Sample records for sans structural characterization

  1. SANS with contrast variation study of the bacteriorhodopsin-octyl glucoside complex

    NASA Astrophysics Data System (ADS)

    Mo, Yiming; Heller, William T.

    2010-11-01

    Membrane proteins (MPs), which play vital roles in trans-membrane trafficking and signalling between cells and their external environment, comprise a major fraction of the expressed proteomes of many organisms. MP production for biophysical characterization requires detergents for extracting MPs from their native membrane and to solubilize the MP in solution for purification and study. In a proper detergent solution, the detergent-associated MPs retain their native fold and oligomerization state, key requirements for biophysical characterization and crystallization. SANS with contrast variation was performed to characterize BR in complex with OG to better understand the MP-detergent complex. Contrast variation makes it possible to not only probe the conformation of the entire structure but also investigate the conformation of the polypeptide chain within the BR-OG complex. The BR-OG SANS contrast variation series is not consistent with a compact structure, such as a trimeric BR complex surrounded by a belt of detergent. The data strongly suggest that the protein is partially unfolded through its association with the detergent micelles.

  2. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  3. Synthesis and characterization of metal oxide-polyaniline emeraldine salt based nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, K. Siva; Kavitha, B.; Prabakar, K.; Srinivasu, D.; Srinivas, Ch.; Narsimlu, N.

    2013-02-01

    This paper describes the synthesis of TiO2 (core)/Polyaniline (shell) core-shell structured nanocomposites and characterization of the synthesized material. The morphological characterization is performed with XRD, SEM, DLS and SANS. Spectroscopic characterization is performed with FTIR, UV/Visible and ESR techniques.

  4. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  5. Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking

    PubMed Central

    Unudurthi, Sathya D.; Wolf, Roseanne M.; Hund, Thomas J.

    2014-01-01

    Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN (“source”) and the charge needed to excite the surrounding atrial tissue (“sink”). We also discuss how compromised “source-sink” balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the “source-sink” balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers. PMID:25505419

  6. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    PubMed

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  7. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering.

    PubMed

    Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco

    2018-04-09

    The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.

  8. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  9. Structural characterization of semicrystalline polymer morphologies by imaging-SANS

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Fetters, L. J.; Richter, D.

    2012-02-01

    Control and optimization of polymer properties require the global knowledge of the constitutive microstructures of polymer morphologies in various conditions. The microstructural features can be typically explored over a wide length scale by combining pinhole-, focusing- and ultra-small-angle neutron scattering (SANS) techniques. Though it proved to be a successful approach, this involves major efforts related to the use of various scattering instruments and large amount of samples and the need to ensure the same crystallization kinetics for the samples investigated at various facilities, in different sample cell geometries and at different time intervals. With the installation and commissioning of the MgF2 neutron lenses at the KWS-2 SANS diffractometer installed at the Heinz Maier-Leibnitz neutron source (FRMII reactor) in Garching, a wide Q-range, between 10-4Å-1 and 0.5Å-1, can be covered at a single instrument. This enables investigation of polymer microstructures over a length scale from lnm up to 1μm, while the overall polymer morphology can be further examined up to 100μm by optical microscopy (including crossed polarizers). The study of different semi-crystalline polypropylene-based polymers in solution is discussed and the new imaging-SANS approach allowing for an unambiguous and complete structural characterization of polymer morphologies is presented.

  10. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    NASA Astrophysics Data System (ADS)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.

  11. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com; Porcar, Lionel; Large Scale Structure Group, Institut Laue Langevin, Grenoble

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). Themore » SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.« less

  12. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    PubMed

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  13. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  14. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Proceedings of Damping 1993, volume 3

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  16. Proceedings of Damping 1993, volume 1

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.

  17. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  18. Insight into the Structure of Light Harvesting Complex II and its Stabilization in Detergent Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T

    2009-01-01

    The structure of spinach light-harvesting complex II (LHC II), stabilized in a solution of the detergent n-octyl-{beta}-d-glucoside (BOG), was investigated by small-angle neutron scattering (SANS). Physicochemical characterization of the isolated complex indicated that it was pure (>95%) and also in its native trimeric state. SANS with contrast variation was used to investigate the properties of the protein-detergent complex at three different H{sub 2}O/D{sub 2}O contrast match points, enabling the scattering properties of the protein and detergent to be investigated independently. The topological shape of LHC II, determined using ab initio shape restoration methods from the SANS data at the contrastmore » match point of BOG, was consistent with the X-ray crystallographic structure of LHC II (Liu et al. Nature 2004 428, 287-292). The interactions of the protein and detergent were investigated at the contrast match point for the protein and also in 100% D{sub 2}O. The data suggested that BOG micelle structure was altered by its interaction with LHC II, but large aggregate structures were not formed. Indirect Fourier transform analysis of the LHC II/BOG scattering curves showed that the increase in the maximum dimension of the protein-detergent complex was consistent with the presence of a monolayer of detergent surrounding the protein. A model of the LHC II/BOG complex was generated to interpret the measurements made in 100% D{sub 2}O. This model adequately reproduced the overall size of the LHC II/BOG complex, but demonstrated that the detergent does not have a highly regular shape that surrounds the hydrophobic periphery of LHC II. In addition to demonstrating that natively structured LHC II can be produced for functional characterization and for use in artificial solar energy applications, the analysis and modeling approaches described here can be used for characterizing detergent-associated {alpha}-helical transmembrane proteins.« less

  19. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  20. Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillura-Martino, D; Triolo, R.; McClain, J.B.

    1995-12-31

    Supercritical fluids are becoming an attractive alternative to the liquid solvents traditionally used as polymerization media. As the synthesis proceeds, a wide range of colloidal aggregates form, but there has hitherto been no way to measure such structures directly. We have applied small-angle neutron scattering (SANS) to characterize such systems, and although SCF polymerizations are carried out at high pressures, the penetrating power of the neutron beam means that typical cell windows are virtually transparent. Systems studied include molecules soluble in CO{sub 2} (e.g. polyfluoro-octyl acrylate or PFOA) and this polymer has previously been shown to exhibit a positive secondmore » virial coefficient (A{sub 2}). Other CO{sub 2}-soluble polymers include hexafluoro-polypropylene oxide (HFPPO), which appears to have a second virial coefficient which is close to zero (10{sup 4}A{sub 2} {approx_equal} 0 +{+-} 0.2 cm{sup 3} g{sup -2} mol). Polydimethylsiloxane (PDMS), is soluble on the molecular level only in the limit of dilute solution and seems to form aggregates as the concentration increases (c > 0.01 g cm{sup -3}). Other polymers (e.g. polystyrene) are insoluble in CO{sub 2}, though polymerizations may be accomplished via the use of PS-PFOA blockcopolymer stabilizers, which are also amenable to SANS characterization, and have been shown to form micelles in CO{sub 2}. Other amphiphilic surfactant molecules that form micelles include PFOA-polyethylene oxide (PFOA-PEO) graft copolymers, which swell as the CO{sub 2} medium is saturated with water. These systems have been characterized by SANS, by taking advantage of the different contrast options afforded by substituting D{sub 2}O for H{sub 2}O. This paper illustrates the utility of SANS to measure molecular dimensions, thermodynamic variables, molecular weights, micelle structures etc. in supercritical CO{sub 2}.« less

  1. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping.

    PubMed

    Lou, Qing; Hansen, Brian J; Fedorenko, Olga; Csepe, Thomas A; Kalyanasundaram, Anuradha; Li, Ning; Hage, Lori T; Glukhov, Alexey V; Billman, George E; Weiss, Raul; Mohler, Peter J; Györke, Sándor; Biesiadecki, Brandon J; Carnes, Cynthia A; Fedorov, Vadim V

    2014-07-22

    Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 μmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 μmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 μmol/L theophylline/1 μmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF. © 2014 American Heart Association, Inc.

  2. Social Structural Characteristics of Hispanic Recreationists on the Angeles and San Bernardino National Forests

    Treesearch

    Deborah S. Carr; Daniel R. Williams

    1992-01-01

    Much of the early work done within the realm of ethnic group participation in outdoor recreation has focused on understanding what was seen as underparticipation utilizing two possible explanations: marginality and ethnicity. Rather than characterizing these explanations as competing, it may be more fruitful to characterize them as being two parts of the larger social...

  3. Proceedings of Damping 1993, volume 2

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  4. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less

  5. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    PubMed

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  6. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  7. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE PAGES

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.; ...

    2018-02-06

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  8. Characterization of the Vertical Structure of Tidal Currents in the Golden Gate (San Francisco) Inlet

    DTIC Science & Technology

    2012-12-01

    depth of the deepest bin passing the ‘ lgb ’ criteria was compared with the nearest bathymetric data. Although, in most cases , the ‘ lgb ’ cutoffs are... CASE ...........................................................................30 1. LOW RANGE FLOOD...30 2. HIGH RANGE FLOOD ....................................................................32 B. EBB CURRENT CASE

  9. Characterization and differentiation of Italian Parma, San Daniele and Toscano dry-cured hams: a multi-disciplinary approach.

    PubMed

    Laureati, Monica; Buratti, Susanna; Giovanelli, Gabriella; Corazzin, Mirco; Lo Fiego, Domenico P; Pagliarini, Ella

    2014-01-01

    This study aimed at characterizing the sensory quality of Italian PDO dry-cured Parma, San Daniele and Toscano hams, applying a multi-disciplinary approach. Ham sensory profile as well as physico-chemical, aromatic, morphological and textural characteristics was investigated. There was a great difference between Toscano ham and Parma and San Daniele hams, which were more similar even though differentiated. Toscano ham showed higher scores for pork-meat odor, saltiness, dryness, fibrousness and hardness; accordingly, this ham was described by a high NaCl content and by high values of instrumental hardness, cohesiveness, gumminess and chewiness. Parma ham was characterized by a cured flavor, whereas San Daniele ham showed a wider fatty area and higher pH values. Parma and San Daniele hams were also described by higher values of sweetness, RGB color values and water activity. Sensory characteristics evaluated by trained assessors were correlated to instrumental measures, indicating that instrumental devices can be effectively applied for dry-cured ham characterization. © 2013.

  10. Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening Truss; Upper & Lower Decks; Assembled System - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  11. Fracture density and grain size controls on the relief structure of threshold landscapes

    NASA Astrophysics Data System (ADS)

    DiBiase, R.; Rossi, M. W.; Neely, A.

    2015-12-01

    A central goal in geomorphology is to untangle the competing controls of climate, tectonics, and rock strength on the topography and relief structure of mountain ranges. This is important for deciphering the history of climate and tectonics encoded in landscapes, predicting natural hazards, and quantifying critical zone processes. Incorporating rock strength into landscape evolution models has been a particularly challenging problem, because the factors that determine rock strength vary in importance depending on process. Here we propose a mechanism of hillslope-channel coupling by which tectonically-induced fracturing influences the relief structure of steep, rocky "threshold" landscapes by leading to A) increased fracture density in exposed bedrock outcrops, thereby limiting hillslope relief, and B) decreased grain size of channel bed material, thereby reducing the magnitude of fluvial incision thresholds and increasing the erosional efficiency of bedrock rivers. To test this hypothesis, we compare two contrasting landscapes in southern California—the eastern San Gabriel Mountains and the northern San Jacinto Mountains. The eastern San Gabriel Mountains rise 2 km in relief and exhibit high uplift and erosion rates due to active faulting along the Cucamonga thrust fault. Although bedrock on hillslopes is common, the exposed granitic and metamorphic basement rock is highly fractured at the decimeter or finer scale, and river channels are mantled with a thin layer of gravel-cobble alluvium. The northern San Jacinto Mountains, 80 km to the southeast, experience similar mean runoff and daily runoff variability, and are underlain by similar bedrock. Yet, despite an absence of active faulting, and erosion rates slower than the eastern San Gabriel Mountains by a factor of 5, the northern San Jacinto Mountains preserve one of the steepest escarpments in the contiguous US (2-3 km high), characterized by massive bedrock outcrops on hillslopes with meter-scale or larger fracture spacing, and a resulting channel network mantled with large boulders. Preliminary analyses suggest that fracture spacing and bed material grain size in threshold landscapes are tightly coupled, and influence the steepness of hillslopes and channels that control the relief structure of mountain ranges in a predictable manner.

  12. Interferometric imaging of the San Andreas Fault at Parkfield Using a Massive VSP

    NASA Astrophysics Data System (ADS)

    Chavarria, J.; Goertz, A.; Karrenbach, M.; Paulsson, B.

    2006-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) has the goal of investigating the physical processes controlling earthquakes in central California at Parkfield. The observatory consists of a deep well, that intersected the San Andreas Fault at seismogenic depths of ~3.2 km, where recurring microearthquake activity takes place. Previous to the drilling of Phase II, that intersected the fault at the end of Summer 2005, a long array of seismometers was deployed in the deeper part of the well to characterize the fault structure and to aid the monitoring activities of the natural seismicity. The Massive VSP array consisted of 80 three component seismometers that were deployed during April and May 2005. During this period of time we recorded active data from 13 explosions used to refine the velocity models that improved the locations of target events. In addition to this, we continuously monitored passive data from the natural earthquake activity in the area that was dominated by the Parkfield 2004 event aftershock sequence. During the recording time of this project we were able to record one of the target earthquakes of the SAFOD project as well as recently discovered non-volcanic tremor. The data recorded by this deep array of seismometers has provided important information to characterize the structure of the fault at scale that is comparable to the scale of the geologic observations. These observations, derived during drilling of the well, consist of cores and cuttings as well as geophysical logs. With the use of the borehole array of seismometers we have been able to directly correlate this lithologic information with seismic phases observed in the VSP data. This has lead to better understanding the nature of the scattering that takes place in this complex fault zone. Seismic reflections in the dataset were analyzed with Kirchhoff imaging methods to determine a partial image of the San Andreas Fault at depth. Due to the low density distribution of sources in the study area the illumination volume is limited but still shows clear signals originating from sub-vertical structures associated to the strands of the San Andreas fault inferred from high resolution earthquake location. The existing Kirchhoff imaging methods have been complemented with the use of interferometric imaging by which we extract the Green's function of the data recorded by the array. This takes place with the use of correlation analysis of both active and passive data resulting in a dataset where each downhole receiver acts as a virtual source. This analysis has provided a refined image of the structure of the San Andreas Fault at seismogenic depths with which a better understanding of the system can be achieved.

  13. Micro-scale damage characterized within part of a dismembered positive flower structure, San Jacinto fault, southern California, USA

    NASA Astrophysics Data System (ADS)

    Peppard, Daniel W.; Webb, Heather N.; Dennis, Kristen; Vierra, Emma; Girty, Gary H.; Rockwell, Thomas K.; Blanton, Chelsea M.; Brown, Jack F.; Goldstein, Ariella I.; Kastama, Keith W.; Korte-Nahabedian, Mark A.; Puckett, Dan; Richter, Addison K.

    2018-07-01

    To better understand the processes that control sub-grain fracturing in fault damage zones, we studied micro-scale damage in sandstones adjacent to the San Jacinto fault (SJF) where it is exhumed from a total depth of ∼220 m beneath a northeast-verging thrust that comprises part of a relic and dismembered flower structure. The thrust places high grade gneiss of the pre-middle Cretaceous Burnt Valley complex over sedimentary rocks of the Pleistocene Bautista Formation. An ∼10-12 cm thick zone of cataclasite is present along the northeast side of the fault adjacent to a narrow black ultracataclasite core. Non-pervasive microscopic damage, characterized by pulverized sand grains, extends outward from the zone of cataclasites tens of meters. Such textures are better developed in sandstones that contain <18% matrix. Hence, a difference in rheology, rather than proximity to the fault core appears to control deformation patterns in sandstones of the Bautista Formation. At the time of formation, confining pressure is estimated to have been ∼6 MPa; hence, loading produced by over thrusting is not likely the cause of intragranular fragmentation in the footwall. Alternatively, strong oscillating stresses produced during dynamic rupture of large earthquakes on the San Jacinto fault likely caused very high point stresses at grain contacts that allowed for fracturing. Such high point stresses along grain contacts is the primary factor in the development of the observed pulverized grains.

  14. The Morphology of Titanium Dioxide Aerogels

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu

    The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.

  15. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.

    PubMed

    Wellert, S; Karg, M; Imhof, H; Steppin, A; Altmann, H-J; Dolle, M; Richardt, A; Tiersch, B; Koetz, J; Lapp, A; Hellweg, T

    2008-09-01

    Most toxic industrial chemicals and chemical warfare agents are hydrophobic and can only be solubilized in organic solvents. However, most reagents employed for the degradation of these toxic compounds can only be dissolved in water. Hence, microemulsions are auspicious media for the decontamination of a variety of chemical warfare agents and pesticides. They allow for the solubilization of both the lipophilic toxics and the hydrophilic reagent. Alkyl oligoglucosides and plant derived solvents like rapeseed methyl ester enable the formulation of environmentally compatible bicontinuous microemulsions. In the present article the phase behavior of such a microemulsion is studied and the bicontinuous phase is identified. Small angle neutron scattering (SANS) and freeze fracture electron microscopy (FFEM) measurements are used to characterize the structure of the bicontinuous phase and allow for an estimation of the total internal interface. Moreover, also the influence of the co-surfactant (1-pentanol) on the structural parameters of the bicontinuous phase is studied with SANS.

  16. Population structure and infectious disease risk in southern Africa.

    PubMed

    Uren, Caitlin; Möller, Marlo; van Helden, Paul D; Henn, Brenna M; Hoal, Eileen G

    2017-06-01

    The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.

  17. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2004-01-01

    During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the surface wave energy is confined to the region north of this structure, consistent with the observations. The SCEC version 3 model, lacking the basin geometry complexity present in the other two models, fails to provide a satisfactory match to the characteristics of the observed motions. Our study demonstrates the importance of using detailed and accurate basin geometry for predicting ground motions and also highlights the utility of integrating geological, geophysical, and seismological observations in the development and validation of 3D velocity models.

  18. 16. Detail, looking northwest, of the concrete structure of Trestle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, looking northwest, of the concrete structure of Trestle 16. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  19. Characterization of the influence of 1-butyl-3-methylimidazolium chloride on the structure and thermal stability of green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T; O'Neill, Hugh Michael; Zhang, Qiu

    2010-01-01

    Ionic liquids (ILs) are finding a vast array of applications as novel solvents for a wide variety of processes that include enzymatic chemistry, particularly as more biocompatible ILs are designed and discovered. While it is assumed that a native or near-native structure is required for enzymatic activity, there is some evidence that ILs alter protein structure and oligomerization states in a manner than can negatively impact function. The IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, is a well-studied, water-miscible member of the popular 1-alkyl-3-methylimidazolium IL family. To improve our understanding of the impact of water-miscible ILs on proteins, we have characterized the structuremore » and oligomerization state of green fluorescent protein (GFP) in aqueous solutions containing 25 and 50 vol % [bmim]Cl using a combination of optical spectroscopy and small-angle neutron scattering (SANS). Measurements were also performed as a function of temperature to provide insight into the effect of the IL on the thermal stability of GFP. While GFP exists as a dimer in water, the presence of 25 vol % [bmim]Cl causes GFP to transition to a monomeric state. The SANS data indicate that GFP is a great deal less compact in 50 vol % [bmim]Cl than in neat water, indicative of unfolding from the native structure. The oligomerization state of the protein in IL-containing aqueous solution changes from a dimer to a monomer in response to the IL, but does not change as a function of temperature in the IL-containing solution. The SANS and spectroscopic results also demonstrate that the addition of [bmim]Cl to the solution decreases the thermal stability of GFP, allowing the protein to unfold at lower temperatures than in aqueous solution.« less

  20. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY.

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  1. Characterizing the Organic Matter in Surface Sediments from the San Juan Bay Estuary,

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  2. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  3. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.

  4. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  5. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    USGS Publications Warehouse

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.

  6. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.

  7. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression.

    PubMed

    Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R

    2013-10-01

    Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.

  8. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    USGS Publications Warehouse

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  9. Historical habitat barriers prevent ring-like genetic continuity throughout the distribution of threatened Alameda Striped Racers (Coluber lateralis euryxanthus)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Wood, Dustin A.; Swaim, Karen; Fisher, Robert N.; Vandergast, Amy

    2016-01-01

    We used microsatellites and mtDNA sequences to examine the mixed effects of geophysical, habitat, and contemporary urban barriers on the genetics of threatened Alameda Striped Racers (Coluber lateralis euryxanthus), a species with close ties to declining coastal scrub and chaparral habitat in the eastern San Francisco Bay area of California. We used cluster assignments to characterize population genetic structuring with respect to land management units and approximate Bayesian analysis to rank the ability of five alternative evolutionary hypotheses to explain the inferred structure. Then, we estimated rates of contemporary and historical migration among the major clusters and measured the fit of different historical migration models to better understand the formation of the current population structure. Our results reveal a ring-like pattern of historical connectivity around the Tri-Valley area of the East Bay (i.e., San Ramon, Amador, and Livermore valleys), with clusters largely corresponding to different management units. We found no evidence of continuous gene flow throughout the ring, however, and that the main gap in continuity is centered across the Livermore Valley. Historical migration models support higher rates of gene flow away from the terminal ends of the ring on the north and south sides of the Valley, compared with rates into those areas from western sites that border the interior San Francisco Bay. We attribute the break in ring-like connectivity to the presence of unsuitable habitat within the Livermore Valley that has been reinforced by 20th century urbanization, and the asymmetry in gene flow rates to spatial constraints on movement and east–west environmental gradients influenced by the proximity of the San Francisco Bay.

  10. A case study of the Santa Ana winds in the San Gabriel mountains

    Treesearch

    Michael A. Fosberg

    1965-01-01

    Santa Ana wind structure varies between the high main ridges, the foothills, and the canyon bottoms. In each of these regions, a typical pattern characterizes the Santa Ana. Strong steady wind, at the high levels are determined almost completely by the large scale weather patterns. lntermediate canyons and ridges are affected by Santa Ana winds only when the foehn is...

  11. 15. View looking northwest at the structure of Trestle 16. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View looking northwest at the structure of Trestle 16. Sediment clean-out valve is visible at under left. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  12. 1. BUILDING 283, SOUTH SIDE OF CA.19471950 ADDITION (ONEANDONEHALFSTORY, GABLEROOFED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 283, SOUTH SIDE OF CA.1947-1950 ADDITION (ONE-AND-ONE-HALF-STORY, GABLE-ROOFED STRUCTURE AND ONE-STORY, FLAT-ROOFED STRUCTURE) AND WEST SIDE OF CA. 1926 WAREHOUSE (TWO-STORY, GABLE-ROOFED STRUCTURE). - Presidio of San Francisco, Warehouse & Auto Shop, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  13. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  14. Developing Structure-Property Relationships in Branched Wormlike Micelles via Advanced Rheological and Neutron Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Calabrese, Michelle A.

    Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications. The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed. Together, advanced rheological and neutron techniques provide a platform for creating structure-property relationships that predict flow and structural phenomena in WLMs and other soft materials. These methods have enabled characteristic differences in linear versus branched WLMs to be determined. This research is part of a broader effort to characterize branching in polymers and self-assembled systems, and may aid in the formulation of WLMs for specific applications. Finally, this work provides a basis for testing and developing microstructure-based constitutive equations that incorporate micellar breakage and branching.

  15. 396. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    396. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; EAST BAY CROSSING; CANTILEVER STRUCTURE; DETAILS I; DRG. NO. 68 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  16. 397. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    397. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; EAST BAY CROSSING; CANTILEVER STRUCTURE; DETAILS II; DRG. NO. 69 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  17. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Siame, L. L.; Bellier, O.; Sébrier, M.; Bourlès, D. L.; Leturmy, P.; Perez, M.; Araujo, M.

    2002-07-01

    Because earthquakes on large active thrust or reverse faults are not always accompanied with surface rupture, paleoseismological estimation of their associated seismic hazard is a difficult task. To improve the seismic hazard assessments in the Andean foreland of western Argentina (San Juan Province), this paper proposes a novel approach that combines structural geology, geomorphology and exposure age dating. The Eastern Precordillera of San Juan is probably one of the most active zones of thrust tectonics in the world. We concentrated on one major regional active reverse structure, the 145 km long Villicúm-Pedernal thrust, where this methodology allows one to: (1) constrain the Quaternary stress regime by inversion of geologically determined slip vectors on minor or major fault planes; (2) analyse the geometry and the geomorphic characteristics of the Villicúm-Pedernal thrust; and (3) estimate uplift and shortening rates through determination of in situ-produced 10Be cosmic ray exposure (CRE) ages of abandoned and uplifted alluvial terraces. From a structural point of view, the Villicúm-Pedernal thrust can be subdivided into three thrust portions constituting major structural segments separated by oblique N40°E-trending fault branches. Along the three segments, inversion of fault slip data shows that the development of the Eastern Precordillera between 31°S and 32°S latitude is dominated by a pure compressive reverse faulting stress regime characterized by a N110°+/- 10°E-trending compressional stress axis (σ1). A geomorphic study realized along the 18 km long Las Tapias fault segment combined with CRE ages shows that the minimum shortening rate calculated over the previous ~20 kyr is at least of the order of 1 mm yr-1. An earthquake moment tensor sum has also been used to calculate a regional shortening rate caused by seismic deformation. This analysis of the focal solutions available for the last 23 yr shows that the seismic contribution may be three times greater than the shortening rate we determined for the Las Tapias fault (i.e. ~3 mm yr-), suggesting that the San Juan region may have experienced a seismic crisis during the 20th century. Moreover, the ramp that controls the development of the Eastern Precordillera appears to be one of the main seismic sources in the San Juan area, particularly the 65 km long Villicúm-Las Tapias segment. A first-order evaluation of the seismic hazard parameters shows that this thrust segment can produce a maximum earthquake characterized by a moment magnitude of ~7.3 (+/-0.1) and a recurrence interval of 2.4 (+/-1.5) kyr. This part of the Villicúm-Pedernal ramp may have ruptured during the Ms= 7.4, 1944 San Juan earthquake producing very few surface ruptures and only distributed flexural slip deformation on to the Neogene foreland bedding planes between the Eastern Precordillera and Pie de Palo.

  18. 381. J.H.E., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    381. J.H.E., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; SUSPENDED STRUCTURE; ERECTION; DRG. NO. 43 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  19. The design of sampling transects for characterizing water quality in estuaries

    USGS Publications Warehouse

    Jassby, A.D.; Cole, B.E.; Cloern, J.E.

    1997-01-01

    The high spatial variability of estuaries poses a challenge for characterizing estuarine water quality. This problem was examined by conducting monthly high-resolution transects for several water quality variables (chlorophyll a, suspended particulate matter and salinity) in San Francisco Bay (California, U.S.A.). Using these data, six different ways of choosing station locations along a transect, in order to estimate mean conditions, were compared. In addition, 11 approaches to estimating the variance of the transect mean when stations are equally spaced were compared, and the relationship between variance of the estimated transect mean and number of stations was determined. The results provide guidelines for sampling along the axis of an estuary: (1) Choose as many equally-spaced stations as practical; (2) estimate the variance of the mean y?? by var (y??)=(1/10n2)??(j=2)/(n) (y(j)-y(j-1)2, where y1,...,y(n) are the measurements at the n stations; and (3) attain the desired precision by adjusting the number of stations according to var(y??)???1/n2. The inverse power of 2 in the last step is a consequence of the underlying spatial correlation structure in San Francisco Bay; more studies of spatial structure at other estuaries are needed to determine the generality of this relationship.

  20. 389. J.H.E., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    389. J.H.E., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; SUSPENDED STRUCTURE; TYPICAL DETAILS; DRG. NO. 42 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  1. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  2. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  3. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.

    PubMed

    Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas

    2016-11-03

    The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

  4. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  5. 388. D.E.M., Delineator December 1932 STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    388. D.E.M., Delineator December 1932 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; SUPERSTRUCTURE - WEST BAY CROSSING; SUSPENDED STRUCTURE; SIDE SPAN TRUSSES AT ANCHORAGES; CONTRACT NO. 6; DRAWING NO. 40 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  6. Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data

    USGS Publications Warehouse

    Anderson, M.; Matti, J.; Jachens, R.

    2004-01-01

    The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation. Copyright 2004 by the American Geophysical Union.

  7. Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data

    NASA Astrophysics Data System (ADS)

    Anderson, Megan; Matti, Jonathan; Jachens, Robert

    2004-04-01

    The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation.

  8. Petrology, sedimentology and stratigraphic implications of Black Dragon Member of the Triassic Moenkopi Formation, San Rafael Swell, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.A.; Ochs, S.

    1990-01-01

    Deposition was partly controlled by paleotopographic relief of underlying Permian strata. Triassic Black Dragon sediments filled lowlands on an erosion surface (unconformity) cut into the Permian White Rim Sandstone and Kaibab Limestone. The Black Dragon Member consists of four distinct facies containing a wide variety of sedimentary structures that characterize both fluvial and tidal environments. The facies are: (1) a Chert Pebble Conglomerate (CPC) facies, characterized by calcite-cemented channel-fills of nodular and banded chert pebbles; (2) an Interbedded Sandstone, Siltstone, and Shale (SSS) facies, containing oscillation ripples and flaser bedding; (3) a large-scale Trough Cross-Stratified Sandstone (TXS) facies, consisting ofmore » 6.6-13.1 ft (2-4 m) thick sets of fine- to medium-grained sandstone; and (4) an Oolitic and Algal Limestone (OAL) facies, with cross-stratified oolitic beds, fenestral fabric, and laminated algal rip-up clasts. The CPC facies and the TXS facies were deposited by braided streams when the shoreline lay west of the San Rafael Swell. Rivers drained off and eroded localized Permian highlands, located most likely within a 62 mi (100 km) distance to the south and southeast of the study area. The SSS facies which constitutes the bulk of the Black Dragon Member, and the OAL facies are inter- and supratidal deposits formed during relative sea level highstands, when the shoreline lay within or east of the San Rafael Swell. A decrease in continent-derived sand supply and a corresponding increase in carbonate production within the OAL facies characterizes the end of Black Dragon deposition and the gradation into the overlying Sinbad Limestone Member.« less

  9. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  10. A multi-decade time series of kelp forest community structure at San Nicolas Island, California

    USGS Publications Warehouse

    Lafferty, Kevin D.; Kenner, Michael C.; Estes, James A.; Tinker, M. Tim; Bodkin, James L.; Cowen, Robert K.; Harrold, Christopher; Novak, Mark; Rassweiler, Andrew; Reed, Daniel C.

    2013-01-01

    San Nicolas Island is surrounded by broad areas of shallow subtidal habitat, characterized by dynamic kelp forest communities that undergo dramatic and abrupt shifts in community composition. Although these reefs are fished, the physical isolation of the island means that they receive less impact from human activities than most reefs in Southern California, making San Nicolas an ideal place to evaluate alternative theories about the dynamics of these communities. Here we present monitoring data from seven sampling stations surrounding the island, including data on fish, invertebrate, and algal abundance. These data are unusual among subtidal monitoring data sets in that they combine relatively frequent sampling (twice per year) with an exceptionally long time series (since 1980). Other outstanding qualities of the data set are the high taxonomic resolution captured and the monitoring of permanent quadrats and swaths where the history of the community structure at specific locations has been recorded through time. Finally, the data span a period that includes two of the strongest ENSO events on record, a major shift in the Pacific decadal oscillation, and the reintroduction of sea otters to the island in 1987 after at least 150 years of absence. These events provide opportunities to evaluate the effects of bottom-up forcing, top-down control, and physical disturbance on shallow rocky reef communities.

  11. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging

    USGS Publications Warehouse

    Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.

    2007-01-01

    A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.

  12. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  13. Effect of solvent quality on aggregate structures of common surfactants.

    PubMed

    Hollamby, Martin J; Tabor, Rico; Mutch, Kevin J; Trickett, Kieran; Eastoe, Julian; Heenan, Richard K; Grillo, Isabelle

    2008-11-04

    Aggregate structures of two model surfactants, AOT and C12E5 are studied in pure solvents D2O, dioxane-d8 (d-diox) and cyclohexane-d12 (C6D12) as well as in formulated D2O/d-diox and d-diox/C6D12 mixtures. As such these solvents and mixtures span a wide and continuous range of polarities. Small-angle neutron scattering (SANS) has been employed to follow an evolution of the preferred aggregate curvature, from normal micelles in high polarity solvents, through to reversed micelles in low polarity media. SANS has also been used to elucidate the micellar size, shape as well as to highlight intermicellar interactions. The results shed new light on the nature of aggregation structures in intermediate polarity solvents, and point to a region of solvent quality (as characterized by Hildebrand Solubility Parameter, Snyder polarity parameter or dielectric constant) in which aggregation is not favored. Finally these observed trends in aggregation as a function of solvent quality are successfully used to predict the self-assembly behavior of C12E5 in a different solvent, hexane-d14 (C6D14).

  14. Cuticular hydrocarbons and soldier defense secretions of Reticulitermes in southern California: a critical analysis of the taxonomy of the genus in North America

    Treesearch

    Lori J. Nelson; Laurence G. Cool; Christopher W. Solek; Michael I. Haverty

    2008-01-01

    Cuticular hydrocarbons (CHC) and soldier defense secretions (SDS) were characterized for collections of Reticulitermes from six counties (Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Santa Barbara) in southern California. Collection sites included the type locality for R. hesperus, Lake Arrowhead (formerly known as Little Bear Lake) in the San...

  15. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  16. The growth and characterization of alkylphosphonic acid self-assembled nanofibers

    NASA Astrophysics Data System (ADS)

    Salmon, Michael Edward

    The focus of this research was to investigate the formation and properties of novel Self-Assembled Nanofibers (SANs) created by the treatment of aluminum with solutions of short chain-length alkylphosphonic acids (APAs) in ethanol. A special emphasis was placed on the creation of APA SANs isolated from the immersed aluminum source and development of analysis techniques for artifact reduced characterization of as-grown individual SANs. Novel immersion growth techniques were devised for the reproducible creation of supported and unsupported isolated methylphosphonic acid (C1), propylphosphonic acid (C3), and pentylphosphonic acid (C5) SANs on Si3N4 and aluminum coated ProtoChips(TM) DuraSiN(TM) Si3N 4 meshes respectively. Additionally, a novel biased immersion growth technique was developed, increasing growth rates as well as allowing for APA SAN deposition onto a variety of substrates including Au microelectrodes. A combination of complementary analysis techniques including: Atomic force microscopy (AFM), Scanning Transmission Electron Microscopy (STEM), Energy Dispersive Spectrometry (EDS), X-Ray Photoelectron Spectroscopy (XPS), and Electron Energy Loss Spectroscopy (EELS) were utilized to characterize the morphology, composition and chemistry of isolated individual APA SANs. STEM and AFM revealed individual APA SANs are actually composed of layered fibril bundles. Qualitative compositional analysis showed APA SANs were primarily composed of oxygen, carbon, phosphorus, and aluminum with phosphorus:aluminum ratios determined to be between 1.5 and 4.2. Quantitative XPS and EELS analysis provided further evidence that the detected aluminum was non-metallic and likely oxidized. STEM with EELS was utilized to definitively correlate the presence of aluminum, phosphorus, oxygen, and carbon to a 5 nm region of several overlapping unsupported C1 SANs. Thermal analysis of APA SANs on Al as well as isolated on Si3N 4 revealed a nearly 5X increase in thermal stability as compared to the ˜100C-120C melting points of pure APAs. AFM nanoindentation and nanoscratching were utilized to investigate the mechanical response of individual APA SANs. Evidence of cracking and layering were observed in good agreement with the STEM fibril observations. The reduced elastic modulus, E*, or stiffness, was estimated utilizing a Hertzian mechanics analysis of AFM nanoindentation data and determined to range from ˜10GPa to 1 GPa varying inversely with chain-length. Electric Force Microscopy (EFM) of C1 SANs revealed no evidence of conductivity as compared to a control sample consisting of Focused Ion Beam (FIB) deposited platinum nanowires on Si3N4. Additionally, Current-Voltage (IV) measurements were made on individual APA SANs deposited on gold microelectrodes again with no evidence of conductivity.

  17. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo homocline, the western limb of the valley syncline between the Stockton arch and Panoche Creek, consists of a locally faulted homocline with northeast dips. Deformation is mostly late Cenozoic, is complex in its history, and has included up-to-the-southwest reverse faulting. The west-side fold belt, the southwestern part of the valley syncline between Panoche Creek and Elk Hills and including the southern Diablo and Temblor Ranges, is characterized by a series of folds and faults trending slightly oblique to the San Andreas fault. Paleogene folding took place in the northern part of the belt; however, most folding took place in Neogene time, during which the intensity of deformation increased southeastward along the belt and southwestward toward the San Andreas fault. The Maricopa-Tejon subbasin and the south-margin deformed belt are structurally distinct, but genetically related, regions bounded by the Bakersfield arch on the north, the San Emigdio Mountains on the south, the Tehachapi Mountains on the east, and the southeast end of the fold belt on the west. This combined region, which is the most deformed part of the basin, has undergone significant late Cenozoic shortening through north-directed thrust faulting at the south margin, as well as extreme Neogene basin subsidence north of the thrust belt. The sedimentary history of the San Joaquin basin, recorded in terms of unconformity-bounded depositional sequences, has been controlled principally by tectonism, but it has also been controlled by eustatic sea-level changes and, to a lesser degree, by climate. Plate tectonic events that had an influence on the basin include (1) subduction during the early Tertiary that changed from oblique to normal convergence in the later part of the Eocene, (2) the mid-Oligocene encounter of the Pacific-Farallon spreading ridge with the trench, and the consequent establishment of the San Andreas transform, (3) the northwestward migration of the Mendocino triple junction that in

  18. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  19. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.

    2009-01-01

    The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.

  20. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas right stepover region and at least 15 km along-strike both to the SE and NW. The 1906 San Francisco earthquake may have nucleated within the San Andreas right stepover, which may help explain the bilateral nature of rupture of this event. Our analysis suggests two seismic hazards for the San Francisco Peninsula in addition to the hazard associated with a M = 7 to 8 strike-slip earthquake along the San Andreas fault: the potential for a M ??? 6 normal-faulting earthquake just 5-8 km west of San Francisco and a M = 6+ thrust faulting event in the southern peninsula.

  1. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  2. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    USGS Publications Warehouse

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  3. Evaporite geometries and diagenetic traps, lower San Andres, Northwest shelf, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, D.R.

    An east-west-trending belt of lower San Andres oil fields extends 80 mi across southeastern New Mexico from the Pecos River near Roswell to the Texas-New Mexico border. These fields are along a porosity pinch-out zone where porous carbonates grade laterally into bedded anhydrite and halite. The lower San Andres traps are associated with pre-Tertiary structural or stratigraphic traps. Oil and water production relationships from these fields are not consistent with present-day structure. These fields have been commonly interpreted to be hydrodynamic traps created by the eastern flow of fresh surface water that enters the lower San Andres outcrops west ofmore » Pecos River. There is no evidence, however, that surface water has moved through the lower San Andres in this area. This conclusion is supported by the fact that formation-water resistivities are uniform throughout the producing trend, no significant dissolution of carbonates or evaporites has occurred, and there has been no increase in biogradation of oils adjacent to the lower San Andres outcrops. These fields actually are diagenetic traps created by porosity occlusion in the water column beneath the oil accumulations. Hydrocarbons originally were trapped in pre-Tertiary structural and structural-stratigraphic traps. Bedded evaporites were effective barriers to vertical and lateral hydrocarbon migration. Eastward tilting of the Northwest shelf during the Tertiary opened these traps, but the oil remained in these structurally unfavorable positions because of the diagenetic sealing. The gas-solution drive in these reservoirs is a result of this sealing. The sequence of events leading to diagenetic entrapment include (1) Triassic and Jurassic migration of hydrocarbons into broad, low-relief post-San Andres structural and structural-stratigraphic traps; (2) rapid occlusion of porosity in the water column beneath oil reservoirs, and (3) Tertiary tilt-out traps.« less

  4. Gelation under shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying tomore » interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.« less

  5. A basin-scale approach for assessing water resources in a semiarid environment: San Diego region, California and Mexico

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.; Stolp, B.J.; Danskin, W.R.

    2012-01-01

    Many basins throughout the world have sparse hydrologic and geologic data, but have increasing demands for water and a commensurate need for integrated understanding of surface and groundwater resources. This paper demonstrates a methodology for using a distributed parameter water-balance model, gaged surface-water flow, and a reconnaissance-level groundwater flow model to develop a first-order water balance. Flow amounts are rounded to the nearest 5 million cubic meters per year. The San Diego River basin is 1 of 5 major drainage basins that drain to the San Diego coastal plain, the source of public water supply for the San Diego area. The distributed parameter water-balance model (Basin Characterization Model) was run at a monthly timestep for 1940–2009 to determine a median annual total water inflow of 120 million cubic meters per year for the San Diego region. The model was also run specifically for the San Diego River basin for 1982–2009 to provide constraints to model calibration and to evaluate the proportion of inflow that becomes groundwater discharge, resulting in a median annual total water inflow of 50 million cubic meters per year. On the basis of flow records for the San Diego River at Fashion Valley (US Geological Survey gaging station 11023000), when corrected for upper basin reservoir storage and imported water, the total is 30 million cubic meters per year. The difference between these two flow quantities defines the annual groundwater outflow from the San Diego River basin at 20 million cubic meters per year. These three flow components constitute a first-order water budget estimate for the San Diego River basin. The ratio of surface-water outflow and groundwater outflow to total water inflow are 0.6 and 0.4, respectively. Using total water inflow determined using the Basin Characterization Model for the entire San Diego region and the 0.4 partitioning factor, groundwater outflow from the San Diego region, through the coastal plain aquifer to the Pacific Ocean, is calculated to be approximately 50 million cubic meters per year. The area-scale assessment of water resources highlights several hydrologic features of the San Diego region. Groundwater recharge is episodic; the Basin Characterization Model output shows that 90 percent of simulated recharge occurred during 3 percent of the 1982–2009 period. The groundwater aquifer may also be quite permeable. A reconnaissance-level groundwater flow model for the San Diego River basin was used to check the water budget estimates, and the basic interaction of the surface-water and groundwater system, and the flow values, were found to be reasonable. Horizontal hydraulic conductivity values of the volcanic and metavolcanic bedrock in San Diego region range from 1 to 10 m per day. Overall, results establish an initial hydrologic assessment formulated on the basis of sparse hydrologic data. The described flow variability, extrapolation, and unique characteristics represent a realistic view of current (2012) hydrologic understanding for the San Diego region.

  6. 6. Photocopy of painting (from California Historical Society, San Francisco, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of painting (from California Historical Society, San Francisco, California, Oriana Day, artist, 1879) EXTERIOR, VIEW FROM AN ANGLE OF MISSION AND SURROUNDING STRUCTURES - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  7. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  8. Macrofaunal Succession and Community Structure in Salicornia Marshes of Southern California

    NASA Astrophysics Data System (ADS)

    Talley, T. S.; Levin, L. A.

    1999-11-01

    Lack of basic understanding of ecosystem structure and function forms a major impediment to successful conservation of coastal ecosystems. This paper provides a description of the fauna and examines faunal succession in Salicornia -vegetated sediments of southern California. Environmental attributes (vegetation and sediment properties) and macrofaunal (animals ≥0·3 mm) community structure were examined in sediments of five natural, southern California Salicornia spp. marshes (Tijuana Estuary, San Diego Bay, Mission Bay, Upper Newport Bay and Anaheim Bay) and in created Salicornia marshes 16 months to 10 years in age, located within four of the bays. Oligochaetes and insects were the dominant taxa in both natural (71 to 98% of total fauna) and created (91 to 97%) marshes. In San Diego, Newport and Anaheim Bays, macrofaunal densities were generally higher in the created marshes (88 000 to 290 000 ind m -2) than in their natural counterparts (26 000 to 50 000 ind m -2). In the youngest system, Mission Bay, the reverse was true (natural: 113 000 vs created: 28 000 ind m -2). Similar species numbers were recorded from the created and adjacent natural marshes. Insects, especially chironomids, dolichopodids, and heleids, as well as the naidid oligochaete, Paranais litoralis, characterize early successional stages. Enchytraeid and tubificid oligochaetes reflect later succession evident in natural and older created marshes. Sediment organic matter (both combustible and below-ground plant biomass) was the environmental variable most commonly associated with densities of various macrofaunal taxa. These relationships were generally negative in the natural marshes and positive in the created marshes. Within-bay comparisons of macrofauna from natural Salicornia- vs Spartina -vegetated habitat in San Diego and Mission Bays revealed lower macrofaunal density (San Diego Bay only), proportionally fewer oligochaetes and more insects, and no differences in species richness in the Salicornia habitat. The oldest created Salicornia marsh (San Diego Bay) exhibited an assemblage intermediate in composition between those of the natural Salicornia- and Spartina- vegetated marshes. These results suggest: (a) faunal recovery following Salicornia marsh creation can require 10 or more years, (b) high macrofaunal variability among bays requires marsh creation reference site selection from within the same bay, and (c) Spartina -based research should not be used for Salicornia marsh management decisions.

  9. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  10. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE PAGES

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi; ...

    2016-06-17

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  11. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  12. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  13. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia

    NASA Astrophysics Data System (ADS)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia

    2018-01-01

    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations in the coeval topography, potential structural traps, and distribution of oil-bearing sandstone reservoirs.

  14. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridier, Karl; Gillon, Béatrice; André, Gilles

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A newmore » length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.« less

  15. Integrated Field Screening for Rapid Sediment Characterization

    DTIC Science & Technology

    2004-08-01

    operating procedure SOW statement of work sq square mile(s) SSC San Diego–Space and Naval Warfare Systems Center, San Diego TBT tributyltin ...PCBs], tributyltin [ TBT ]), the data show these areas not very contaminated. 3.4 PHYSICAL SET-UP AND OPERATION The details of the methodology for the

  16. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of Quaternary slip on another nearby terrane-bounding fault, the Leech River fault, it is essential that these faults are identified and studied, in order to both understand their role in forearc deformation and characterize the seismic hazard that they pose.

  17. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview

    USGS Publications Warehouse

    Pashin, J.C.

    1998-01-01

    Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.

  18. Solution Structure of an Amyloid-Forming Protein During Photoinitiated Hexamer-Dodecamer Transitions Revealed Through Small-Angle Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamill,A.; Wang, S.; Lee, Jr., C.

    2007-01-01

    Shape-reconstruction analysis applied to small angle neutron scattering (SANS) data is used to determine the in vitro conformations of {alpha}-chymotrypsin oligomers that form as a result of partial unfolding with a photoresponsive surfactant. In the presence of the photoactive surfactant under visible light, the native oligomers (dimers or compact hexamers) rearrange into expanded corkscrew-like hexamers. Converting the surfactant to the photopassive form with UV light illumination causes the hexamers to laterally aggregate and intertwine into dodecamers with elongated, twisted conformations containing cross-sectional dimensions similar to amyloid protofilaments. Secondary-structure measurements with FT-IR indicate that this photoinduced hexamer-to-dodecamer association occurs through intermolecularmore » {beta} sheets stabilized with hydrogen bonds, similar to amyloid formation. Traditional structural characterization techniques such as X-ray crystallography and NMR are not easily amenable to the study of these non-native protein conformations; however, SANS is ideally suited to the study of these associated intermediates, providing direct observation of the mechanism of oligomeric formation in an amyloid-forming protein. Combined with photoinitiated hexamer-to-dodecamer associations in the presence of the photoresponsive surfactant, this study could provide unique insight into the amyloidosis disease pathway, as well as novel disease treatment strategies.« less

  19. Magnetotelluric data collected to characterize aquifers in the San Luis Basin, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2015-01-01

    The U.S. Geological Survey is conducting a series of multidisciplinary studies of the San Luis Basin as part of the Geologic Framework of Rio Grande Basins project. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, magnetotelluric surveys, and hydrologic and lithologic data are being used to better understand the aquifers in the San Luis Basin. This report describes one north-south and two east-west regional magnetotelluric sounding profiles, acquired in June of 2010 and July and August of 2011, across the San Luis Basin in northern New Mexico. No interpretation of the data is included.

  20. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    NASA Astrophysics Data System (ADS)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage monitoring.

  1. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.

  2. Patterns of Twitter Behavior Among Networks of Cannabis Dispensaries in California

    PubMed Central

    Chew, Robert F; Hsieh, Yuli P; Bieler, Gayle S; Bobashev, Georgiy V; Siege, Christopher; Zarkin, Gary A

    2017-01-01

    Background Twitter represents a social media platform through which medical cannabis dispensaries can rapidly promote and advertise a multitude of retail products. Yet, to date, no studies have systematically evaluated Twitter behavior among dispensaries and how these behaviors influence the formation of social networks. Objectives This study sought to characterize common cyberbehaviors and shared follower networks among dispensaries operating in two large cannabis markets in California. Methods From a targeted sample of 119 dispensaries in the San Francisco Bay Area and Greater Los Angeles, we collected metadata from the dispensary accounts using the Twitter API. For each city, we characterized the network structure of dispensaries based upon shared followers, then empirically derived communities with the Louvain modularity algorithm. Principal components factor analysis was employed to reduce 12 Twitter measures into a more parsimonious set of cyberbehavioral dimensions. Finally, quadratic discriminant analysis was implemented to verify the ability of the extracted dimensions to classify dispensaries into their derived communities. Results The modularity algorithm yielded three communities in each city with distinct network structures. The principal components factor analysis reduced the 12 cyberbehaviors into five dimensions that encompassed account age, posting frequency, referencing, hyperlinks, and user engagement among the dispensary accounts. In the quadratic discriminant analysis, the dimensions correctly classified 75% (46/61) of the communities in the San Francisco Bay Area and 71% (41/58) in Greater Los Angeles. Conclusions The most centralized and strongly connected dispensaries in both cities had newer accounts, higher daily activity, more frequent user engagement, and increased usage of embedded media, keywords, and hyperlinks. Measures derived from both network structure and cyberbehavioral dimensions can serve as key contextual indicators for the online surveillance of cannabis dispensaries and consumer markets over time. PMID:28676471

  3. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    USGS Publications Warehouse

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  4. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  5. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  6. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    PubMed

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  7. Tuning structure of oppositely charged nanoparticle and protein complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-04-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).

  8. Gene Flow Patterns of the Mayfly Fallceon quilleri in San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Zickovich, J.; Bohonak, A. J.

    2005-05-01

    Management decisions and conservation strategies for freshwater invertebrates critically depend on an understanding of gene flow and genetic structure. We collected the mayfly Fallceon quilleri (Ephemeroptera: Baetidae) from 15 streams across three geographically distinct watersheds in San Diego County, California (San Dieguito, Santa Margarita, and Tijuana) and one site in Anza-Borrego desert. We sequenced a 667 base pair region of the mitochondrial DNA (COI) to assess genetic structure and gene flow. We found eight haplotypes across all populations. San Dieguito and Santa Margarita each contained six haplotypes. Tijuana and Anza Borrego each contained four haplotypes. The expected heterozygosity for San Dieguito, Santa Margarita, Tijuana, and Anza Borrego was 0.81, 0.83, 0.75, and 1.0, respectively. A hierarchical AMOVA analysis indicated restricted gene flow and a pairwise comparison indicated that Tijuana watershed differs significantly from San Dieguito and Anza Borrego. A haplotype cladogram revealed two internal ancestral haplotypes and six derived tip haplotypes that are unique to particular watersheds. These results suggest that Tijuana (the southernmost and the most impacted watershed) is more genetically distinct and isolated than the other watersheds sampled.

  9. Chapter E. The Loma Prieta, California, Earthquake of October 17, 1989 - Geologic Setting and Crustal Structure

    USGS Publications Warehouse

    Wells, Ray E.

    2004-01-01

    Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.

  10. Recent deformation on the San Diego Trough and San Pedro Basin fault systems, offshore Southern California: Assessing evidence for fault system connectivity.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.

    2016-12-01

    The seismic hazard posed by offshore faults for coastal communities in Southern California is poorly understood and may be considerable, especially when these communities are located near long faults that have the ability to produce large earthquakes. The San Diego Trough fault (SDTF) and San Pedro Basin fault (SPBF) systems are active northwest striking, right-lateral faults in the Inner California Borderland that extend offshore between San Diego and Los Angeles. Recent work shows that the SDTF slip rate accounts for 25% of the 6-8 mm/yr of deformation accommodated by the offshore fault network, and seismic reflection data suggest that these two fault zones may be one continuous structure. Here, we use recently acquired CHIRP, high-resolution multichannel seismic (MCS) reflection, and multibeam bathymetric data in combination with USGS and industry MCS profiles to characterize recent deformation on the SDTF and SPBF zones and to evaluate the potential for an end-to-end rupture that spans both fault systems. The SDTF offsets young sediments at the seafloor for 130 km between the US/Mexico border and Avalon Knoll. The northern SPBF has robust geomorphic expression and offsets the seafloor in the Santa Monica Basin. The southern SPBF lies within a 25-km gap between high-resolution MCS surveys. Although there does appear to be a through-going fault at depth in industry MCS profiles, the low vertical resolution of these data inhibits our ability to confirm recent slip on the southern SPBF. Empirical scaling relationships indicate that a 200-km-long rupture of the SDTF and its southern extension, the Bahia Soledad fault, could produce a M7.7 earthquake. If the SDTF and the SPBF are linked, the length of the combined fault increases to >270 km. This may allow ruptures initiating on the SDTF to propagate within 25 km of the Los Angeles Basin. At present, the paleoseismic histories of the faults are unknown. We present new observations from CHIRP and coring surveys at three locations where thin lenses of sediment mantle the SDTF, providing the ideal sedimentary record to constrain the timing of the most recent event. Characterizing the paleoseismic histories is a key step toward defining the extent and variability of past ruptures, which in turn, will improve maximum magnitude estimates for the SDTF and SPBF systems.

  11. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  12. Investigation of the structure and lithology of bedrock concealed by basin fill, using ground-based magnetic-field-profile data acquired in the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    2013-01-01

    Data on the Earth’s total-intensity magnetic field acquired near ground level and at measurement intervals as small as 1 m include information on the spatial distribution of nearsurface magnetic dipoles that in many cases are unique to a specific lithology. Such spatial information is expressed in the texture (physical appearance or characteristics) of the data at scales of hundreds of meters to kilometers. These magnetic textures are characterized by several descriptive statistics, their power spectrum, and their multifractal spectrum. On the basis of a graphical comparison and textural characterization, ground-based magnetic-field profile data can be used to estimate bedrock lithology concealed by as much as 100 m of basin fill in some cases, information that is especially important in assessing and exploring for concealed mineral deposits. I demonstrate that multifractal spectra of ground-based magnetic-field-profile data can be used to differentiate exposed lithologies and that the shape and position of the multifractal spectrum of the ground-based magnetic-field-profile of concealed lithologies can be matched to the upward-continued multifractal spectrum of an exposed lithology to help distinguish the concealed lithology. In addition, ground-based magnetic-field-profile data also detect minute differences in the magnetic susceptibility of rocks over small horizontal and vertical distances and so can be used for precise modeling of bedrock geometry and structure, even when that bedrock is concealed by 100 m or more of nonmagnetic basin fill. Such data contain valuable geologic information on the bedrock concealed by basin fill that may not be so visible in aeromagnetic data, including areas of hydrothermal alteration, faults, and other bedrock structures. Interpretation of these data in the San Rafael Basin, southeastern Arizona, has yielded results for estimating concealed lithologies, concealed structural geology, and a concealed potential mineral-resource target.

  13. Sediment Quality Characterization Naval Station San Diego

    DTIC Science & Technology

    1999-01-01

    Bioassays using an am- phipod (Rhepoxynius abronius), larvae of the sea urchin (Strongylocentrotus purpuratus), and larval abalone (Haliotis sp.) indicated...sulfide (AVS) and simultaneously extracted metal ( SEM ) in bulk sedim ent (pm ole.g-dry1...Diego Gas & Electric SDIWQR San Diego Interagency Water Quality Control Board SEM Simultaneously Extracted Metals Si Silicon SI Site Investigation SOD

  14. Characterization of the pH-Mediated solubility of Bacillus thuringiensis var. san diego native δ-endotoxin crystals

    Treesearch

    C. N. Koller; L. S. Bauer; R. M. Hollingworth

    1992-01-01

    Native crystals of Bacillus thuringiensis var. san diego, a coleopteran-specific δ-endotoxin, were metabolically labeled with [35S]methionine. Specific activity was 82,000 CPM/μg (2.44 Ci/mmol). Using a universal buffer formulated with the same ionic strength at every pH, we determined that...

  15. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).

  16. High flow and riparian vegetation along the San Miguel River, Colorado

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.

    2000-01-01

    Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.

  17. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor does there appear to be a ubiquitous increase in the proportion of fine sediment from Corte Madera watershed accumulating in the marsh during the last 20 years when sediment inflows through the Delta have decreased to pre-disturbance levels. We conclude that a large, well-mixed reservoir, such as the transportable fine sediment pool in San Francisco Bay, is the primary source of sediment to Corte Madera Marsh, and this source buffers the marsh against changes in sediment supply from the Delta and local watersheds. This study also found that Corte Madera Marsh sediment between about 10-30 centimeters depth is highly contaminated with lead, likely a legacy of lead smelter operations near Carquinez Strait and leaded gasoline use.

  18. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  19. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin, and results for copper exceeded the U.S. Environmental Protection Agency Office of Pesticide Programs' aquatic-life chronic and acute benchmarks for invertebrates. One sediment sample contained detections of pyrethroid pesticides bifenthrin, lambda-cyhalothrin, and total permethrin at concentrations above published chronic toxicity thresholds.

  20. Geologic map of the San Francisco Bay region

    USGS Publications Warehouse

    Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.

    2006-01-01

    The rocks and fossils of the San Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 San Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the San Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the San Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.

  1. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste.

    DOT National Transportation Integrated Search

    2011-04-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  2. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste

    DOT National Transportation Integrated Search

    2011-03-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  3. Tectonic Implications of Changes in the Paleogene Paleodrainage Network in the West-Central Part of the San Luis Basin, Northern Rio Grande Rift, New Mexico and Colorado, USA

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.

    2016-12-01

    The San Luis Basin is the largest of extensional basins in the northern Rio Grande rift (>11,400 km2). The modern basin configuration is the result of Neogene deformation that has been the focus of numerous studies. In contrast, Paleogene extensional deformation is relatively little studied owing to a fragmentary or poorly exposed stratigraphic record in most areas. However, volcanic and volcaniclastic deposits exposed along the western margin of the basin provide the spatial and temporal framework for interpretation of paleodrainage patterns that changed in direct response to Oligocene basin subsidence and the migration of centers of Tertiary volcanism. The early Oligocene (34 to 30 Ma) drainage pattern that originated in the volcanic highlands of the San Juan Mountains flowed south into the northern Tusas Mountains. A structural and topographic high composed of Proterozoic rocks in the Tusas Mountains directed flow to the southeast at least as late as 29 Ma, as ash-flow tuffs sourced in the southeast San Juan Mountains are restricted to the north side of the paleohigh. Construction of volcanic highlands in the San Luis Hills between 30 and 28.5 Ma provided an abundant source of volcanic debris that combined with volcanic detritus sourced in the southeast San Juan Mountains and was deposited (Los Pinos Formation) throughout the northern Tusas Mountains progressively onlapping the paleotopographic high. By 29 Ma, subsidence of the Las Mesitas graben, a structural sub-basin, between the San Luis Hills and the southeast San Juan and northern Tusas Mountains is reflected by thick deposits of Los Pinos Formation beneath 26.5 Ma basalts. Regional tectonism responsible for the formation of the graben may have also lowered the topographic and structural high in the Tusas Mountains, which allowed development of a southwest-flowing paleodrainage that likely flowed onto the Colorado Plateau. Tholeiitic basalt flows erupted in the San Luis Hills at 25.8 Ma, that presently cap dip-slope surfaces 600 m above the basin floor, flowed southwest at least 50 km utilizing the paleodrainage. After emplacement of 20.5 Ma basalts along the margin of the southeast San Juan Mountains, uplift along the western margin of the basin reversed paleodrainage directions eastward into the incipient San Luis Basin.

  4. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  5. Crustal structure of the coastal and marine San Francisco Bay region, California

    USGS Publications Warehouse

    Parsons, Tom

    2002-01-01

    In summary, these studies were carried out in an environment where background information on faults in the San Francisco Bay region was sought. Much of the structural information presented here comes from experiments of a style unlikely to be conducted by the USGS in the near future. Together, the chapters in this volume provide a structural framework for a major part of a complex strike-slip fault system.

  6. Geo-environmetal characterization of dry riverbeds affected by mine tailings in the Mazarrón district, Murcia (Spain)

    NASA Astrophysics Data System (ADS)

    Martín-Crespo, Tomás.; Gómez-Ortiz, David; Martínez-Pagán, Pedro; Martín-Velázquez, Silvia; de Ignacio, Cristina; Lillo, Javier; Faz, Angel

    2010-05-01

    Mine tailings constitute an environmental issue of public concern because they represent accumulations and emission sources of heavy metals and acid mine drainage by sulphide oxidation. In this work, two geophysical methods, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), as well as mineralogical and geochemical techniques have been used in order to obtain a geo-environmental characterization of two dry riverbeds in a mining district. The abandoned San Cristóbal and Los Perules mining group (Mazarrón, Murcia) has generated a huge amount of sludge from the Ag, Pb and Zn extraction operations. These tailings were piled up in ponds or directly dumped to the San Cristóbal dry riverbed located at the mining site, and Las Moreras dry riverbed, where San Cristóbal flows into a few meters downstream. Furthermore, Las Moreras watercourse flows into the Mediterranean Sea five kilometres downstream. Samples from two boreholes have been analyzed in order to obtain thickness, mineralogical and chemical composition of tailings and watercourse sedimentary materials affected by them. San Cristóbal sampling point shows a thickness of 3,5 m of mine tailings, 2 m of sedimentary materials, and the in situ volcanic rocks to 5,5 m depth. Las Moreras site shows a thickness of 2 m of a mine tailings deposit, 4 m of sedimentary materials, and the in situ metamorphic rocks 6 m depth. In both sites, significant amounts of pyrite (15-20 wt %), sphalerite (10-15 wt %) and galena (5-10 wt %) have been determined, and secondary oxides (hematite) and sulphates (gypsum, jarosite) minerals have been also identified. Ag, As, Cd, Co, Cu, Sb, V, Pb and Zn contents are also significant in all studied samples from tailings samples, and acid mine drainage has been clearly detected affecting the San Cristóbal dry riverbed. Regarding the alluvial materials from the riverbeds, pyrite, sphalerite and galena have been only identified in the San Cristóbal sampling point, probably due to its location at the mining site. Furthermore, heavy metal content of both dry riverbeds show significant amounts of Ag, As, Cu, Sb, Pb, V and Zn, indicating an important process of contamination from the surficial tailings to the natural sediments and watercourses. Water from Las Moreras riverbed has also been analysed. Its pH is about 8 and it exhibit higher values in conductivity and TDS, together with the concentrations of major metallic ions, mainly Cu, Ni, Fe and Zn, most of them beyond the established limits for this kind of natural waters. ERT and GPR techniques have provided estimations of both thickness and internal structure of the dry riverbeds infilling. For San Cristóbal site, ERT indicates a ~6 m thick sedimentary sequence, in good agreement with borehole data. An upper unit of 30 ohm.m extending up to 1.5 m depth, and a lower unit of resistivity values lower than 5 ohm.m up to 6 m depth can be distinguished. The first unit corresponds to upper part of the tailing, characterized by sand texture, whereas the lower one corresponds to tailing with silty-clay texture and sedimentary material with high metal contents. For Las Moreras site a 2 m thick upper unit of low (< 5 ohm-m) resistivity values and a 4 m thick lower one of ~20-30 ohm.m are distinguished, in good agreement with the surficial tailings and lower sedimentary materials obtained in the borehole. Joint application of geophysical and geochemical techniques has revealed itself as very useful for obtaining a complete characterization of abandoned mine deposits, previously to a future reclamation of these dangerous tailings.

  7. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  8. Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis

    NASA Astrophysics Data System (ADS)

    Faherty, D.; Polet, J.; Osborn, S. G.

    2017-12-01

    The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.

  9. Long-Term Effects of Atrial Ganglionated Plexi Ablation on Function and Structure of Sinoatrial and Atrioventricular Node in Canine.

    PubMed

    Zhang, Ming; Wang, Ximin; Xie, Xinxing; Wang, Zhongsu; Liu, Xiaoyan; Guan, Juan; Wang, Weizong; Li, Zhan; Wang, Jiangrong; Gao, Mei; Hou, Yinglong

    2015-10-01

    Long-term effects of ganglionated plexi (GP) ablation on sinoatrial node (SAN) and atrioventricular node (AVN) remain unclear. This study is to investigate the long-term effects of ablation of cardiac anterior right GP (ARGP) and inferior right GP (IRGP) on function and structure of SAN and AVN in canine. Thirty-two dogs were randomly divided into an operated group (n = 24) and sham-operated group (n = 8). ARGP and IRGP were ablated in operated group which was randomly divided into three subgroups according to the period of evaluation after operation (1 month, 6 months, 12 months). The functional and histological characteristics of SAN and AVN, as well as the expression of connexin (Cx) 43 and Cx 45 in SAN and AVN, were evaluated before and after ablation. Resting heart rate was increased and AVN effective refractory period was prolonged and sinus node recovery time (SNRT) and corrected SNRT were shortened immediately after ablation. These changes were reverted to preablation level after 1 month. At 1 month, ventricular rate during atrial fibrillation was slowed, atria-His intervals were prolonged, and Cx43 and Cx45 expression in SAN and AVN were downregulated. At 6 months, all changes were reverted to preablation level. The histological characteristics of SAN and AVN did not change. Ablation of ARGP and IRGP has short-term effects on function and structure of SAN and AVN rather than long-term effects, which suggests that ablation of ARGP and IRGP is safe. Atrioventricular conduction dysfunction after ablation may be related to downregulated Cx43 and Cx45 expression in AVN. © 2015 Wiley Periodicals, Inc.

  10. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE PAGES

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  11. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  12. Development and characterization of 12 microsatellite markers for the Island Night Lizard (Xantusia riversiana), a threatened species endemic to the Channel Islands, California, USA

    USGS Publications Warehouse

    O'Donnell, Ryan P.; Drost, Charles A.; Mock, Karen E.

    2014-01-01

    The Island Night Lizard is a federally threatened species endemic to the Channel Islands of California. Twelve microsatellite loci were developed for use in this species and screened in 197 individuals from across San Nicolas Island, California. The number of alleles per locus ranged from 6 to 21. Observed heterozygosities ranged from 0.520 to 0.843. These microsatellite loci will be used to investigate population structure, effective population size, and gene flow across the island, to inform protection and management of this species.

  13. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Hart, P.E.

    1999-01-01

    The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.

  14. Recognition on space photographs of structural elements of Baja California

    NASA Technical Reports Server (NTRS)

    Hamilton, W.

    1971-01-01

    Gemini and Apollo photographs provide illustrations of known structural features of the peninsula and some structures not recognized previously. An apparent transform relationship between strike-slip and normal faulting is illustrated by the overlapping vertical photographs of northern Baja California. The active Agua Blanca right-lateral strike-slip fault trends east-southeastward to end at the north end of the Valle San Felipe and Valle Chico. The uplands of the high Sierra San Pedro Martir are a low-relief surface deformed by young faults, monoclines, and warps, which mostly produce west-facing steps and slopes; the topography is basically structural. The Sierra Cucapas of northeasternmost Baja California and the Colorado River delta of northwesternmost Sonora are broken by northwest-trending strike-slip faults. A strike-slip fault is inferred to trend northward obliquely from near Cabo San Lucas to La Paz, thence offshore until it comes ashore again as the Bahia Concepcion strike-slip fault.

  15. View northeast toward west side of building 68. View partially ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast toward west side of building 68. View partially obscured by automobiles and storage structures. - Naval Air Station North Island, Seaplane Hangars, Roe Street, North Island, San Diego, San Diego County, CA

  16. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  17. Characterizing the scientific potential of satellite sensors. [San Francisco, California

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Analytical and programming support is to be provided to characterize the potential of the LANDSAT thematic mapper (TM) digital imagery for scientific investigations in the Earth sciences and in terrestrial physics. In addition, technical support to define lower atmospheric and terrestrial surface experiments for the space station and technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing are to be provided. Eleven radiometric calibration and correction programs are described. Coherent noise and bright target saturation correction are discussed along with image processing on the LAS/VAX and Hp-300/IDIMS. An image of San Francisco, California from TM band 2 is presented.

  18. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo.

    PubMed

    Wu, Lin; Pan, Lifeng; Wei, Zhiyi; Zhang, Mingjie

    2011-02-11

    The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.

  19. Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Kasameyer, P.; Turpin, C.

    2000-03-01

    This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.« less

  20. Lipid based drug delivery systems: Kinetics by SANS

    NASA Astrophysics Data System (ADS)

    Uhríková, D.; Teixeira, J.; Hubčík, L.; Búcsi, A.; Kondela, T.; Murugova, T.; Ivankov, O. I.

    2017-05-01

    N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we demonstrate structural responsivity of C12NO/dioleoylphospha-tidylethanolamine (DOPE)/DNA complexes designed as pH sensitive gene delivery vectors. Small angle neutron scattering (SANS) was employed to follow kinetics of C12NO protonization and DNA binding into C12NO/DOPE/DNA complexes in solution of 150 mM NaCl at acidic condition. SANS data analyzed using paracrystal lamellar model show the formation of complexes with stacking up to ∼32 bilayers, spacing ∼ 62 Å, and lipid bilayer thickness ∼37 Å in 3 minutes after changing pH from 7 to 4. Subsequent structural reorganization of the complexes was observed along 90 minutes of SANS mesurements.

  1. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  2. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Lifelines

    USGS Publications Warehouse

    Schiff, Anshel J.

    1998-01-01

    To the general public who had their televisions tuned to watch the World Series, the 1989 Loma Prieta earthquake was a lifelines earthquake. It was the images seen around the world of the collapsed Cypress Street viaduct, with the frantic and heroic efforts to pull survivors from the structure that was billowing smoke; the collapsed section of the San Francisco-Oakland Bay Bridge and subsequent home video of a car plunging off the open span; and the spectacular fire in the Marina District of San Francisco fed by a broken gasline. To many of the residents of the San Francisco Bay region, the relation of lifelines to the earthquake was characterized by sitting in the dark because of power outage, the inability to make telephone calls because of network congestion, and the slow and snarled traffic. Had the public been aware of the actions of the engineers and tradespeople working for the utilities and other lifeline organizations on the emergency response and restoration of lifelines, the lifeline characteristics of this earthquake would have been even more significant. Unobserved by the public were the warlike devastation in several electrical-power substations, the 13 miles of gas-distribution lines that had to be replaced in several communities, and the more than 1,200 leaks and breaks in water mains and service connections that had to be excavated and repaired. Like the 1971 San Fernando, Calif., earthquake, which was a seminal event for activity to improve the earthquake performance of lifelines, the 1989 Loma Prieta earthquake demonstrated that the tasks of preparing lifelines in 'earthquake country' were incomplete-indeed, new lessons had to be learned.

  3. Physical properties of aqueous solutions of a thermo-responsive neutral copolymer and an anionic surfactant: turbidity and small-angle neutron scattering studies.

    PubMed

    Galant, Céline; Kjøniksen, Anna-Lena; Knudsen, Kenneth D; Helgesen, Geir; Lund, Reidar; Laukkanen, Antti; Tenhu, Heikki; Nyström, Bo

    2005-08-16

    Aqueous mixtures of the anionic sodium dodecyl sulfate (SDS) surfactant and thermo-responsive poly(N-vinylcaprolactam) chains grafted with omega-methoxy poly(ethylene oxide) undecyl alpha-methacrylate (PVCL-g-C11EO42) have been characterized using turbidimetry and small-angle neutron scattering (SANS). Turbidity measurements show that the addition of SDS to a dilute aqueous copolymer solution (1.0 wt %) induces an increase of the cloud point (CP) value and a decrease of the turbidity at high temperatures. In parallel, SANS results show a decrease of both the average distance between chains and the global size of the objects in solution at high temperatures as the SDS concentration is increased. Combination of these findings reveals that the presence of SDS in the PVCL-g-C11EO42 solutions (1.0 wt %) promotes the formation of smaller aggregates and, consequently, leads to a more homogeneous distribution of the chains in solution upon heating of the mixtures. Moreover, the SANS data results show that the internal structure of the formed aggregates becomes more swollen as the SDS concentration increases. On the other hand, the addition of moderate amounts of SDS (up to 4 mm) to a semidilute copolymer solution (5.0 wt %) gives rise to a more pronounced aggregation as the temperature rises; turbidity and SANS studies reveal in this case a decrease of the CP value and an increase of the scattered intensity at low q. The overall picture that emerges from this study is that the degree of aggregation can be accurately tuned by varying parameters such as the temperature, level of surfactant addition, and polymer concentration.

  4. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    USGS Publications Warehouse

    Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

  5. Experimental evidences for molecular origin of low-Q peak in neutron/x-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids

    NASA Astrophysics Data System (ADS)

    Fujii, Kenta; Kanzaki, Ryo; Takamuku, Toshiyuki; Kameda, Yasuo; Kohara, Shinji; Kanakubo, Mitsuhiro; Shibayama, Mitsuhiro; Ishiguro, Shin-ichi; Umebayashi, Yasuhiro

    2011-12-01

    Short- and long-range liquid structures of [CnmIm+][TFSA-] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 Å -1, indicating the heterogeneity of their ionic liquids. SANS profiles IH(Q) and ID(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=ID(Q) - IH(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, SQpeak(r). The SQpeak(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 Å for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the CnmIm.

  6. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    USGS Publications Warehouse

    Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  7. Streamflow gains and losses along San Francisquito Creek and characterization of surface-water and ground-water quality, southern San Mateo and northern Santa Clara counties, California, 1996-97

    USGS Publications Warehouse

    Metzger, Loren F.

    2002-01-01

    San Francisquito Creek is an important source of recharge to the 22-square-mile San Francisquito Creek alluvial fan ground-water subbasin in the southern San Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along San Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between San Francisquito Creek and the San Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along San Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of San Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in San Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the San Mateo Drive bike bridge and Middlefield Road; average losses between San Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from San Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water-level measurements from nearby wells indicate that the regional water table may coincide with the channel bottom along this reach of San Francisquito Creek, particularly during the winter and early spring when water levels usually reach their maximum. Streamflow losses resumed below the 1200 block of Woodland Avenue, extending downstream to Newell Road. Discharge from a large storm drain between Newell Road and East Bayshore Road may account for the streamflow gains measured between these sites. Streamflow gains were measured between East Bayshore Road and the Palo Alto Municipal Golf Course, but this reach is difficult to characterize because of the probable influence of high tides.Estimated average streamflow losses totaled approximately 1,050 acre-feet per year for the reaches between USGS stream gage 11164500 at Stanford University (upstream of Junipero Serra Boulevard) and the Palo Alto Municipal Golf Course, including approximately 595 acre-feet per year for the 1.8-mile section between San Mateo Drive and Middlefield Road. Approximately 58 percent, or 550 acre-feet, of the total estimated average annual recharge from San Francisquito Creek occurs between the San Mateo Drive and Middlefield Road sites.The chemical composition of San Francisquito Creek water varies as a function of seasonal changes in hydrologic conditions. Measurements of specific conductance indicate that during dry weather and low flow, the dissolved-solids concentrations tends to be high, and during wet weather, the concentration tends to be low owing to dilution by surface water. Compared with water samples from upstream sites at USGS stream gage 11164500 and San Mateo Drive, the samples from the downstream sites at Alma Street and Woodland Avenue had low specific conductance; low concentrations of magnesium, sodium, sulfate, chloride, boron, and total dissolved solids; high nutrient concentrations; and light isotopic compositions indicating that urban runoff constitutes most of the streamflow

  8. Patterns of Twitter Behavior Among Networks of Cannabis Dispensaries in California.

    PubMed

    Peiper, Nicholas C; Baumgartner, Peter M; Chew, Robert F; Hsieh, Yuli P; Bieler, Gayle S; Bobashev, Georgiy V; Siege, Christopher; Zarkin, Gary A

    2017-07-04

    Twitter represents a social media platform through which medical cannabis dispensaries can rapidly promote and advertise a multitude of retail products. Yet, to date, no studies have systematically evaluated Twitter behavior among dispensaries and how these behaviors influence the formation of social networks. This study sought to characterize common cyberbehaviors and shared follower networks among dispensaries operating in two large cannabis markets in California. From a targeted sample of 119 dispensaries in the San Francisco Bay Area and Greater Los Angeles, we collected metadata from the dispensary accounts using the Twitter API. For each city, we characterized the network structure of dispensaries based upon shared followers, then empirically derived communities with the Louvain modularity algorithm. Principal components factor analysis was employed to reduce 12 Twitter measures into a more parsimonious set of cyberbehavioral dimensions. Finally, quadratic discriminant analysis was implemented to verify the ability of the extracted dimensions to classify dispensaries into their derived communities. The modularity algorithm yielded three communities in each city with distinct network structures. The principal components factor analysis reduced the 12 cyberbehaviors into five dimensions that encompassed account age, posting frequency, referencing, hyperlinks, and user engagement among the dispensary accounts. In the quadratic discriminant analysis, the dimensions correctly classified 75% (46/61) of the communities in the San Francisco Bay Area and 71% (41/58) in Greater Los Angeles. The most centralized and strongly connected dispensaries in both cities had newer accounts, higher daily activity, more frequent user engagement, and increased usage of embedded media, keywords, and hyperlinks. Measures derived from both network structure and cyberbehavioral dimensions can serve as key contextual indicators for the online surveillance of cannabis dispensaries and consumer markets over time. ©Nicholas C Peiper, Peter M Baumgartner, Robert F Chew, Yuli P Hsieh, Gayle S Bieler, Georgiy V Bobashev, Christopher Siege, Gary A Zarkin. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 04.07.2017.

  9. Preliminary geologic map and digital database of the San Bernardino 30' x 60' quadrangle, California

    USGS Publications Warehouse

    Morton, Douglas M.; Miller, Fred K.

    2003-01-01

    The San Bernardino 30'x60' quadrangle, southern California, is diagonally bisected by the San Andreas Fault Zone, separating the San Gabriel and San Bernardino Mountains, major elements of California's east-oriented Transverse Ranges Province. Included in the southern part of the quadrangle is the northern part of the Peninsular Ranges Province and the northeastern part of the oil-producing Los Angeles basin. The northern part of the quadrangle includes the southern part of the Mojave Desert Province. Pre-Quaternary rocks within the San Bernardino quadrangle consist of three extensive, well-defined basement rock assemblages, the San Gabriel Mountains, San Bernardino Mountains, and the Peninsular Ranges assemblages, and a fourth assemblage restricted to a narrow block bounded by the active San Andreas Fault and the Mill Creek Fault. Each of these basement rock assemblages is characterized by a relatively unique suite of rocks that was amalgamated by the end of the Cretaceous and (or) early Cenozoic. Some Tertiary sedimentary and volcanic rocks are unique to specific assemblages, and some overlap adjacent assemblages. A few Miocene and Pliocene units cross the boundaries of adjacent assemblages, but are dominant in only one. Tectonic events directly and indirectly related to the San Andreas Fault system have partly dismembered the basement rocks during the Neogene, forming the modern-day physiographic provinces. Rocks of the four basement rock assemblages are divisible into an older suite of Late Cretaceous and older rocks and a younger suite of post-Late Cretaceous rocks. The age span of the older suite varies considerably from assemblage to assemblage, and the point in time that separates the two suites varies slightly. In the Peninsular Ranges, the older rocks were formed from the Paleozoic to the end of Late Cretaceous plutonism, and in the Transverse Ranges over a longer period of time extending from the Proterozoic to metamorphism at the end of the Cretaceous. Within the Peninsular Ranges a profound diachronous unconformity marks the pre-Late Cretaceous-post-Late Cretaceous subdivision, but within the Transverse Ranges the division appears to be slightly younger, perhaps coinciding with the end of the Cretaceous or extending into the early Cenozoic. Initial docking of Peninsular Ranges rocks with Transverse Ranges rocks appears to have occurred at the terminus of plutonism within the Peninsular Ranges. During the Paleogene there was apparently discontinuous but widespread deposition on the basement rocks and little tectonic disruption of the amalgamated older rocks. Dismemberment of these Paleogene and older rocks by strike-slip, thrust, and reverse faulting began in the Neogene and is ongoing. The Peninsular Ranges basement rock assemblage is made up of the Peninsular Ranges batholith and a variety of metasedimentary rocks. Most of the plutonic rocks of the batholith are granodiorite and tonalite in composition; primary foliation is common, mainly in the eastern part. Tertiary sedimentary rocks of the Los Angeles Basin crop out in the Puente and San Jose Hills along with the spatially associated Glendora Volcanics; both units span the boundary between the Peninsular Ranges and San Gabriel Mountains basement rock assemblages. The San Gabriel Mountains basement rock assemblage includes two discrete areas, the high standing San Gabriel Mountains and the relatively low San Bernardino basin east of the San Jacinto Fault. The basement rock assemblage is characterized by a unique suite of rocks that include anorthosite, Proterozoic and Paleozoic gneiss and schist, the Triassic

  10. [Analysis of the Structure of Acute Psychotic Disorder].

    PubMed

    Gerardo, Téllez R; Ricardo, Sánchez P; Luis, Eduardo Jaramillo

    2012-03-01

    Schizophrenia is a clinically heterogeneous disorder. A multifactorial structure of this syndrome has been described in previous reports. The aim of this study was to evaluate what are the possible diagnostic categories in patients having acute psychotic symptoms, studying their clinical characteristics in a cross-sectional study. An instrument for measuring psychotic symptoms was created using previous scales (SANS, SAPS, BPRS, EMUN, Zung depression scale). Using as criteria statistical indexes and redundance of items, the initial instrument having 101 items has been reduced to 57 items. 232 patients with acute psychotic symptoms, in most cases schizophrenia, attending Clínica Nuestra Señora de la Paz in Bogotá and Hospital San Juan de Dios in Chía have been evaluated from April, 2008 to December, 2009. Multivariate statistical methods have been used for analyzing data. A six-factor structure has been found (Deficit, paranoid-aggressive, disorganized, depressive, bizarre delusions, hallucinations). Cluster analysis showed eight subtypes that can be described as: 1) bizarre delusions-hallucinations; 2) deterioration and disorganized behavior; 3) deterioration; 4) deterioration and paranoid-aggressive behavior; 5) bizarre delusions; 6) paranoia-anxiety- aggressiveness; 7) depressive symptoms and bizarre delusions; 8) paranoia and aggressiveness with depressive symptoms These subtypes allow a more exhaustive characterization that those included in standard classification schemes and should be validated in longitudinal studies. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity

    NASA Astrophysics Data System (ADS)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.

    2017-12-01

    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km apertures to image basin structure, important for seismic hazard analysis and ground motion predictions. Clear Rayleigh and Love wave signals are extracted. We determine Love wave dispersion and Rayleigh wave H/V and phase dispersion measurements. The preliminary basin models from inverting surface wave measurements will be presented.

  12. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  13. Structural injury underlying mottling in ponderosa pine needles exposed to ambient ozone concentrations in the San Bernardino Mountains near Los Angeles, California

    Treesearch

    Pierre Vollenweider; Mark E. Fenn; Terry Menard; Madeleine Gunthardt-Goerg; Andrzej Bytnerowicz

    2013-01-01

    For several decades, southern California experienced the worst ozone pollution ever reported. Peak ozone concentrations have, however, declined steadily since 1980. In this study, the structural injuries underlying ozone symptoms in needles of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) collected in summer 2006 from one of the most polluted sites in the San...

  14. Conference Proceedings of NASA/DoD Controls-Structures Interaction Technology Held in San Diego, California on 29 January-2 February 1989,

    DTIC Science & Technology

    1989-08-01

    NASA Langley Research Center, Hampton, Virginia, and Wright Research Development Center, Wright-Patterson Air Force Base, Ohio, and held in San Diego...427 Shalom Fisher SPACE TRUSS ZERO GRAVITY DYNAMICS. ............................... 445 Captain Andy Swanson UNITED STATES AIR FORCE ACADEMY GET-AWAY...HOUSE EXPERIMENTS IN LARGE SPACE STRUCTURES AT THE AIR FORCE WRIGHT AERONAUTICAL LABORATORIES FLIGHT DYNAMICS LABORATORY

  15. Cloud and boundary layer structure over San Nicolas Island during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.

    1990-01-01

    The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.

  16. A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading

    USGS Publications Warehouse

    Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer

    2006-01-01

    During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.

  17. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels

    PubMed Central

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity. PMID:26725737

  18. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    PubMed

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  19. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.

  20. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  1. Post construction review, district 8, San Bernardino County, Interstate 15 - southbound

    DOT National Transportation Integrated Search

    2001-06-01

    A concrete pavement project, complete May 2000 on Interstate 15 near Barstow in San Bernardino County, began to exhibit sighs of premature deterioration. The Office of Rigid Pavement and Structural Concrete was asked to evaluate the situation and mak...

  2. The geology and distribution of aquifers in the southeastern part of San Juan County, Utah

    USGS Publications Warehouse

    Goode, Harry D.

    1958-01-01

    The structural geology and the distribution of aquifers in the southeastern part of San Juan County were studied to establish the relationships of fresh-water aquifers to the oil- and gas-bearing rocks in that area.

  3. Production and Characterization of TiO2 Nanofilms for Hemocompatible and Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Schvezov, C. E.; Vera, M. L.; Schuster, J. M.; Rosenberger, M. R.

    2017-10-01

    Titanium dioxide (TiO2) coatings are currently produced for hemocompatible and photocatalytic applications by using two techniques: sol-gel and anodic oxidation. In this review, the research advances on TiO2 nanofilms produced with these techniques are presented, with a focus on different aspects such as process parameters, morphology, roughness, crystal structure, adhesion, wear and erosion resistance, corrosion resistance, hemocompatibility, toxicity, plaque and bacterial adhesion, and heterogeneous photocatalysis of immobilized porous material. This review was presented at the 3rd Pan American Materials Congress at the 2017 TMS Annual Meeting and Exhibition in San Diego, California, USA.

  4. Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    USGS Publications Warehouse

    Lutter, W.J.; Fuis, G.S.; Ryberg, T.; Okaya, D.A.; Clayton, R.W.; Davis, P.M.; Prodehl, C.; Murphy, J.M.; Langenheim, V.E.; Benthien, M.L.; Godfrey, N.J.; Christensen, N.I.; Thygesen, K.; Thurber, C.H.; Simila, G.; Keller, Gordon R.

    2004-01-01

    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ???4.3 km and >3 km , respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ???2.4 km. Below depths of ???2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using densities inferred from the velocity model, indicates that different velocity-density relationships hold for both sedimentary and basement rocks as one crosses the San Andreas Fault. The LARSE II velocity model can now be used to improve the SCEC Community Velocity Model, which is used to calculate seismic amplitudes for large scenario earthquakes.

  5. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.

    PubMed

    Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L

    2015-06-01

    Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics.

  6. Plan of study for the regional aquifer-system analysis of the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    USGS Publications Warehouse

    Welder, G.E.

    1986-01-01

    The San Juan structural basin is an 18,000 sq mi area that contains several extensive aquifers. The basin includes three surface drainage basins and parts of New Mexico, Colorado, Arizona, and Utah. Surface water in the area is fully appropriated, and the steadily increasing demand for groundwater has resulted in water supply concerns. Competition is great between mining and electric power companies, municipalities, and Indian communities for the limited groundwater supplies. This report outlines a 4-year plan for a study of the regional aquifer system in the San Juan structural basin. The purposes of the study are to define and understand the aquifer system; to assess the effects of groundwater use on the aquifers and streams; and to determine the availability and quality of groundwater in the basin. (Author 's abstract)

  7. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  8. Preliminary isostatic gravity map of the Sonoma volcanic field and vicinity, Sonoma and Napa Counties, California

    USGS Publications Warehouse

    Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.

    2006-01-01

    This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.

  9. Auckland--New Zealand's Los Angeles or San Francisco?

    ERIC Educational Resources Information Center

    Bogunovich, Dushko

    1995-01-01

    Compares Auckland (New Zealand) with San Francisco (California) in terms of topographical structure, geographic location, and urban development. Both cities contain striking similarities. Maintains that Auckland can become a world-class city renowned for its beauty if developers and government work in tandem. (MJP)

  10. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  11. Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton Fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30)

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.; Steedman, C.E.

    2008-01-01

    In this report, we present seismic data and acquisition parameters for two seismic profiles acquired in the San Bernardino, California area in May and October 2003. We refer to these seismic profiles as the San Bernardino Regional (SBR) and San Bernardino High-Resolution (SBHR) seismic profiles. We present both un-interpreted and interpreted seismic images so that the structure of the area can independently interpreted by others. We explain the rationale for our interpretations within the text of this report, and in addition, we provide a large body of supporting evidence. The SBR seismic profile extended across the San Bernardino Basin approximately N30?E from the town of Colton to the town of Highland. The data were acquired at night when the signal-to-noise ratios were reasonably good, and for the larger shots, seismic energy propagated across the ~20-km-long array. Tomographic velocity data are available to depths of about 4 km, and low-fold reflection data are available to depths in excess of 5 km. The SBR seismic data reveal an asymmetric, fault-bound basin to about 5 km depth. The SBHR seismic profile trended along the I-215 freeway from its intersection with the Santa Ana River to approximately State Road 30 in San Bernardino. Seismic data acquired along the I-215 freeway provide detailed images, with CDP spacing of approximately 2.5 m along an approximately 8.2-km-long profile; shot and geophone spacing was 5 m. For logistical reasons, the high-resolution (SBHR) seismic data were acquired during daylight hours on the shoulder of the I-215 freeway and within 5 to 10 m of high-traffic volumes, resulting in low signal-to-noise ratios. The limited offset at which refracted first-arrivals could be measured along the SBHR seismic profile limited our measurements of tomographic refraction velocities to relatively shallow (< 150 m) depths. The SBHR reflection data reveal a basin with complex structural details within the upper kilometer. The two seismic profiles show internal consistency and consistency with other existing geophysical data. Collectively, the data suggest that the I-215 freeway trends along the faulted edge of a pull-apart basin, within a zone where the principal slip of the San Jacinto Fault is transferred to the San Andreas Fault. Because the I-215 freeway trends at low angles to these flower-structure faults, both primary and numerous secondary faults are apparent between the I-10 exchange and State Road-30, suggesting that much of the 8-km-long segment of the I-215 freeway could experience movement along primary or secondary faults.

  12. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay.

    PubMed

    Cloern, James E; Jassby, Alan D; Thompson, Janet K; Hieb, Kathryn A

    2007-11-20

    Ecological observations sustained over decades often reveal abrupt changes in biological communities that signal altered ecosystem states. We report a large shift in the biological communities of San Francisco Bay, first detected as increasing phytoplankton biomass and occurrences of new seasonal blooms that began in 1999. This phytoplankton increase is paradoxical because it occurred in an era of decreasing wastewater nutrient inputs and reduced nitrogen and phosphorus concentrations, contrary to the guiding paradigm that algal biomass in estuaries increases in proportion to nutrient inputs from their watersheds. Coincidental changes included sharp declines in the abundance of bivalve mollusks, the key phytoplankton consumers in this estuary, and record high abundances of several bivalve predators: Bay shrimp, English sole, and Dungeness crab. The phytoplankton increase is consistent with a trophic cascade resulting from heightened predation on bivalves and suppression of their filtration control on phytoplankton growth. These community changes in San Francisco Bay across three trophic levels followed a state change in the California Current System characterized by increased upwelling intensity, amplified primary production, and strengthened southerly flows. These diagnostic features of the East Pacific "cold phase" lead to strong recruitment and immigration of juvenile flatfish and crustaceans into estuaries where they feed and develop. This study, built from three decades of observation, reveals a previously unrecognized mechanism of ocean-estuary connectivity. Interdecadal oceanic regime changes can propagate into estuaries, altering their community structure and efficiency of transforming land-derived nutrients into algal biomass.

  13. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional relationships between hydrocarbon source and reservoir rocks, we compiled a database consisting of more than 13,000 well picks and of one-mile resolution seismic grids. Both the well picks and the seismic grids characterize the depths to the top of key stratigraphic units. This database formed the basis of subsequent numerical modeling efforts, including the construction of a three- dimensional geologic model (Hosford Scheirer, this volume, chapter 7) and simulation of the petroleum systems in space and time (Peters, Magoon, Lampe, and others, this volume, chapter 12). To accomplish this modeling, we synthesized the age, geographic distribution, lithology, and petroleum characteristics of hydrocarbon source and reservoir rocks in the basin. The results of that synthesis are presented in this paper in the form of new stratigraphic correlation columns for the northern, central, and southern San Joaquin Valley (fig. 5.1; note that all figures are at the back of this report, following the References Cited). The stratigraphic relationships and ages published here draw heavily on published and unpublished studies of the San Joaquin Basin. The stratigraphy presented in each of the columns necessarily idealizes the subsurface geology over a relatively large area, instead of representing the specific geology at an individual well, oil and gas field, or outcrop. In this paper we present the background rationale for defining the geographic divisions of the basin (inset map, fig. 5.1), the paleontological time scales used for assigning absolute ages to rock units (figs. 5.2 and 5.3), and the supporting maps illustrating the geographic distribution of each rock type included in the stratigraphic column (figs. 5.4 through 5.64).

  14. Course structure-runway 28R San Francisco Airport.

    DOT National Transportation Integrated Search

    1973-09-01

    The TSC electromagnetic scattering model is used to dtermine the expected ILS localizer performance for the planned 28R runway at San Francisco airport. It is found that the V-Ring and the 14/6 Alford array as well as the larger 22/8 Alford array ope...

  15. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  16. Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.

    2014-12-01

    A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.

  17. Multifractal Approach to the Analysis of Crime Dynamics: Results for Burglary in San Francisco

    NASA Astrophysics Data System (ADS)

    Melgarejo, Miguel; Obregon, Nelson

    This paper provides evidence of fractal, multifractal and chaotic behaviors in urban crime by computing key statistical attributes over a long data register of criminal activity. Fractal and multifractal analyses based on power spectrum, Hurst exponent computation, hierarchical power law detection and multifractal spectrum are considered ways to characterize and quantify the footprint of complexity of criminal activity. Moreover, observed chaos analysis is considered a second step to pinpoint the nature of the underlying crime dynamics. This approach is carried out on a long database of burglary activity reported by 10 police districts of San Francisco city. In general, interarrival time processes of criminal activity in San Francisco exhibit fractal and multifractal patterns. The behavior of some of these processes is close to 1/f noise. Therefore, a characterization as deterministic, high-dimensional, chaotic phenomena is viable. Thus, the nature of crime dynamics can be studied from geometric and chaotic perspectives. Our findings support that crime dynamics may be understood from complex systems theories like self-organized criticality or highly optimized tolerance.

  18. Carbon storage and greenhouse gas fluxes in the San Juan ...

    EPA Pesticide Factsheets

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to measure carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration measurements were collected and GHG fluxes were measured during rainy and dry seasons at 5 sites along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each site, paired GHG flux measurements were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG fluxes in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. In Puer

  19. Carbon storage and greenhouse gas fluxes in the San Juan ...

    EPA Pesticide Factsheets

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to measure carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration measurements were collected and GHG fluxes were measured during rainy and dry seasons at 5 sites along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each site, paired GHG flux measurements were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG fluxes in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. Thi

  20. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    DTIC Science & Technology

    2011-10-25

    range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped...be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2

  1. Characterizing the scientific potential of satellite sensors. [San Francisco, California

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Eleven thematic mapper (TM) radiometric calibration programs were tested and evaluated in support of the task to characterize the potential of LANDSAT TM digital imagery for scientific investigations in the Earth sciences and terrestrial physics. Three software errors related to integer overflow, divide by zero, and nonexist file group were found and solved. Raw, calibrated, and corrected image groups that were created and stored on the Barker2 disk are enumerated. Black and white pixel print files were created for various subscenes of a San Francisco scene (ID 40392-18152). The development of linear regression software is discussed. The output of the software and its function are described. Future work in TM radiometric calibration, image processing, and software development is outlined.

  2. A rapid method to characterize seabed habitats and associated macro-organisms

    USGS Publications Warehouse

    Anderson, T.J.; Cochrane, G.R.; Roberts, D.A.; Chezar, H.; Hatcher, G.; ,

    2007-01-01

    This study presents a method for rapidly collecting, processing, and interrogating real-time abiotic and biotic seabed data to determine seabed habitat classifications. This is done from data collected over a large area of an acoustically derived seabed map, along multidirectional transects, using a towed small camera-sled. The seabed, within the newly designated Point Harris Marine Reserve on the northern coast of San Miguel Island, California, was acoustically imaged using sidescan sonar then ground-truthed using a towed small camera-sled. Seabed characterizations were made from video observations, and were logged to a laptop computer (PC) in real time. To ground-truth the acoustic mosaic, and to characterize abiotic and biotic aspects of the seabed, a three-tiered characterization scheme was employed that described the substratum type, physical structure (i.e., bedform or vertical relief), and the occurrence of benthic macrofauna and flora. A crucial advantage of the method described here, is that preliminary seabed characterizations can be interrogated and mapped over the sidescan mosaic and other seabed information within hours of data collection. This ability to rapidly process seabed data is invaluable to scientists and managers, particularly in modifying concurrent or planning subsequent surveys.

  3. Post earthquake recovery in natural gas systems--1971 San Fernando Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.T. Jr.

    1983-01-01

    In this paper a concise summary of the post earthquake investigations for the 1971 San Fernando Earthquake is presented. The effects of the earthquake upon building and other above ground structures are briefly discussed. Then the damages and subsequent repairs in the natural gas systems are reported.

  4. EFFECTS OF DDT SEDIMENT-CONTAMINATION ON MACROFAUNAL COMMUNITY STRUCTURE AND COMPOSITION IN SAN FRANCISCO BAY

    EPA Science Inventory

    The objectives of this study were to determine the effects of sediment contamination on the benthic macrofauna and to predict macrofaunal changes following remediation at a Superfund (uncontrolled hazardous waste) site in San Francisco Bay, CA, USA. DDT and its metabolites (sumDD...

  5. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  6. Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Watt, Janet T.

    2016-09-12

    IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.

  7. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    USGS Publications Warehouse

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  8. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    PubMed Central

    Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker

    2016-01-01

    Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780

  9. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project.

    PubMed

    Vaselli, Orlando; Higueras, Pablo; Nisi, Barbara; María Esbrí, José; Cabassi, Jacopo; Martínez-Coronado, Alba; Tassi, Franco; Rappuoli, Daniele

    2013-08-01

    The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Response of two identical seven-story structures to the San Fernando earthquake of February 9, 1971

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, S.A.; Honda, K.K.

    1973-10-01

    The results of the structural dynamic investigation of two sevenstory reinforced concrete frame structures are presented here. The structures are both Holiday Inn rnotor hotels that are essentially identical: one is locrted about 13 miles and the other about 26 miles from the epicenter of the February 9, 1971, San Fernando earthquake. Appreciable nonstructural damage as well as some structural damage was observed. Strong-motion seismic records were obtained for the roof, intermediate story, and ground floor of each structure. The analyses are based on data from the structural drawings, architectural drawings, photographs, engineering reports, and seisrnogram records obtained before, during,more » and after the San Fernando earthquake. Both structures experienced motion well beyond the limits of the building code design criteria. A change in fundamental period was observed for each structure after several seconds of response to the earthquake, which indicated nonlinear response. The analyses indicated that the elastic capacity of some structural members was exceeded. Idealized linear models were constructed to approximate response at various time segments. A method for approximating the nonlinear response of each structure is presented. The effects of nonstructural elements, yielding beams, and column capacities are illustrated. Comparisons of the two buildings are made for ductility factors, dynarnic response characteristics, and damage. Conclusions are drawn concerning the effects of the earthquake on the structures and the future capacities of the structures. (auth)« less

  11. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    PubMed

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Deformation rates across the San Andreas Fault system, central California determined by geology and geodesy

    NASA Astrophysics Data System (ADS)

    Titus, Sarah J.

    The San Andreas fault system is a transpressional plate boundary characterized by sub-parallel dextral strike-slip faults separating internally deformed crustal blocks in central California. Both geodetic and geologic tools were used to understand the short- and long-term partitioning of deformation in both the crust and the lithospheric mantle across the plate boundary system. GPS data indicate that the short-term discrete deformation rate is ˜28 mm/yr for the central creeping segment of the San Andreas fault and increases to 33 mm/yr at +/-35 km from the fault. This gradient in deformation rates is interpreted to reflect elastic locking of the creeping segment at depth, distributed off-fault deformation, or some combination of these two mechanisms. These short-term fault-parallel deformation rates are slower than the expected geologic slip rate and the relative plate motion rate. Structural analysis of folds and transpressional kinematic modeling were used to quantify long-term distributed deformation adjacent to the Rinconada fault. Folding accommodates approximately 5 km of wrench deformation, which translates to a deformation rate of ˜1 mm/yr since the start of the Pliocene. Integration with discrete offset on the Rinconada fault indicates that this portion of the San Andreas fault system is approximately 80% strike-slip partitioned. This kinematic fold model can be applied to the entire San Andreas fault system and may explain some of the across-fault gradient in deformation rates recorded by the geodetic data. Petrologic examination of mantle xenoliths from the Coyote Lake basalt near the Calaveras fault was used to link crustal plate boundary deformation at the surface with models for the accommodation of deformation in the lithospheric mantle. Seismic anisotropy calculations based on xenolith petrofabrics suggest that an anisotropic mantle layer thickness of 35-85 km is required to explain the observed shear wave splitting delay times in central California. The available data are most consistent with models for a broad zone of distributed deformation in the lithospheric mantle.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, J.L. Jr.

    Suniland field is located in the west Texas Permian basin. Production is primarily from peritidal shelf dolomites of the Permian (Guadalupian) San Andres Formation. San Andres deposition was highly cyclical, with at least two upward-shoaling megacycles comprising the lower 600 ft (183 m) of the formation; many smaller cycles occur within the megacycles. The field consists of an elongate, low-relief, east-west-trending anticline formed from draping over a pre-San Andres structural high. Hydrocarbon trapping is controlled primarily by structural closure and discontinuity of San Andres reservoir facies. Anhydrite cement precipitation also may cause an updip (northerly) permeability loss. Reservoirs occur inmore » thin, permeable oolitic grainstone intervals possessing primary intergranular porosity in combination with vugular and moldic pore systems. These grainstones interfinger with porous but generally impermeable oolitic packstones. Adjacent wackestones and mudstones are generally nonporous and impermeable. Porosity occlusion is primarily from precipitation of late dolomite cements. Anhydrite cements do not occlude porosity to a high degree. Oil production from the San Andres Formation at Suniland field is from nine separate reservoirs comprising two major pay categories, designated Sand Andres and lower San Andres. Pay depths range from 3,755 to 4,211 ft (1,144 to 1,283 m). Cumulative oil production to January 1986 is 7.35 million bbl from 69 wells. Permian (Leonardian) Glorieta production accounts for about 16% of total production. Reservoirs produce from solution gas expansion at low gas-to-oil ratios and high water cuts. Effective porosity in pay zones averages 14%; permeability averages 17 md.« less

  14. 13. Photocopy of a photographca. 1896showing wooden arch bridge over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of a photograph--ca. 1896--showing wooden arch bridge over the North Fork of the San Joaquin River northeast of Fresno, CA. This structure was designed by Eastwood as part of the San Joaquin Electric Company's hydro-electric plant; it is a design that indicates his interest in the structural capabilities of the arch before he began building multiple arch dams. Courtesy Mr. Charles Allan Whitney. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  15. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    PubMed

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.

  16. High-resolution Geophysical Constraints on Fault Structure and Morphology in the Catalina Basin, Southern California Inner Continental Borderland

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Roland, E. C.; Brothers, D. S.; Kluesner, J.; Maier, K. L.; Conrad, J. E.; Hart, P. E.; Balster-Gee, A. F.

    2016-12-01

    Southern California's Inner Continental Borderland, offshore of Los Angeles and San Diego, contains a complex arrangement of basins, ridges, and active faults that present seismic hazards to the region. In 2014 and 2016, the U.S. Geological Survey and University of Washington collected new geophysical data throughout the Catalina Basin (CB), including multibeam bathymetry, Chirp sub-bottom profiles, and more than 2000 line-km of high-resolution multi-channel seismic reflection profiles. These data provide the first detailed imaging of the San Clemente and Catalina faults, which border the CB. We now have improved constraints on the seabed morphology, fault structure, and deformation history along significant length of the San Clemente and Catalina fault systems, as well as insights into sediment deposition and basin development in the CB since the late Miocene. New multibeam data image the Catalina Fault as a continuous linear seafloor feature along the base of Catalina Island, and subsurface imaging indicates dominantly strike-slip motion. We also image the San Clemente Fault as a straight lineament along the seafloor downslope of San Clemente Island; the fault offsets several gullies and ridges, suggesting recent strike-slip motion. In the northwest region of the CB, the San Clemente Fault's main trace splits into several transpressional splays, as indicated by a series of uplifted, fault-bounded blocks. Growth strata throughout the CB suggest that oblique transform motion along the Catalina and San Clemente faults has affected regional sedimentation patterns and depocenters over time, providing a fundamental control on sediment distribution within the CB. Buried folds, faults, and unconformities within basin strata, including a prominent surface that is likely late Miocene based on regional geology, indicate multiple episodes of deformation throughout the CB's history.

  17. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  18. Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure

    USGS Publications Warehouse

    Pollitz, F.F.

    2007-01-01

    Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.

  19. Spacecraft Charging at Geosynchronous Orbit and Large Scale Electric Fields in the High Latitude Ionosphere.

    DTIC Science & Technology

    1981-09-30

    changes are not inductive in nature. San Diego (UCSD), Group and co-workers. We wish to focus ’Dynamic’ injections of plasma are characterized by a...549, 1971. 4555, 1981. Ulmatead, D., On the recent secular period of the King, J. H., Solar cycle variations in the IMF aurora borealis , Smithson...photoemission for the different materials suggest the University of California at San Diego (UCSD) differences exist with regards to the relative impor

  20. Acquisition of a SAXS Facility for the Study of Novel Polymer Nanocomposite Membranes

    DTIC Science & Technology

    2015-02-19

    at the 2015 MRS Spring National Meeting, San Francisco , CA, April, 2015. 2. A. Millet and D. Suleiman “Sulfonation and Characterization of Poly...the 2015 ACS PRISM Meeting San Juan , PR March, 2015. 3. D. Suleiman “Polymer Nanocomposites: Technology for the XXI Century.” Oral Key Note...have been using the equipment: 1. Rinaldo Díaz 2. Arnaldo López 3. Alexander Millet 4. Nataira Pagán 5. Luis Sotomayor 6. Vanessa Torres 7

  1. The relationship between community structural characteristics, the context of crack use and HIV risk behaviors in San Salvador, El Salvador1

    PubMed Central

    Dickson-Gomez, Julia; McAuliffe, Timothy; de Mendoza, Lorena Rivas; Glasman, Laura; Gaborit, Mauricio

    2012-01-01

    This paper explores community structural factors in different low-income communities in the San Salvador, El Salvador that account for differences in the social context in which crack is used and in the HIV risk behaviors among crack users. Results suggest that both more distal (type of low-income community, level of violent crime and poverty) and proximate structural factors (type of site where drugs are used, and whether drugs are used within or outside of community of residence) influence HIV risk behaviors among drug users. Additionally, our results suggest that community structural factors influence the historical and geographic variation in drug use sites. PMID:22217125

  2. Full-Wave Radio Characterization of Ionospheric Modification at HAARP

    DTIC Science & Technology

    2015-07-26

    Full-Wave Radio Characterization of Ionospheric Modification at HAARP We have studied electrostatic and electromagnetic turbulence stimulated by...radio receivers at HAARP in Alaska, and ground-based radio receivers, incoherent scatter radars, and in-situ measurements from Canadian, ESA, and Polish...363255 San Juan, PR 00936 -3255 31-May-2015 ABSTRACT Final Report: Full-Wave Radio Characterization of Ionospheric Modification at HAARP Report Title We

  3. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide.

    PubMed

    Wang, Xiaohui; Zhang, Jun; Wu, Hubing; Li, Yumin; Conti, Peter S; Chen, Kai

    2018-04-24

    Heat shock protein 90 (Hsp90) plays a vital role in the progress of malignant disease and elevated Hsp90 expression has been reported in pancreatic cancer. In this study, we radiolabeled a dimeric Sansalvamide A derivative (Di-San A1) with 64 Cu, and evaluated the feasibility of using 64 Cu-Di-San A1 for PET imaging of Hsp90 expression in a mouse model of pancreatic cancer. A macrocyclic chelator NOTA (1,4,7-triazacyclononane-1,4,7-trisacetic acid) was conjugated to Di-San A1. 64 Cu-Di-San A1 was successfully prepared in a radiochemical yield > 97% with a radiochemical purity > 98%. 64 Cu-Di-San A1 is stable in PBS and mouse serum with > 92% of parent probe intact after 4 h incubation. The cell binding and uptake revealed that 64 Cu-Di-San A1 binds to Hsp90-positive PL45 pancreatic cancer cells, and the binding can be effectively blocked by an Hsp90 inhibitor (17AAG). For microPET study, 64 Cu-Di-San A1 shows good in vivo performance in terms of tumor uptake in nude mice bearing PL45 tumors. The Hsp90-specific tumor activity accumulation of 64 Cu-Di-San A1 was further demonstrated by significant reduction of PL45 tumor uptake with a pre-injected blocking dose of 17AAG. The ex vivo PET imaging and biodistribution results were consistent with the quantitative analysis of PET imaging, demonstrating good tumor-to-muscle ratio (5.35 ± 0.46) of 64 Cu-Di-San A1 at 4 h post-injection in PL45 tumor mouse xenografts. 64 Cu-Di-San A1 allows PET imaging of Hsp90 expression in PL45 tumors, which may provide a non-invasive method to quantitatively characterize Hsp90 expression in pancreatic cancer.

  4. Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.

    2004-12-01

    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and individual owners, so that they can make well-informed financial decisions.

  5. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary grou­ndwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.

  7. 96. View aft, port side, from just forward of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. View aft, port side, from just forward of the mizzenmast. Cans in foreground store Fluid Film, used to protect structural steel below waterline from oxidation. Sails stored on shelving in background have since been moved to Museum Storage. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  8. Comparison of SANS instruments at reactors and pulsed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.

    1992-09-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges untilmore » now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.« less

  9. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  10. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  11. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends.

    PubMed

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-05-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

  12. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.

    2014-07-01

    Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.

  13. Core Analysis Combining MT (TIPPER) and Dielectric Sensors (Sans EC) in Earth and Space

    NASA Technical Reports Server (NTRS)

    Mound, Michael C.; Dudley, Kenneth L.

    2015-01-01

    On terrestrial planets and moons of our solar system cores reveal details about a geological structure's formation, content, and history. The strategy for the search for life is focused first on finding water which serves as a universal solvent, and identifying the rocks which such solvent act upon to release the constituent salts, minerals, ferrites, and organic compounds and chemicals necessary for life. Dielectric spectroscopy measures the dielectric properties of a medium as a function of frequency. Reflection measurements in the frequency range from 300 kHz to 300 MHz were carried out using RF and microwave network analyzers interrogating SansEC Sensors placed on clean geological core samples. These were conducted to prove the concept feasibility of a new geology instrument useful in the field and laboratory. The results show that unique complex frequency spectra can be acquired for a variety of rock core samples. Using a combination of dielectric spectroscopy and computer simulation techniques the magnitude and phase information of the frequency spectra can be converted to dielectric spectra. These low-frequency dielectric properties of natural rock are unique, easily determined, and useful in characterizing geology. TIPPER is an Electro-Magnetic Passive-Source Geophysical Method for Detecting and Mapping Geothermal Reservoirs and Mineral Resources. This geophysical method uses distant lightning and solar wind activity as its energy source. The most interesting deflections are caused by the funneling of electrons into more electrically conductive areas like mineralized faults, water or geothermal reservoirs. We propose TIPPER to be used with SansEC for determining terrain/ocean chemistry, ocean depth, geomorphology of fracture structures, and other subsurface topography characteristics below the ice crust of Jovian moons. NASA envisions lander concepts for exploration of these extraterrestrial icy surfaces and the oceans beneath. One such concept would use a nuclear powered heated tip for melting through the ice sheath of Europa and inserting a down hole SansEC with TIPPER interface. NASA's Juno space probe already on the way to Jupiter as part of the Exploration New Frontiers Program and the planned Europa mission will conduct detailed reconnaissance of Jupiter's moon Europa and investigate whether the icy moon could harbor conditions suitable for life. It has already been observed that Jovian moons have auroras that may serve as naturally occurring active energy sources for a TIPPER instrument.

  14. MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP

    DTIC Science & Technology

    2006-12-01

    From - To) 25-01-2007 THESIS 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP 5b. GRANT...CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP by DAVID C. MORRIS, B.S. THESIS Presented to the Graduate Faculty of The University of Texas at San Antonio...U.S. Air Force for providing me the opportunity and means to complete the thesis. December 2006 v MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES

  15. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE PAGES

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  16. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  17. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  18. Characterization of the hydrologic resources of San Miguel County, New Mexico, and identification of hydrologic data gaps, 2011

    USGS Publications Warehouse

    Matherne, Anne Marie; Stewart, Anne M.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with San Miguel County, New Mexico, conducted a study to assess publicly available information regarding the hydrologic resources of San Miguel County and to identify data gaps in that information and hydrologic information that could aid in the management of available water resources. The USGS operates four continuous annual streamgages in San Miguel County. Monthly discharge at these streamgages is generally bimodally distributed, with most runoff corresponding to spring runoff and to summer monsoonal rains. Data compiled since 1951 on the geology and groundwater resources of San Miguel County are generally consistent with the original characterization of depth and availability of groundwater resources and of source aquifers. Subsequent exploratory drilling identified deep available groundwater in some locations. Most current (2011) development of groundwater resources is in western San Miguel County, particularly in the vicinity of El Creston hogback, the hogback ridge just west of Las Vegas, where USGS groundwater-monitoring wells indicate that groundwater levels are declining. Regarding future studies to address identified data gaps, the ability to evaluate and quantify surface-water resources, both as runoff and as potential groundwater recharge, could be enhanced by expanding the network of streamgages and groundwater-monitoring wells throughout the county. A series of seepage surveys along the lengths of the rivers could help to determine locations of surface-water losses to and gains from the local groundwater system and could help to quantify the component of streamflow attributable to irrigation return flow; associated synoptic water-quality sampling could help to identify potential effects to water quality attributable to irrigation return flow. Effects of groundwater withdrawals on streamflow could be assessed by constructing monitoring wells along transects between production wells and stream reaches of interest to monitor decline or recovery of the water table, to quantify the timing and extent of water-table response, and to identify the spatial extent of capture zones. Assessment of groundwater potential could be aided by a county-wide distribution of water-level information and by a series of maps of groundwater potential, compiled for each individual aquifer, including saline aquifers, for which the potential for municipal use through desalination could be explored. A county-wide geographic information system hydrologic geodatabase could provide a comprehensive picture of water use in San Miguel County and could be used by San Miguel County as a decision-support tool for future management decisions.

  19. Geophysical expression of elements of the Rio Grande rift in the northeast Tusas Mountains - Preliminary interpretations

    USGS Publications Warehouse

    Drenth, Benjamin J.; Turner, Kenzie J.; Thompson, Ren A.; Grauch, V. J.; Cosca, Michael A.; Lee, John

    2011-01-01

    New interpretations of the nature of the Rio Grande rift and pre-existing rocks in the northeast Tusas Mountains region are derived from new and existing gravity and aeromagnetic data. 12-15 mGal amplitude gravity lows are interpreted to mainly reflect large thicknesses of the upper Oligocene to upper Miocene, syn-rift Los Pinos Formation and possibly significant amounts of the Eocene El Rito Formation. The Broke Off Mountain sub basin, named after the location of its greatest inferred depth, is interpreted to be a ~40 km long and ~13 km wide structure elongated in a northwest trend at the western margin of the San Luis Basin. The sub basin is interpreted to contain a maximum combined thickness of 900-2300 m of the Los Pinos Formation and El Rito Formation, with the Los Pinos Formation constituting the majority of the section. Sub basin age is constrained to be older than 21.6 ± 1.4 Ma, the age of a Hinsdale Formation basalt flow that caps the Los Pinos Formation section at Broke Off Mountain. This age constraint and surface geology indicate a pre- and early-rift age. The structural fabric of the northeast Tusas Mountains region is dominated by northwest-trending normal faults, as indicated by geologic mapping and interpretation of aeromagnetic data. Preliminary analysis of the aeromagnetic data suggests that lineaments, possibly reflecting faulting, trend through volcanic rocks as young as Pliocene in age. If correct, these interpretations challenge commonly held beliefs regarding two stages in the structural style of rifting, where early (Oligocene-Miocene) rifting was characterized by broad, shallow basins bounded by northwest-trending faults and later (Miocene-Pliocene) rifting was characterized by deep, narrow basins bounded by north-trending faults. The Broke Off Mountain sub basin is a counter example of a pre- and early-rift, deep and narrow basin. We hypothesize that the Broke Off Mountain sub basin may represent a southward extension of the Monte Vista graben in Colorado, based on similarities in geophysical expression, stratigraphy, and its position at the western portion of the San Luis Basin

  20. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.; Thompson, J.K.; Hieb, K.A.

    2007-01-01

    Ecological observations sustained over decades often reveal abrupt changes in biological communities that signal altered ecosystem states. We report a large shift in the biological communities of San Francisco Bay, first detected as increasing phytoplankton biomass and occurrences of new seasonal blooms that began in 1999. This phytoplankton increase is paradoxical because it occurred in an era of decreasing wastewater nutrient inputs and reduced nitrogen and phosphorus concentrations, contrary to the guiding paradigm that algal biomass in estuaries increases in proportion to nutrient inputs from their watersheds. Coincidental changes included sharp declines in the abundance of bivalve mollusks, the key phytoplankton consumers in this estuary, and record high abundances of several bivalve predators: Bay shrimp, English sole, and Dungeness crab. The phytoplankton increase is consistent with a trophic cascade resulting from heightened predation on bivalves and suppression of their filtration control on phytoplankton growth. These community changes in San Francisco Bay across three trophic levels followed a state change in the California Current System characterized by increased upwelling intensity, amplified primary production, and strengthened southerly flows. These diagnostic features of the East Pacific "cold phase" lead to strong recruitment and immigration of juvenile flatfish and crustaceans into estuaries where they feed and develop. This study, built from three decades of observation, reveals a previously unrecognized mechanism of ocean-estuary connectivity. Interdecadal oceanic regime changes can propagate into estuaries, altering their community structure and efficiency of transforming land-derived nutrients into algal biomass. ?? 2007 by The National Academy of Sciences of the USA.

  1. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missori, Mauro; Bicchieri, Marina; Mondelli, Claudia

    2006-12-08

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose's supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed.

  2. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    NASA Astrophysics Data System (ADS)

    Missori, Mauro; Mondelli, Claudia; de Spirito, Marco; Castellano, Carlo; Bicchieri, Marina; Schweins, Ralf; Arcovito, Giuseppe; Papi, Massimiliano; Castellano, Agostina Congiu

    2006-12-01

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose’s supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed.

  3. An analysis of large chaparral fires in San Diego County, CA

    Treesearch

    Bob Eisele

    2015-01-01

    San Diego County, California, holds the records for the largest area burned and greatest number of structures destroyed in California. This paper analyzes 102 years of fire history, population growth, and weather records from 1910 through 2012 to examine the factors that are driving the wildfire system. Annual area burned is compared with precipitation during the...

  4. A seismic refraction and reflection study across the central San Jacinto Basin, Southern California

    USGS Publications Warehouse

    Lee, T.-C.; Biehler, S.; Park, S.K.; Stephenson, W.J.

    1996-01-01

    The San Jacinto Basin is a northwest-trending, pullapart basin in the San Jacinto fault zone of the San Andreas fault system in southern California. About 24 km long and 2 to 4 km wide, the basin sits on a graben bounded by two strands of the San Jacinto fault zone: the Claremont Fault on the northeast and the Casa Loma Fault on the southwest. We present a case study of shallow structure (less than 1 km) in the central basin. A 2.75-km refraction line running from the northeast to southwest across the regional structural trend reveals a groundwater barrier (Offset I). Another line, bent southward and continued for 1.65-km, shows a crystalline basement offset (Offset III) near an inferred trace of the Casa Loma Fault. Although a basement refractor was not observed along the 2.75-km line, a mismatch between the estimate of its minimum depth and the basement depth determined for the 1.65-km line suggests that an offset in the basement (greater than 260 m) exists around the junction of the two refraction lines (Offset II). By revealing more faults and subtle sedimentary structures, the reflection stack sections confirm the two refraction offsets as faults. Offsets I and III each separate sediments of contrasting structures and, in addition. Offset III disrupts an unconformity. However, the sense and amount of the offset across Offset III contradict what may be expected across the Casa Loma Fault, which has its basinward basement down-thrown to about 2.5 km in the better defined southeastern part of the graben. The Casa Loma Fault trace has been mislinked in the existing geological maps and the trace should be remapped to Offset II where the reflector disruptions spread over a 400-m wide zone. Our Offset III is an unnamed, concealed fault.

  5. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.

  6. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  7. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California

    USGS Publications Warehouse

    Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.

    2007-01-01

    Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.

  8. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin Barajas, A.

    2013-05-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction, on the scale of hundreds of meters. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  9. Integrating geology and geomorphology; the key to unlocking Quaternary tectonic framework of the San Andreas Fault zone in the San Gorgonio Pass region, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2012-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some older than 500 ka, has a wide spatial footprint along a N-S axis, and Holocene alluvium is disrupted by numerous fault scarps. By contrast, south of PPB the SGPFZ consists of fewer thrust-fault strands, has a relatively narrow footprint, and faults breaking Holocene deposits are uncommon. The San Bernardino strand of the SAF intersects the SGPFZ at about the boundary between these two domains. Morphometric data indicate that the KPB has undergone significantly greater uplift than the PPB since inception of the San Bernardino strand, proposed by Matti and Morton (1993) to have occurred at ~125ka. Age estimates associated with the PPB and DGB allow us to broadly estimate relative uplift rates. Drainage reconstruction of the Whitewater River and its tributaries across the YRB likewise allow us to validate and refine the uplift estimated by Spotila and others (2001). YRB has been uplifted relative to SGB since the inception of the Mill Creek Strand of the SAF.

  10. Origin and characteristics of discharge at San Marcos Springs based on hydrologic and geochemical data (2008-10), Bexar, Comal, and Hays Counties, Texas

    USGS Publications Warehouse

    Musgrove, MaryLynn; Crow, Cassi L.

    2012-01-01

    The Edwards aquifer in south-central Texas is a productive and important water resource. Several large springs issuing from the aquifer are major discharge points, popular locations for recreational activities, and habitat for threatened and endangered species. Discharges from Comal and San Marcos Springs, the first and second largest spring complexes in Texas, are used as thresholds in groundwater management strategies for the Edwards aquifer. Comal Springs is generally understood to be supplied by predominantly regional groundwater flow paths; the hydrologic connection of San Marcos Springs with the regional flow system, however, is less understood. During November 2008–December 2010, a hydrologic and geochemical investigation of San Marcos Springs was conducted by the U.S. Geological Survey (USGS) in cooperation with the San Antonio Water System. The primary objective of this study was to define and characterize sources of discharge from San Marcos Springs. During this study, hydrologic conditions transitioned from exceptional drought (the dry period, November 1, 2008 to September 8, 2009) to wetter than normal (the wet period, September 9, 2009 to December 31, 2010), which provided the opportunity to investigate the hydrogeology of San Marcos Springs under a wide range of hydrologic conditions. Water samples were collected from streams, groundwater wells, and springs at and in the vicinity of San Marcos Springs, including periodic (routine) sampling (every 3–7 weeks) and sampling in response to storms. Samples were analyzed for major ions, trace elements, nutrients, and selected stable and radiogenic isotopes (deuterium, oxygen, carbon, strontium). Additionally, selected physicochemical properties were measured continuously at several sites, and hydrologic data were compiled from other USGS efforts (stream and spring discharge). Potential aquifer recharge was evaluated from local streams, and daily recharge or gain/loss estimates were computed for several local streams. Local rainfall and recharge events were compared with physicochemical properties and geochemical variability at San Marcos Springs, with little evidence for dilution by local recharge.

  11. An EPA pilot study characterizing fungal and bacterial populations at homes after flooding events at the Martin Peña Channel community-Puerto Rico

    EPA Science Inventory

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: hom...

  12. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  13. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  14. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.

  15. Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.

    2013-01-01

    The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors

  16. Relating structure and flow of soft colloids

    NASA Astrophysics Data System (ADS)

    Kundu, S. K.; Gupta, S.; Stellbrink, J.; Willner, L.; Richter, D.

    2013-11-01

    To relate the complex macroscopic flow of soft colloids to details of its microscopic equilibrium and non-equilibrium structure is still one big challenge in soft matter science. We investigated several well-defined colloidal model systems like star polymers or diblock copolymer micelles by linear/non-linear rheology, static/dynamic light scattering (SLS/DLS) and small angle neutron scattering (SANS). In addition, in-situ SANS experiments during shear (Rheo-SANS) revealed directly shear induced structural changes on a microscopic level. Varying the molecular architecture of the individual colloidal particle as well as particle-particle interactions and covering at the same time a broad concentration range from the very dilute to highly concentrated, glassy regime, we could separate contributions from intra- and inter-particle softness. Both can be precisely "tuned" by varying systematically the functionality, 6 ≤ f≤ 64, for star polymers or aggregation number, 30 ≤ N agg ≤ 1000 for diblock copolymer micelles, as well as the degree of polymerization of the individual polymer arm 100 ≤ D p ≤ 3000. In dilute solutions, the characteristic shear rate at which deformation of the soft colloid is observed can be related to the Zimm time of the polymeric corona. In concentrated solutions, we validated a generalized Stokes-Einstein approach to describe the increase in macroscopic viscosity and mesoscopic self diffusion coefficient on approaching the glassy regime. Both can be explained in terms of an ultra-soft interaction potential. Moreover, non-equilibrium structure factors are obtained by Rheo-SANS. All experimental results are in excellent quantitative agreement with recent theoretical predictions.

  17. Initial source and site characterization studies for the U.C. Santa Barbara campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archuleta, R.; Nicholson, C.; Steidl, J.

    1997-12-01

    The University of California Campus-Laboratory Collaboration (CLC) project is an integrated 3 year effort involving Lawrence Livermore National Laboratory (LLNL) and four UC campuses - Los Angeles (UCLA), Riverside (UCR), Santa Barbara (UCSB), and San Diego (UCSD) - plus additional collaborators at San Diego State University (SDSU), at Los Alamos National Laboratory and in industry. The primary purpose of the project is to estimate potential ground motions from large earthquakes and to predict site-specific ground motions for one critical structure on each campus. This project thus combines the disciplines of geology, seismology, geodesy, soil dynamics, and earthquake engineering into amore » fully integrated approach. Once completed, the CLC project will provide a template to evaluate other buildings at each of the four UC campuses, as well as provide a methodology for evaluating seismic hazards at other critical sites in California, including other UC locations at risk from large earthquakes. Another important objective of the CLC project is the education of students and other professional in the application of this integrated, multidisciplinary, state-of-the-art approach to the assessment of earthquake hazard. For each campus targeted by the CLC project, the seismic hazard study will consist of four phases: Phase I - Initial source and site characterization, Phase II - Drilling, logging, seismic monitoring, and laboratory dynamic soil testing, Phase III - Modeling of predicted site-specific earthquake ground motions, and Phase IV - Calculations of 3D building response. This report cover Phase I for the UCSB campus and incudes results up through March 1997.« less

  18. Fronteras 1976: A View of the Border from Mexico. Proceedings of a Conference (San Diego, California, May 7-8, 1976).

    ERIC Educational Resources Information Center

    1976

    Fronteras 1976 is a bicentennial project, coordinated by two cities that share a common geographic region--San Diego, California, and Tijuana, Mexico. The project, developed from the need for structured binational cooperation in this region, focuses on the quality of life for the next century, especially the mutual opportunities and mutual…

  19. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  20. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGES

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; ...

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO 3) 4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/R g, where R g is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis frommore » SANS data when R g is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  1. Spatial distribution of Illex argentinus in San Matias Gulf (Northern Patagonia, Argentina) in relation to environmental variables: A contribution to the new interpretation of the population structuring

    NASA Astrophysics Data System (ADS)

    Crespi-Abril, Augusto C.; Morsan, Enrique M.; Williams, Gabriela N.; Gagliardini, Domingo A.

    2013-03-01

    Traditionally, it was assumed that major spawning activity of Illex argentinus occurs in discrete pulses along the outer-shelf/slope off Argentina/southern Brazil during late-fall/winter and that early life stages develop near the Brazil-Malvinas Confluence (BMC). However, a novel hypothesis of the population structuring of the species was proposed that states that coastal waters may be important as spawning and feeding grounds. Here, we analyzed the spatial distribution of Illex argentinus inside San Matias Gulf based on the position of the CPUE of jiggers in order to improve the knowledge of the population structuring in coastal regions. Squids were mainly concentrated on the northern region of the gulf where favorable oceanographic conditions (e.g. water stratification, chlorophyll-a concentration peaks) to feeding and spawning are present. These results provided empirical evidences that individuals of I. argentinus use Argentinean coastal waters, particularly San Matias Gulf, as permanent feeding and spawning grounds which supports the new hypothesis.

  2. Geomorphological expression of a complex structural region: San Andreas Fault through the San Gorgonio Pass, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2015-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the San Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the San Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the San Bernardino Basin to the NW.

  3. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities among basins and specific land use settings, as well as within and among study units at the national level.

  4. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - Berberine complexes in a mouse model.

    PubMed

    Sreeja, S; Krishnan Nair, C K

    2018-02-15

    To evaluate the therapeutic efficacy of hypoxic cell-sensitizer Sanazole (SAN) -directed targeting of cytotoxic drug Berberine (BBN) and Iron-oxide nanoparticle (NP) complexes, to solid tumor in Swiss albino mice. NP-BBN-SAN complexes were characterized by FTIR, XRD, TEM and Nano-size analyzer. This complex was orally administered to mice-bearing solid tumor in hind limb. Tumor regression was analysed by measuring tumor volume. Cellular DNA damages were assessed by comet assay. Transcriptional expression of genes related to tumor hypoxia and apoptosis was evaluated by quantitative real-time PCR and morphological changes in tissues were analysed by histopathology. Also levels of antioxidants and tumor markers in tissues and serum biochemical parameters were analysed. Administration of NP-BBN-SAN complexes reduced tumor volume and studies were focussed on the underlying mechanisms. Extensive damage to cellular-DNA; down-regulated transcription of hif-1α, vegf, akt and bcl2; and up-regulated expression of bax and caspases, were observed in tumor. Results on tumor markers, antioxidant-status and serum parameters corroborated the molecular findings. Histopathology of tumor, liver and kidney revealed the therapeutic specificity of NP-BBN-SAN. Thus SAN and NP can be used for specific targeting of drugs, to hypoxic solid tumor, to improve therapeutic efficacy. Copyright © 2017. Published by Elsevier Inc.

  5. Characterizing Land Surface Change and Levee Stability in the Sacramento-San Joaquin Delta Using UAVSAR Radar Imagery

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2011-01-01

    The Sacramento-San Joaquin Delta is one of the primary water sources for the state of California and represents a complex geographical area comprised of tidal marshland, levee rimmed islands that are used primarily for agriculture, and urban encroachment. Land subsidence has dropped many of the Delta islands 3 to >7 meters below mean sea level and requires nearly 1700 km of levees to maintain the integrity of the islands and flow of water through the Delta. The current average subsidence rates for each island varies, with 1.23 cm/yr on Sherman Island and 2.2 cm/yr for Bacon Island, as determined by ground-based instruments located at isolated points in the Delta. The Delta's status as the most critical water resource for the state, an endangered ecosystem, and an area continuously threatened with levee breakage from hydrostatic pressure and the danger of earthquakes on several major faults in the San Francisco area make it a focus of monitoring efforts by both the state and national government. This activity is now almost entirely done by ground-based efforts, but the benefits of using remote sensing for wide scale spatial coverage and frequent temporal coverage is obvious. The UAVSAR airborne polarimetric and differential interferometric L-band synthetic aperture radar system has been used to collected monthly images of the Sacramento-San Joaquin Delta and much of the adjacent Suisun Marsh since July 2009 to characterize levee stability, image spatially varied subsidence, and assess how well the UAVSAR performs in an area with widespread agriculture production.

  6. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  7. Structural analysis characterization of permeability pathways across reservoir-seal interface - South-Eastern Utah; Results from integrated sedimentological, structural, and geochemical studies.

    NASA Astrophysics Data System (ADS)

    Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.

    2015-12-01

    Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.

  8. A review of circulation and mixing studies of San Francisco Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.

    1987-01-01

    A description of the major characteristics and remaining unknowns of circulation and mixing in San Francisco Bay has been constructed from a review of published studies. From a broad perspective San Francisco Bay is an ocean-river mixing zone with a seaward flow equal to the sum of the river inflows less evaporation. Understanding of circulation and mixing within the bay requires quantification of freshwater inflows and ocean-bay exchanges, characterization of source-water variations, and separation of the within-bay components of circulation and mixing processes. Description of net circulation and mixing over a few days to a few months illustrates best the interactions of major components. Quantification of tidal circulation and mixing is also necessary because net circulation and mixing contain a large tide-induced component, and because tidal variations are dominant in measurements of stage, currents, and salinity. The discharge of the Sacramento-San Joaquin Delta into Suisun Bay is approximately 90 percent of the freshwater inflow to San Francisco Bay. Annual delta discharge is characterized by a winter season of high runoff and a summer season of low runoff. For the period 1956 to 1985 the mean of monthly discharges exceeded 1,000 cubic meters per second (35,000 cubic feet per second) for the months of December through April, whereas for July through October, it was less than 400 cubic meters per second (14,000 cubic feet per second). The months of November, May, and June commonly were transition months between these seasons. Large year-to-year deviations from this annual pattern have occurred frequently. Much less is known about the ocean-bay exchange process. Net exchanges depend on net seaward flow in the bay, tidal amplitude, and longshore coastal currents, but exchanges have not yet been measured successfully. Source-water variations are ignored by limiting discussion of mixing to salinity. The bay is composed of a northern reach, which is strongly influenced by delta discharge, and South Bay, a tributary estuary which responds to conditions in Central Bay. In the northern reach net circulation is characterized by the river-induced seaward, flow and a resulting gravitational circulation in the channels, and by a tide- and wind-induced net horizontal circulation. A surface layer of relatively fresh water in Central Bay generated by high delta discharges can induce gravitational circulation in South Bay. During low delta discharges South Bay has nearly the same salinity as Central Bay and is characterized by tide- and wind-induced net horizontal circulation. Several factors control the patterns of circulation and mixing in San Francisco Bay. Viewing circulation and mixing over different time-periods and at different geographic scales causes the influences of different factors to be emphasized. The exchange between the bay and coastal ocean and freshwater inflows determine the year-to-year behavior of San Francisco Bay as a freshwater-saltwater mixing zone. Within the bay, exchanges between the embayments control variations over a season. Circulation and mixing patterns within the embayments and the magnitude of river-induced seaward flow influence the between-bay exchanges. The within-bay patterns are in turn determined by tides, winds, and freshwater inflows. Because freshwater inflow is the only factor that can be managed, a major study focus is estimation of inflow-related effects. Most questions relate to the patterns of freshwater inflow necessary to protect valuable resources whose welfare is dependent on conditions in the bay. Among the important questions being addressed are: --What quantity of freshwater inflow is necessary to prevent salt intrusion into the Sacramento-San Joaquin Delta, and what salinity distributions in the bay would result from various inflow patterns? --What quantity of freshwater inflow is sufficient to flush pollutants through the bay? Knowledge of circul

  9. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin, A.

    2013-12-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction. The azimuth of flow directions observed at 27 sites over 1.5 square kilometers ranges from 8° to 355° with a mean direction of 195° and an α95 of 27°. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  10. The Wildcat-San Pablo Creek Flood Control Project and Its Implications for the Design of Environmentally Sensitive Flood Management Plans

    Treesearch

    A. L. Riley

    1989-01-01

    In 1982 a coalition of neighborhood and environmental organizations used a community organizing strategy of the early 1960's, referred to as "advocacy planning" to substantially redesign a traditional structural type of joint federal and local flood control project on Wildcat and San Pablo Creeks in North Richmond, California. Using a combination of...

  11. Preliminary Geologic Map of the Big Pine Mountain Quadrangle, California

    USGS Publications Warehouse

    Vedder, J.G.; McLean, Hugh; Stanley, R.G.

    1995-01-01

    Reconnaissance geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder an others (1967) showed s number of stratigraphic and structural ambiguities. To help resolve some of those problems, additional field work was done on parts of the Big Pine Moutain quadrangle during short intervals in 1981 and 1984, and 1990-1994.

  12. Multiple geophysical methods examining neotectonic blind structures in the Maradona valley, Central Precordillera (Argentina)

    NASA Astrophysics Data System (ADS)

    Lara, Gabriela; Klinger, Federico Lince; Perucca, Laura; Rojo, Guillermo; Vargas, Nicolás; Leiva, Flavia

    2017-08-01

    A high-resolution superficial geophysical study was carried out in an area of the retroarc region of the Andes mountains, located in the southwest of San Juan Province (31°45‧ S, 68°50‧ W), Central Precordillera of Argentina. The main objectives of this study were to confirm the presence of blind neotectonic structures and characterize them by observing variations in magnetic susceptibility, density and p-wave velocities. Geological evidence demonstrates the existence of a neotectonic fault scarps affecting Quaternary alluvial deposits in eastern piedmont of de Las Osamentas range, in addition to direct observation of the cinematic of this feature in several natural exposures. The Maradona valley is characterized by the imbricated eastern-vergence Maradona Fault System that uplifts Neogene sedimentary rocks (Albarracín Formation) over Quaternary (Late Pleistocene-Holocene) alluvial deposits. The combined application of different geophysical methods has allowed the characterization of a blind fault geometry also identified on a natural exposure. The magnetic data added to the gravimetric model, and its integration with a seismic profile clearly shows the existence of an anomalous zone, interpreted as uplifted blocks of Miocene sedimentary rocks of Formation Albarracín displaced over Quaternary deposits. The application and development of different geophysical methods, together with geological studies allow to significantly improving the knowledge of an area affected by Quaternary tectonic activity. Finally, this multidisciplinary study, applied in active blind structures is very relevant for future seismic hazard analysis on areas located very close to populated centers.

  13. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    PubMed

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  14. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  15. Protein structure and interactions in the solid state studied by small-angle neutron scattering.

    PubMed

    Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan

    2012-01-01

    Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.

  16. Three-dimensional Model of Human Platelet Integrin αIIbβ3 in Solution Obtained by Small Angle Neutron Scattering*

    PubMed Central

    Nogales, Aurora; García, Carolina; Pérez, Javier; Callow, Phil; Ezquerra, Tiberio A.; González-Rodríguez, José

    2010-01-01

    Integrin αIIbβ3 is the major membrane protein and adhesion receptor at the surface of blood platelets, which after activation plays a key role in platelet plug formation in hemostasis and thrombosis. Small angle neutron scattering (SANS) and shape reconstruction algorithms allowed formation of a low resolution three-dimensional model of whole αIIbβ3 in Ca2+/detergent solutions. Model projections after 90° rotation along its long axis show an elongated and “arched” form (135°) not observed before and a “handgun” form. This 20-nm-long structure is well defined, despite αIIbβ3 multidomain nature and expected segmental flexibility, with the largest region at the top, followed by two narrower and smaller regions at the bottom. Docking of this SANS envelope into the high resolution structure of αIIbβ3, reconstructed from crystallographic and NMR data, shows that the solution structure is less constrained, allows tentative assignment of the disposition of the αIIb and β3 subunits and their domains within the model, and points out the structural analogies and differences of the SANS model with the crystallographic models of the recombinant ectodomains of αIIbβ3 and αVβ3 and with the cryo-electron microscopy model of whole αIIbβ3. The ectodomain is in the bent configuration at the top of the model, where αIIb and β3 occupy the concave and convex sides, respectively, at the arched projection, with their bent knees at its apex. It follows the narrower transmembrane region and the cytoplasmic domains at the bottom end. αIIbβ3 aggregated in Mn2+/detergent solutions, which impeded to get its SANS model. PMID:19897481

  17. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.

  18. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    USGS Publications Warehouse

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.

    2010-01-01

    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  19. An investigation into the utilization of HCMM thermal data for the descrimination of volcanic and Eolian geological units. [Craters of the Moon volcanic field, Idaho; San Francisco volcanic field, Arizona; High Desert, California; and the Cascade Range, California and Oregon

    NASA Technical Reports Server (NTRS)

    Head, J. W., III (Principal Investigator)

    1982-01-01

    Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.

  20. Symptom dimensions and subgroups in childhood-onset schizophrenia.

    PubMed

    Craddock, Kirsten E S; Zhou, Xueping; Liu, Siyuan; Gochman, Peter; Dickinson, Dwight; Rapoport, Judith L

    2017-11-13

    This study investigated symptom dimensions and subgroups in the National Institute of Mental Health (NIMH) childhood-onset schizophrenia (COS) cohort and their similarities to adult-onset schizophrenia (AOS) literature. Scores from the Scales for the Assessment of Positive and Negative Symptoms (SAPS & SANS) from 125 COS patients were assessed for fit with previously established symptom dimensions from AOS literature using confirmatory factor analysis (CFA). K-means cluster analysis of each individual's scores on the best fitting set of dimensions was used to form patient clusters, which were then compared using demographic and clinical data. CFA showed the SAPS & SANS data was well suited to a 2-dimension solution, including positive and negative dimensions, out of five well established models. Cluster analysis identified three patient groups characterized by different dimension scores: (1) low scores on both dimensions, (2) high negative, low positive scores, and (3) high scores on both dimensions. These groups had different Full scale IQ, Children's Global Assessment Scale (CGAS) scores, ages of onset, and prevalence of some co-morbid behavior disorders (all p<3.57E-03). Our analysis found distinct symptom-based subgroups within the NIMH COS cohort using an established AOS symptom structure. These findings confirm the heterogeneity of COS and were generally consistent with AOS literature. Published by Elsevier B.V.

  1. Evaluation of NDVI to assess avian abundance and richness along the upper San Pedro River

    USGS Publications Warehouse

    McFarland, T.M.; van Riper, Charles; Johnson, G.E.

    2012-01-01

    Remote-sensing models have become increasingly popular for identifying, characterizing, monitoring, and predicting avian habitat but have largely focused on single bird species. The Normalized Difference Vegetation Index (NDVI) has been shown to positively correlate with avian abundance and richness and has been successfully applied to southwestern riparian systems which are uniquely composed of narrow bands of vegetation in an otherwise dry landscape. Desert riparian ecosystems are important breeding and stopover sites for many bird species but have been degraded due to altered hydrology and land management practices. Here we investigated the use of NDVI, coupled with vegetation, to model the avian community structure along the San Pedro River, Arizona. We also investigated how vegetation and physical features measured locally compared to those data that can be gathered through remote-sensing. We found that NDVI has statistically significant relationships with both avian abundance and species richness, although is better applied at the individual species level. However, the amount of variation explained by even our best models was quite low, suggesting that NDVI habitat models may not presently be an accurate tool for extensive modeling of avian communities. We suggest additional studies in other watersheds to increase our understanding of these bird/NDVI relationships.

  2. Polybrominated diphenyl ethers (PBDEs) concentration in soil from San Luis Potosi, Mexico: levels and ecological and human health risk characterization.

    PubMed

    Pérez-Vázquez, Francisco J; Orta-García, Sandra T; Ochoa-Martínez, Ángeles C; Pruneda-Álvarez, Lucia G; Ruiz-Vera, Tania; Jiménez-Avalos, Jorge Armando; González-Palomo, Ana K; Pérez-Maldonado, Iván N

    2016-01-01

    The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs) in soils from the city of San Luis Potosi in Mexico and perform an ecological and human health risk characterization. In order to confirm the presence of PBDEs, outdoor surface soil samples were collected and the concentrations of PBDEs in urban, industrial, agricultural, and brick kiln industry areas were determined. The mean total PBDEs levels obtained in the study sites were 25.0 ± 39.5 μg/kg (geometric mean ± standard deviation) in the brick kiln industry zone; 34.5 ± 36.0 μg/kg in the urban zone; 8.00 ± 7.10 μg/kg in the industrial zone and 16.6 ± 15.3 μg/kg in the agricultural zone. The ecological and human health risk characterization showed relatively low-hazard quotient values. However, the moderately high PBDEs levels found in soils highlight the necessity to establish a systematic monitoring process for PBDEs in environmental and biological samples.

  3. Characterization of the Navy Fan Channel-to-Lobe Transition: Geomorphology, Gradient, and Structure Imaged through High-Resolution AUV Bathymetry

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Anderson, K.; Lundsten, E. M.; Gwiazda, R.; Fildani, A.; Dykstra, M.; McGann, M.; Maier, K. L.; Herguera, J. C.

    2016-12-01

    Channel to lobe transition zones (CLTZ) are elusive sectors of the seafloor. They record complex interactions between sediment-gravity flows, flow confinement, and gradient that can result in contrasting geomorphologies. If present, structural controls can add additional intricacies. We illustrate such complexities in the Navy Fan CLTZ offshore California/Mexico using AUV-collected high-resolution (1x1x0.25 m) bathymetry and chirp profiles. The AUV bathymetry images the fine scale details of the seafloor, otherwise unresolved in surface-ship-mounted multibeam bathymetry. Three morphological areas standout that in a direction transverse to sediment transport are: 1) An unconfined area with variable but overall steep gradients (0.5o-1.7o), and considerable erosion shown by numerous large scours that truncate underlying strata. These scours are elongate (<500x180 m), deep (<18 m), asymmetric (steeper proximally), and more prominent along steeper gradients; 2) An area of moderate confinement along a smoother, gentler gradient (0.2o-0.5o; 0.9o locally). This area is 8 km long with a channel (WxD: 233x11 m) that transitions basinwards to low confinement (WxD: 1000x4 m); and 3) An area with an escarpment (<25 m high, <19o) and ridge of the San Clemente Fault. We hypothesize that the erosional morphologies of the unconfined areas reflect swifter turbidity currents due to high gradients, which resulted from relief along the San Clemente Fault and probably from differential seafloor aggradation. In the moderate confinement area, the smoother and gentler seafloor may be related to more efficient sediment dispersal able to transfer/deposit sediment to heal structural relief (though not completely) while avoiding significant local aggradation, hence preventing major gradient build up. In the faulted area, the steep and prominent structure reroutes the sediments. The findings of this study have broad application to any seafloor areas with rapid changes of gradient.

  4. Subnanometer structure of an asymmetric model membrane: Interleaflet coupling influences domain properties

    DOE PAGES

    Heberle, Frederick A.; Marquardt, Drew; Doktorova, Milka; ...

    2016-04-29

    Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure–function relationship has been a highly challenging task. Even in simplified model systems, the interactions between bilayer leaflets are poorly understood, due in part to the difficulty of preparing asymmetric model membranes that are free from the effects of residual organic solvent or osmotic stress. To address these problems, we have modified a technique for preparing asymmetric large unilamellar vesicles (aLUVs) via cyclodextrin-mediated lipid exchange in order tomore » produce tensionless, solvent-free aLUVs suitable for a range of biophysical studies. Leaflet composition and structure were characterized using isotopic labeling strategies, which allowed us to avoid the use of bulky labels. NMR and gas chromatography provided precise quantification of the extent of lipid exchange and bilayer asymmetry, while small-angle neutron scattering (SANS) was used to resolve bilayer structural features with subnanometer resolution. Isotopically asymmetric POPC vesicles were found to have the same bilayer thickness and area per lipid as symmetric POPC vesicles, demonstrating that the modified exchange protocol preserves native bilayer structure. Partial exchange of DPPC into the outer leaflet of POPC vesicles produced chemically asymmetric vesicles with a gel/fluid phase-separated outer leaflet and a uniform, POPC-rich inner leaflet. SANS was able to separately resolve the thicknesses and areas per lipid of coexisting domains, revealing reduced lipid packing density of the outer leaflet DPPC-rich phase compared to typical gel phases. Lastly, our finding that a disordered inner leaflet can partially fluidize ordered outer leaflet domains indicates some degree of interleaflet coupling, and invites speculation on a role for bilayer asymmetry in modulating membrane lateral organization.« less

  5. San Sebastián: the social and political effects of sugar mill closure in Mexico.

    PubMed

    Powell, Kathy

    2007-01-01

    Mexico's sugar mills face an uncertain future: the closure of San Sebastián may well presage others if the climate for sugar production on national and international levels does not improve. While the continued squeezing of small cane producers reflects processes affecting peasant agriculture generally in Mexico, and indeed beyond, the fate of the mill workers made redundant when the mill closed similarly mirrors broad tendencies in labor in both the developed and developing world under neoliberalism. Former workers fell back upon personal, family, and community resources by migrating to the U.S. or locally reconstructing livelihoods characterized by a reduction in income, security, and access to social benefits. This article reports on the impact of the mill closure on the livelihoods of former mill worker families in the community of San Sebastián and offers some observations on their responses to the situation.

  6. Deep bore hole instrumentation along San Francisco Bay Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakun, W.; Bowman, J.; Clymer, R.

    1998-10-01

    The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program,more » and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.« less

  7. Earth Observations taken during Expedition Four

    NASA Image and Video Library

    2002-04-21

    ISS004-E-10288 (21 April 2002) --- This view featuring the San Francisco Bay Area was photographed by an Expedition 4 crewmember onboard the International Space Station (ISS). The gray urban footprint of San Francisco, Oakland, San Jose, and their surrounding suburbs contrasts strongly with the green hillsides. Of particular note are the Pacific Ocean water patterns that are highlighted in the sun glint. Sets of internal waves traveling east impinge on the coastline south of San Francisco. At the same time, fresher bay water flows out from the bay beneath the Golden Gate Bridge, creating a large plume traveling westward. Tidal current channels suggest the tidal flow deep in the bay. Because the ISS orbits are not synchronous with the sun, station crewmembers view Earth with variable solar illumination angles. This allows them to document phenomena such as the sun reflecting differentially off surface waters in a way that outlines complicated water structures.

  8. Space Flight-Associated Neuro-ocular Syndrome.

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  9. Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    1999-01-01

    The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.

  10. Marine geology and earthquake hazards of the San Pedro Shelf region, southern California

    USGS Publications Warehouse

    Fisher, Michael A.; Normark, William R.; Langenheim, V.E.; Calvert, Andrew J.; Sliter, Ray

    2004-01-01

    High-resolution seismic-reflection data have been com- bined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro Shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington Graben, the Palos Verdes Fault Zone, various faults below the western part of the shelf and slope, and the deep-water San Pedro Basin. The structure of the Palos Verdes Fault Zone changes mark- edly southeastward across the San Pedro Shelf and slope. Under the northern part of the shelf, this fault zone includes several strands, but the main strand dips west and is probably an oblique-slip fault. Under the slope, this fault zone con- sists of several fault strands having normal separation, most of which dip moderately east. To the southeast near Lasuen Knoll, the Palos Verdes Fault Zone locally is a low-angle fault that dips east, but elsewhere near this knoll the fault appears to dip steeply. Fresh sea-floor scarps near Lasuen Knoll indi- cate recent fault movement. The observed regional structural variation along the Palos Verdes Fault Zone is explained as the result of changes in strike and fault geometry along a master strike-slip fault at depth. The shallow summit and possible wavecut terraces on Lasuen knoll indicate subaerial exposure during the last sea-level lowstand. Modeling of aeromagnetic data indicates the presence of a large magnetic body under the western part of the San Pedro Shelf and upper slope. This is interpreted to be a thick body of basalt of Miocene(?) age. Reflective sedimentary rocks overlying the basalt are tightly folded, whereas folds in sedimentary rocks east of the basalt have longer wavelengths. This difference might mean that the basalt was more competent during folding than the encasing sedimentary rocks. West of the Palos Verdes Fault Zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because age dates on deformed or offset sediment are lacking.

  11. 3-D modeling of magnetotelluric data in the Paniri-Toconce volcanic chain, Central Andes.

    NASA Astrophysics Data System (ADS)

    Mancini, R.; Brasse, H.; Diaz, D.

    2017-12-01

    The research is located in the San Pedro-Toconce volcanic chain in the central volcanic zone of the Andes, North Chile. This area is interesting because of its proximity to several active volcanic centers, the geysers field of El Tatio and the recently opened geothermal plant Cerro Pabellon. Thermobarometry studies made in the area point to magma accumulated at 8 km below Lavas de Chao, and depths greater than 24 km below Toconce and Cerro de Leon. Regional geophysical studies show a distribution of conductive bodies around the complex, but the resolution of these studies at shallow depths are not conclusive. Data from wells show the possible presence of a large geothermal system in the southwest part of the complex, with depths of 2 km. Twenty broadband magnetotelluric (MT) stations were measured in the vicinity of the complex and combined with 15 long period MT stations measured in the 1990s, aiming at characterizing the deep conductive structures previously observed in the area, with magmatic bodies associated with the adjacent volcanic system. The results of a 3-D inversion show several conductive anomalies around the complex. Analyses of conductivity together with the 3-D models obtained indicate the presence of a geothermal system to the southwest of the complex with maximum depths of about 5 km, and two possible magmatic chambers below Paniri volcano and between Paniri and San Pedro volcanoes. In addition, the presence of a highly conductive structure to the east is obtained, associated with the Altiplano-Puna magma body (APMB).

  12. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    NASA Astrophysics Data System (ADS)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  13. Hurricane recovery at Cabezas de San Juan, Puerto Rico, and research opportunities at Conservation Trust Reserves

    Treesearch

    Peter L. Weaver; Elizabeth Padilla Rodriguez

    2009-01-01

    The Cabezas de San Juan Natural Reserve (El Faro), an exposed peninsular area located in the Subtropical dry forest of northeastern Puerto Rico, was impacted by hurricanes Hugo (1989) and Georges (1998). From 1998 to 2008, a 0.10 ha plot was used to assess forest structure, species composition, and stem growth. During post-hurricane recovery, stem density, tree height...

  14. Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.

    2005-08-01

    The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.

  15. Stress- and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2017-10-01

    We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.

  16. Changes in whistle structure of resident bottlenose dolphins in relation to underwater noise and boat traffic.

    PubMed

    Gospić, Nikolina Rako; Picciulin, Marta

    2016-04-15

    The habitat of the resident bottlenose dolphins (Tursiops truncatus) of the Cres-Lošinj archipelago overlaps with routes of intense boat traffic. Within these waters, Sea Ambient Noise (SAN) was sampled across ten acoustic stations between 2007 and 2009. Data on boat presence was concurrently collected and when dolphins were sighted group behaviour was also recorded. Acoustic recordings were analysed for 1/3 octave bands. Samples containing dolphin whistles were analysed and compared with boat presence and SAN levels. Results indicate that dolphins whistle at higher frequencies in conditions of elevated low frequency noise. Conversely, they reduce maximum, delta and start frequencies and frequency modulations when noise levels increase significantly across higher frequencies. The study shows that high levels of SAN causes significant changes in the acoustic structure of dolphin whistles. Additionally, changes in whistle parameters, in the presence of boats, appear to be related to the behavioural state of the dolphin group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  18. Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.

  19. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  20. Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki

    2018-05-01

    Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2

  1. Characterizing the Organic Matter in Surface Sediments from ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  2. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  3. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    PubMed

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  4. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    PubMed Central

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  5. Conservation genetics of evolutionary lineages of the endangered mountain yellow-legged frog, Rana muscosa (Amphibia: Ranidae), in southern California

    USGS Publications Warehouse

    Schoville, Sean D.; Tustall, Tate S.; Vredenburg, Vance T.; Backlin, Adam R.; Gallegos, Elizabeth; Wood, Dustin A.; Fisher, Robert N.

    2011-01-01

    Severe population declines led to the listing of southern California Rana muscosa (Ranidae) as endangered in 2002. Nine small populations inhabit watersheds in three isolated mountain ranges, the San Gabriel, San Bernardino and San Jacinto. One population from the Dark Canyon tributary in the San Jacinto Mountains has been used to establish a captive breeding population at the San Diego Zoo Institute for Conservation Research. Because these populations may still be declining, it is critical to gather information on how genetic variation is structured in these populations and what historical inter-population connectivity existed between populations. Additionally, it is not clear whether these populations are rapidly losing genetic diversity due to population bottlenecks. Using mitochondrial and microsatellite data, we examine patterns of genetic variation in southern California and one of the last remaining populations of R. muscosa in the southern Sierra Nevada. We find low levels of genetic variation within each population and evidence of genetic bottlenecks. Additionally, substantial population structure is evident, suggesting a high degree of historical isolation within and between mountain ranges. Based on estimates from a multi-population isolation with migration analysis, these populations diversified during glacial episodes of the Pleistocene, with little gene flow during population divergence. Our data demonstrate that unique evolutionary lineages of R. muscosa occupy each mountain range in southern California and should be managed separately. The captive breeding program at Dark Canyon is promising, although mitigating the loss of neutral genetic diversity relative to the natural population might require additional breeding frogs.

  6. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  7. Preparation of Self-assembly Mesoporous TiO2 Using Block Copolymer Pluronic PE6200 Template

    NASA Astrophysics Data System (ADS)

    Septina, W.; Yuliarto, B.; Nugraha

    2008-03-01

    In this research, nanocrystal mesoporous TiO2 powders were synthesized by sol-gel method, with TiCl4 as a precursor in methanol solution. Block copolymer Pluronic PE 6200 was used as pores template. It was found that from the XRD measurements, both at 400 °C and 450 °C calcination temperatures, resulted in nanocrystal TiO2 with anatase phase. Based on N2 adsorption characterization (BET method), TiO2 samples have surface area 108 m2/g and 88 m2/g for 400 °C and 450 °C calcination temperatures respectively. From Small-angle Neutron Scattering (SANS) patterns, it is investigated that TiO2 samples have mesoporous structure where the pore order degree depend on the calcination temperature.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsosie, Bernadette; Johnson, Richard

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known asmore » the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.« less

  9. Long-term fault creep observations in central California

    NASA Astrophysics Data System (ADS)

    Schulz, Sandra S.; Mavko, Gerald M.; Burford, Robert O.; Stuart, William D.

    1982-08-01

    The U.S. Geological Survey (USGS) has been monitoring aseismic fault slip in central California for more than 10 years as part of an earthquake prediction experiment. Since 1968, the USGS creep network has grown from one creep meter at the Cienega Winery south of Hollister to a 44-station network that stretches from Hayward, east of San Francisco Bay, to Palmdale in southern California. In general, the long-term slip pattern is most variable on sections of the faults where several magnitude 4 and larger earthquakes occurred during the recording period (e.g., Calaveras fault near Hollister and San Andreas fault between San Juan Bautista and Bear Valley). These fault sections are the most difficult to characterize with a single long-term slip rate. In contrast, sections of the faults that are seismically relatively quiet (e.g., San Andreas fault between Bear Valley and Parkfield) produce the steadiest creep records and are easiest to fit with a single long-term slip rate. Appendix is available with entire article on microfiche. Order from the American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-004; $1.00. Payment must accompany order.

  10. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  11. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K.; Kohlbrecher, J.

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. Themore » magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.« less

  12. Modeling of Surface Thermodynamics and Damage Thresholds in the IR and THz Regime

    DTIC Science & Technology

    2007-01-01

    Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...United States; c Air Force Reasearch Lab, Human Effectivness Directorate Optical Branch, 2624 Louis Bauer Drive, San Antonio, TX, United States...equation (radial and axial) in a biological system construct. Tissues are represented as multi-layer structures, with optical and thermal properties

  13. Assessment of the Structural Conditions of the San Clemente a Vomano Abbey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedettini, Francesco; Alaggio, Rocco; Fusco, Felice

    2008-07-08

    The simultaneous use of a Finite Element (FE) accurate modeling, dynamical tests, model updating and nonlinear analysis are used to describe the integrated approach used by the authors to assess the structural conditions and the seismic vulnerability of an historical masonry structure: the Abbey Church of San Clemente al Vomano, situated in the Notaresco territory (TE, Italy) commissioned by Ermengarda, daughter of the Emperor Ludovico II, and built at the end of IX century together with a monastery to host a monastic community. Dynamical tests 'in operational conditions' and modal identification have been used to perform the FE model validation.more » Both a simple and direct method as the kinematic analysis applied on meaningful sub-structures and a nonlinear 3D dynamic analysis conducted by using the FE model have been used to forecast the seismic performance of the Church.« less

  14. Relevance of Internal Friction and Structural Constraints for the Dynamics of Denatured Bovine Serum Albumin.

    PubMed

    Ameseder, Felix; Radulescu, Aurel; Holderer, Olaf; Falus, Peter; Richter, Dieter; Stadler, Andreas M

    2018-05-17

    A general property of disordered proteins is their structural expansion that results in a high molecular flexibility. The structure and dynamics of bovine serum albumin (BSA) denatured by guanidinium hydrochloride (GndCl) were investigated using small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). SANS experiments demonstrated the relevance of intrachain interactions for structural expansion. Using NSE experiments, we observed a high internal flexibility of denatured BSA in addition to center-of-mass diffusion detected by dynamic light scattering. Internal motions measured by NSE were described using concepts based on polymer theory. The contribution of residue-solvent friction was accounted for using the Zimm model including internal friction (ZIF). Disulfide bonds forming loops of amino acids of the peptide backbone have a major impact on internal dynamics that can be interpreted with a reduced set of Zimm modes.

  15. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of Miocene normal faults.

  16. Surface fault slip associated with the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.

    2006-01-01

    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  17. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  18. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  19. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.

    PubMed

    Yan, Ci; Sagisaka, Masanobu; James, Craig; Rogers, Sarah; Alexander, Shirin; Eastoe, Julian

    2014-12-01

    The formation, stability and structural properties of normal liquid phase microemulsions, stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of this model for other types of microemulsions. High Pressure Small-Angle Neutron Scattering (HP-SANS) has been used to study w/c microemulsions, using contrast variation to highlight scattering from the stabilizing fluorinated surfactant films: these data show clear evidence for spherical core-shell structures for the microemulsion droplets. The results extend understanding of w/c microemulsions since previous SANS studies are based only on scattering from water core droplets. Here, detailed structural parameters for the surfactant films, such as thickness and film bending energy, have been extracted from the core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 densities (∼0.7gcm(-3)), elongated cylindrical droplet structures have been observed, which are uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical micelles and droplets for applications of CO2, and viscosity enhancements are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Kinematics of the active West Andean fold-and-thrust belt (central Chile): Structure and long-term shortening rate

    NASA Astrophysics Data System (ADS)

    Riesner, M.; Lacassin, R.; Simoes, M.; Armijo, R.; Rauld, R.; Vargas, G.

    2017-02-01

    West verging thrusts, synthetic with the Nazca-South America subduction interface, have been recently discovered at the western front of the Andes. At 33°30'S, the active San Ramón fault stands as the most frontal of these west verging structures and represents a major earthquake threat for Santiago, capital city of Chile. Here we elaborate a detailed 3-D structural map and a precise cross section of the West Andean fold-and-thrust belt based on field observations, satellite imagery, and previous structural data, together with digital topography. We then reconstruct the evolution of this frontal belt using a trishear kinematic approach. Our reconstruction implies westward propagation of deformation with a total shortening of 9-15 km accumulated over the last 25 Myr. An overall long-term shortening rate of 0.1-0.5 mm/yr is deduced. The maximum value of this shortening rate compares well with the rate that may be inferred from recent trench data across the San Ramón fault and the slip associated with the past two Mw > 7 earthquakes. This suggests that the San Ramón fault is most probably the only presently active fault of the West Andean fold-and-thrust-belt and that most—if not all—the deformation is to be released seismically.

  1. Status and needs for seismic instrumentation of structures along the Hayward fault

    USGS Publications Warehouse

    Kalkan, Erol; Çelebi, Mehmet

    2008-01-01

    The inventory of structures in heavily urbanized communities within the greater San Francisco (SF) Bay area that will experience strong ground motions from the rupture of the Hayward Fault includes a variety of types of recent and older structures built with a variety of materials and to different code standards. Those who remember the effects of the 1989 Loma Prieta earthquake on structures in the San Francisco Bay area also remember the collapse of one upper-deck segment of the Bay Bridge that halted transportation for approximately five weeks. In order to understand how these structures respond to earthquake motions and to improve building practices to resist these strong motions it is imperative that owners of these structures as well as governmental organizations acquire shaking response data from instrumented (or yet to be instrumented structures) during the forecast events. Within California, such data are acquired mainly by California Geological Survey and the United States Geological Survey. A small number of private owners contribute to this effort. The inventory of existing instrumented structures is much less than 0.1% of the total, and thus statistically it is not sufficient. For example, some of the existing important regular or lifeline structures are not instrumented(e.g. Bart Trans-Bay Tunnel, many segments of the Bart elevated structures in the proximity of the Hayward Fault, the yet to be completed eastern part of San Francisco Bay Bridge, Hetch-Hetchy pipeline system crossing the Hayward Fault)even though attempts and proposals have been developed to do so in the past. This paper presents a critical assessment of the status quo and the future needs for instrumentation of structures in the greater SF Bay area that includes the Hayward Fault. There are many new attempts and successes in instrumentation of structures in this region. Two successful examples are provided here, but more needs to be done. The paper does not present new research results; hence, it should be considered to be a “tutorial” paper.

  2. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  3. The differentiation process of the I-type granitoids in southwest Japan and New South Wares in Australia

    NASA Astrophysics Data System (ADS)

    Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.

    2013-12-01

    Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green rims. The structures are formed by the fluid circulations of intruded granodiorite magma. The relic pyroxene is left in the core of amphibole. These minerals were crystallized under stable conditions and the microstructures were developed in the amphiboles under the subsolidus conditions. These researches contribute to clarifying magmatic differentiation and are the foundation of understanding the exchange of substances in magmatic activity.

  4. Rock type discrimination and structural analysis with LANDSAT and Seasat data: San Rafael swell, Utah

    NASA Technical Reports Server (NTRS)

    Stewart, H. E.; Blom, R.; Abrams, M.; Daily, M.

    1980-01-01

    Satellite synthetic aperture radar (SAR) images is evaluated in terms of its geologic applications. The benchmark to which the SAR images are compared is LANDSAT, used both for structural and lithologic interpretations.

  5. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  6. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  7. Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.

    2011-01-01

    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.

  8. The Shock and Vibration Bulletin. Part 2. Environmental Testing, Shock Testing, Shock Analysis

    DTIC Science & Technology

    1981-05-01

    held at the Holiday 17 Inn at the Embarcadero, San Diego, CA on October 21-23, 1980. The cop), Naval Ocean Systems Center, San Diego CA was the Host...Hellqvist, Kockuma AB, Malmo Sweden A 9OMPUTER-PONTROLLED MEASURING SYSTEM HAVING 128 ANALOG MEASURING CHANNELS *$1D FACILITIES 1POR NIGNALANALYSIS...SANDWICH STRUCTURES M. L Sonu, University of Daytom Research Institute, Dayton, OH PNEUMATIC VIBRATION CONTROL USING ACTIVE FORCE GENERATORS S. Banker and R

  9. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    PubMed Central

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  10. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  11. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  12. Structural Insights into High Density Lipoprotein: Old Models and New Facts

    PubMed Central

    Gogonea, Valentin

    2016-01-01

    The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen–deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function. PMID:26793109

  13. Spin-analyzed SANS for soft matter applications

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.

    2017-06-01

    The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.

  14. A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)

    USGS Publications Warehouse

    Wood, Dustin A.; Bui, Thuy-Vy D.; Overton, Cory T.; Vandergast, Amy; Casazza, Michael L.; Hull, Joshua M.; Takekawa, John Y.

    2016-01-01

    Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.

  15. Metallurgical coatings and thin films; Proceedings of the International Conference, 18th, San Diego, CA, Apr. 22-26, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)

    1991-01-01

    A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.

  16. Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Kasameyer, P.; Long, L.

    2001-05-01

    This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. This report list earthquakes and stations where recordings were obtained during the period February 29, 2000 to November 11, 2000. Also, preliminary results on noise analysis for up and down hole recordings at Yerba Buena Island is presented.« less

  17. Geological map and digital database of the San Rafael Mtn. 7.5-minute quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Vedder, John G.; Stanley, Richard G.; Graham, S.E.; Valin, Z.C.

    2001-01-01

    Geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder and others (1967) did not include all of the San Rafael Mtn. quadrangle, and the part that was mapped was done in reconnaissance fashion. To help resolve some of the structural and stratigraphic ambiguities of the earlier mapping and to complete the mapping of the quadrangle, additional field work was done during short intervals in 1980 and 1981 and from 1996 to 1998. Contacts within the belt of Franciscan rocks at the southwestern corner of the quadrangle were generalized from the detailed map by Wahl (1998). Because extensive areas were inaccessible owing to impenetrable chaparral, observations from several helicopter overflights (1965, 1980, 1981) and interpretations from aerial photographs were used as compilation aids. Consequently, some of the depicted contacts and faults are highly inferential, particularly within the Upper Cretaceous rocks throughout the middle part of the quadrangle.

  18. Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Bürgmann, R.; Fattahi, H.; Nadeau, R. M.; Taira, T.; Johnson, C. W.; Johanson, I.

    2015-04-01

    The Hayward and Calaveras Faults, two strike-slip faults of the San Andreas System located in the East San Francisco Bay Area, are commonly considered independent structures for seismic hazard assessment. We use Interferometric Synthetic Aperture RADAR to show that surface creep on the Hayward Fault continues 15 km farther south than previously known, revealing new potential for rupture and damage south of Fremont. The extended trace of the Hayward Fault, also illuminated by shallow repeating micro-earthquakes, documents a surface connection with the Calaveras Fault. At depths greater than 3-5 km, repeating micro-earthquakes located 10 km north of the surface connection highlight the 3-D wedge geometry of the junction. Our new model of the Hayward and Calaveras Faults argues that they should be treated as a single system with potential for earthquake ruptures generating events with magnitudes greater than 7, posing a higher seismic hazard to the East San Francisco Bay Area than previously considered.

  19. Masculinity and undocumented labor migration: injured latino day laborers in San Francisco

    PubMed Central

    Walter, Nicholas; Bourgois, Philippe; Loinaz, H. Margarita

    2009-01-01

    Drawing on data collected through clinical practice and ethnographic fieldwork, this study examines the experience of injury, illness and disability among undocumented Latino day laborers in San Francisco. We demonstrate how constructions of masculine identity organize the experience of embodied social suffering among workers who are rendered vulnerable by the structural conditions of undocumented immigrant status. Theoretical concepts from critical medical anthropology and gender studies extend the scholarly analysis of structural violence beyond the primarily economic to uncover how it is embodied at the intimate level as a gendered experience of personal and familial crisis, involving love, respect, betrayal and patriarchal failure. A clinical ethnographic focus on socially structured patriarchal suffering elucidates the causal relationship between macro-forces and individual action with a fuller appreciation of the impact of culture and everyday lived experience. PMID:15210088

  20. At last! The single-crystal X-ray structure of a naturally occurring sample of the ilmenite-type oxide FeCrO3.

    PubMed

    Pérez-Cruz, María Ana; Elizalde-González, María de la Paz; Escudero, Roberto; Bernès, Sylvain; Silva-González, Rutilo; Reyes-Ortega, Yasmi

    2015-10-01

    A natural single crystal of the ferrimagnetic oxide FeCrO3, which was found in an opencast mine situated in the San Luis Potosí State in Mexico, has been characterized in order to elucidate some outstanding issues about the actual structure of this material. The single-crystal X-ray analysis unambiguously shows that transition metal cations are segregated in alternating layers normal to the threefold crystallographic axis, affording a structure isomorphous to that of ilmenite (FeTiO3), in the space group R3̅. The possible occurrence of cation antisite and vacancy defects is below the limit of detection available from X-ray data. Structural and magnetic results are in agreement with the coherent slow intergrowth of magnetic phases provided by the two antiferromagnetic corundum-type parent oxides Fe2O3 (hematite) and Cr2O3 (eskolaite). Our results are consistent with the most recent density functional theory (DFT) studies carried out on digital FeCrO3 [Sadat Nabi & Pentcheva (2011). Phys. Rev. B, 83, 214424], and suggest that synthetic samples of FeCrO3 might present a cation distribution different to that of the ilmenite structural type.

  1. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    DOE PAGES

    Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan

    2016-12-28

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less

  2. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less

  3. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    USGS Publications Warehouse

    Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul

    2017-01-01

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  4. Late Quaternary faulting in the Cabo San Lucas-La Paz Region, Baja California

    NASA Astrophysics Data System (ADS)

    Busch, M.; Arrowsmith, J. R.; Umhoefer, P. J.; Gutiérrez, G. M.; Toke, N.; Brothers, D.; Dimaggio, E.; Maloney, S.; Zielke, O.; Buchanan, B.

    2006-12-01

    While Baja California drifts, active deformation on and just offshore indicates that spreading is not completely localized to the rift axis in the Gulf of California. Using on and offshore data, we characterize normal faulting- related deformation in the Cabo San Lucas-La Paz area. We mapped sections of the north trending faults in a 150 km long left-stepping fault array. Starting in the south, the San Jose del Cabo fault (east dipping) bounds the ~2 km high Sierra La Laguna. It is >70 km long with well defined 1-10 meter fault scarps cutting the youngest late Quaternary geomorphic surfaces. Our preliminary mapping along the north central section exhibits extensive late Quaternary terraces with riser heights of tens of meters above Holocene terraces. The San Jose del Cabo fault trace becomes diffuse and terminates in the area of Los Barriles. Moving northward, the fault system steps to the west, apparently transferring slip to the faults of San Juan de Los Planes and Saltito, which then step left again across the La Paz basin to the NNW trending Carrizal Fault. It has an on shore length of > 60 km. We produced a 25 km detailed strip map along the northern segment. It is embayed by convex east arcs several km long and 100 m deep. In the south, few-m-high scarps cut a pediment of thin Quaternary cover over tertiary volcanic rocks. The escarpment along the fault is hundreds of meters high and scarps 1-10 m high where it goes offshore in the north. Near Bonfil, a quarry cut exposes the fault zone. It comprises a 5-10 m wide bedrock shear zone with sheared tertiary volcanic units. On the footwall, the lower silty and sandy units have moderately well developed pedogenic carbonate, whereas the upper coarse gravel does not. These late Quaternary units appear to be faulted by one to three earthquakes. Finally, we mapped the Saltito fault zone NNE of La Paz. It is a NW trending structure with well developed 5- 10 meter high bedrock scarps defining its NW 5 km and slightly concave east with a 500 m left. Along all the fault zones studied, offset geomorphic surfaces indicate late Pleistocene to Holocene offset. These surfaces can be exploited to determine slip rates and produce a regional chronosequence to test for synchroneity of climatically modulated variations in sediment supply and transport capacity. In addition, a shallow marine geophysics and coring extends our mapping and provides important age control and improved stratigraphic assessment of fault activity.

  5. Summary Document: Restoration Plan for Major Airports after a Bioterrorist Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raber, E

    2007-01-11

    This document provides general guidelines for developing a Restoration Plan for a major airport following release of a biological warfare agent. San Francisco International Airport was selected as the example airport during development of the Plan to illustrate specific details. The spore forming bacterium Bacillus anthracis was selected as the biological agent of primary concern because it is the most difficult of known bioterrorism agents to inactivate and is considered to be one of the agents most likely to be used as a biological weapon. The focus of the Plan is on activities associated with the Characterization, Remediation, and Clearancemore » Phases that are defined herein. Activities associated with the Notification and First-Response Phases are briefly discussed in Appendixes A and B, respectively. In addition to the main text of this Plan and associated appendixes, a data supplement was developed specifically for San Francisco International Airport. Requests for the data supplement must be made directly to the Emergency Planning Operations Division of San Francisco International Airport.« less

  6. Geophysical framework of the northern San Francisco Bay region, California

    USGS Publications Warehouse

    Langenheim, Victoria; Graymer, Russell W.; Jachens, Robert C.; McLaughlin, Robert J.; Wagner, D.L.; Sweetkind, Donald

    2010-01-01

    We use geophysical data to examine the structural framework of the northern San Francisco Bay region, an area that hosts the northward continuation of the East Bay fault system. Although this fault system has accommodated ∼175 km of right-lateral offset since 12 Ma, how this offset is partitioned north of the bay is controversial and important for understanding where and how strain is accommodated along this stretch of the broader San Andreas transform margin. Using gravity and magnetic data, we map these faults, many of which influenced basin formation and volcanism. Continuity of magnetic anomalies in certain areas, such as Napa and Sonoma Valleys, the region north of Napa Valley, and the region south of the Santa Rosa Plain, preclude significant (>10 km) offset. Much of the slip is partitioned around Sonoma and Napa Valleys and onto the Carneros, Rodgers Creek, and Green Valley faults. The absence of correlative magnetic anomalies across the Hayward–Rodgers Creek–Maacama fault system suggests that this system reactivated older basement structures, which appear to influence seismicity patterns in the region.

  7. Exploring geothermal structures in the Ilan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Ying; Shih, Ruey-Chan; Chung, Chen-Tung; Huang, Ming-Zi; Kuo, Hsuan-Yu

    2017-04-01

    The Ilan Plain in northeast Taiwan is located at the southwestern tip of the Okinawa Trough, which extends westward into the Taiwan orogeny. The Ilan Plain covered by thick sediments is clipped by the Hsuehshan Range in the northern side and the Central Range in the southern side. High geothermal gradients with plenteous hot springs of this area may result from igneous intrusion associated with the back-arc spreading of the Okinawa Trough. In this study, we use reflection seismic survey to explore underground structures in the whole Ilan Plain, especially in SanShin, Wujie, and Lize area. We aim to find the relationship between underground structures and geothermal forming mechanism. The research uses reflection seismic survey to investigate the high geothermal gradient area with two mini-vibrators and 240-channel system. The total length of seismic lines is more than 30 kilometers. The results show that alluvial sediments covering the area about 400 600 meters thick and then thin out to the west in SanShin area. In SanShin , the Taiyaqiao anticline in Hsuehshan Range has entered the plain area and is bounded by the Zhuoshui fault (south) and the Zailian fault (north). In Wujie and Lize , Zhuoshui fault cut through a strong reflector which is the top of the gravel layer near the bottom of the alluvial layer, while the SanShin fault seems to cut near very shallow strata. These two faults are a strike-slip fault with a bit of normal fault component distributing over a range of 600 meters. In Ilan Plain, the geothermal forming mechanism is controlled by anticlines and faults. The hydrothermal solution which migrates upward along these anticline or fault zones to the shallow part causing high geothermal gradients in these areas.

  8. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  9. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Structural and diagenetic evolution of deformation bands in contractional and extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; O'Brien, C. M.; Elliott, S. J.

    2016-12-01

    Mechanisms of brittle deformation of sediments and sedimentary rock change with burial because of increasing confining stress, change in pore fluid chemical and temperature conditions, and diagenetic state. In the field, these changes are observed in a transition from early non-cataclastic to later cataclastic deformation bands and to joint-based structures. Jurassic eolian sandstones in the San Rafael monocline and adjacent San Rafael Desert region, Utah, allow comparison of deformation band structures and their diagenetic attributes in contractional and extensional tectonic settings in close proximity. In the Entrada and Navajo Sandstones, we observe up to six generations of deformation bands, with earliest non-cataclastic bands having diffuse boundaries to host rock, and short and irregular traces. Later bands are cataclastic, more sharply defined, with long and straight traces. Cataclastic bands in the San Rafael monocline are interpreted to form as reverse faults during progressive rotation of the steeply dipping fold limb, resulting in an array of bands of varying dip. Bands in the San Rafael Desert form as normal faults with a narrower dip range. Although structural characteristics of bands differ in extensional and contractional tectonic regimes, cataclastic bands in either regime have comparable amount of porosity loss and quartz cementation indicating that tectonic regime does not influence band diagenesis. Abundance of quartz cement in bands, determined by point counting of SEM images, increases from earlier to later generations of bands and, within a single generation, with increasing slip along the band, reaching up to 24% of band volume. This trend is attributed to an increase in cataclasis with increasing host rock cementation and confining stress during burial, and, within the same generation, with increasing slip. Porosity loss by cementation tends to dominate over porosity loss by mechanical compaction. These findings demonstrate that quartz cementation and thus band permeability are primarily controlled by the degree of cataclasis in the bands, and highlight the interdependence of mechanical deformation and chemical diagenetic processes in deformation bands.

  11. Self-assembled nanocages based on the coiled coil bundle motif

    NASA Astrophysics Data System (ADS)

    Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin

    Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.

  12. Tough Supramolecular Hydrogel Based on Strong Hydrophobic Interactions in a Multiblock Segmented Copolymer

    PubMed Central

    2017-01-01

    We report the preparation and structural and mechanical characterization of a tough supramolecular hydrogel, based exclusively on hydrophobic association. The system consists of a multiblock, segmented copolymer of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA) building blocks. A series of copolymers containing 2K, 4K, and 8K PEG were prepared. Upon swelling in water, a network is formed by self-assembly of hydrophobic DFA units in micellar domains, which act as stable physical cross-link points. The resulting hydrogels are noneroding and contain 75–92 wt % of water at swelling equilibrium. Small-angle neutron scattering (SANS) measurements showed that the aggregation number of micelles ranges from 2 × 102 to 6 × 102 DFA units, increasing with PEG molecular weight. Mechanical characterization indicated that the hydrogel containing PEG 2000 is mechanically very stable and tough, possessing a tensile toughness of 4.12 MJ/m3. The high toughness, processability, and ease of preparation make these hydrogels very attractive for applications where mechanical stability and load bearing features of soft materials are required. PMID:28469284

  13. The seismic response of the Los Angeles basin, California

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    1998-01-01

    Using strong-motion data recorded in the Los Angeles region from the 1992 (Mw 7.3) Landers earthquake, we have tested the accuracy of existing three-dimensional (3D) velocity models on the simulation of long-period (???2 sec) ground motions in the Los Angeles basin and surrounding San Fernando and San Gabriel Valleys. First, the overall pattern and degree of long-period excitation of the basins were identified in the observations. Within the Los Angeles basin, the recorded amplitudes are about three to four times larger than at sites outside the basins; amplitudes within the San Fernando and San Gabriel Valleys are nearly a factor of 3 greater than surrounding bedrock sites. Then, using a 3D finite-difference numerical modeling approach, we analyzed how variations in 3D earth structure affect simulated waveforms, amplitudes, and the fit to the observed patterns of amplification. Significant differences exist in the 3D velocity models of southern California that we tested (Magistrale et al., 1996; Graves, 1996a; Hauksson and Haase, 1997). Major differences in the models include the velocity of the assumed background models; the depth of the Los Angeles basin; and the depth, location, and geometry of smaller basins. The largest disparities in the response of the models are seen for the San Fernando Valley and the deepest portion of the Los Angeles basin. These arise in large part from variations in the structure of the basins, particularly the effective depth extent, which is mainly due to alternative assumptions about the nature of the basin sediment fill. The general ground-motion characteristics are matched by the 3D model simulations, validating the use of 3D modeling with geologically based velocity-structure models. However, significant shortcomings exist in the overall patterns of amplification and the duration of the long-period response. The successes and limitations of the models for reproducing the recorded ground motions as discussed provide the basis and direction for necessary improvements to earth structure models, whether geologically or tomographically derived. The differences in the response of the earth models tested also translate to variable success in the ability to successfully model the data and add uncertainty to estimates of the basin response given input "scenario" earthquake source models.

  14. Characterizing the Iron Wash fault: A fault line scarp in Utah

    NASA Astrophysics Data System (ADS)

    Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.

    2015-12-01

    The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.

  15. The role of thermal stratification in tidal exchange at the mouth of San Diego Bay

    USGS Publications Warehouse

    Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.

    1996-01-01

    We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.

  16. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  17. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Stewart, John H.

    2005-12-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  18. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  19. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    USGS Publications Warehouse

    Stewart, John H.

    2005-01-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  20. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego County, southern California—2017 data summary

    USGS Publications Warehouse

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2018-04-20

    We surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2017. Surveys were conducted from April 13 to July 11 (LBVI) and from May 16 to July 28 (SWFL). We found 146 LBVI territories, at least 107 of which were occupied by pairs. Five additional transient LBVIs were detected. LBVIs used five different habitat types in the survey area: mixed willow, willow-cottonwood, willow-sycamore, riparian scrub, and upland scrub. Forty-four percent of the LBVIs occurred in habitat characterized as mixed willow and 89 percent of the LBVI territories occurred in areas with greater than 50 percent native plant cover. Of 16 banded LBVIs detected in the survey area, 8 had been given full color-band combinations prior to 2017. Four other LBVIs with single (natal) federal bands were recaptured and banded in 2017. Three LBVIs with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River and one LBVI with a single gold federal band indicating that it was banded as a nestling on Marine Corps Base Camp Pendleton (MCBCP) could not be recaptured for identification. One banded LBVI emigrated from the middle San Luis Rey River to the lower San Luis Rey River in 2017.One resident SWFL territory and one transient Willow Flycatcher of unknown subspecies (WIFL) were observed in the survey area in 2017. The resident SWFL territory, which was comprised of mixed willow habitat (5–50 percent native plant cover), was occupied by a single male from May 22 to June 21, 2017. No evidence of pairing or nesting activity was observed. The SWFL male was banded with a full color-combination indicating that he was originally banded as a nestling on the middle San Luis Rey River in 2014 and successfully bred in the survey area in 2016. The male SWFL left the middle San Luis Rey River after June 21, 2017 and subsequently was detected on the San Dieguito River on June 26, 2017, by USGS biologists. The transient WIFL was detected on May 30, 2017, in mixed willow habitat comprised of 50–95 percent of native plant cover.

  1. Modeling Rainfall-Runoff Dynamics in Tropical, Urban Socio-Hydrological Systems: Green Infrastructure and Variable Precipitation Interception

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.

    2014-12-01

    There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.

  2. Effects of Sample Impurities on the Analysis of MS2 Bacteriophage by Small-Angle Neutron Scattering

    DTIC Science & Technology

    2005-08-01

    and the efficiency of water treatment plants and filtration devices (Jolis et al., 1999;3 Oppenheimer et al., 1997;4 Woolwine and Gerberding, 1995;5...the solvent water to deuterated water ratio so that structural information about the protein and nucleic acid components can be obtained separately...de-stained in a 30% methanol: 10% acetic acid:60% (v/v) water solution for 8 hr (Maniatis, Fritsch et al., 1982).37 2.4 SANS Measurements. SANS

  3. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure

    USDA-ARS?s Scientific Manuscript database

    While previous elevated atmospheric CO2 research has addressed changes in belowground processes, its effects on soil structure remain virtually undescribed. This study examined the long-term effects of elevated CO2 and N fertilization on soil structural changes in a bahiagrass pasture grown on a san...

  4. Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.

    2003-01-01

    We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km) section of what are probably post-Miocene rocks and sediment. Extrapolating ages obtained from Ocean Drilling Program site 1015 indicates that this sedimentary cover is Quaternary, possibly no older than 600 ka. Folds and faults along the base of the San Pedro Escarpment began to form during 8-13 ka ago. Refraction-velocity data show that high-velocity rocks, probably the Catalina Schist or Miocene volcanic rocks, underlie the sedimentary section. The San Pedro Basin developed along a strike-slip fault, widens to the southeast, and is deformed by faults having apparent reverse separation and by folds near Redondo Canyon and the Palos Verdes Peninsula.

  5. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  6. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely occur every 1000-1500 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3679886','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3679886"><span>Indicators of Methamphetamine Use and Abuse in San Diego County, California: 2001–2005†</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pollini, Robin A.; Strathdee, Steffanie A.</p> <p>2013-01-01</p> <p>San Diego County, California, is a major distribution center for methamphetamine entering the U.S. from Mexico. All available indicators suggest that the use and abuse of methamphetamine increased between 2001 and 2005. Drug treatment admissions for primary methamphetamine use accounted for 49% of all drug treatment admissions in 2005, up from 37% in 2001, with trends showing smaller proportions of female and Hispanic users and a larger proportion of methamphetamine smokers (vs. inhalation or injection). Increases in prevalence of methamphetamine use were documented among arrestees as well; by 2005, 51% of female and 21% of juvenile arrestees tested positive for methamphetamine The proportion of emergency department visits involving illicit drugs in which methamphetamine was reported increased from 32% in 2004 to 40% in 2005, although this change was not statistically significant, and methamphetamine-related deaths increased 48% between 2001 and 2005. Data from non-federal drug seizures in San Diego County documented an increase from 21 % of all drug items analyzed in 2001 to 32% in 2005 In summary, methamphetamine remains the drug of utmost concern in San Diego. The availability of multiple data sources is imperative for constructing valid characterizations of trends in methamphetamine use and abuse and its affect on health. PMID:18284098</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036472','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036472"><span>Characterizing land surface change and levee stability in the Sacramento-San Joaquin Delta using UAVSAR radar imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, C.; Bawden, G.; Deverel, S.; Dudas, J.; Hensley, S.</p> <p>2011-01-01</p> <p>The islands of the Sacramento-San Joaquin Delta have been subject to subsidence since they were first reclaimed from the estuary marshlands starting over 100 years ago, with most of the land currently lying below mean sea level. This area, which is the primary water resource of the state of California, is under constant threat of inundation from levee failure. Since July 2009, we have been imaging the area using the quad-polarimetric UAVSAR L-band radar, with eighteen data sets collected as of April 2011. Here we report results of our polarimetric and differential interferometric analysis of the data for levee deformation and land surface change. ?? 2011 IEEE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JSAES..29...28B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JSAES..29...28B"><span>The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bettencourt, Jorge Silva; Leite, Washington Barbosa; Ruiz, Amarildo Salina; Matos, Ramiro; Payolla, Bruno Leonelo; Tosdal, Richard M.</p> <p>2010-01-01</p> <p>The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paraguá Terrane (Bolivia and Mato Grosso regions) and in the Alto Guaporé Belt and the Rio Negro-Juruena Province (Rondônia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsás Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paraguá Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guaporé Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paraguá Terrane, and the Colorado Complex and the Nova Mamoré Metamorphic Suite in the Alto Guaporé Belt. The Paraguá Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotônio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the São Lourenço-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190148','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190148"><span>Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schraga, Tara; Cloern, James E.</p> <p>2017-01-01</p> <p>The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate. We describe the sampling program, analytical methods, structure of the data record, and how to access all measurements made from 1969 through 2015. We provide a summary of how these data have been used by USGS and other researchers to deepen understanding of how estuaries are structured and function differently from the river and ocean ecosystems they bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28786972','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28786972"><span>Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969-2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schraga, Tara S; Cloern, James E</p> <p>2017-08-08</p> <p>The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate. We describe the sampling program, analytical methods, structure of the data record, and how to access all measurements made from 1969 through 2015. We provide a summary of how these data have been used by USGS and other researchers to deepen understanding of how estuaries are structured and function differently from the river and ocean ecosystems they bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..684B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..684B"><span>Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (NW Argentina)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.</p> <p>2012-04-01</p> <p>The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011948','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011948"><span>Open Circuit Resonant (SansEC) Sensor for Composite Damage Detection and Diagnosis in Aircraft Lightning Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.</p> <p>2012-01-01</p> <p>Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMGP12A..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMGP12A..01K"><span>Magnetic Fabric and Paleomagnetism of the Peninsular Ranges Batholith, Sierra San Pedro M rtir, Baja California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, M.; Herrero-Bervera, E.; Molina-Garza, R. S.; Böhnel, H. N.</p> <p>2003-12-01</p> <p>We summarize results of recent paleomagnetic, structural, petrologic and magnetic fabric studies along an east-west (60 km long) transect across the Peninsular Ranges Batholith (PRB) in north-central Baja California. The transect includes both magnetite rich plutons from the western sector of the PRB, and ilmenite rich plutons from the eastern sector, as well as plutons on the eastern and western side of major tectonic discontinuities. We include results for 8 plutons, included well-characterized bodies such as San Pedro M rtir (SP), San José (SJ) and La Zarza (LZ), and relatively little known plutons such as Potrero (PO), Aguaje del Burro (AB), El Milagro (MI), and San Telmo (ST). Plutons on the western sector of the PRB yield a paleomagnetic pole at 82° N-186.4° E (A95=4.8° ). When rotated into a pre- Gulf of California position, the pole (79.2° -188.2° ) is statistically undistinguishable from the North American reference pole. In contrast, SP, SJ and PO plutons, on either side of the NW trending Main Martir Thrust yield clearly discordant direction that can only be reconciled with results for the western plutons assuming southwestward tilt of ˜ 25° for SP and greater than 45° for SJ and PO. We find strong evidence in support of tilt of the plutons from thermochronological, structural, and geobarometric data. These data will be discussed elsewhere. Here we focus on magnetic fabric data. AMS for SJ is strongly developed with high values for degree of anisotropy (P= 1.14 a 1.40), but marked east-west asymmetry that contrasts with the general symmetry of the pluton along a north-south axis. Oblate fabrics (T ˜ +0.4) with dispersed lineation directions dominate the west side of the pluton and prolate fabrics (T ˜ -0.15) with steep to vertical lineations dominate on its eastern side. This fabric is interpreted to result from magma flow. SP, a much larger pluton and sensibly asymmetric, displays high degrees of anisotropy (P ˜1.2) on its western side but dominantly oblate (T ˜ +0.4) fabric, with foliations parallel to the pluton margins. In contrast, the eastern side of the pluton displays low P values ( ˜ 1.06-1.10), but markedly oblate fabrics (T ˜ +0.6) parallel to the pluton margin. Fabrics in the pluton interior are weakly developed. These data are interpreted to support models of pluton emplacement that involve drag (vertical shear) along the western margin of the pluton along the Main M rtir Thrust during pluton ascent, thus facilitating tilt and deformation of the smaller plutons to the west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=256962&keyword=database+AND+economic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=256962&keyword=database+AND+economic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the San Pedro River (U.S./Mexico)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize hydrologic impacts from future urban growth throug...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335207&Lab=NERL&keyword=land+AND+use+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335207&Lab=NERL&keyword=land+AND+use+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA544865','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA544865"><span>Observations and Modeling for Source Characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-02-25</p> <p>Sequim Bay Road Sequim , WA 98382 Phone: (360) 681 -3616 Fax: (360) 681 -3699 Email: lyle.hibler@pnl.gov Grant Number: N00014-08-1-0508 LONG...currents south of the opening of San Diego Bay show a northerly propagation resulting in an eddy off of Point Loma. The currents around the Tijuana</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=263181','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=263181"><span>Characterization of cotton gin particulate matter emissions – project plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=236712','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=236712"><span>Characterization of cotton gin particulate matter emissions - project plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29603870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29603870"><span>Development of a systematic strategy for the global identification and classification of the chemical constituents and metabolites of Kai-Xin-San based on liquid chromatography with quadrupole time-of-flight mass spectrometry combined with multiple data-processing approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiaotong; Liu, Jing; Yang, Xiaomei; Zhang, Qian; Zhang, Yiwen; Li, Qing; Bi, Kaishun</p> <p>2018-03-30</p> <p>To rapidly identify and classify complicated components and metabolites for traditional Chinese medicines, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with multiple data-processing approaches was established. In this process, Kai-Xin-San, a widely used classic traditional Chinese medicine preparation, was chosen as a model prescription. Initially, the fragmentation patterns, diagnostic product ions and neutral loss of each category of compounds were summarized by collision-induced dissociation analysis of representative standards. In vitro, the multiple product ions filtering technique was utilized to identify the chemical constituents for globally covering trace components. With this strategy, 108 constituents were identified, and compounds database was successfully established. In vivo, the prototype compounds were extracted based on the established database, and the neutral loss filtering technique combined with the drug metabolism reaction rules was employed to identify metabolites. Overall, 69 constituents including prototype and metabolites were characterized in rat plasma and nine constituents were firstly characterized in rat brain, which may be the potential active constituents resulting in curative effects by synergistic interaction. In conclusion, this study provides a generally applicable strategy to global metabolite identification for the complicated components in complex matrix and a chemical basis for further pharmacological research of Kai-Xin-San. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26118146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26118146"><span>Rationale and Design of the Echocardiographic Study of Hispanics/Latinos (ECHO-SOL).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodriguez, Carlos J; Dharod, Ajay; Allison, Matthew A; Shah, Sanjiv J; Hurwitz, Barry; Bangdiwala, Shrikant I; Gonzalez, Franklyn; Kitzman, Dalane; Gillam, Linda; Spevack, Daniel; Dadhania, Rupal; Langdon, Sarah; Kaplan, Robert</p> <p>2015-01-01</p> <p>Information regarding the prevalence and determinants of cardiac structure and function (systolic and diastolic) among the various Hispanic background groups in the United States is limited. The Echocardiographic Study of Latinos (ECHO-SOL) ancillary study recruited 1,824 participants through a stratified-sampling process representative of the population-based Hispanic Communities Health Study - Study of Latinos (HCHS-SOL) across four sites (Bronx, NY; Chicago, Ill; San Diego, Calif; Miami, Fla). The HCHS-SOL baseline cohort did not include an echo exam. ECHO-SOL added the echocardiographic assessment of cardiac structure and function to an array of existing HCHS-SOL baseline clinical, psychosocial, and socioeconomic data and provides sufficient statistical power for comparisons among the Hispanic subgroups. Standard two-dimensional (2D) echocardiography protocol, including M-mode, spectral, color and tissue Doppler study was performed. The main objectives were to: 1) characterize cardiac structure and function and its determinants among Hispanics and Hispanic subgroups; and 2) determine the contributions of specific psychosocial factors (acculturation and familismo) to cardiac structure and function among Hispanics. We describe the design, methods and rationale of currently the largest and most comprehensive study of cardiac structure and function exclusively among US Hispanics. ECHO-SOL aims to enhance our understanding of Hispanic cardiovascular health as well as help untangle the relative importance of Hispanic subgroup heterogeneity and sociocultural factors on cardiac structure and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15523927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15523927"><span>[Core factors of schizophrenia structure based on PANSS and SAPS/SANS results. Discerning and head-to-head comparisson of PANSS and SASPS/SANS validity].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Masiak, Marek; Loza, Bartosz</p> <p>2004-01-01</p> <p>A lot of inconsistencies across dimensional studies of schizophrenia(s) are being unveiled. These problems are strongly related to the methodological aspects of collecting data and specific statistical analyses. Psychiatrists have developed lots of psychopathological models derived from analytic studies based on SAPS/SANS (the Scale for the Assessment of Positive Symptoms/the Scale for the Assessment of Negative Symptoms) and PANSS (The Positive and Negative Syndrome Scale). The unique validation of parallel two independent factor models was performed--ascribed to the same illness and based on different diagnostic scales--to investigate indirect methodological causes of clinical discrepancies. 100 newly admitted patients (mean age--33.5, 18-45, males--64, females--36, hospitalised on average 5.15 times) with paranoid schizophrenia (according to ICD-10) were scored and analysed using PANSS and SAPS/SANS during psychotic exacerbation. All patients were treated with neuroleptics of various kinds with 410mg equivalents of chlorpromazine (atypicals:typicals --> 41:59). Factor analyses were applied to basic results (with principal component analysis, normalised varimax rotation). Investing the cross-model validity, canonical analysis was applied. Models of schizophrenia varied from 3 to 5 factors. PANSS model included: positive, negative, disorganisation, cognitive and depressive components and SAPS/SANS model was dominated by positive, negative and disorganisation factors. The SAPS/SANS accounted for merely 48% of the PANSS common variances. The SAPS/SANS combined measurement preferentially (67% of canonical variance) targeted positive-negative dichotomy. Respectively, PANSS shared positive-negative phenomenology in 35% of its own variance. The general concept of five-dimensionality in paranoid schizophrenia looks clinically more heuristic and statistically more stabilised.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4359358','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4359358"><span>Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.</p> <p>2015-01-01</p> <p>Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1039/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1039/"><span>Near-Surface Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, From Seismic Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Steedman, Clare</p> <p>2007-01-01</p> <p>Introduction The Santa Clara Valley (SCV) is located in the southern San Francisco Bay area of California and is bounded by the Santa Cruz Mountains to the southwest, the Diablo Ranges to the northeast, and the San Francisco Bay to the north (Fig. 1). The SCV, which includes the City of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley, has a population in excess of 1.7 million people (2000 U. S. Census;http://quickfacts.census.gov/qfd/states/06/06085.html The SCV is situated between major active faults of the San Andreas Fault system, including the San Andreas Fault to the southwest and the Hayward and Calaveras faults to the northeast, and other faults inferred to lie beneath the alluvium of the SCV (CWDR, 1967; Bortugno et al., 1991). The importance of the SCV as a major industrial center, its large population, and its proximity to major earthquake faults are important considerations with respect to earthquake hazards and water-resource management. The fault-bounded alluvial aquifer system beneath the valley is the source of about one-third of the water supply for the metropolitan area (Hanson et al., 2004). To better address the earthquake hazards of the SCV, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential seismic sources, the effects of strong ground shaking, and stratigraphy associated with the regional aquifer system. As part of that program and to better understand water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began joint studies to characterize the faults, stratigraphy, and structures beneath the SCV in the year 2000. Such features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local and regional earthquakes sources that may affect reservoirs, pipelines, and flood-protection facilities maintained by SCVWD. As one component of these joint studies, the USGS acquired an approximately 10-km-long, high-resolution, combined seismic reflection/refraction transect from the Santa Cruz Mountains to the central SCV in December 2000 (Figs. 1 and 2a,b). The overall seismic investigation of the western Santa Clara Valley also included an ~18-km-long, lower-resolution (~50-m sensor) seismic imaging survey from the central Santa Cruz Mountains to the central part of the valley (Fig. 1). Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI). Results of the high-resolution investigation, referred to as SCSI-HR, are presented in this report, and Catchings et al. (2006) present results of the low-resolution investigation (SCSI-LR) in a separate report. In this report, we present data acquisition parameters, unprocessed and processed seismic data, and interpretations of the SCSI-HR seismic transect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022596','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022596"><span>Three-dimensional seismic velocity structure of the San Francisco Bay area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.</p> <p>2000-01-01</p> <p>Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as constrained by the model should be used to improve studies of seismicity, strong ground motion, and regional stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24074034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24074034"><span>Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne</p> <p>2013-11-04</p> <p>Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers should be used when preparing nanoparticles by wet bead milling since nanoparticle formation is more rapid but with no likely consequence on the resultant physical stability of the nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_83674.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_83674.htm"><span>Geologic Map of the San Luis Quadrangle, Costilla County, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.</p> <p>2008-01-01</p> <p>The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12646128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12646128"><span>African Y chromosome and mtDNA divergence provides insight into the history of click languages.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knight, Alec; Underhill, Peter A; Mortensen, Holly M; Zhivotovsky, Lev A; Lin, Alice A; Henn, Brenna M; Louis, Dorothy; Ruhlen, Merritt; Mountain, Joanna L</p> <p>2003-03-18</p> <p>About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San. We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups. The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0163/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0163/report.pdf"><span>Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yerkes, R.F.</p> <p>1997-01-01</p> <p>The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley. The San Fernando area lies on the southern slopes of the San Gabriel Mountains. The basement rocks here include high-grade metamorphic rocks of Precambrian age. The mountains are largely composed of crystalline basement that includes the Pelona Scist of probable Mesozoic age that has been overthrust by Precambrian gneisses; the gneisses were subsequently intruded by Mesozoic plutons prior to overthrusting along the latest Cretaceous Vincent thrust. Gneisses of somewhat variable composition and possibly varying ages are found in four terranes, but not all are in contact with Pelona Schist. Large tracts of Precambrian (1.2 billion years old) andesine anorthosite are intrusive into 1.7 billion year-old Mendenhall gneiss, and are found in the western part of the San Gabriels. Mixed with these are younger marble, limestone, and schist of possible Paleozoic age found in association with plutons along the southern margin of the range. The older rocks are intruded by diorite, quartz diorite, and granodiorite of Jurassic age. Also present are siliceous sedimentary rocks of Jurassic age. A thick section of Tertiary sedimentary and volcanic rocks overlie these units. The sediments located south of the San Gabriel Fault are totally different in character from those on the northern range flank, and mostly resemble the western Transverse Ranges due to their deposition in the southeastern Ventura basin; approximately 3,000 m of these sediments are exposed north and west of the city of San Fernando in the Tujunga syncline. Some of the Tertiary rocks are Paleocene and Eocene in age, but the bulk of these rocks are Oligocene and Miocene in age. The Vasquez and Sespe Formations of basal basaltic volcanic and sandstone are Oligocene and lower Miocene in age. These are overlain by clastic rocks of Tick Canyon and Mint Canyon Formations of middle to late Miocene age. Above these rocks are the Castaic, Modelo, and Santa Margarita Formations of fossiliferous marine shale, sand</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4311584','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4311584"><span>Multifunctional layered magnetic composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas</p> <p>2015-01-01</p> <p>Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........52Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........52Y"><span>Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, Nicholas Philip</p> <p></p> <p>The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29705928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29705928"><span>Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonilla, José O; Kurth, Daniel G; Cid, Fabricio D; Ulacco, José H; Gil, Raúl A; Villegas, Liliana B</p> <p>2018-04-28</p> <p>The acid mine drainage that originates in the abandoned gold mine in San Luis, Argentina, is released into La Carolina stream. The aim of this study was to determine the influence of this mine drainage on the physicochemical parameters of the area studied and on both prokaryotic and eukaryotic community structure. In addition, specific relationships between microbial taxonomic groups and physicochemical parameters were established. The drainage that flows into La Carolina stream acidifies the stream and increases its sulfate, Zn, Cd and Te concentrations. Microbial analysis showed that prokaryotic community structure is mainly affected by pH values. Actinobacteria and Gammaproteobacteria were abundant in samples characterized by low pH values, while Nitrospirae, Chloroflexi, Deltaproteobacteria, Thaumarchaeota and Euryarchaeota were associated with high concentrations of heavy metals. Otherwise, Alphaproteobacteria was present in samples taken in sunlit areas. Regarding eukaryotic community structure, the sunlight had the greatest impact. Inside the mine, in the absence of light, fungi and protists members were the most abundant microorganisms, while those samples taken in the presence of light displayed algae (green algae and diatoms) as the most abundant ones. After receiving the mine drainage, the stream showed a decrease in the diatom abundance and green algae predominated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T43D..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T43D..03W"><span>Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.</p> <p>2010-12-01</p> <p>Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5012395','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5012395"><span>Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Uren, Caitlin; Kim, Minju; Martin, Alicia R.; Bobo, Dean; Gignoux, Christopher R.; van Helden, Paul D.; Möller, Marlo; Hoal, Eileen G.; Henn, Brenna M.</p> <p>2016-01-01</p> <p>Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. PMID:27474727</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24602821','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24602821"><span>Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram</p> <p>2014-01-01</p> <p>Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23175402','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23175402"><span>[Violence-related deaths in Argentina: two case studies in the cities of Venado Tuerto and San Rafael].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spinelli, Hugo; Alazraqui, Marcio; Galeano, Diego; Calandrón, Sabrina</p> <p>2012-12-01</p> <p>This article presents the results of a comparative study of two Argentinian cities, namely Venado Tuerto and San Rafael, which revealed different trends in the rates of firearm-related homicides. The methodology combined two strategies of analysis: semi-structured interviews with key informants (municipal and provincial government agents in different areas of management, as well as members of non-governmental organizations) and focus groups with actors involved in medical care, education, and religious institutions. The results suggest little difference between cities in which rates have increased and those in which rates have decreased. The most significant difference was that in Venado Tuerto a greater fragility of public institutions was observed due to the lack of articulation between such institutions. In San Rafael, the actors interviewed attribute the low level of conflict to a violence prevention network in which provincial and municipal agencies interact. Although neither city is violent at the most critical Latin American levels, the different results shown in Venado Tuerco and San Rafael indicate the possibility of bringing institutions together in a joint framework of conversations, agreements and policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhCS.340a2087R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhCS.340a2087R"><span>Investigation of Physically and Chemically Ionic Liquid Confinement in Nanoporous Materials by a Combination of SANS, Contrast-Matching SANS, XRD and Nitrogen Adsorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.</p> <p>2012-02-01</p> <p>In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.G31A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.G31A..06H"><span>Characterization of a Strain Rate Transient Along the San Andreas and San Jacinto Faults Following the October 1999 Hector Mine Earthquake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, D.; Holt, W. E.; Bennett, R. A.; Dimitrova, L.; Haines, A. J.</p> <p>2006-12-01</p> <p>We are continuing work on developing and refining a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. We determined time-averaged velocity values in 0.05 year epochs using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. A self-consistent model velocity gradient tensor field solution is determined for each epoch by fitting bi-cubic Bessel interpolation to the GPS velocity vectors and we determine model dilatation strain rates, shear strain rates, and the rotation rates. Departures of the time dependent model strain rate and velocity fields from a master solution, obtained from a time-averaged solution for the period 1999-2004, with imposed plate motion constraints and Quaternary fault data, are evaluated in order to best characterize the time dependent strain rate field. A particular problem in determining the transient strain rate fields is the level of smoothing or damping that is applied. Our current approach is to choose a damping that both maximizes the departure of the transient strain rate field from the long-term master solution and achieves a reduced chi-squared value between model and observed GPS velocities of around 1.0 for all time epochs. We observe several noteworthy time-dependent changes. First, in the Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, there occurs a significant spatial increase of relatively high shear strain rate, which encompasses a significant portion of the ECSZ. Second, also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting the ECSZ to the San Andreas fault segment in the Salton Trough region. As this signal slowly decays, shear strain rates on segments of the San Andreas fault, just east of Palm Springs, and the San Jacinto fault increase during 2001-2004. During this period shear strain rates increase by roughly 20 nanostrain per year on the San Andreas fault and 20-30 nanostrain per year on the San Jacinto fault (over a zone approximately 20 km wide). Lastly, a further investigation into this strain rate recovery reveals a power law flow mechanism during the first six months after the earthquake for the Anza segment, after which strain rates appear to reach a steady state for the remainder of the data. Moreover, seismicity rates increase along these segments following the period of shear strain rate increase. These results quantify the spatial coverage of the strain rate changes and provide some bounds on their magnitude and confidence, as well as constraints on the associated regional rheology and interseismic cycle strain rate pattern. The compiled epoch solution "movies" may be viewed at the additional resources site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.284..347A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.284..347A"><span>Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario</p> <p>2017-07-01</p> <p>Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H"><span>New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.</p> <p>2015-12-01</p> <p>The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward jogs along right lateral fault strands splaying off the NIRC fault. Such a scenario also is consistent with observations from the 3D boomer volume along the shelf and upper slope that images westward stepping faults splaying off the NIRC system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28463769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28463769"><span>Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R</p> <p>2017-08-01</p> <p>Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as source switching, bringing in new sources, and water conservation, were observed in the isotope data. Finally, we estimated evaporative loss from one utility's reservoir system during the 2015 water year using a modified Craig-Gordon model to estimate the consequences of the drought on this resource. We estimated that upwards of 6.6% of the water in this reservoir system was lost to evaporation. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..76..306I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..76..306I"><span>Neogene Tiporco Volcanic Complex, San Luis, Argentina: An explosive event in a regional transpressive - local transtensive setting in the pampean flat slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibañes, Oscar Damián; Sruoga, Patricia; Japas, María Silvia; Urbina, y. Nilda Esther</p> <p>2017-07-01</p> <p>The Neogene Tiporco Volcanic Complex (TVC) is located in the Sierras Pampeanas of San Luis, Argentina, at the southeast of the Pampean flat-slab segment. Based on the comprehensive study of lithofacies and structures, the reconstruction of the volcanic architecture has been carried out. The TVC has been modeled in three subsequent stages: 1) initial updoming, 2) ignimbritic eruptive activity and 3) lava dome emplacement. Interplay of magma injection and transtensional tectonic deformation has been invoked to reproduce TVC evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750013223','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750013223"><span>San Francisco floating STOLport study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1974-01-01</p> <p>The operational, economic, environmental, social and engineering feasibility of utilizing deactivated maritime vessels as a waterfront quiet short takeoff and landing facility to be located near the central business district of San Francisco was investigated. Criteria were developed to evaluate each site, and minimum standards were established for each criterion. Predicted conditions at the two sites were compared to the requirements for each of the 11 criteria as a means of evaluating site performance. Criteria include land use, community structure, economic impact, access, visual character, noise, air pollution, natural environment, weather, air traffic, and terminal design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750007050','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750007050"><span>An interdisciplinary analysis of multispectral satellite data for selected cover types in the Colorado mountains, using automatic data processing techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoffer, R. M. (Principal Investigator)</p> <p>1974-01-01</p> <p>The author has identified the following significant results. In the San Juan Mountains there exists a group of structural and topographic features which suggest a common origin. The relative positions of the San Juan Depression with the Silverton and Lake City Calderas indicate they are possibly on the edge of a large circular feature. Comparison with the 1:250,000 scale Durango Geologic Map reveals a series of radial and arcuate faults concentric with the major circular feature. Such a fracture pattern implies that the circular feature may represent the extent of a major domal uplift in the area. The uplift was very likely due to the sub-crustal emplacement of the parent magma of the San Juan volcanics and intrusives. The broad doming led to the formation of a zone of tensional ring fractures which acted as conduits of release for the magma and the eventual development of the various calderas. The ring fracturing was probably incomplete with hinging occurring in the southern and southwestern portions of the dome accounting for the lack of development of caldera structures in that portion of the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.746a2065K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.746a2065K"><span>Development of a simultaneous SANS / FTIR measuring system and its application to polymer cocrystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M. M.; Allgaier, J.; Ute, K.</p> <p>2016-09-01</p> <p>In order to provide plenty of structure information which would assist in the analysis and interpretation of small angle neutron scattering (SANS) profile, a novel method for the simultaneous time-resolved measurement of SANS and Fourier transform infrared (FTIR) spectroscopy has been developed. The method was realized by building a device consisting of a portable FTIR spectrometer and an optical system equipped with two aluminum coated quartz plates that are fully transparent to neutron beams but play as mirrors for infrared radiation. The optical system allows both a neutron beam and an infrared beam pass through the same position of a test specimen coaxially. The device was installed on a small angle neutron diffractometer, KWS2 of the Jülich Centre for Neutron Science (JCNS) outstation at Heinz Maier-Leibnitz Center (MLZ) in Garching, Germany. In order to check the performance of this simultaneous measuring system, the structural changes in the cocrystals of syndiotactic polystyrene during the course of heating were followed. It has been confirmed that FTIR spectra measured in parallel are able to provide information about the behavior of each component and also useful to grasp in real time what is actually happening in the sample system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993EOSTr..74..243C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993EOSTr..74..243C"><span>Recording ground motions where people live</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.</p> <p></p> <p>The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031714','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031714"><span>Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parat, F.; Dungan, M.A.; Lipman, P.W.</p> <p>2005-01-01</p> <p>Locally, voluminous andesitic volcanism both preceded and followed large eruptions of silicic ash-flow tuff from many calderas in the San Juan volcanic field. The most voluminous post-collapse lava suite of the central San Juan caldera cluster is the 28 Ma Huerto Andesite, a diverse assemblage erupted from at least 5-6 volcanic centres that were active around the southern margins of the La Garita caldera shortly after eruption of the Fish Canyon Tuff. These andesitic centres are inferred, in part, to represent eruptions of magma that ponded and differentiated within the crust below the La Garita caldera, thereby providing the thermal energy necessary for rejuvenation and remobilization of the Fish Canyon magma body. The multiple Huerto eruptive centres produced two magmatic series that differ in phenocryst mineralogy (hydrous vs anhydrous assemblages), whole-rock major and trace element chemistry and isotopic compositions. Hornblende-bearing lavas from three volcanic centres located close to the southeastern margin of the La Garita caldera (Eagle Mountain - Fourmile Creek, West Fork of the San Juan River, Table Mountain) define a high-K calc-alkaline series (57-65 wt % SiO2) that is oxidized, hydrous and sulphur rich. Trachyandesitic lavas from widely separated centres at Baldy Mountain-Red Lake (western margin), Sugarloaf Mountain (southern margin) and Ribbon Mesa (20 km east of the La Garita caldera) are mutually indistinguishable (55-61 wt % SiO2); they are characterized by higher and more variable concentrations of alkalis and many incompatible trace elements (e.g. Zr, Nb, heavy rare earth elements), and they contain anhydrous phenocryst assemblages (including olivine). These mildly alkaline magmas were less water rich and oxidized than the hornblende-bearing calc-alkaline suite. The same distinctions characterize the voluminous precaldera andesitic lavas of the Conejos Formation, indicating that these contrasting suites are long-term manifestations of San Juan volcanism. The favoured model for their origin involves contrasting ascent paths and differentiation histories through crustal columns with different thermal and density gradients. Magmas ascending into the main focus of the La Garita caldera were impeded, and they evolved at greater depths, retaining more of their primary volatile load. This model is supported by systematic differences in isotopic compositions suggestive of crust-magma interactions with contrasting lithologies. ?? The Author 2005. Published by Oxford University Press. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.2494P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.2494P"><span>Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierdominici, S.; Montone, P.; Mariucci, M. T.</p> <p>2009-04-01</p> <p>The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated the scattering intervals of breakout orientations to fracture and/or active fault zones, to the presence of fluids and to the lithology to identify possible local source of stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17592868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17592868"><span>Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J</p> <p>2007-07-19</p> <p>The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29524733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29524733"><span>A fragmented code: The moral and structural context for providing assistance with injection drug use initiation in San Diego, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guise, Andy; Melo, Jason; Mittal, Maria Luisa; Rafful, Claudia; Cuevas-Mota, Jazmine; Davidson, Peter; Garfein, Richard S; Werb, Dan</p> <p>2018-05-01</p> <p>Injection drug use initiation is shaped by social networks and structural contexts, with people who inject drugs often assisting in this process. We sought to explore the norms and contexts linked to assisting others to initiate injection drug use in San Diego, USA, to inform the development of structural interventions to prevent this phenomenon. We undertook qualitative interviews with a purposive sample of people who inject drugs and had reported assisting others to initiate injection (n = 17) and a sub-sample of people who inject drugs (n = 4) who had not reported initiating others to triangulate accounts. We analyzed data thematically and abductively. Respondents' accounts of providing initiation assistance were consistent with themes and motives reported in other contexts: of seeking to reduce harm to the 'initiate', responding to requests for help, fostering pleasure, accessing resources, and claims that initiation assistance was unintentional. We developed analysis of these themes to explore initiation assistance as governed by a 'moral code'. We delineate a fragmented moral code which includes a range of meanings and social contexts that shape initiation assistance. We also show how assistance is happening within a structural context that limits discussion of injection drug use, reflecting a prevailing silence on drug use linked to stigma and criminalization. In San Diego, the assistance of others to initiate injection drug use is governed by a fragmented moral code situated within particular social norms and contexts. Interventions that address the social and structural conditions shaped by and shaping this code may be beneficial, in tandem with efforts to support safe injection and the reduction of injection-related harms. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=koda&pg=4&id=EJ399327','ERIC'); return false;" href="https://eric.ed.gov/?q=koda&pg=4&id=EJ399327"><span>Preparing Women for the Profession: A Course Using Structured Role-Model Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sauer, Barbara L.; Koda-Kimble, Mary Anne</p> <p>1989-01-01</p> <p>A course was developed at the University of California, San Francisco, School of Pharmacy, addressing issues facing women. Female students discussed career planning and management, the complexities of balancing career and family life, and career commitment. The technique of structured role-model analysis was used. (Author/MLW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-02-13/pdf/2012-1656.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-02-13/pdf/2012-1656.pdf"><span>77 FR 8004 - Fall 2011 Regulatory Agenda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-02-13</p> <p>.... Title Identifier No. 438 SAN No. 5367 NESHAP: Brick 2060-AP69 and Structural Clay Products and Clay...-Term Actions 438. NESHAP: Brick and Structural Clay Products and Clay Products Legal Authority: Not Yet... metals) emitted from brick and clay ceramics kilns and glazing operations at clay ceramics production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1426244-nanospheres-smectic-hydrophobic-core-amorphous-peg-hydrophilic-shell-structural-changes-implications-drug-delivery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1426244-nanospheres-smectic-hydrophobic-core-amorphous-peg-hydrophilic-shell-structural-changes-implications-drug-delivery"><span>Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth</p> <p></p> <p>The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-20/pdf/2012-9579.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-20/pdf/2012-9579.pdf"><span>77 FR 23670 - Intent To Prepare an Environmental Impact Statement/Environmental Impact Report for the Encinitas...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-20</p> <p>... Protection Project, San Diego County, CA AGENCY: Department of the Army, U.S. Army Corps of Engineers, DOD... shoreline protection. Alternatives will include both structural and non-structural measures. ADDRESSES: You... information contact Mr. Larry Smith, Project Environmental [[Page 23671</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1964/0103/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1964/0103/report.pdf"><span>The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lewis, Richard Wheatley</p> <p>1964-01-01</p> <p>The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CryRp..61...94E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CryRp..61...94E"><span>Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.</p> <p>2016-01-01</p> <p>Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5615590','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5615590"><span>Trauma Affecting Asian-Pacific Islanders in the San Francisco Bay Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bith-Melander, Pollie; Jindal, Charulata; Efird, Jimmy T.</p> <p>2017-01-01</p> <p>Trauma is a transgenerational process that overwhelms the community and the ability of family members to cope with life stressors. An anthropologist trained in ethnographic methods observed three focus groups from a non-profit agency providing trauma and mental health services to Asian Americans living in the San Francisco Bay Area of United States. Supplemental information also was collected from staff interviews and notes. Many of the clients were immigrants, refugees, or adult children of these groups. This report consisted of authentic observations and rich qualitative information to characterize the impact of trauma on refugees and immigrants. Observations suggest that collective trauma, direct or indirect, can impede the success and survivability of a population, even after many generations. PMID:28895918</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357131-versatile-strain-tuning-modulated-long-period-magnetic-structures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357131-versatile-strain-tuning-modulated-long-period-magnetic-structures"><span>Versatile strain-tuning of modulated long-period magnetic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...</p> <p>2017-05-10</p> <p>In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhyB..350E.643H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhyB..350E.643H"><span>In vivo deuteration of a native bacterial biopolymer for structural elucidation using SANS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holden, P. J.; Russell, R. A.; Stone, D. J. M.; Garvey, C. J.; Foster, L. J. R.</p> <p>2004-07-01</p> <p>In order to facilitate future structural studies, biodeuteration of bacterial polyhydroxyalkanoates (PHAs) was investigated. We report here the in vivo deuteration of poly 3-hydroxyoctanoate (PHO) produced by its native host, the bacterium Pseudomonas oleovorans. Bacterial biomass was produced in bioreactor studies by growth on hydrogenated substrates and PHO was subsequently produced intracellularly (10-20% w/w) during batch fed growth on deuterated octanoic acid under oxygen limitation. GC-MS analyses of the PHO demonstrated that 13 of the 15 hydrogen atoms had been replaced with deuterium (except in position 3), the remaining two hydrogen presumably being derived from water. A SANS contrast variation study was conducted on whole cells and the results indicate the potential to discriminate inclusion bodies formed from deuterated precursor from an otherwise hydrogenated background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5548074','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5548074"><span>Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schraga, Tara S.; Cloern, James E.</p> <p>2017-01-01</p> <p>The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate. We describe the sampling program, analytical methods, structure of the data record, and how to access all measurements made from 1969 through 2015. We provide a summary of how these data have been used by USGS and other researchers to deepen understanding of how estuaries are structured and function differently from the river and ocean ecosystems they bridge. PMID:28786972</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A53A0241Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A53A0241Y"><span>Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin Valley Air Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, M. M.; Meinardi, S.; Krauter, C.; Blake, D.</p> <p>2008-12-01</p> <p>The San Joaquin Valley Air Basin in Central California is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). In August 2005, the San Joaquin Valley Air Pollution Control District issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs) and fine particulate matter in the valley (2). Among these compounds, we have found that ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates. An assessment of the emissions of these oxygenates in the valley was achieved using data obtained on low altitude flights through the valley and from ground level samples collected thoughout the valley. The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, as much as 20% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that improvement to the valley air quality may be obtained by focusing on instituting new silage containment practices and regulations. 1. Lindberg, J. "Analysis of the San Joaquin Valley 2007 Ozone Plan." State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. Crow, D., executive director/APCO. "Air Pollution Control Officer's Determination of VOC Emisison Factors for Dairies." San Joaquin Valley Air Pollution Control District. Aug. 1st 2005.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188368','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188368"><span>Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huang, Mong-Han; Burgmann, Roland; Pollitz, Fred</p> <p>2016-01-01</p> <p>The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1–4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989–1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼6 × 1018 Pas, underlain by a viscous upper mantle with viscosity between 3 × 1018 and 2 × 1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1656b0001P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1656b0001P"><span>Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putra, Edy Giri Rachman; Patriati, Arum</p> <p>2015-04-01</p> <p>Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27983','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27983"><span>Description of Nesting Habitat for Least Bell's Vireo in San Diego County</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Bonnie J. Hendricks; John P. Rieger</p> <p>1989-01-01</p> <p>Least Bell's Vireo (Vireo bellii pusillus) nesting sites on three rivers in coastal southern California were characterized to provide data for a habitat restoration plan for this endangered species. In addition, riparian areas outside vireo territories were sampled to compare with nesting habitat. The parameters measured were percent cover,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=313470&Lab=NERL&keyword=NASA&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=313470&Lab=NERL&keyword=NASA&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Fine-scale application of the WRF-CMAQ modeling system to the 2013 DISCOVER-AQ San Joaquin Valley study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23255090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23255090"><span>American Association of Pharmaceutical Scientists National Biotechnology Conference Short Course: Translational Challenges in Developing Antibody-Drug Conjugates: May 24, 2012, San Diego, CA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thudium, Karen; Bilic, Sanela; Leipold, Douglas; Mallet, William; Kaur, Surinder; Meibohm, Bernd; Erickson, Hans; Tibbitts, Jay; Zhao, Hong; Gupta, Manish</p> <p>2013-01-01</p> <p>The American Association of Pharmaceutical Scientists (AAPS) National Biotechnology Conference Short Course "Translational Challenges in Developing Antibody-Drug Conjugates (ADCs)," held May 24, 2012 in San Diego, CA, was organized by members of the Pharmacokinetics, Pharmacodynamics and Drug Metabolism section of AAPS. Representatives from the pharmaceutical industry, regulatory authorities, and academia in the US and Europe attended this short course to discuss the translational challenges in ADC development and the importance of characterizing these molecules early in development to achieve therapeutic utility in patients. Other areas of discussion included selection of target antigens; characterization of absorption, distribution, metabolism, and excretion; assay development and hot topics like regulatory perspectives and the role of pharmacometrics in ADC development. MUC16-targeted ADCs were discussed to illustrate challenges in preclinical development; experiences with trastuzumab emtansine (T-DM1; Genentech) and the recently approved brentuximab vedotin (Adcetris; Seattle Genetics) were presented in depth to demonstrate considerations in clinical development. The views expressed in this report are those of the participants and do not necessarily represent those of their affiliations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5..837D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5..837D"><span>Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.</p> <p>2014-08-01</p> <p>The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolED...6..339D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolED...6..339D"><span>Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.</p> <p>2014-01-01</p> <p>The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and fault segment transfer zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.671..264P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.671..264P"><span>Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre-Andean structures in southern Peru</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, Nicholas D.; Horton, Brian K.; Carlotto, Victor</p> <p>2016-03-01</p> <p>Structural, stratigraphic, and geochronologic constraints from the Eastern Cordillera in the central Andean plateau of southern Peru (14-15°S) demonstrate the existence and position of major pre-Andean structures that controlled the accumulation of Triassic synrift fill and guided subsequent Cenozoic deformation. The timing of initial clastic deposition of the Triassic Mitu Group is here constrained to ~ 242-233 Ma on the basis of detrital and volcanic zircon U-Pb geochronology. Regionally distinct provenance variations, as provided by U-Pb age populations from localized synrift accumulations, demonstrate Triassic erosion of multiple diagnostic sources from diverse rift-flank uplifts. Stratigraphic correlations suggest synchronous initiation of extensional basins containing the Mitu Group, in contrast with previous interpretations of southward rift propagation. Triassic motion along the NE-dipping San Anton normal fault accommodated up to 7 km of throw and hanging-wall deposition of a synrift Mitu succession > 2.5 km thick. The contrasting orientation of a non-reactivated Triassic normal fault suggests selective inversion of individual structures in the Eastern Cordillera was dependent on fault dip and strike. Selective preservation of a ~ 4 km thick succession of Carboniferous-Permian strata in the down-dropped San Anton hanging wall, beneath the synrift Mitu Group, suggests large-scale erosional removal in the uplifted footwall. Field and map observations identify additional pre-Andean thrust faults and folds attributed to poorly understood Paleozoic orogenic events preserved in the San Anton hanging wall. Selective thrust reactivation of normal and reverse faults during later compression largely guided Cenozoic deformation in the Eastern Cordillera. The resulting structural compartmentalization and across-strike variations in kinematics and deformation style highlight the influence of inherited Paleozoic structures and Triassic normal faults on the long-term history of convergent margin deformation in the Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017733','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017733"><span>Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.</p> <p>1996-01-01</p> <p>Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4913355','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4913355"><span>Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan</p> <p>2016-01-01</p> <p>In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26791979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26791979"><span>Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan</p> <p>2016-01-01</p> <p>In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling. © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2257846C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2257846C"><span>Ecological Impact of LAN: San Pedro Riparian National Conservation Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craine, Eric Richard; Craine, Brian L.</p> <p>2015-08-01</p> <p>The San Pedro River in Southeastern Arizona is home to nearly 45% of the 900 total species of birds in the United States; millions of songbirds migrate though this unique flyway every year. As the last undammed river in the Southwest, it has been called one of the “last great places” in the US. Human activity has had striking and highly visible impacts on the San Pedro River. As a result, and to help preserve and conserve the area, much of the region has been designated the San Pedro Riparian National Conservation Area (SPRNCA). Attention has been directed to impacts of population, water depletion, and border fence barriers on the riparian environment. To date, there has been little recognition that light at night (LAN), evolving with the increased local population, could have moderating influences on the area. STEM Laboratory has pioneered techniques of coordinated airborne and ground based measurements of light at night, and has undertaken a program of characterizing LAN in this region. We conducted the first aerial baseline surveys of sky brightness in 2012. Geographic Information Systems (GIS) shapefiles allow comparison and correlation of various biological databases with the LAN data. The goal is to better understand how increased dissemination of night time lighting impacts the distributions, behavior, and life cycles of biota on this ecosystem. We discuss the baseline measurements, current data collection programs, and some of the implications for specific biological systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191937','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191937"><span>Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.</p> <p>2014-01-01</p> <p>The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.8809L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.8809L"><span>Full-wave multiscale anisotropy tomography in Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei</p> <p>2014-12-01</p> <p>Understanding the spatial variation of anisotropy in the upper mantle is important for characterizing the lithospheric deformation and mantle flow dynamics. In this study, we apply a full-wave approach to image the upper-mantle anisotropy in Southern California using 5954 SKS splitting data. Three-dimensional sensitivity kernels combined with a wavelet-based model parameterization are adopted in a multiscale inversion. Spatial resolution lengths are estimated based on a statistical resolution matrix approach, showing a finest resolution length of ~25 km in regions with densely distributed stations. The anisotropic model displays structural fabric in relation to surface geologic features such as the Salton Trough, the Transverse Ranges, and the San Andreas Fault. The depth variation of anisotropy does not suggest a lithosphere-asthenosphere decoupling. At long wavelengths, the fast directions of anisotropy are aligned with the absolute plate motion inside the Pacific and North American plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26527579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26527579"><span>A normalization method for combination of laboratory test results from different electronic healthcare databases in a distributed research network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Dukyong; Schuemie, Martijn J; Kim, Ju Han; Kim, Dong Ki; Park, Man Young; Ahn, Eun Kyoung; Jung, Eun-Young; Park, Dong Kyun; Cho, Soo Yeon; Shin, Dahye; Hwang, Yeonsoo; Park, Rae Woong</p> <p>2016-03-01</p> <p>Distributed research networks (DRNs) afford statistical power by integrating observational data from multiple partners for retrospective studies. However, laboratory test results across care sites are derived using different assays from varying patient populations, making it difficult to simply combine data for analysis. Additionally, existing normalization methods are not suitable for retrospective studies. We normalized laboratory results from different data sources by adjusting for heterogeneous clinico-epidemiologic characteristics of the data and called this the subgroup-adjusted normalization (SAN) method. Subgroup-adjusted normalization renders the means and standard deviations of distributions identical under population structure-adjusted conditions. To evaluate its performance, we compared SAN with existing methods for simulated and real datasets consisting of blood urea nitrogen, serum creatinine, hematocrit, hemoglobin, serum potassium, and total bilirubin. Various clinico-epidemiologic characteristics can be applied together in SAN. For simplicity of comparison, age and gender were used to adjust population heterogeneity in this study. In simulations, SAN had the lowest standardized difference in means (SDM) and Kolmogorov-Smirnov values for all tests (p < 0.05). In a real dataset, SAN had the lowest SDM and Kolmogorov-Smirnov values for blood urea nitrogen, hematocrit, hemoglobin, and serum potassium, and the lowest SDM for serum creatinine (p < 0.05). Subgroup-adjusted normalization performed better than normalization using other methods. The SAN method is applicable in a DRN environment and should facilitate analysis of data integrated across DRN partners for retrospective observational studies. Copyright © 2015 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Tectp.637..289A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Tectp.637..289A"><span>Counterclockwise rotations in the Late Eocene-Oligocene volcanic fields of San Luis Potosí and Sierra de Guanajuato (eastern Mesa Central, Mexico)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François</p> <p>2014-12-01</p> <p>We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24104607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24104607"><span>Issues of affinity: exploring population structure in the Middle and Regional Developments Periods of San Pedro de Atacama, Chile.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Torres-Rouff, Christina; Knudson, Kelly J; Hubbe, Mark</p> <p>2013-11-01</p> <p>The Middle Period (AD 400-1000) in northern Chile's Atacama oases is characterized by an increase in social complexity and regional interaction, much of which was organized around the power and impact of the Tiwanaku polity. Despite the strong cultural influence of Tiwanaku and numerous other groups evident in interactions with Atacameños, the role of immigration into the oases during this period is unclear. While archaeological and bioarchaeological research in the region has shown no evidence that clearly indicates large groups of foreign immigrants, the contemporary increase in interregional exchange networks connecting the oases to other parts of the Andes suggests residential mobility and the possibility that movement of people both into and out of the oases accompanied these foreign influences. Here, we analyze biodistance through cranial non-metric traits in a skeletal sample from prehistoric San Pedro de Atacama to elucidate the extent of foreign influence in the oases and discuss its implications. We analyzed 715 individuals from the Middle Period (AD 400-1000) and later Regional Developments Period (AD 1000-1450), and found greater phenotypic differences between Middle Period cemeteries than among cemeteries in the subsequent period. We argue that this greater diversity extends beyond the relationship between the oases and the renowned Tiwanaku polity and reflects the role of the oases and its different ayllus as a node and way station for the Middle Period's myriad interregional networks. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1022/ofr20171022.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1022/ofr20171022.pdf"><span>Record-high specific conductance and water temperature in San Francisco Bay during water year 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Work, Paul A.; Downing-Kunz, Maureen; Livsey, Daniel N.</p> <p>2017-02-22</p> <p>The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP21C0929A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP21C0929A"><span>Aggregate Settling Velocities in San Francisco Estuary Margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, R. M.; Stacey, M. T.; Variano, E. A.</p> <p>2015-12-01</p> <p>One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of < 1*10-7 to 1.4*10-5 m/s) (Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005RPPh...68.1761W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005RPPh...68.1761W"><span>Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wignall, G. D.; Melnichenko, Y. B.</p> <p>2005-08-01</p> <p>Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23885591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23885591"><span>Comparative age and growth of common snook Centropomus undecimalis (Pisces: Centropomidae) from coastal and riverine areas in Southern Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perera-Garcia, Martha A; Mendoza-Carranza, Manuel; Contreras-Sánchez, Wilfrido; Ferrara, Allyse; Huerta-Ortiz, Maricela; Hernández-Gómez, Raúl E</p> <p>2013-06-01</p> <p>Common snook Centropomus unidecimalis is an important commercial and fishery species in Southern Mexico, however the high exploitation rates have resulted in a strong reduction of its abundances. Since, the information about its population structure is scarce, the objective of the present research was to determine and compare the age structure in four important fishery sites. For this, age and growth of common snook were determined from specimens collected monthly, from July 2006 to March 2008, from two coastal (Barra Bosque and Barra San Pedro) and two riverine (San Pedro and Tres Brazos) commercial fishery sites in Tabasco, Mexico. Age was determined using sectioned saggitae otoliths and data analyzed by von Bertalanffy and Levenberg-Marquardt among others. Estimated ages ranged from 2 to 17 years. Monthly patterns of marginal increment formation and the percentage of otoliths with opaque rings on the outer edge demonstrated that a single annulus was formed each year. The von Bertalanffy parameters were calculated for males and females using linear adjustment and the non-linear method of Levenberg-Marquardt. The von Bertalanffy growth equations were FLt = 109.21(1-e-0.2(t+0.57)) for Barra Bosque, FLt = 94.56(1-e-027(t+0.485)) for Barra San Pedro, FLt = 97.15(1-e 0.17(t + 1.32)) for San Pedro and FLt = 83.77(1-e-026(t + 0.49)) for Tres Brazos. According to (Hotelling's T2, p < 0.05) test growth was significantly greater for females than for males. Based on the Chen test, von Bertalanffy growth curves were different among the study sites (RSS, p < 0.05). Based on the observed differences in growth parameters among sampling sites (coastal and riverine environments) future research need to be conducted on migration and population genetics, in order to delineate the stock structure of this population and support management programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027480','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027480"><span>Biochemical characterization of the eelgrass Zostera marina at its southern distribution limit in the North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cabello-Pasini, Alejandro; Munoz-Salazar, R.; Ward, D.H.</p> <p>2004-01-01</p> <p>The eelgrass Zostera marina L. is distributed along the Baja California Peninsula (Mexico) where it is exposed to a wide range of irradiances and temperatures that could promote changes in its biochemical composition. Consequently, the objective of this study was to characterize the variations in the levels of chlorophyll, carbohydrates, proteins, fiber, ash and calories in the shoots of Z. marina from the north (San Quintin) and south (Ojo de Liebre and San Ignacio lagoons) of the peninsula. Temperature in the southern lagoons was 5-6??C higher than in the northern lagoon; likewise, in situ irradiance was two-fold greater in the south than in the north. As a result of the lower irradiance levels, the concentration of chlorophyll in the shoots of Z. marina was twice as high (1.7 mg gWW-1) in the northern lagoon than in the southern ones (0.8 mg gWW-1). Similar to chlorophyll levels, the concentration of soluble carbohydrates in the shoots was greater in the northern lagoon than in the southern ones, suggesting that the high levels of chlorophyll are enough to compensate for the low irradiance levels and to maintain a positive carbon balance at San Quintin. On the other hand, the levels of proteins in the shoots from the north of the peninsula were slightly lower than those from the southern populations. In general, these results suggest that the different environmental conditions to which Z. marina is exposed along the peninsula impact its biochemical composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15003260','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15003260"><span>Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wirth, B D; Asoka-Kumar, P; Howell, R H</p> <p>2001-01-01</p> <p>Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000936"><span>Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenger, Michael B.; Tarver, William J.; Brunstetter, Tyson; Gibson, Charles Robert; Laurie, Steven S.; Lee, Stuart M. C.; Macias, Brandon R.; Mader, Thomas H.; Otto, Christian; Smith, Scott M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180000936'); toggleEditAbsImage('author_20180000936_show'); toggleEditAbsImage('author_20180000936_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180000936_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180000936_hide"></p> <p>2017-01-01</p> <p>A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sfei.org/sites/default/files/biblio_files/1994_RMP_Annual_Report.pdf','USGSPUBS'); return false;" href="http://www.sfei.org/sites/default/files/biblio_files/1994_RMP_Annual_Report.pdf"><span>Choosing optimum station configurations for summarizing water quality characteristics, in 1994 Annual Report, San Francisco Estuary Regional Monitoring Program for Trace Substances: San Francisco Estuary Institute</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, James E.; Cole, Brian E.; Caffrey, J.M.</p> <p>1996-01-01</p> <p>In this report, we focus on selection of an “optimum” station configuration for the channel of San Francisco Bay for vertical profiling of water quality. Our analysis is based on the monthly cruises conducted by the USGS under the auspices of the Regional Monitoring Program for Trace Substances (Caffrey et al. 1994; SFEI 1994). The underlying rationale for undertaking the analysis is that the distribution of trace substances is structured, at least in part, by the same forces acting on water quality parameters. This must be true to some extent, as trace substance concentrations are partially dependent on water quality characteristics such as salinity. On the other hand, the quantitative importance of these parameters in accounting for overall variability in individual trace substances is unknown. Furthermore, trace substances have their own unique sources, and these sources may dominate their distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/962496','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/962496"><span>Rate Analysis of Two Photovoltaic Systems in San Diego</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Doris, E.; Ong, S.; Van Geet, O.</p> <p>2009-07-01</p> <p>Analysts have found increasing evidence that rate structure has impacts on the economics of solar systems. This paper uses 2007 15-minute interval photovoltaic (PV) system and load data from two San Diego City water treatment facilities to illustrate impacts of different rate designs. The comparison is based on rates available in San Diego at the time of data collection and include proportionately small to large demand charges (relative to volumetric consumption), and varying on- and off- peak times. Findings are twofold for these large commercial systems: 1) transferring costs into demand charges does not result in savings and 2) changesmore » in peak times do not result in a major cost difference during the course of a year. While lessons learned and discussion on rate components are based on the findings, the applicability is limited to buildings with similar systems, environments, rate options, and loads.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009cip..book...41R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009cip..book...41R"><span>Detecting Cyber Attacks On Nuclear Power Plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rrushi, Julian; Campbell, Roy</p> <p></p> <p>This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-17/pdf/2012-20243.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-17/pdf/2012-20243.pdf"><span>77 FR 49865 - Notice of Availability of an Environmental Impact Statement (EIS) for the San Francisco Veterans...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-17</p> <p>... parking structure space) of new ambulatory care and research space at a new alternate site in the Mission... Francisco, California. The SFVAMC LRDP involves development and construction of patient care buildings, research buildings, business occupancy buildings, and parking structures, as well as retrofitting...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-05-08/pdf/2013-10914.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-05-08/pdf/2013-10914.pdf"><span>78 FR 26807 - Vista Grande Drainage Basin Improvement Project, Fort Funston, Golden Gate National Recreation...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-05-08</p> <p>... Village, in northwestern San Mateo County. This watershed is approximately 2.5 square miles in area and is... diversion and discharge structures to route some stormwater (and authorized non-storm water) flows from the... water detention structures, lake level scenarios, and groundwater recharge facilities. The Project would...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED020817.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED020817.pdf"><span>A STRUCTURAL COURSE FOR VOCATIONAL ENGLISH.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>ERICKSON, JOHN</p> <p></p> <p>A COURSE, COMPLETE WITH DETAILED LESSON PLANS AND PRACTICE DRILLS, HAS BEEN DEVELOPED AT SAN DIEGO STATE COLLEGE, TO PROVIDE THE ADULT SPANISH-SPEAKING STUDENT WITH A BASIC FOUNDATION IN AMERICAN-ENGLISH GRAMMATICAL STRUCTURE, AS WELL AS AN AMPLE DAILY AND PROFESSIONAL VOCABULARY. THE IDEA OF TRANSLATING CONCEPTS AND VOCABULARY IS USED TO TEACH…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARL18001N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARL18001N"><span>Structure-Property Relationships of Architectural Coatings by Neutron Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakatani, Alan</p> <p>2015-03-01</p> <p>Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bioone.org/doi/abs/10.1675/063.033.0101','USGSPUBS'); return false;" href="http://www.bioone.org/doi/abs/10.1675/063.033.0101"><span>Population structure and relatedness among female Northern Pintails in three California wintering regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fleskes, Joseph P.; Fowler, Ada C.; Casazza, Michael L.; Eadie, John M.</p> <p>2010-01-01</p> <p>Female Northern Pintails (Anas acuta) were sampled in California's three main Central Valley wintering regions (Sacramento Valley, Suisun Marsh, San Joaquin Valley) during September–October before most regional movements occur and microsatellite and mitochondrial DNA were analyzed to examine population structure and relatedness. Despite reportedly high rates of early-fall pairing and regional fidelity, both sets of markers indicated that there was little overall genetic structuring by region. Pintails from Suisun Marsh did exhibit higher relatedness among individuals and capture groups than in the Sacramento or San Joaquin Valleys, likely reflecting a sample comprised of a greater proportion of local breeders. The lack of genetic structuring among regions indicates that a high degree of movement and interchange occurs among pintails wintering in the Central Valley. Thus, although maintaining the existing distribution of pintails among Central Valley regions is important for other reasons, it does not appear to be critical to retain current patterns of population genetic variation. Because of potential lack of independence among highly related study individuals, researchers should consider regional differences in relatedness when designing sampling schemes and interpreting research findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT.......201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT.......201C"><span>Phase behavior of confined polymer blends and nanoparticle composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chung, Hyun-Joong</p> <p></p> <p>We have investigated phase behavior in polymer blend films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) with 33wt% AN content and their nanoparticle (NP) composites by using the combination of imaging techniques, including atomic force microscopy (AFM), focused-ion beam (FIB), transmission and scanning electron microscopy (TEM and SEM), as well as depth profiling techniques of Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). For neat PMMA:SAN films, we present a novel morphology map based on pattern development mechanisms. Six distinct mechanisms are found for thickness values (d) and bulk compositions between 50-1000 nm and φPMMA = 0.3 to 0.8, respectively. When PMMA is depleted from the mid-layer by preferential wetting at φ PMMA = 0.3 (A), stable PMMA/SAN/PMMA trilayer structure is obtained. With increasing φPMMA (0.4 to 0.7), pattern development is driven by phase separation in the mid-layer, which produces circular domains (B), irregular domains (C), and bicontinuous patterns (D). Here, the growth of circular domains can be explained by the coalescence mechanism, which predicts ξ˜(sigma/eta) 1/3d2/3t1/3 , where ξ, sigma, and eta are correlation length between domains, interfacial tension between phases, and viscosity, respectively. In bicontinuous patterns, hydrodynamic pumping mechanism is suppressed with thickness confinement. When SAN composition is lean, φPMMA = 0.8 (E), the SAN phase is minority component in the mid-layer and breaks up into droplets in smooth PMMA film. When film thickness is less than 80 nm at φPMMA = 0.4 or 0.5 (F), films initially display trilayer structure, which then ruptures upon dewetting of the SAN mid-layer. Building upon the understanding of the neat PMMA:SAN blend films, we have performed the first systematic on the effect of NPs in morphology evolution and stability of polymer blend films. Whereas the location of NP impacts morphology evolution, silica NPs with mixed surface of methyl and hydroxyl groups (HM-NP) partition into dPMMA phase upon phase separation. Chlorine terminated PMMA-grafted silica NPs either partition into dPMMA phase or weakly and strongly segregate at the interface between the phases when grafting molecular weight is high (MMA(160K)-NP), intermediate (MMA(21K)-NP), and low (MMA(1.8K)-NP), respectively. Hydrogen terminated low molecular weight NPs (MMA:H(1.8K)-NP) weakly segregate to the interface. When the blend films contain the HM-NP, pattern growth and film roughening slows down with NP loading (2 to 10wt%) due to the increased viscosity of dPMMA phase. In contrast to the HM-NPs, the MMA(1.8K)-NPs pin pattern development and film roughening when they assemble and jam at the interface, resulting in a stable discrete or bicontinuous structure at low (5wt%) and high (10wt%) loading, respectively. A geometric model predicts the shape and size of the stabilized morphology using experimental parameters, including NP loading, NP radius, and film thickness. Film roughening is completely prevented even at very low loading (2wt%). The weakly segregating MMA(21K)-NPs have an intermediate effect on morphology evolution of dPMMA:SAN films compared to HM-NPs and MMA(1.8K)-NPs, which partition into dPMMA and strongly segregating to the interface, respectively. Finally, the mechanism of surface roughening is clearly observed and explained. The internal phase-separated structure of the blends exerts Laplace pressure, resulting in the surface roughening. In summary, we have extensively studied phase behavior in polymer blends and their NP composites and provided various models to explain the mechanisms underlying the morphology evolution and film roughening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021155','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021155"><span>West margin of North America - A synthesis of recent seismic transects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fuis, G.S.</p> <p>1998-01-01</p> <p>A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472488-investigation-structure-unilamellar-dimyristoylphosphatidylcholine-vesicles-aqueous-sucrose-solutions-small-angle-neutron-ray-scattering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472488-investigation-structure-unilamellar-dimyristoylphosphatidylcholine-vesicles-aqueous-sucrose-solutions-small-angle-neutron-ray-scattering"><span>Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.</p> <p>2015-01-15</p> <p>The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721422','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721422"><span>Structural Factors Influencing Patterns of Drug Selling and Use and HIV Risk in the San Salvador Metropolitan Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dickson-Gomez, Julia</p> <p>2013-01-01</p> <p>This article explores differences in the social context in which crack sales and use and HIV risk take place in seven low-income communities in San Salvador, and structural factors that may influence these differences. The organization of drug selling varied among the communities on a number of dimensions including: whether drug sales were open or closed systems; the type of drug-selling site; and the participation of drug users in drug-distribution roles. Drug-use sites also varied according to whether crack was used in private, semiprivate, or public spaces, and whether individuals used drugs alone or with other drug users. Three patterns of drug use and selling were identified based on the dimensions outlined above. Structural factors that influenced these patterns included the geographic location of the communities, their physical layout, gang involvement in drug sales, and police surveillance. Implications for HIV risk and prevention are explored for each pattern. PMID:20550091</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1430967-small-angle-ray-neutron-scattering-demonstrates-cell-free-expression-produces-properly-formed-disc-shaped-nanolipoprotein-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1430967-small-angle-ray-neutron-scattering-demonstrates-cell-free-expression-produces-properly-formed-disc-shaped-nanolipoprotein-particles"><span>Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cleveland, Thomas E.; He, Wei; Evans, Angela C.</p> <p></p> <p>Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1407776-designing-mixed-detergent-micelles-uniform-neutron-contrast','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1407776-designing-mixed-detergent-micelles-uniform-neutron-contrast"><span>Designing Mixed Detergent Micelles for Uniform Neutron Contrast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.</p> <p>2017-09-29</p> <p>Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1407776-designing-mixed-detergent-micelles-uniform-neutron-contrast','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1407776-designing-mixed-detergent-micelles-uniform-neutron-contrast"><span>Designing Mixed Detergent Micelles for Uniform Neutron Contrast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.</p> <p></p> <p>Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMMM..427...67K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMMM..427...67K"><span>On the adsorption properties of magnetic fluids: Impact of bulk structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubovcikova, Martina; Gapon, Igor V.; Zavisova, Vlasta; Koneracka, Martina; Petrenko, Viktor I.; Soltwedel, Olaf; Almasy, László; Avdeev, Mikhail V.; Kopcansky, Peter</p> <p>2017-04-01</p> <p>Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size 30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430967-small-angle-ray-neutron-scattering-demonstrates-cell-free-expression-produces-properly-formed-disc-shaped-nanolipoprotein-particles','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430967-small-angle-ray-neutron-scattering-demonstrates-cell-free-expression-produces-properly-formed-disc-shaped-nanolipoprotein-particles"><span>Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cleveland, Thomas E.; He, Wei; Evans, Angela C.; ...</p> <p>2018-02-13</p> <p>Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53C1753L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53C1753L"><span>Analyzing post-wildfire erosional processes and topographic change using hydrologic monitoring and Structure-from-Motion photogrammetry at the storm event scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leeper, R. J.; Barth, N. C.; Gray, A. B.</p> <p>2017-12-01</p> <p>Hydro-geomorphic response in recently burned watersheds is highly dependent on the timing and magnitude of subsequent rainstorms. Recent advancements in surveying and monitoring techniques using Unmanned Aerial Vehicles (UAV) and Structure-from-Motion (SfM) photogrammetry can support the rapid estimation of near cm-scale topographic response of headwater catchments (ha to km2). However, surface change due to shallow erosional processes such as sheetwash and rilling remain challenging to measure at this spatial extent and the storm event scale. To address this issue, we combined repeat UAV-SfM surveys with hydrologic monitoring techniques and field investigations to characterize post-wildfire erosional processes and topographic change on a storm-by-storm basis. The Las Lomas watershed ( 15 ha) burned in the 2016 San Gabriel Complex Fire along the front range of the San Gabriel Mountains, southern California. Surveys were conducted with a consumer grade UAV; twenty-six SfM control markers; two rain gages, and two pressure transducers were installed in the watershed. The initial SfM-derived point cloud generated from 422 photos contains 258 million points; the DEM has a resolution of 2.42 cm/pixel and a point density of 17.1 pts/cm2. Rills began forming on hillslopes and minor erosion occurred within the channel network during the first low intensity storms of the rainy season. Later more intense storms resulted in substantial geomorphic change. Hydrologic data indicate that during one of the intense storms total cumulative rainfall was 58.20 mm and peak 5-min intensity was 38.4 mm/hr. Poststorm field surveys revealed evidence of debris flows, flash flooding, erosion, and fluvial aggradation in the channel network, and rill growth and gully formation on hillslopes. Analyses of the SfM models indicate erosion dominated topographic change in steep channels and on hillslopes; aggradation dominated change in low gradient channels. A contrast of 5 cm exists between field measurements and change detected by differencing the SfM models. The quantitative and qualitative data sets obtained indicate that low-cost hydrologic monitoring techniques can be combined with SfM-derived high-resolution models to rapidly characterize post-wildfire hydrologic response and erosional processes on a storm event basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1023a2017Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1023a2017Z"><span>The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.</p> <p>2018-05-01</p> <p>The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T53D1612F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T53D1612F"><span>Peripheral structures of the Rio Grande Rift in the Sangre de Cristo Mountains, around the Colorado-New Mexico border</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fridrich, C. J.; Workman, J. B.</p> <p>2009-12-01</p> <p>Recently active faults of the Rio Grande rift near the Colorado-New Mexico border are almost entirely limited to the San Luis basin. In contrast, the early (≈26 to ≈10 Ma) structure of the rift in this area is significantly broader. A wide zone of abandoned, peripheral extensional structures is exposed on the eastern flank of the San Luis basin—in the west half of the Sangre de Cristo Mountains, known in this area as the southern Culebra and northern Taos Ranges. New detailed mapping shows that the eastern limit of the zone of early peripheral extension is marked by an aligned series of north-trending grabens, including the Devil’s Park, Valle Vidal, and Moreno Valley basins. Master faults of these intermontaine basins are partly localized along, and evidently reactivated moderate- to high-angle Laramide (≈70 to ≈40 Ma) reverse faults of the Sangre de Cristo Mountains. Between these grabens and the San Luis basin lies a structural zone that varies in style from block faulting, in the north, to more closely spaced tilted-domino-style faulting in the Latir volcanic field, to the south. Additional early rift structures include several long northwest-striking faults, the largest of which are interpreted to have accommodated significant right-lateral strike-slip, based on abrupt southwestward increase in the magnitude of extension across them. These faults evidently transferred strain from the axial part of the rift into the zone of early peripheral extension, and accommodated lateral changes in structural style. Throughout the area of early peripheral extension, there is a correlation between the magnitude of local volcanism and the degree of extension; however, it is unclear if extension drove volcanism—via mantle upwelling, or if extension was maximized where the crust was weakest, owing to the presence of magma and hot rock at shallow depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187351','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187351"><span>Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.</p> <p>2016-01-01</p> <p>The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio Conchos watershed and much of the Chihuahuan Desert, inducing broad regional landscape incision and exhumation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329147','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329147"><span>Evaluating hydrological response of future land cover change scenarios in the San Pedro river (U.S./Mexico) with the Automated Geospatial Watershed (AGWA) tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Fu...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA620009','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA620009"><span>Characterization of Suspended Sediment Plumes Resulting from Barge Decanting in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-06-01</p> <p>was Chief, CEERD-EEW; Mark Farr was Chief, CEERD-EE; Dr. Jack Davis was the Deputy Director of ERDC-EL; and Dr. Beth Fleming was the Director of ERDC...Methodologies Oakland Harbor A description of the decanting methodology to be used at Oakland was described by the Manson Dredging Company. During</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307054&keyword=Tuberculosis+AND+pulmonary+OR+Mexico&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307054&keyword=Tuberculosis+AND+pulmonary+OR+Mexico&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Evaluating Hydrological Response of Future Land Cover Change Scenarios in the San Pedro River (U.S./Mexico) with the Automated Geospatial Watershed Assessment (AGWA) Tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban gro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JChPh.117.9103H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JChPh.117.9103H"><span>Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik</p> <p>2002-11-01</p> <p>The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G53A0876L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G53A0876L"><span>Geoloogic slip on offshore San Clemente fault, Southern California, understated in GPS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Legg, M. R.</p> <p>2005-12-01</p> <p>The San Clemente fault offshore southern California exhibits prominent geomorphic evidence of major late Quaternary right-slip. Like the San Andreas fault, where modern Pacific-North America transform motion is focused, the San Clemente fault stretches more than 700 km along the continental margin with a well-defined principal displacement zone (PDZ). Lateral offset is generally concentrated in a zone less than about 1 km wide, and linear seafloor fault scarps cutting across active submarine fans and basin-filling turbidites demonstrate Holocene activity. Dextral offset of middle Miocene circular crater structures suggest as much as 60 km of Neogene and younger displacement. Offset submarine fan depositional features suggest a rate of about 4-7 mm/yr of late Quaternary slip. Nearly 75 years of seismograph recording in southern California registered at least three moderate (M~6) earthquakes, activity which exceeds that of the Elsinore fault with a similar measured slip rate. Geodetic data based only on a few decades of GPS observations have been interpreted to show less than 1 mm/yr right-slip on the San Clemente fault, whereas larger rates, of about 5-10 mm/yr are described in the Inner Borderland between Catalina Island and the coast. Extrapolations of data from GPS stations on the Pacific Plate offshore Baja California also suggest larger rates west of San Clemente Island. Because there are few offshore locations (islands) for GPS observations, and San Clemente Island is likely within the broader zone of deformation of its namesake fault, these data miss the full slip rate. Seafloor observations from submersible discovered youthful fault scarps in turbidite muds that are inferred to represent large prehistoric earthquakes, (M~7). The potential for large offshore earthquakes, with tsunami generation that would affect the heavily populated adjacent coastal areas underscores the importance of resolving the slip rate and quantifying the hazard potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://volcanoes.usgs.gov/jwynn/10sageep2k.html','USGSPUBS'); return false;" href="http://volcanoes.usgs.gov/jwynn/10sageep2k.html"><span>Airborne electromagnetics (EM) as a three-dimensional aquifer-mapping tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wynn, Jeff; Pool, Don; Bultman, Mark; Gettings, Mark; Lemieux, Jean</p> <p>2000-01-01</p> <p>The San Pedro River in southeastern Arizona hosts a major migratory bird flyway, and was declared a Riparian Conservation Area by Congress in 1988. Recharge of the adjacent Upper San Pedro Valley aquifer was thought to come primarily from the Huachuca Mountains, but the U. S. Army Garrison of Fort Huachuca and neighboring city of Sierra Vista have been tapping this aquifer for many decades, giving rise to claims that they jointly threatened the integrity of the Riparian Conservation Area. For this reason, the U. S. Army funded two airborne geophysical surveys over the Upper San Pedro Valley (see figure 1), and these have provided us valuable information on the aquifer and the complex basement structure underlying the modern San Pedro Valley. Euler deconvolution performed on the airborne magnetic data has provided a depth-to-basement map that is substantially more complex than a map obtained earlier from gravity data, as would be expected from the higher-resolution magnetic data. However, we found the output of the Euler deconvolution to have "geologic noise" in certain areas, interpreted to be post-Basin-and-Range Tertiary volcanic flows in the sedimentary column above the basement but below the ground surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5341989-contrasts-between-source-parameters-earthquakes-northern-baja-california-southern-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5341989-contrasts-between-source-parameters-earthquakes-northern-baja-california-southern-california"><span>Contrasts between source parameters of M [>=] 5. 5 earthquakes in northern Baja California and southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Doser, D.I.</p> <p>1993-04-01</p> <p>Source parameters determined from the body waveform modeling of large (M [>=] 5.5) historic earthquakes occurring between 1915 and 1956 along the San Jacinto and Imperial fault zones of southern California and the Cerro Prieto, Tres Hermanas and San Miguel fault zones of Baja California have been combined with information from post-1960's events to study regional variations in source parameters. The results suggest that large earthquakes along the relatively young San Miguel and Tres Hermanas fault zones have complex rupture histories, small source dimensions (< 25 km), high stress drops (60 bar average), and a high incidence of foreshock activity.more » This may be a reflection of the rough, highly segmented nature of the young faults. In contrast, Imperial-Cerro Prieto events of similar magnitude have low stress drops (16 bar average) and longer rupture lengths (42 km average), reflecting rupture along older, smoother fault planes. Events along the San Jacinto fault zone appear to lie in between these two groups. These results suggest a relationship between the structural and seismological properties of strike-slip faults that should be considered during seismic risk studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29545061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29545061"><span>Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita</p> <p>2018-07-15</p> <p>Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471918-characterization-oligomerization-peptide-from-ebola-virus-glycoprotein-small-angle-neutron-scattering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471918-characterization-oligomerization-peptide-from-ebola-virus-glycoprotein-small-angle-neutron-scattering"><span>Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Egorov, V. V., E-mail: vlaegur@omrb.pnpi.spb.ru; Gorshkov, A. N.; Murugova, T. N.</p> <p>2016-01-15</p> <p>Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are ablemore » to influence the protein oligomerization are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336790','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336790"><span>Characteristics of Metals Concentrations in in the Animas and ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The accidental release of 11.3 million liters (~ 3,000,000 gallons) of acidic mine water from the Gold King Mine (GKM) in southwestern Colorado on August 5, 2015, created high concentrations of dissolved and particulate metals into the Animas River over about a 12-hour period. The release traveled as a coherent plume through 550 km (342 miles) of the Animas and San Juan Rivers over an 8-day period before ultimately reaching Lake Powell, Utah. Extensive monitoring of water and sediments by EPA, States, Tribes and others was augmented by water quality modeling to characterize the release. Presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditions of the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/2004/c1259/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/2004/c1259/"><span>Shifting shoals and shattered rocks : How man has transformed the floor of west-central San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chin, John L.; Wong, Florence L.; Carlson, Paul R.</p> <p>2004-01-01</p> <p>San Francisco Bay, one of the world's finest natural harbors and a major center for maritime trade, is referred to as the 'Gateway to the Pacific Rim.' The bay is an urbanized estuary that is considered by many to be the major estuary in the United States most modified by man's activities. The population around the estuary has grown rapidly since the 1850's and now exceeds 7 million people. The San Francisco Bay area's economy ranks as one of the largest in the world, larger even than that of many countries. More than 10 million tourists are estimated to visit the bay region each year. The bay area's population and associated development have increasingly changed the estuary and its environment. San Francisco Bay and the contiguous Sacramento-San Joaquin Delta encompass roughly 1,600 square miles (4,100 km2) and are the outlet of a major watershed that drains more than 40 percent of the land area of the State of California. This watershed provides drinking water for 20 million people (two thirds of the State's population) and irrigates 4.5 million acres of farmland and ranchland. During the past several decades, much has been done to clean up the environment and waters of San Francisco Bay. Conservationist groups have even bought many areas on the margins of the bay with the intention of restoring them to a condition more like the natural marshes they once were. However, many of the major manmade changes to the bay's environment occurred so long ago that the nature of them has been forgotten. In addition, many changes continue to occur today, such as the introduction of exotic species and the loss of commercial and sport fisheries because of declining fish populations. The economy and population of the nine counties that surround the bay continue to grow and put increasing pressure on the bay, both direct and indirect. Therefore, there are mixed signals for the future health and welfare of San Francisco Bay. The San Francisco Bay estuary consists of three subembayments--north bay (San Pablo and Suisun Bays), central bay, and south bay--each characterized by a central area of open water surrounded by intertidal mudflats and marshes. Central bay includes Alcatraz and Angel Islands and also a number of submerged bedrock knobs that protrude through the sediment of the bay floor and rise to within about 40 feet (12 m) of the water surface. The most prominent of these are Harding, Shag, Arch, and Blossom Rocks. These rocks have been lowered by blasting several times in the past, but they remain a potential hazard to shipping because newer cargo vessels are designed with increasingly deeper drafts. Central bay's location adjacent to two major population and commerce centers, San Francisco and Oakland, subjects it to greater human influences than less developed parts of the estuary. The western part of central San Francisco Bay is adjacent to the Golden Gate, the estuary's outlet to the Pacific Ocean. The changing submarine topography of the west-central bay, as well as its geology, form the main focus of this book.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27738412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27738412"><span>Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi</p> <p>2016-10-01</p> <p>Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5045726','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5045726"><span>Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi</p> <p>2016-01-01</p> <p>Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1121/pdf/ofr2014-1121.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1121/pdf/ofr2014-1121.pdf"><span>Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, Glenn E.; van Riper, Charles</p> <p>2014-01-01</p> <p>Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.746a2042R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.746a2042R"><span>Characterization of mono-ethylene-glycol based industrial polyurethanes samples by fast-neutron radiography and neutron tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogante, Massimo; Söllradl, Stefan</p> <p>2016-09-01</p> <p>A complicated structural organization of polyurethanes may have a strong influence on the materials functional properties. Under particular conditions such as mechanical and thermal loading and aging, it leads to the material degradation, even in fresh-prepared bulk polymers and especially if defects are present in the material. Unwanted bubbles can be observed, which form during the expansion of the mixture during its chemical reaction and remain present in the final product. These macro-, micro- and nano-bubbles influence the material's performance. In this work, neutron radiography and tomography have been adopted to characterize at a macro-scale level the bulk of commercially available polyurethane samples, obtained from dissimilar- mixture ratios with different densities and branching levels as well as from different zones of the production mould. The characterisation allowed an estimation of the different dense materials - as they are used, e.g., in soles of shoes - as well as the invisible defects like pores and cracks, responsible for the materials fracture by mechanical loading. The obtained information are expected to be useful for various industrial sectors such as automotive and footwear industry. It will be completed by applying SANS, which has already proved to characterize the microstructure of the bulk-polymer with respect to nano-pores, micro-cracks and their arrangement in the polymer matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1971R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1971R"><span>Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.</p> <p>2016-12-01</p> <p>Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV survey lines, some of their provinces coincide with distinctive magnetic characters, suggesting possible in situ structural or alteration boundaries (i.e. subsurface faults and hydrothermal destruction zones).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/861607','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/861607"><span>Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Determan, Michael Duane</p> <p></p> <p>The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/68669','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/68669"><span>Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.</p> <p>1990-01-01</p> <p>This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches.Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming "and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/68682','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/68682"><span>Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.</p> <p>1990-01-01</p> <p>This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches. Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1455/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1455/"><span>Preliminary Geologic Map of the Hemet 7.5' Quadrangle, Riverside County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morton, Douglas M.; Matti, Jon C.</p> <p>2005-01-01</p> <p>The Hemet 7.5' quadrangle is located near the eastern edge of the Perris block of the Peninsular Ranges batholith. The northeastern corner of the quadrangle extends across the San Jacinto Fault Zone onto the edge of the San Jacinto Mountains block. The Perris block is a relatively stable area located between the Elsinore Fault Zone on the west and the San Jacinto Fault Zone on the east. Both of the fault zones are active; the San Jacinto being the seismically most active in southern California. The fault zone is obscured by very young alluvial deposits. The concealed location of the San Jacinto Fault Zone shown on this quadrangle is after Sharp, 1967. The geology of the quadrangle is dominated by Cretaceous tonalite formerly included in the Coahuila Valley pluton of Sharp (1967). The northern part of Sharp's Coahuila Valley pluton is separated out as the Hemet pluton. Tonalite of the Hemet pluton is more heterogeneous than the tonalite of the Coahuila Valley pluton and has a different sturctural pattern. The Coahuila Valley pluton consists of relatively homogeneous hornblende-biotite tonalite, commonly with readily visible large euhedral honey-colored sphene crystals. Only the tip of the adjacent Tucalota Valley pluton, another large tonalite pluton, extends into the quadrangle. Tonalite of the Tucalota Valley pluton is very similar to the tonalite of the Coahuila Valley pluton except it generally lacks readily visible sphene. In the western part of the quadrangle a variety of amphibolite grade metasedimentary rocks are informally referred to as the rocks of Menifee Valley; named for exposures around Menifee Valley west of the Hemet quadrangle. In the southwestern corner of the quadrangle a mixture of schist and gneiss marks a suture that separated low metamorphic grade metasedimentary rocks to the west from high metamorphic grade rocks to the east. The age of these rocks is interpreted to be Triassic and the age of the suturing is about 100 Ma, essentially the same age as the adjacent Coahuila Valley pluton. Rocks within the suture zone consist of a mixture of lithologies from both sides of the suture. Gneiss, schist, and anatectic gneiss are the predominate lithologies within the rocks on the east side of the suture. Lesser amounts of metalithic greywacke and lenticular masses of black amphibolite are subordinate rock types. Biotite, biotite-sillimanite and lesser amounts of garnet-biotite-sillimanite schist and metaquartzite-metalithic greywacke lithologies occur west of the suture. Pleistocene continental beds, termed the Bautista beds occur east of the San Jacinto Fault Zone in the northeast corner of the quadrangle. Most of the Bautista beds were derived from the San Jacinto pluton that is located just to the east of the sedimentary rocks. Along the northern part of the quadrangle is the southern part of a large Holocene-late Pleistocene fan emanating from Baustista Canyon. Sediments in the Bautista fan are characterized by their content of detritus derived from amphibolite grade metasedimentary rocks located in the Bautista Canyon drainage. Between the Holocene-late Pleistocene Bautista fan and the Santa Rosa Hills is the remnant of a much older Bautista Canyon alluvial fan. A pronounced Holocene-late Pleistocene channel was developed along the south fringe of the very old alluvial fan and the Santa Rosa Hill. A now dissected late to middle Pleistocene alluvial complex was produced by the coalesced fans of Goodhart, St. Johns, and Avery canyons, and Cactus Valley. Pleistocene continental beds, termed the Bautista beds occur east of the San Jacinto Fault Zone in the northeast corner of the quadrangle. Most of the Bautista beds were derived from the San Jacinto pluton that is located just to the east of the sedimentary rocks. Along the northern part of the quadrangle is the southern part of a large Holocene-late Pleistocene fan emanating from Baustista Canyon. Sediments in the Bautista fan are characterized by</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1360/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1360/report.pdf"><span>Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ziony, Joseph I.</p> <p>1985-01-01</p> <p>Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The geologic and seismologic record indicates that parts of the San Andreas and San Jacinto faults have generated major earthquakes having recurrence intervals of several tens to a few hundred years. In contrast, the geologic evidence at points along other active faults suggests recurrence intervals measured in many hundreds to several thousands of years. The distribution and character of late Quaternary surface faulting permit estimation of the likely location, style, and amount of future surface displacements. An extensive body of geologic and geotechnical information is used to evaluate areal differences in future levels of shaking. Bedrock and alluvial deposits are differentiated according to the physical properties that control shaking response; maps of these properties are prepared by analyzing existing geologic and soils maps, the geomorphology of surficial units, and. geotechnical data obtained from boreholes. The shear-wave velocities of near-surface geologic units must be estimated for some methods of evaluating shaking potential. Regional-scale maps of highly generalized shearwave velocity groups, based on the age and texture of exposed geologic units and on a simple two-dimensional model of Quaternary sediment distribution, provide a first approximation of the areal variability in shaking response. More accurate depictions of near-surface shear-wave velocity useful for predicting ground-motion parameters take into account the thickness of the Quaternary deposits, vertical variations in sediment .type, and the correlation of shear-wave velocity with standard penetration resistance of different sediments. A map of the upper Santa Ana River basin showing shear-wave velocities to depths equal to one-quarter wavelength of a 1-s shear wave demonstrates the three-dimensional mapping procedure. Four methods for predicting the distribution and strength of shaking from future earthquakes are presented. These techniques use different measures of strong-motion</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23822274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23822274"><span>Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin</p> <p>2013-06-28</p> <p>The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162178','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162178"><span>Genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Duda, T. F.</p> <p>1994-01-01</p> <p>The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the “general purpose” phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1599L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1599L"><span>Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Peng; Thurber, Clifford</p> <p>2018-06-01</p> <p>We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19924040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19924040"><span>Separation, characterization and dose-effect relationship of the PPARgamma-activating bio-active constituents in the Chinese herb formulation 'San-Ao decoction'.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Ling; Tang, Yu-Ping; Gao, Lu; Fan, Xin-Sheng; Liu, Chun-Mei; Wu, De-Kang</p> <p>2009-10-09</p> <p>San-ao decoction (SAD), comprising Herba Ephedrae, Radix et Rhizoma Glycyrrhizae and Seneb Armeniacae Amarum, is one of the most popular traditional Chinese medicine (TCM) formulae for asthma. Peroxisome proliferator-activated receptors (PPARs) areey regulators of lipid and glucose metabolism and have become important therapeutic targets for various deseases, PPARgamma activation might exhibit anti-inflammatory properties in different chronic inflammatory processes. The EtOAc fraction of SAD showed a significant effect on PPARgamma activation. A simple and rapid method has been established for separation and characterization of the main compounds in the PPARgamma-activating fraction of SAD by ultra-fast HPLC coupled with quadropole time-of-flight mass pectrometry (UPLC-Q-TOF/MS). A total of 10 compounds were identified in the activating fraction of SAD, including amygdalin (1), liquiritin (2), 6'-acetyliquiritin (3), liquiritigenin (4), isoliquiritigenin (5), formononetin (6), licoisoflavanone (7), glycycoumarin (8), glycyrol (9) and uercetin (10). The results also characterized formononetin as a predominant component in this fraction. The dose-effect relationship comparison study of formononetin and the EtOAc fraction of SAD by adding formononetin was performed, the results suggested that formononetin was the major component of the EtOAc fraction of SAD responsible for activating PPARgamma, and the method will possibly be applied to study the complex biological active constituents of other TCMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1998/0077/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1998/0077/report.pdf"><span>Assemblages of fishes and their associations with environmental variables, lower San Joaquin River drainage, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, Larry R.</p> <p>1998-01-01</p> <p>Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=337088&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=08/02/2012&dateendpublishedpresented=08/02/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=337088&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=08/02/2012&dateendpublishedpresented=08/02/2017&sortby=pubdateyear"><span>An EPA pilot study characterizing fungal and bacterial ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......221R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......221R"><span>Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Hongfeng</p> <p></p> <p>Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=motivation+AND+plan+AND+business&pg=3&id=EJ153158','ERIC'); return false;" href="https://eric.ed.gov/?q=motivation+AND+plan+AND+business&pg=3&id=EJ153158"><span>Flexible Transcription Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carr-Smith, Norma</p> <p>1976-01-01</p> <p>Flexible structure in a San Francisco State University shorthand course is described as a way to provide motivation for students. Topics discussed are transcription testing plan, method of evaluation, practice tests, increasing difficulty of tests, and classroom results. (TA)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA058045','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA058045"><span>Evaluation of a Crack-Growth Gage for Monitoring Possible Structural Fatigue-Crack Growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-02-01</p> <p>the gages and structural components and tested the specimens. Appreciation is also extended to Dennis E. Macha for his effort in making the laser...SDM Conference AIAA/ASME, San Diego, California, March 21-23, 1977. 20 AFML-TR-77-233 REFERENCES (CONTINUED) 12. D. E. Macha , W. N. Sharpe, Jr., and A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED136558.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED136558.pdf"><span>Ellipsis and the Structure of Expectation. San Jose State Occasional Papers in Linguistics, Vol. 1, November, 1975.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ross, Robert N.</p> <p></p> <p>This paper discusses one way of exploring how we perceive and understand the connections between some parts of texts, or between one sentence and the whole discourse. Understanding ellipsis involves non-syntactic understanding; the semantic structure is responsible for our understanding of elliptical sentences and encoding the knowledge contained…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca2095.photos.182254p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca2095.photos.182254p/"><span>57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, STAIRS AND PORTION OF LAUNCHING DECK. NOTE SUPPORT CARRIAGE ASSEMBLY IN DISTANCE. Date unknown, circa March 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA255379','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA255379"><span>Proceedings of the USAF Structural Integrity Program Conference Held in San Antonio, Texas on 2-6 December 1991</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-07-01</p> <p>NONDESTRUCTIVE INSPECTION Probabilistic Durability Evaluation of Alcoa 7050 Aluminum ............................... 305 Composite Repair of Aircraft Structures... Aluminum J.G. Burns, WLIFIBEC 0900-0930 Composite Repair of Aircraft Structures - The Australian Experience L. Molent, Aeronautical Research Laboratory...fatigue test articles consisted of a of 5 percent from the calculated airframe ratio of 2124-T851 aluminum specimen surrounded by 0.882, to preclude</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1014231-structural-formation-huntingtin-like-aggregates-probed-small-angle-neutron-scattering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1014231-structural-formation-huntingtin-like-aggregates-probed-small-angle-neutron-scattering"><span>Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M</p> <p>2011-01-01</p> <p>In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391468-structural-phase-transition-changes-sodium-dodecyl-sulfate-micellar-solution-alcohols-probed-small-angle-neutron-scattering-sans','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391468-structural-phase-transition-changes-sodium-dodecyl-sulfate-micellar-solution-alcohols-probed-small-angle-neutron-scattering-sans"><span>Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id</p> <p>2015-04-16</p> <p>Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1254/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1254/"><span>Potential Effects of a Scenario Earthquake on the Economy of Southern California: Intraregional Commuter, Worker, and Earnings Flow Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherrouse, Benson C.; Hester, David J.</p> <p>2008-01-01</p> <p>The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards (Jones and others, 2007). In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 (M7.8) earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region (Jones and others, 2008). This report uses selected datasets from the U.S. Census Bureau and the State of California's Employment Development Department to develop preliminary estimates of the number and spatial distribution of commuters who cross the San Andreas Fault and to characterize these commuters by the industries in which they work and their total earnings. The analysis concerns the relative exposure of the region's economy to the effects of the earthquake as described by the location, volume, and earnings of those commuters who work in each of the region's economic sectors. It is anticipated that damage to transportation corridors traversing the fault would lead to at least short-term disruptions in the ability of commuters to travel between their places of residence and work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28315749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28315749"><span>Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael</p> <p>2017-04-15</p> <p>Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019352','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019352"><span>Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James</p> <p>1996-01-01</p> <p>The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix gels, or that the plants that formed these lignite benches were less woody and more prone to formation of matrix gels. (6) An inertinite-rich layer (top of the B bed) might have formed from widespread oxidation of the San Miguel peat as a result of a volcanic ash fall which was subsequently reworked.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020136','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020136"><span>Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eberhart-Phillips, D.; Michael, A.J.</p> <p>1998-01-01</p> <p>Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27369808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27369808"><span>Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan</p> <p>2016-08-25</p> <p>Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028227','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028227"><span>Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nilsen, E.B.; Delaney, M.L.</p> <p>2005-01-01</p> <p>This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020444','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020444"><span>Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.</p> <p>1998-01-01</p> <p>Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25124252','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25124252"><span>[The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bedoya-Urrego, Katherine; Acevedo-Ruíz, José M; Peláez-Jaramillo, Carlos A; Agudelo-López, Sonia Del Pilar</p> <p>2013-01-01</p> <p>ABSTRACT Objective This study was aimed at evaluating pertinent physicochemical and microbiological (bacteria and parasites) parameters regarding the biosolids produced by the San Fernando wastewater treatment plant (WWTP) in Itagui, Antioquia, Colombia. Methods Twelve samples were collected and evaluated every month from January to December during 2010. The chemical, physical and microbiological tests followed the protocol described in Colombian technical guideline 5167. The protocol described in Mexican official Norm 004 (with some modifications) was used for identifying helminth ova and assessing their viability. Results All samples proved positive for Ascarislumbricoides, viable ova count ranging from 4 to 22 eggs/2gTS. Both Salmonella and Enterobacteriawere detected in all samples evaluated, the latter having 3,000 colony forming unit (CFU)/g minimum concentration. Biosolid sample values met the heavy metal concentration requirement established by national guidelines. There was no statistical association between rainfall and the pathogen's presence in the biosolids. Conclusion Our results suggested that the biosolids being produced by the San Fernando wastewater treatment plant (WWTP) could be used as organic fertilizer; however they should be treated/sanitized to meet the stipulations in Colombian technical guideline 5167.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EPJE...18..447P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EPJE...18..447P"><span>Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pencer, J.; Mills, T.; Anghel, V.; Krueger, S.; Epand, R. M.; Katsaras, J.</p> <p>2005-12-01</p> <p>Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or “clusters” (~10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called “rafts”, in ~30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 °C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of ~10 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041938','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041938"><span>Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.</p> <p>2010-01-01</p> <p>It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21564923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21564923"><span>Isolation and characterization of 23 polymorphic microsatellite loci for a West Indian iguana (Cyclura pinguis) from the British Virgin Islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lau, Jennie; Alberts, Allison C; Chemnick, Leona G; Gerber, Glenn P; Jones, Kenneth C; Mitchell, Adele A; Ryder, Oliver A</p> <p>2009-09-01</p> <p>Twenty-three polymorphic microsatellite markers were identified and characterized for Cyclura pinguis, a critically endangered species of lizard (Sauria: Iguanidae) native to Anegada Island in the British Virgin Islands. We examined variation at these loci for 39 C. pinguis, finding up to five alleles per locus and an average expected heterozygosity of 0.55. Allele frequency estimates for these microsatellite loci will be used to characterize genetic diversity of captive and wild C. pinguis populations and to estimate relatedness among adult iguanas at the San Diego Zoo that form the nucleus of a captive breeding programme for this critically endangered species. © 2009 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=horticulture&pg=7&id=EJ097511','ERIC'); return false;" href="https://eric.ed.gov/?q=horticulture&pg=7&id=EJ097511"><span>An Urban Agricultural Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Foster, Parker V.</p> <p>1974-01-01</p> <p>A program of Agricultural Education (primarily horticulture) was started in the San Diego, California school district in 1967. The philosophy behind the program, the growth in terms of students involved, and the structural framework of the program are outlined. (KP)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51J..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51J..06H"><span>The effect of segmented fault zones on earthquake rupture propagation and termination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Y.</p> <p>2017-12-01</p> <p>A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9623G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9623G"><span>Interpretation of architecture changes by combined use of historical sources, IR Termography and GPR: the study case of San Francesco convent near Montella (AV), Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geraldi, Edoardo; Loperte, Antonio; Dolce, Carmen</p> <p>2010-05-01</p> <p>In order to reconstruct architectural changes during the centuries often we are forced to trust merely on the evidences of documentary and iconographical sources which could sometimes supply the description of the monument or of a specifically building phase. Such approach does not solve all the questions related to the interpretation of historical data (graphics, descriptions) useful for finding previous configurations of the building. The historical building structure and shape, as they appear at the present are often the final result of a stratification of different phases deeply connected with artistic and technological features of the age during which the building has been designed and realized. Stylistic features, building techniques and functional aspects change in time leaving often written traces in archive sources such as on the building masonry texture (sometimes hidden by plaster) or under the floor. In such situation the Non Destructive Testing investigations by means of infrared thermography and GPR could be useful to characterize masonry, to survey inhomogeneities in the masonry as well as to detect buried walls belongings to ancient building phases. This paper deals with the emblematic study case of San Francisco convent near Montella in Southern Italy. Its complex vicissitudes experienced in last centuries have been the reason of radical transformations of the church and its surrounding buildings. Historical research provided important information on structural interventions and planimetric transformations carried out between the 17th and 18th century. Such data have been correlated with the results obtained by infrared thermography surveys on plastered facades of the convent and GPR profiles carried out under the stone paved floor of the church and cloister, thus improving the knowledge of historical building phases of the monument. The integrated use of building analysis techniques based on NDT techniques together with historical and archaeological records show the enormous potential of the use of this interdisciplinary approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471909-small-angle-scattering-study-aspergillus-awamori-glycoprotein-glucoamylase','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471909-small-angle-scattering-study-aspergillus-awamori-glycoprotein-glucoamylase"><span>Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V.; Kuklin, A. I.</p> <p>2016-01-15</p> <p>Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantialmore » contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591015-study-structural-properties-very-low-viscosity-sodium-alginate-small-angle-neutron-scattering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591015-study-structural-properties-very-low-viscosity-sodium-alginate-small-angle-neutron-scattering"><span>The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Badita, C. R., E-mail: ramona@tandem.nipne.ro; University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele; Aranghel, D., E-mail: daranghe@nipne.ro</p> <p>2016-03-25</p> <p>Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca{sup 2+} ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca{supmore » 2+} concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1722v0007B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1722v0007B"><span>The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.</p> <p>2016-03-01</p> <p>Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApNan...6.1065C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApNan...6.1065C"><span>Preparation and characterization of nanosized Ag/SLN composite and its viability for improved occlusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cynthia Jemima Swarnavalli, G.; Dinakaran, S.; Divya, S.</p> <p>2016-10-01</p> <p>Nanocomposites consisting of silver and solid lipid nanoparticles (SLN) elicit interest for their synergistic effect based enhanced properties in skin hydration. The nanocomposite preparation aims at combining the antimicrobial activity of silver with skin hydration performance of SLN. The nanocomposites designated Ag/SAN (silver/stearic acid nanoparticles), Ag/PAN (silver/palmitic acid nanoparticles) were prepared by incorporating silver nanoparticles into the dispersion of SLN and sonicating for 10 min followed by heating for 1 h at 50 °C in a thermostat. The occlusive property of the two nanocomposites was evaluated in comparison with the pure SLN by adopting de Vringer-de Ronde in vitro occlusion test. The incorporation of silver nanoparticles has improved occlusion factor by 10 % in the case of both composites at SLN concentration of 0.14 mmol. Characterization studies include XRD, DSC, HRSEM, DLS and zeta potential measurement. High resolution scanning electron microscopy (HRSEM) images divulge that the nanoparticles of composite (Ag/SAN) shows halo effect where the hydrophobic stearic acid is oriented at the core and is surrounded by silver nanoparticles while Ag/PAN shows cashew shaped SLN dispersed in silver nanoparticles matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034425','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034425"><span>A Viscoelastic earthquake simulator with application to the San Francisco Bay region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, Fred F.</p> <p>2009-01-01</p> <p>Earthquake simulation on synthetic fault networks carries great potential for characterizing the statistical patterns of earthquake occurrence. I present an earthquake simulator based on elastic dislocation theory. It accounts for the effects of interseismic tectonic loading, static stress steps at the time of earthquakes, and postearthquake stress readjustment through viscoelastic relaxation of the lower crust and mantle. Earthquake rupture initiation and termination are determined with a Coulomb failure stress criterion and the static cascade model. The simulator is applied to interacting multifault systems: one, a synthetic two-fault network, and the other, a fault network representative of the San Francisco Bay region. The faults are discretized both along strike and along dip and can accommodate both strike slip and dip slip. Stress and seismicity functions are evaluated over 30,000 yr trial time periods, resulting in a detailed statistical characterization of the fault systems. Seismicity functions such as the coefficient of variation and a- and b-values exhibit systematic patterns with respect to simple model parameters. This suggests that reliable estimation of the controlling parameters of an earthquake simulator is a prerequisite to the interpretation of its output in terms of seismic hazard.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>