proposed, designed, fabricated and experimentally investigated. The proposed system exhibits the advantages of simple structure, high mechanical integration, lack of electromagnetic interference, and lack of lubrication requirement, and hence shows potential application to robotic rovers for planetary exploration. The tracked mobile system is comprised of a sandwich actuating mechanism and a metal track. The actuating mechanism includes a sandwich piezoelectric transducer and two annular parts symmetrically placed at either end of the transducer, while the metal track is tensioned along the outer surfaces of the annular parts. Traveling waves with the same rotational direction are generated in the two annular parts, producing the microscopic elliptical motions of the surface particles on the annular parts. In this situation, if the pre-load is applied properly, the metal track can be driven by friction force to achieve bidirectional movement. At first, the finite element method was adopted to conduct the modal analysis and harmonic response analysis of the actuating mechanism, and the vibration characteristics were measured to confirm the operating principle. Then the optimal driving frequency of the system prototype, namely 35.1kHz, was measured by frequency sensitivity experiments. At last, the mechanical motion characteristics of the prototype were investigated experimentally. The results show that the average motion speeds of the prototype in dual directions were as 72mm/s and 61.5mm/s under the excitation voltage of 500VRMS, respectively. The optimal loading weights of the prototype in bi-directions were 0.32kg and 0.24kg with a maximum speed of 59.5mm/s and 61.67mm/s at the driving voltage of 300VRMS, respectively.

  19. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  20. A new rate-dependent unidirectional composite model - Application to panels subjected to underwater blast

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoding; de Vaucorbeil, Alban; Tran, Phuong; Espinosa, Horacio D.

    2013-06-01

    In this study, we developed a finite element fluid-structure interaction model to understand the deformation and failure mechanisms of both monolithic and sandwich composite panels. A new failure criterion that includes strain-rate effects was formulated and implemented to simulate different damage modes in unidirectional glass fiber/matrix composites. The laminate model uses Hashin's fiber failure criterion and a modified Tsai-Wu matrix failure criterion. The composite moduli are degraded using five damage variables, which are updated in the post-failure regime by means of a linear softening law governed by an energy release criterion. A key feature in the formulation is the distinction between fiber rupture and pull-out by introducing a modified fracture toughness, which varies from a fiber tensile toughness to a matrix tensile toughness as a function of the ratio of longitudinal normal stress to effective shear stress. The delamination between laminas is modeled by a strain-rate sensitive cohesive law. In the case of sandwich panels, core compaction is modeled by a crushable foam plasticity model with volumetric hardening and strain-rate sensitivity. These constitutive descriptions were used to predict deformation histories, fiber/matrix damage patterns, and inter-lamina delamination, for both monolithic and sandwich composite panels subjected to underwater blast. The numerical predictions were compared with experimental observations. We demonstrate that the new rate dependent composite damage model captures the spatial distribution and magnitude of damage significantly more accurately than previously developed models.

  1. The Effect of Metallic TPS Panel Bowing on the Surface Heating of the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Kontinos, Dean; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The thermal protection system of the windward surface of the X-33 vehicle consists of metallic honeycomb sandwich panels. Thermal gradients experienced during the descent phase of the trajectory result in a different rate of thermal expansion between the inner and outer face sheets of the metallic panels. This causes the panels to bow outward when the temperature of the outer face sheet is larger than that of the inner face sheet and inward when the temperature of the outer face sheet is less than that of he inner face sheet. This results in a quilted-type body surface. Using computational fluid dynamic analysis, this study will determine the effect the metallic TPS panel bowing has on the surface heating.

  2. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1975-01-01

    Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.

  3. Hepatic (Liver) Function Panel

    MedlinePlus

    ... related side effects. The hepatic function panel evaluates: Alanine aminotransferase (ALT). This enzyme, found in the liver, ... MORE ON THIS TOPIC Mononucleosis Hepatitis Blood Test: Alanine Aminotransferase (ALT, or SGPT) Blood Test: Aspartate Aminotransferase ( ...

  4. Comprehensive Metabolic Panel

    MedlinePlus

    ... page helpful? Also known as: CMP; Chem 12; Chemistry Panel; Chemistry Screen; SMA 12; SMA 20; SMAC (somewhat outdated ... Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  5. BMP (Basic Metabolic Panel)

    MedlinePlus

    ... Was this page helpful? Also known as: BMP; Chemistry Panel; Chemistry Screen; Chem 7; SMA 7; SMAC7 (somewhat outdated ... Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  6. Blue Ribbon Panel Report

    Cancer.gov

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  7. FIFRA Scientific Advisory Panel

    EPA Pesticide Factsheets

    Experts on the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel provide independent scientific advice to the EPA on a wide range of health and safety issues related to pesticides.

  8. Autoimmune liver disease panel

    MedlinePlus

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider ...

  9. Progressive Failure Analysis of Composite Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.

    2006-01-01

    A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.

  10. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  11. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  12. Pop-Art Panels

    ERIC Educational Resources Information Center

    Alford, Joanna

    2012-01-01

    James Rosenquist's giant Pop-art panels included realistic renderings of well-known contemporary foods and objects, juxtaposed with famous people in the news--largely from the 1960s, '70s and '80s--and really serve as visual time capsules. In this article, eighth-graders focus on the style of James Rosenquist to create their own Pop-art panel that…

  13. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  14. Photovoltaic panel support assembly

    SciTech Connect

    Barker, J.M.; Underwood, J.C.; Shingleton, J.

    1993-07-20

    A solar energy electrical power source is described comprising in combination at least two flat photovoltaic panels disposed side-by-side in co-planar relation with one another, a pivot shaft extending transversely across the panels, at least two supports spaced apart lengthwise of the pivot shaft, means for connecting the pivot shaft to the at least two supports, attachment means for connecting the at least two panels to the pivot shaft so that the panels can pivot about the longitudinal axis of the shaft, coupling means mechanically coupling all of the panels together so as to form a unified flat array, and selectively operable drive means for mechanically pivoting the unified flat array about the axis; wherein each of the flat photovoltaic panels comprises at least two modules each comprising a plurality of electrically interconnected photovoltaic cells, the at least two modules being aligned along a line extending at a right angle to the pivot shaft, and the coupling means comprises (a) an elongate member extending parallel to and spaced from the pivot shaft and (b) means for attaching the elongate member to the panels; and further wherein each flat photovoltaic panel comprises a unitary frame consisting of a pair of end frame members extending parallel to the pivot shaft, a pair of side frame members extending between and connected to the end frame members, and a pair of spaced apart cross frame members, with one of the two modules being embraced by and secured to the side frame members and a first one of each of the end and cross frame members, and the other of the two modules being embraced by and secured to the side frame members and the second one of each of the end and cross frame members, whereby the gap created by the spaced apart cross frame members allow air to pass between them in order to reduce the sail effect when the solar array is subjected to buffeting winds.

  15. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  16. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  17. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Panomsuk, Suwanee; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-11-05

    This study aims to fabricate clotrimazole (CZ)-composite sandwich nanofibers using electrospinning. The CZ-loaded polyvinylpyrrolidone (PVP)/hydroxypropyl-β-cyclodextrin (HPβCD) fiber was coated with chitosan-cysteine (CS-SH)/polyvinyl alcohol (PVA) to increase the mucoadhesive properties and to achieve a sustained release of the drug from the nanofibers. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD). The nanofibers mechanical and mucoadhesive properties, drug release, antifungal activity and cytotoxicity were also assessed. The fibers were in the nanoscale with good mucoadhesive properties. The XRPD revealed a molecular dispersion of amorphous CZ in the nanofibers. The initial fast release of CZ from the nanofibers was achieved. Moreover, the sandwich nanofibers coated for longer times resulted in slower release rates compared with the shorter coating times. The CZ-loaded nanofibers killed the Candida significantly faster than the commercial CZ lozenges at 5, 15 and 30 min and were safe for a 2-h incubation. Therefore, these nanofibers may be promising candidates for the treatment of oral candidiasis.

  18. Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens

    NASA Astrophysics Data System (ADS)

    Shi, Li; Li, Haiyan; Zou, Zhenmin; Fok, Alex S. L.; Marsden, Barry J.; Hodgkins, Andrew; Mummery, Paul M.; Marrow, James

    2008-01-01

    The aim of this paper was to assess the suitability of the sandwiched beam in three-point bending as a technique for determining fracture toughness and R-curve behaviour of nuclear graphite using small beam specimens. Surface displacements of the cracked beam specimen were measured using Electronic Speckle Pattern Interferometry (ESPI) and Image Correlation in order to accurately monitor crack propagation and frictional contact between the test specimen and the sandwiching beams. The results confirmed that solutions based on the simple beam theory could overestimate the fracture toughness of graphite. Finite element analysis using a Continuum Damage Mechanics failure model indicated that both friction and shape of the notch played an important part in providing resistance to crack growth. Inclusion of these factors and the use of more accurate load vs. crack length curves derived from the FE model would provide a satisfactory measure of fracture toughness in small beam specimens under such a loading configuration. The particular graphite tested, IG-110, showed a decrease in fracture toughness with increasing crack length.

  19. A consistent large deflection theory of composite sandwich shells

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfu

    1993-05-01

    Composite sandwich shells are important structures in aeronautical and astronautical industry. The theory, especially nonlinear theory, of them is still required to be advanced so as to meet the demand of engineering application. With Lagrangian description, the consistent Green strain tensor, the compatibility equations and the second Piola-Kirchhoff stress tensor of the composite sandwich shells are obtained. Based on these results and several assumptions, the constitutive equations relating the stress resultants to the strains, the strain energy density and the potential energy functional are further developed. In terms of minimum potential energy principle, the equilibrium equations and associated boundary conditions are obtained, which are consistent with the first order approximation under the conditions of small strain accompanied with moderate/small rotation. In terms of the structural features of the shallow composite sandwich shells, the equations obtained are further processed approximately and Donnel-type equations for the shallow composite sandwich shells are obtained.

  20. Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation

    NASA Astrophysics Data System (ADS)

    Peters, René; Fischer, Daniel F.; Jautze, Sascha

    The unique and readily tunable electronic and spatial characteristics of ferrocenes have been widely exploited in the field of asymmetric catalysis. The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence the catalytic process by electronic interaction with the catalytic site, if the latter is directly connected to the sandwich core. Of increasing importance are also half sandwich complexes in which Fe is acting as a mild Lewis acid. Like ferrocene, half sandwich complexes are often relatively robust and readily accessible. This chapter highlights recent applications of ferrocene and half sandwich complexes in which the Fe center is essential for catalytic applications.

  1. Evaluation of a Highly Anticlastic Panel with Tow Overlaps

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2007-01-01

    A rectangular, variable-stiffness panel with tow overlaps was manufactured using an advanced tow placement machine. The cured panel had large anticlastic imperfections, with measured amplitudes of over two times the average panel thickness. These imperfections were not due to the overall steered-fiber layup or the tow overlaps, but instead resulted from local asymmetries in the laminate that were caused by a manufacturing oversight. In the nominal panel layup, fiber angles vary linearly from 60 degrees on the panel axial centerline to 30 degrees on the parallel edges. A geometrically nonlinear analysis was performed with a -280 degree Fahrenheit thermal load to simulate the postcure cooldown to room temperature. The predicted geometric imperfections correlated well with the measured panel shape. Unique structural test fixtures were then developed which greatly reduced these imperfections, but they also caused prestresses in the panel. Surface imperfections measured after the panel was installed in the test fixtures were used with nonlinear finite element analyses to predict these fixturing-induced prestresses. These prestresses were also included in structural analyses of panel end compression to failure, and the analytical results compared well with test data when both geometric and material nonlinearities were included.

  2. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The development, fabrication, and evaluation of heat pipe thermal conditioning panels are discussed. The panels were designed and fabricated to be compatible with several planned NASA space vehicles, in terms of panel size, capacity, temperature gradients, and integration with various heat exchangers and electronic components. It was satisfactorily demonstrated that the heat pipe thermal conditioning panel meets the thermal efficiency and heat transport requirements.

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  4. Aeroelastic Analysis Of Versatile Thermal Insulation Panels For Launchers Applications

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.

    2011-05-01

    The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in-plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a dis- crete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.

  5. Ebolavirus Nucleoprotein C-Termini Potently Attract Single Domain Antibodies Enabling Monoclonal Affinity Reagent Sandwich Assay (MARSA) Formulation

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2013-01-01

    Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent

  6. Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.

    2013-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.

  7. Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.

  8. The sandwich model: the 'music and dance' of therapeutic action.

    PubMed

    Harrison, Alexandra M

    2014-04-01

    My premise is that a 'layered' approach is necessary to understand the process of exchanges that result in therapeutic change. I imagine these processes occurring in three layers - although the number of domains in which change is taking place is actually infinite - such as in a sandwich. The top layer, or top slice of bread of the sandwich, represents a broad view of the change process; it is non-linear and includes the feature of uncertainty, a general principle of dynamic systems theory. The middle layer, or the meat of the sandwich, is explained by theories that are immediately and clinically useful to a therapist, such as psychoanalytic theories. These are primarily linear theories and use language and symbols to 'tell a story of what happened'. The bottom layer, or bottom slice of bread of the sandwich, is the micro-process; this layer includes the moment-to-moment patterns of coordinated rhythms that both communicate meaning and provide the essential scaffold for all higher-level change processes. The micro-process also requires a non-linear theory to make sense of its variability and emergent properties. Taking a bite out of the sandwich will include a 'polysemic bundle of communicative behaviors' (Harrison and Tronick, 2011). I will illustrate the 'sandwich model' with the clinical case of the analytic treatment of a 5 year-old boy.

  9. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  10. Numerically simulating the sandwich plate system structures

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng

    2010-09-01

    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  11. Optimization of aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Roper, Willard D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022M, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. This report describes the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  12. Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Fields, R. A.; Shideler, J. L.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panels. In spite of some data scattering resulting from large extrapolations of the data-fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.

  13. Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Shideler, J. L.; Fields, R. A.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panel. In spite of some data scattering, resulting from large extrapolations of the data fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.

  14. Effect of Porosity Content of Arc-Sprayed Alloy 625 Skins on the Flexural Behavior of Nickel Foam Core Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Salavati, S.; Pershin, L.; Coyle, T. W.; Mostaghimi, J.

    2015-01-01

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades because of their unique mechanical and physical properties. Thermal spraying techniques have been recently introduced as a novel low-cost method for production of these structures with complex shapes. One of the potential applications of the metallic foam core sandwich structures prepared by thermal spray techniques is as heat shield devices. Open porosity in the microstructure of the coating may allow the cooling efficiency of the heat shield to be improved through the film cooling phenomenon. A modified twin wire-arc spraying process was employed to deposit high temperature resistant alloy 625 coatings with a high percentage of the open porosity. The effect of skin porosity on the mechanical properties (flexural rigidity) of the sandwich structures was studied using a four-point bending test. It was concluded from the four-point bending test results that increase in the porosity content of the coatings leads to decrease in the flexural rigidity of the sandwich panels. The ductility of the porous and conventional arc-sprayed alloy 625 coatings was improved after heat treatment at 1100 °C for 3 h.

  15. Panel methods: An introduction

    NASA Technical Reports Server (NTRS)

    Erickson, Larry L.

    1990-01-01

    Panel methods are numerical schemes for solving (the Prandtl-Glauert equation) for linear, inviscid, irrotational flow about aircraft flying at subsonic or supersonic speeds. The tools at the panel-method user's disposal are (1) surface panels of source-doublet-vorticity distributions that can represent nearly arbitrary geometry, and (2) extremely versatile boundary condition capabilities that can frequently be used for creative modeling. Panel-method capabilities and limitations, basic concepts common to all panel-method codes, different choices that were made in the implementation of these concepts into working computer programs, and various modeling techniques involving boundary conditions, jump properties, and trailing wakes are discussed. An approach for extending the method to nonlinear transonic flow is also presented. Three appendices supplement the main test. In appendix 1, additional detail is provided on how the basic concepts are implemented into a specific computer program (PANAIR). In appendix 2, it is shown how to evaluate analytically the fundamental surface integral that arises in the expressions for influence-coefficients, and evaluate its jump property. In appendix 3, a simple example is used to illustrate the so-called finite part of the improper integrals.

  16. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  17. A Damage Tolerance Comparison of Composite Hat-Stiffened and Honeycomb Sandwich Structure for Launch Vehicle Interstage Applications

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2011-01-01

    In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.

  18. Experimental study on behavior of GFRP stiffened panels under compression

    NASA Astrophysics Data System (ADS)

    Kankeri, Pradeep; Ganesh Mahidhar, P. K.; Prakash, S. Suriya; Ramji, M.

    2015-03-01

    Glass Fiber Reinforced Polymer (GFRP) materials are extensively used in the aerospace and marine industries because of their high strength and stiffness to weight ratio and excellent corrosion resistance. Stiffened panels are commonly used in aircraft wing and fuselage parts. The present study focuses on the behavior of composite stiffened panels under compressive loading. With the introduction of stiffeners to unstiffened composite plates, the structural stiffness of the panel increases resulting in higher strength and stiffness. Studies in the past have shown that the critical structural failure mode under compressive loading of a stiffened composite panel is by local buckling. The present study attempts to evaluate the mechanical behavior of composite stiffened panels under compression using blade stiffener configuration and in particular on the behavior of the skin- stiffener interface through experimental testing. A novel test fixture is developed for experimental testing of GFRP stiffened panels. A non-contact whole field strain analysis technique called digital image correlation (DIC) is used for capturing the strain and damage mechanisms. Blade stiffeners increased the strength, stiffness and reduced the out-of plane displacement at failure. The failure of both the unstiffened and stiffened panels was through local buckling rather than through material failure. DIC was able to capture the strain localization and buckling failure modes.

  19. Fracture Analysis of the FAA/NASA Wide Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.

    1998-01-01

    This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength with a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on a unstiffened panel with a single crack by 10%.

  20. Buckling of open-section bead-stiffened composite panels

    NASA Astrophysics Data System (ADS)

    Laananen, D. H.; Renze, S. P.

    Stiffened panels are structures that can be designed to efficiently support inplane compression, bending, and shear loads. Although the stiffeners are usually discrete elements which are fastened or bonded to a flat or continuously curved plate, manufacturing methods such as thermoforming allow integral formation of the stiffeners in a panel. Such a configuration offers potential advantages in terms of a reduced number of parts and manufacturing operations. For thermoplastic composite panels stiffened by integrally formed open-section beads, the effects of bead spacing and bend cross-section geometry on the initiation of buckling under uniaxial compression and uniform shear loading were investigated. Finite elements results for a range of stiffened panel sizes and bead geometries are presented and compared with approximate closed-form solutions based on an effective flat plate size. Experimental verification of analytical predictions for one of the shear panels and one of the compression panels is described. Compensation of the forming tool to reduce the degree of initial curvature of the panels was found to be necessary.