Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi
2018-05-07
Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.
PRF Ambiguity Detrmination for Radarsat ScanSAR System
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1998-01-01
PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.
Effect of ambiguities on SAR picture quality
NASA Technical Reports Server (NTRS)
Korwar, V. N.; Lipes, R. G.
1978-01-01
The degradation of picture quality in a high-resolution, large-swath SAR mapping system caused by speckle, additive white Gaussian noise and range and azimuthal ambiguities occurring because of the nonfinite antenna pattern produced by a square aperture antenna was studied and simulated. The effect of the azimuth antenna pattern was accounted for by calculating the azimuth ambiguity function. Range ambiguities were accounted for by adding, to each pixel of interest, appropriate pixels at a range separation corresponding to one pulse repetition period, but attenuated by the antenna pattern. It is concluded that azimuth ambiguities do not cause any noticeable degradation (for large time bandwidth product systems, at least) but range ambiguities might.
Effect of ambiguities on SAR picture quality
NASA Technical Reports Server (NTRS)
Korwar, V. N.; Lipes, R. G.
1978-01-01
The degradation of picture quality is studied for a high-resolution, large-swath SAR mapping system subjected to speckle, additive white Gaussian noise, and range and azimuthal ambiguities occurring because of the non-finite antenna pattern produced by a square aperture antenna. The effect of the azimuth antenna pattern was accounted for by calculating the aximuth ambiguity function. Range ambiguities were accounted for by adding appropriate pixels at a range separation corresponding to one pulse repetition period, but attenuated by the antenna pattern. A method of estimating the range defocussing effect which arises from the azimuth matched filter being a function of range is shown. The resulting simulated picture was compared with one degraded by speckle and noise but no ambiguities. It is concluded that azimuth ambiguities don't cause any noticeable degradation but range ambiguities might.
Spaceborne Hybrid Quad-Pol SAR Range Ambiguity Analysis and Simulations
NASA Astrophysics Data System (ADS)
Yang, Shilin; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
The higher levels of range ambiguities in the cross-polarized measurement channels are the primary limitations for the matched quad-pol (e.g., HH, VV, VH, and HV) spaceborne synthetic aperture radar (SAR) systems. These ambiguities severely constrain the useful range of incident angles and the swath widths particularly at larger incidence. Adopting hybridpolarimetric architecture can remarkably reduce these ambiguities. In this paper, we analyse and develop the expression of range ambiguity to signal ratio (RASR) in the hybrid-polarimetric architecture. Simulations are made to testify this novel architecture’s advantage in the improvement of range ambiguities. The system operating parameters are derived from NASA’s DESDynl mission. In addition, we used the second order moments of polarimetric covariance matrices to depict target or the environment which are more precisely.
Spaceborne Hybrid Quad-Pol SAR Range Ambiguity Analysis and Simulations
NASA Astrophysics Data System (ADS)
Yang, Shilin; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
The higher levels of range ambiguities in the cross- polarized measurement channels are the primary limitations for the matched quad-pol (e.g., HH, VV, VH, and HV) spaceborne synthetic aperture radar (SAR) systems. These ambiguities severely constrain the useful range of incident angles and the swath widths particularly at larger incidence. Adopting hybrid- polarimetric architecture can remarkably reduce these ambiguities. In this paper, we analyse and develop the expression of range ambiguity to signal ratio (RASR) in the hybrid-polarimetric architecture. Simulations are made to testify this novel architecture's advantage in the improvement of range ambiguities. The system operating parameters are derived from NASA's DESDynl mission. In addition, we used the second order moments of polarimetric covariance matrices to depict target or the environment which are more precisely.
MIMO-OFDM signal optimization for SAR imaging radar
NASA Astrophysics Data System (ADS)
Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.
2016-12-01
This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.
Ambiguities in spaceborne synthetic aperture radar systems
NASA Technical Reports Server (NTRS)
Li, F. K.; Johnson, W. T. K.
1983-01-01
An examination of aspects of spaceborne SAR time delay and Doppler ambiguities has led to the formulation of an accurate method for the evaluation of the ratio of ambiguity intensities to that of the signal, which has been applied to the nominal SAR system on Seasat. After discussing the variation of this ratio as a function of orbital latitude and attitude control error, it is shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal, so that the images of ambiguities are dispersed. Seasat SAR dispersed images are presented, and their dispersions are eliminated through an adjustment of the processing parameters. A method is also presented which uses a set of multiple pulse repetition sequences to determine the Doppler centroid frequency absolute values for SARs with high carrier frequencies and poor attitude measurements.
Research on Multi-Temporal PolInSAR Modeling and Applications
NASA Astrophysics Data System (ADS)
Hong, Wen; Pottier, Eric; Chen, Erxue
2014-11-01
In the study of theory and processing methodology, we apply accurate topographic phase to the Freeman-Durden decomposition for PolInSAR data. On the other hand, we present a TomoSAR imaging method based on convex optimization regularization theory. The target decomposition and reconstruction performance will be evaluated by multi-temporal Land P-band fully polarimetric images acquired in BioSAR campaigns. In the study of hybrid Quad-Pol system performance, we analyse the expression of range ambiguity to signal ratio (RASR) in this architecture. Simulations are used to testify its advantage in the improvement of range ambiguities.
Research on Multi-Temporal PolInSAR Modeling and Applications
NASA Astrophysics Data System (ADS)
Hong, Wen; Pottier, Eric; Chen, Erxue
2014-11-01
In the study of theory and processing methodology, we apply accurate topographic phase to the Freeman- Durden decomposition for PolInSAR data. On the other hand, we present a TomoSAR imaging method based on convex optimization regularization theory. The target decomposition and reconstruction performance will be evaluated by multi-temporal L- and P-band fully polarimetric images acquired in BioSAR campaigns. In the study of hybrid Quad-Pol system performance, we analyse the expression of range ambiguity to signal ratio (RASR) in this architecture. Simulations are used to testify its advantage in the improvement of range ambiguities.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
NASA Technical Reports Server (NTRS)
Freeman, Anthony
2006-01-01
Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .
Performance analysis of multiple PRF technique for ambiguity resolution
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
For short wavelength spaceborne synthetic aperture radar (SAR), ambiguity in Doppler centroid estimation occurs when the azimuth squint angle uncertainty is larger than the azimuth antenna beamwidth. Multiple pulse recurrence frequency (PRF) hopping is a technique developed to resolve the ambiguity by operating the radar in different PRF's in the pre-imaging sequence. Performance analysis results of the multiple PRF technique are presented, given the constraints of the attitude bound, the drift rate uncertainty, and the arbitrary numerical values of PRF's. The algorithm performance is derived in terms of the probability of correct ambiguity resolution. Examples, using the Shuttle Imaging Radar-C (SIR-C) and X-SAR parameters, demonstrate that the probability of correct ambiguity resolution obtained by the multiple PRF technique is greater than 95 percent and 80 percent for the SIR-C and X-SAR applications, respectively. The success rate is significantly higher than that achieved by the range cross correlation technique.
Doppler centroid estimation ambiguity for synthetic aperture radars
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1989-01-01
A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.
SAR Ambiguity Study for the Cassini Radar
NASA Technical Reports Server (NTRS)
Hensley, Scott; Im, Eastwood; Johnson, William T. K.
1993-01-01
The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.
Method and apparatus for reducing range ambiguity in synthetic aperture radar
Kare, Jordin T.
1999-10-26
A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.
Li, Jinhui; Ji, Yifei; Zhang, Yongsheng; Zhang, Qilei; Huang, Haifeng; Dong, Zhen
2018-04-10
Spaceborne synthetic aperture radar (SAR) missions operating at low frequencies, such as L-band or P-band, are significantly influenced by the ionosphere. As one of the serious ionosphere effects, Faraday rotation (FR) is a remarkable distortion source for the polarimetric SAR (PolSAR) application. Various published FR estimators along with an improved one have been introduced to solve this issue, all of which are implemented by processing a set of PolSAR real data. The improved estimator exhibits optimal robustness based on performance analysis, especially in term of the system noise. However, all published estimators, including the improved estimator, suffer from a potential FR angle (FRA) ambiguity. A novel strategy of the ambiguity correction for those FR estimators is proposed and shown as a flow process, which is divided into pixel-level and image-level correction. The former is not yet recognized and thus is considered in particular. Finally, the validation experiments show a prominent performance of the proposed strategy.
Marine Targets Detection in Pol-SAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong
2016-08-01
In this poster, we present a new method of marine target detection in Pol-SAR data. One band SAR image, like HH, VV or VH, can be used to find marine target using a Contant False Alarm Ratio (CFAR) algorithm. But some false detection may happen, as the sidelobe of antenna, Azimuth ambiguity, strong speckle noise and so on in the single band SAR image. Pol-SAR image can get more information of targets. After decomposition and false color composite, the sidelobe of antenna and Azimuth ambiguity could be deleted. So, the method presented include three steps, decomposion, false color composite and supervised classification. The result of Radarsat-2 SAR image test indicates a good accuracy. The detection results are compared with Automatic Indentify Sistem (AIS) data, the accuracy of right detection is above 95% and false detection ratio is below 5%.
NASA Astrophysics Data System (ADS)
He, Y. F.; Zhu, W.; Zhang, Q.; Zhang, W. T.
2018-04-01
InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.
Radar systems for the water resources mission, volume 2
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.
Marine Targets Classification in PolInSAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong; Ren, Lin
2014-11-01
In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then, A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.
Marine Targets Classification in PolInSAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong; Ren, Lin
2014-11-01
In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then , A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.
SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR
NASA Technical Reports Server (NTRS)
Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.
2012-01-01
In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.
Wind Retrieval using Marine Radars
2011-09-30
utilized to remove the 180° directional ambiguity in SAR wave retrieval ( Engen and Johnson, 1995). We have observed a strong dependency of the...1629–1642, Sep 2007. Engen , G., and H. Johnson, “SAR ocean wave inversion using image cross spectra”, IEEE Trans. Geosci. Remote Sensing, vol. 33
Time series analysis of InSAR data: Methods and trends
NASA Astrophysics Data System (ADS)
Osmanoğlu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cabral-Cano, Enrique
2016-05-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ;unwrapping; of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
Time Series Analysis of Insar Data: Methods and Trends
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique
2015-01-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode
Liu, Lei; Qiu, Xiaolan; Lei, Bin
2017-01-01
This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method. PMID:28678197
Motion compensation for aircraft-borne interferometric SAR
NASA Astrophysics Data System (ADS)
Bullock, Richard John
This research has studied data driven techniques for roll compensation for aircraft-borne InSAR, for platforms where an accurate Inertial Navigation Unit (INU) is inappropriate due to limitations on weight or cost, such as a low-cost civilian mapping system or a miniature UAV. It is shown that for unknown topography, roll errors cannot simply be filtered from the interferogram due to a fundamental ambiguity between aircraft roll effects and certain types of undulating terrain. The solution to this problem lies in the differential Doppler shifts of the signals received at the two antennas. These are proportional to the aircraft roll rate and can be extracted by incoherent or coherent means and utilised to reconstruct the aircraft roll history. This research analyses, experimentally evaluates and further develops the incoherent Differential Doppler (DD) method for roll compensation, developed to the proof-of-concept stage by A. Currie at QinetiQ (Malvern) and compares this with the two-look method, which is a novel coherent technique developed, analysed and experimentally evaluated as part of this PhD from an original idea proposed by Prof. R. Voles of UCL. By means of empirical analysis, numerical simulation and real test data from the QinetiQ C-Band InSAR, it is shown that the two-look method offers significant advantages in sensitivity, frequency performance, robustness and efficiency of implementation over the DD method, particularly at long range. The experimental results also show that for the QinetiQ C-Band InSAR, the two-look method provides roll compensation to a similar quality or better than provided by the on-board Litton-93 INU, which has a specified accuracy of +/-0.05°. Ambiguities in the roll rate estimates from other motions are also shown to be small for this platform, and could be reduced further by employing differential GPS track compensation.
Calibration of a polarimetric imaging SAR
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.
1991-01-01
Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.
Least Squares Solution of Small Sample Multiple-Master PSInSAR System
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ding, Xiao Li; Lu, Zhong
2010-03-01
In this paper we propose a least squares based approach for multi-temporal SAR interferometry that allows to estimate the deformation rate with no need of phase unwrapping. The approach utilizes a series of multi-master wrapped differential interferograms with short baselines and only focuses on the arcs constructed by two nearby points at which there are no phase ambiguities. During the estimation an outlier detector is used to identify and remove the arcs with phase ambiguities, and pseudoinverse of priori variance component matrix is taken as the weight of correlated observations in the model. The parameters at points can be obtained by an indirect adjustment model with constraints when several reference points are available. The proposed approach is verified by a set of simulated data.
Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith
NASA Astrophysics Data System (ADS)
Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan
2016-01-01
The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the system, designed to meet the science goals with optimum resources.
A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data
NASA Astrophysics Data System (ADS)
Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan
2016-07-01
This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
Robust adaptive multichannel SAR processing based on covariance matrix reconstruction
NASA Astrophysics Data System (ADS)
Tan, Zhen-ya; He, Feng
2018-04-01
With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.
Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2013-05-01
An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.
Topographic mapping using a monopulse SAR system
NASA Technical Reports Server (NTRS)
Zink, M.; Oettl, H.; Freeman, A.
1993-01-01
Terrain height variations in mountainous areas cause two problems in the radiometric correction of SAR images: the first being that the wrong elevation angle may be used in correcting for the radiometric variation of the antenna pattern; the second that the local incidence angle used in correcting the projection of the pixel area from slant range to ground range coordinates may vary from that given by the flat earth assumption. We propose a novel design of a SAR system which exploits the monopulse principle to determine the elevation angle and thus the height at the different parts of the image. The key element of such a phase monopulse system is an antenna, which can be divided into a lower and upper half in elevation using a monopulse comparator. In addition to the usual sum pattern, the elevation difference pattern can be generated by a -pi phase shift on one half of the antenna. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in cross-track direction, we can derive the appropriate elevation angle at any point in the image. Together with the slant range we can calculate the height of the platform above this point using information on the antenna pointing and the platform attitude. This operation, repeated at many locations throughout the image, allows us to build up a topographic map of the height of the aircraft above each location. Inversion of this map, using the precisely determined aircraft altitude and the accurate flight path, leads to the actual topography of the imaged surface. The precise elevation of one point in the image could also be used to convert the height map to a topographic map. In this paper, we present design considerations for a corresponding airborne SAR system in X-Band and give estimates of the error due to system noise and azimuth ambiguities as well as the expected performance and precision in topographic mapping.
Mapping detailed 3D information onto high resolution SAR signatures
NASA Astrophysics Data System (ADS)
Anglberger, H.; Speck, R.
2017-05-01
Due to challenges in the visual interpretation of radar signatures or in the subsequent information extraction, a fusion with other data sources can be beneficial. The most accurate basis for a fusion of any kind of remote sensing data is the mapping of the acquired 2D image space onto the true 3D geometry of the scenery. In the case of radar images this is a challenging task because the coordinate system is based on the measured range which causes ambiguous regions due to layover effects. This paper describes a method that accurately maps the detailed 3D information of a scene to the slantrange-based coordinate system of imaging radars. Due to this mapping all the contributing geometrical parts of one resolution cell can be determined in 3D space. The proposed method is highly efficient, because computationally expensive operations can be directly performed on graphics card hardware. The described approach builds a perfect basis for sophisticated methods to extract data from multiple complimentary sensors like from radar and optical images, especially because true 3D information from whole cities will be available in the near future. The performance of the developed methods will be demonstrated with high resolution radar data acquired by the space-borne SAR-sensor TerraSAR-X.
Empirical wind retrieval model based on SAR spectrum measurements
NASA Astrophysics Data System (ADS)
Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad
The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002
Moving receive beam method and apparatus for synthetic aperture radar
Kare, Jordin T.
2001-01-01
A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.
NASA Astrophysics Data System (ADS)
Loreggia, D.; Tataranni, F.; Trivero, P.; Biamino, W.; Di Matteo, L.
2017-10-01
We present the implementation of a procedure to adapt an Asymmetric Wiener Filtering (AWF) methodology aimed to detect and discard ghost signal due to azimuth ambiguities in SAR images to the case for X-band Cosmo Sky Med (CSK) images in the framework of SEASAFE (Slick Emissions And Ship Automatic Features Extraction) project, developed at the Department of Science and Technology Innovation of the University of Piemonte Orientale, Alessandria, Italy. SAR is a useful tool to daily and nightly monitoring of the sea surface in all weather conditions. SEASAFE project is a software platform developed in IDL language able to process data in C- Land X-band SAR images with enhanced algorithm modules for land masking, sea pollution (oil spills) and ship detection; wind and wave evaluation are also available. In this contest, the need to individuate and discard false alarms is a critical requirement. The azimuth ambiguity is one of the main causes that generate false alarm in the ship detection procedure. Many methods to face with this problem were proposed and presented in recent literature. After a review of different approach to this problem, we describe the procedure to adapt the AWF approach presented in [1,2] to the case of X-band CSK images by implementing a selective blocks approach.
C-band Joint Active/Passive Dual Polarization Sea Ice Detection
NASA Astrophysics Data System (ADS)
Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.
2017-12-01
A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.
NASA Astrophysics Data System (ADS)
Reinisch, E. C.; Ali, S. T.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Feigl, K. L.; Team, P.
2016-12-01
Time-dependent deformation has been observed at Brady Hot Springs using interferometric synthetic aperture radar (InSAR) [Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. Our goal is to evaluate multiple competing hypotheses to explain the observed deformation at Brady. To do so requires statistical tests that account for uncertainty. Graph theory is useful for such an analysis of InSAR data [Reinisch, et al. 2016, http://dx.doi.org/10.1007/s00190-016-0934-5]. In particular, the normalized edge Laplacian matrix calculated from the edge-vertex incidence matrix of the graph of the pair-wise data set represents its correlation and leads to a full data covariance matrix in the weighted least squares problem. This formulation also leads to the covariance matrix of the epoch-wise measurements, representing their relative uncertainties. While the formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, the modulo-2π ambiguity of wrapped phase renders the problem non-linear. The conventional practice is to unwrap InSAR phase before modeling, which can introduce mistakes without increasing the corresponding measurement uncertainty. To address this issue, we are applying Bayesian inference. To build the likelihood, we use three different observables: (a) wrapped phase [e.g., Feigl and Thurber 2009, http://dx.doi.org/10.1111/j.1365-246X.2008.03881.x]; (b) range gradients, as defined by Ali and Feigl [2012, http://dx.doi.org/10.1029/2012GC004112]; and (c) unwrapped phase, i.e. range change in mm, which we validate using GPS data. We apply our method to InSAR data taken over Brady Hot Springs geothermal field in Nevada as part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" (PoroTomo) [ http://geoscience.wisc.edu/feigl/porotomo].
Research on Airborne SAR Imaging Based on Esc Algorithm
NASA Astrophysics Data System (ADS)
Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.
2017-09-01
Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.
Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.
2012-01-01
Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.
GPS and InSAR Observations of Active Mountain Growth Across the Sierra Nevada/Great Basin Transition
NASA Astrophysics Data System (ADS)
Hammond, W. C.; Blewitt, G.; Li, Z.; Kreemer, C. W.; Plag, H.
2010-12-01
Topographic relief across the Sierra Nevada Mountains and Great Basin of the western United States is dominated by mountain ranges and valleys that are the product of active tectonic deformation. The contemporary rate of uplift of the Sierra Nevada via slip on range front faults and/or tilting of the Sierra Nevada/Great Valley microplate (SNGV) has been the subject of controversy. For example, geologic estimates of the age of the modern range topography vary by one order of magnitude, from 3 to 30 million years. With present elevations near 3 km, the more rapid of these implied rates is large enough to be detected by the most precise GPS measurements. We use GPS vertical and horizontal components, and InSAR time series analysis to address these long standing questions about the rates of Sierran uplift. The data are from western U.S. high precision GPS networks including the EarthScope Plate Boundary Observatory, its nucleus networks, the University of Nevada Mobile Array of GPS for Nevada Transtension, and from integrated InSAR+GPS time series analysis of ERS and ENVISAT scenes acquired between 1992 and 2010 from the GeoEarthScope and WinSAR data archives. GPS data are processed using the GIPSY OASIS II software, with ambiguities resolved, ocean tidal loading, latest GMF troposphere model and antenna calibrations applied. InSAR time series analysis results provide enhanced geographic resolution, improving our ability to locate the boundary of SNGV block-like behavior. Vertical velocities from long-running continuous stations in eastern Nevada are very similar to one another, averaging -0.1 mm/yr, with standard deviation of 0.27 mm/yr, placing an upper bound on the uncertainty in vertical rates. We find agreement between the results of InSAR time series analysis aligned to GPS and GPS line of site rates at the level of 0.35 mm/yr, placing an upper bound on the uncertainty of InSAR time series results. Because we seek to infer long-term uplift rates, applicable over millions of years, we correct the geodetic velocity field for postseismic transients from earthquakes that can cause long-wavelength distortions of the GPS velocity field. The signal of viscoelastic relaxation from historic earthquakes in Central Nevada is clearly visible in the data. We remove this transient relaxation by subtracting the predictions from a published model, although the effect on SNGV vertical motion is negligible. There is general agreement among stations on the west slope of the Sierra Nevada, near the central and southern Sierra between latitude 36° and 39°, that the rates are between 0.8 and 1.6 mm/yr upward with respect to eastern Nevada. These rates are in broad agreement with normal slip rates on the range front faults along the eastern edge of the SNGV estimated using block models constrained by horizontal GPS measurements. Thus our results agree with models that call for a Sierra Nevada uplift rate near 1 mm/yr, and a younger Sierra Nevada whose age is on the order of 3 Ma.
Modeling PSInSAR time series without phase unwrapping
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.
Sentinel-1 Mission Overview and Implementation Status
NASA Astrophysics Data System (ADS)
Davidson, M.; Attema, E.; Snoeij, P.; Levrini, G.
2009-04-01
Sentinel-1 is an imaging radar mission at C-band consisting of a constellation of two satellites aimed at providing continuity of all-weather day-and-night supply of imagery for user services. Special emphasis is placed on services identified in ESA's GMES service elements program and on projects funded by the European Union Framework Programmes. Three priorities (fast-track services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - Monitoring sea ice zones and the arctic environment - Surveillance of marine environment - Monitoring land surface motion risks - Mapping of land surfaces: forest, water and soil, agriculture - Mapping in support of humanitarian aid in crisis situations. The Sentinel 1 space segment will be designed and built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. Data products from current and previous ESA missions including ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services. Consequently Sentinel-1 data maintain data quality levels of the Agency‘s previous SAR missions in terms of spatial resolution, sensitivity, accuracy, polarization and wavelength. Nonetheless, the Sentinel-1 synthetic aperture radar (SAR) constellation represents a completely new approach to SAR mission design by ESA in direct response to the operational needs for SAR data expressed under the EU-ESA Global Monitoring for Environment and Security (GMES) programme. The Sentinel-1 constellation is expected to provide near daily coverage over Europe and Canada, global coverage all independent of weather with delivery of radar data within 1 hour of acquisition - all vast improvements with respect to the existing SAR systems. The continuity of C-band SAR data combined with the greatly improved data provision is expected not only to support the existing key operational services but will also support the evolving user community both for operational and remote sensing science applications. The Sentinel-1 satellite carries a Synthetic Aperture Radar (SAR) instrument with four standard operational modes: Strip Map Mode, Interferometric Wide Swath Mode, Extra-wide Swath Mode and Wave Mode. Some of their important characteristics are listed below. MODE ACCESS ANGLE (DEG.) SINGLE LOOK RESOLUTION RANGE X AZIMUTH SWATH WIDTH POLARISATION STRIP MAP 20-45 5 X 5 M > 80 KM HH+HV OR VV+VH INTERFEROMETRIC WIDE SWATH > 25 5 X 20 M > 250 KM HH+HV OR VV+VH EXTRA WIDE SWATH > 20 20 X 40 M > 400 KM HH+HV OR VV+VH WAVE MODE 23 AND 36.5 20 X 5 M > 20 X 20 KM VIGNETTES AT 100 KM INTERVALS HH OR VV FOR ALL MODES RADIOMETRIC ACCURACY (3 Σ) 1 DB NOISE EQUIVALENT SIGMA ZERO -22 DB POINT TARGET AMBIGUITY RATIO -25 DB DISTRIBUTED TARGET AMBIGUITY RATIO -22 DB It is expected that Sentinel-1 be launched in 2011. Once in orbit Sentinel-1 will be operated from two centres on the ground. The Agency‘s facilities in Darmstadt, Germany will command the satellite ensuring its proper functioning along the orbit. The mission exploitation will be managed at the Agency‘s facilities in Frascati, Italy, including the planning of the acquisitions by the SAR instrument according to the mission requirements, the processing of the acquired data and the provision of the resulting products to the users. he presentation will provide an overview of the Sentinel-1 mission, the user requirements driving the mission, the status and characteristics of the technical implementation. The key elements of the mission supporting the evolving needs of the user community both in operational and remote sensing science applications will be highlighted.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-07-20
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Monitoring the Sumatra volcanic arc with InSAR
NASA Astrophysics Data System (ADS)
Chaussard, E.; Hong, S.; Amelung, F.
2009-12-01
The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.
Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco
2016-03-01
The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
SAR correlation technique - An algorithm for processing data with large range walk
NASA Technical Reports Server (NTRS)
Jin, M.; Wu, C.
1983-01-01
This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.; Stone, W.
2017-12-01
We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.
Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter
NASA Technical Reports Server (NTRS)
Wu, C.; Liu, K. Y. (Inventor)
1984-01-01
A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.
NASA Astrophysics Data System (ADS)
Logan, T. A.; Arko, S. A.; Rosen, P. A.
2013-12-01
To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the supposedly 'steadily' changing millisecond (MSEC) timing values. The elevated BER made even a basic linear fit difficult. In addition, the MSEC field often shows a 'stair step' function, assumed to be a spacecraft clock malfunction. To fix these issues, three separate levels of time filtering were applied. After the initial three-pass time filter, a fourth procedure located and removed discontinuities - missing data sections that occurred randomly throughout the data takes - by inserting random valued lines into the effected data file and repeated value lines into the corresponding header file. Finally, a fifth pass through the metadata was required to fix remaining start time anomalies. After the data were filtered, all times were linearly increasing, and all discontinuities filled, images could finally be formed. ASF DAAC utilized a custom version of ROI, the Repeat Orbit Interferometric SAR processor, to focus the data. Special focusing tasks for Seasat included dealing with Doppler ambiguity issues and filtering out 'spikes' in the power spectra. Once these obstacles were overcome via additional pre-processing software developed in house, well-focused SAR imagery was obtained from approximately 80% the ASF DAAC archives. These focused products, packaged in either HDF5 or geotiff formats with XML metadata, are downloadable from ASF DAAC free of charge.
Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.
Shen, Shijian; Nie, Xin; Zhang, Xinggan
2018-02-03
Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.
NASA Astrophysics Data System (ADS)
Wei, Meng
2017-05-01
The interferometric synthetic aperture radar (InSAR) data from the Japan Aerospace Exploration Agency ALOS-2 satellite show possible deformation associated with the 2016 January 6 North Korean nuclear test whereas the European Space Agency Sentinel-1A data are decorrelated. This is the first time that deformation related to a nuclear test has been measured since 1992. Here, I present two interpretations of the observed deformation: First, the deformation can be explained by a triggered landslide on the western slope of Mt Mantap, with a displacement of up to 10 cm across a patch of 1 km2. Second, the observation may be from uplift created by the nuclear explosion. In the second interpretation, the location, depth and cavity size can be estimated from a topography-corrected homogenous half-space model (Mogi). The preferred location of the 2016 January 6 event is 41.2993°N 129.0715°E, with an uncertainty of 100 m. The estimated depth is 420-700 m and the cavity radius is 23-27 m. Based on empirical data and the assumption of granite as the host rock, the yield is estimated to be 11.6-24.4 kilotons of TNT, which is consistent with previous results based on seismic data. With these two interpretations, I demonstrate that InSAR data provide an independent tool to locate and estimate source characteristics of nuclear tests in North Korea. The ambiguity of interpretation is mainly due to the limited InSAR data acquisition. Future frequent data collection by current and upcoming InSAR satellites will allow full use of InSAR for nuclear monitoring and characterization in North Korea and around the world.
Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR
NASA Astrophysics Data System (ADS)
Xu, X.; Sandwell, D. T.
2017-12-01
We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-07-14
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-01-01
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974
NASA Astrophysics Data System (ADS)
Alzeyadi, Ahmed; Yu, Tzuyang
2018-03-01
Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.
Satellite on-board real-time SAR processor prototype
NASA Astrophysics Data System (ADS)
Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François
2017-11-01
A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.
Error Analysis and Validation for Insar Height Measurement Induced by Slant Range
NASA Astrophysics Data System (ADS)
Zhang, X.; Li, T.; Fan, W.; Geng, X.
2018-04-01
InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.
Lim, Byoung-Gyun; Woo, Jea-Choon; Lee, Hee-Young; Kim, Young-Soo
2008-01-01
Synthetic wideband waveforms (SWW) combine a stepped frequency CW waveform and a chirp signal waveform to achieve high range resolution without requiring a large bandwidth or the consequent very high sampling rate. If an efficient algorithm like the range-Doppler algorithm (RDA) is used to acquire the SAR images for synthetic wideband signals, errors occur due to approximations, so the images may not show the best possible result. This paper proposes a modified subpulse SAR processing algorithm for synthetic wideband signals which is based on RDA. An experiment with an automobile-based SAR system showed that the proposed algorithm is quite accurate with a considerable improvement in resolution and quality of the obtained SAR image. PMID:27873984
Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar
Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM
2008-06-24
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Chirp Scaling Algorithms for SAR Processing
NASA Technical Reports Server (NTRS)
Jin, M.; Cheng, T.; Chen, M.
1993-01-01
The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-08-17
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Environmental Impact Assessment of Rosia Jiu Opencast Area Using AN Integrated SAR Analysis
NASA Astrophysics Data System (ADS)
Poenaru, V. D.; Negula, I. F. Dana; Badea, A.; Cuculici, R.
2016-06-01
The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR). The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.
Zheng, Yu; Yang, Yang; Chen, Wu
2017-06-25
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.
2004-03-03
JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Multitemporal Observations of Sugarcane by TerraSAR-X Images
Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic
2010-01-01
The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases about 5dB for images acquired some days after the cut and 3 dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1 dB) between harvested fields and mature canes for sugarcane harvested since three months or more. PMID:22163387
Hybrid space-airborne bistatic SAR geometric resolutions
NASA Astrophysics Data System (ADS)
Moccia, Antonio; Renga, Alfredo
2009-09-01
Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.
Mume, Eskender; Asad, Ali; Di Bartolo, Nadine M; Kong, Linggen; Smith, Christopher; Sargeson, Alan M; Price, Roger; Smith, Suzanne V
2013-10-28
A novel hexa aza cage, N(1)-(4-isothiocyanatobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (SarAr-NCS) was synthesized in good yield and characterized by (1)H NMR and electrospray mass spectrometry. A new method for the synthesis of the related N(1)-(4-carboxybenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (AmBaSar) using the p-carboxybenzaldehyde is reported. The complexation of Cu(2+), Co(2+) and Zn(2+) by the two ligands over a range of pHs was found to be similar to the parent derivative SarAr. SarAr-NCS was conjugated to both silica particles (≈90 nm diam.) and the model B72.3 murine antibody. The SarAr-NCSN-silica particles were radiolabeled with Cu(2+) doped (64)Cu and the number of ligands conjugated was calculated to be an average of 7020 ligands per particle. Conjugation of SarAr-NCS to the B72.3 antibody was optimized over a range of conditions. The SarAr-NCSN-B72.3 conjugate was stored in buffer and as a lyophilized powder at 4 °C over 38 days. Its radiolabeling efficiency, stability and immunoreactivity were maintained. The development of a high yielding synthesis of SarAr-NCS should provide an entry point for a wide range of Cu and Zn radiometal PET imaging agents and potentially radiotherapeutic agents with (67)Cu.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs
Zheng, Yu; Yang, Yang; Chen, Wu
2017-01-01
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830
2004-03-03
JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Combined DEM Extration Method from StereoSAR and InSAR
NASA Astrophysics Data System (ADS)
Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.
2015-06-01
A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.
Ambiguous Loss in a Non-Western Context: Families of the Disappeared in Postconflict Nepal
ERIC Educational Resources Information Center
Robins, Simon
2010-01-01
Ambiguous loss has become a standard theory for understanding the impact of situations where the presence of a family member is subject to ambiguity. A number of studies of ambiguous loss have been made in a range of situations of ambiguity, but almost all have been firmly located within a Western cultural context. Here, ambiguous loss is explored…
Satellite SAR geocoding with refined RPC model
NASA Astrophysics Data System (ADS)
Zhang, Lu; Balz, Timo; Liao, Mingsheng
2012-04-01
Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.
An Accurate Co-registration Method for Airborne Repeat-pass InSAR
NASA Astrophysics Data System (ADS)
Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.
2017-10-01
Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.
Time domain SAR raw data simulation using CST and image focusing of 3D objects
NASA Astrophysics Data System (ADS)
Saeed, Adnan; Hellwich, Olaf
2017-10-01
This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.
Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing
2017-01-09
Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.
Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing
2017-01-01
Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367
Integer aperture ambiguity resolution based on difference test
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-07-01
Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1.
InSAR time series analysis of ALOS-2 ScanSAR data and its implications for NISAR
NASA Astrophysics Data System (ADS)
Liang, C.; Liu, Z.; Fielding, E. J.; Huang, M. H.; Burgmann, R.
2017-12-01
The JAXA's ALOS-2 mission was launched on May 24, 2014. It operates at L-band and can acquire data in multiple modes. ScanSAR is the main operational mode and has a 350 km swath, somewhat larger than the 250 km swath of the SweepSAR mode planned for the NASA-ISRO SAR (NISAR) mission. ALOS-2 has been acquiring a wealth of L-band InSAR data. These data are of particular value in areas of dense vegetation and high relief. The InSAR technical development for ALOS-2 also enables the preparation for the upcoming NISAR mission. We have been developing advanced InSAR processing techniques for ALOS-2 over the past two years. Here, we report the important issues for doing InSAR time series analysis using ALOS-2 ScanSAR data. First, we present ionospheric correction techniques for both regular ScanSAR InSAR and MAI (multiple aperture InSAR) ScanSAR InSAR. We demonstrate the large-scale ionospheric signals in the ScanSAR interferograms. They can be well mitigated by the correction techniques. Second, based on our technical development of burst-by-burst InSAR processing for ALOS-2 ScanSAR data, we find that the azimuth Frequency Modulation (FM) rate error is an important issue not only for MAI, but also for regular InSAR time series analysis. We identify phase errors caused by azimuth FM rate errors during the focusing process of ALOS-2 product. The consequence is mostly a range ramp in the InSAR time series result. This error exists in all of the time series results we have processed. We present the correction techniques for this error following a theoretical analysis. After corrections, we present high quality ALOS-2 ScanSAR InSAR time series results in a number of areas. The development for ALOS-2 can provide important implications for NISAR mission. For example, we find that in most cases the relative azimuth shift caused by ionosphere can be as large as 4 m in a large area imaged by ScanSAR. This azimuth shift is half of the 8 m azimuth resolution of the SweepSAR mode planned for NISAR, which implies that a good coregistration strategy for NISAR's SweepSAR mode is geometrical coregistration followed by MAI or spectral diversity analysis. Besides, our development also provides implications for the processing and system parameter requirements of NISAR, such as the accuracy requirement of azimuth FM rate and range timing.
A VLSI implementation for synthetic aperture radar image processing
NASA Technical Reports Server (NTRS)
Premkumar, A.; Purviance, J.
1990-01-01
A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.
Testing & Evaluation of Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions
DOT National Transportation Integrated Search
2012-01-01
This report summarizes activities in support of the DOT contract on Testing & Evaluating Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions & Improve Visual Inspection Procedures. The work of this project was performed by Dr...
AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-185 AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:04:24 UNCLASSIFIED AMRAAM December 2015 SAR March 23, 2016 16:04...2015 SAR March 23, 2016 16:04:24 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager POE
Advanced digital SAR processing study
NASA Technical Reports Server (NTRS)
Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.
1982-01-01
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.
NASA Administrator Sean O'Keefe speaking at the AirSAR 2004 Mesoamerica hangar naming ceremony
2004-03-03
NASA Administrator Sean O'Keefe speaking at the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign
2004-03-03
David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Information extraction from dynamic PS-InSAR time series using machine learning
NASA Astrophysics Data System (ADS)
van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.
2017-12-01
Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account, but is time consuming. Therefore, we successively apply our machine learning approach with the hypothesis testing approach in order to benefit from both the reduced computation time of the machine learning approach as from the robust quality metrics of hypothesis testing. We acknowledge support from NASA AISTNNX15AG84G (PI V. Pankratius)
2004-03-03
Personnel viewing AirSAR hardware while touring the outside of NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign, L-R: Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); NASA Administrator Sean O'Keefe; Dr. Gahssem Asrar, NASA Associate Administrator for Earth Science Enterprises; JPL scientist Bruce Chapman; and Craig Dobson, NASA Program Manager for AirSAR. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
NASA Astrophysics Data System (ADS)
Zhong, Hua; Zhang, Song; Hu, Jian; Sun, Minhong
2017-12-01
This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with high-squint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuth-geometric variance. To circumvent these issues, an enhanced azimuth nonlinear chirp scaling (NLCS) algorithm based on an ellipse model is investigated in this paper. In the range processing, a method combining deramp operation and keystone transform (KT) is adopted to remove linear RCM completely and mitigate range-azimuth cross-coupling. In the azimuth focusing, an ellipse model is established to analyze and depict the characteristic of azimuth-variant Doppler phase. Based on the new model, an enhanced azimuth NLCS algorithm is derived to focus one-stationary BiSAR data. Simulating results exhibited at the end of this paper validate the effectiveness of the proposed algorithm.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057
Further SEASAT SAR coastal ocean wave analysis
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.
1981-01-01
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.
Lee, Kyoungyeul; Lee, Minho; Kim, Dongsup
2017-12-28
The identification of target molecules is important for understanding the mechanism of "target deconvolution" in phenotypic screening and "polypharmacology" of drugs. Because conventional methods of identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs have advantages such as low computational cost and high feasibility; however, the data dependency in the SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets. We developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random forest algorithm. The performance of each target model was tested by employing the ROC curve and the mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess the performance of target ranking. A benchmark model using an optimized sampling method and parameters was examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query ligands available publicly at http://rfqsar.kaist.ac.kr . The target models that we built can be used for both predicting the activity of ligands toward each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are additionally fitted to the probability so that users can estimate how likely a ligand-target interaction is active. The user interface of our web site is user friendly and intuitive, offering useful information and cross references.
Mathematical Problems in Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
Klein, Jens
2010-10-01
This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.
Nozaki, Hisayoshi; Yang, Yi; Maruyama, Shinichiro; Suzaki, Toshinobu
2012-01-01
Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.
C- and L-band space-borne SAR incidence angle normalization for efficient Arctic sea ice monitoring
NASA Astrophysics Data System (ADS)
Mahmud, M. S.; Geldsetzer, T.; Howell, S.; Yackel, J.; Nandan, V.
2017-12-01
C-band Synthetic Aperture Radar (SAR) has been widely used effectively for operational sea ice monitoring, owing to its greater seperability between snow-covered first-year (FYI) and multi-year (MYI) ice types, during winter. However, during the melt season, C-band SAR backscatter contrast reduces between FYI and MYI. To overcome the limitations of C-band, several studies have recommended utlizing L-band SAR, as it has the potential to significantly improve sea ice classification. Given its longer wavelength, L-band can efficiently separate FYI and MYI types, especially during melt season. Therefore, the combination of C- and L-band SAR is an optimal solution for efficient seasonal sea ice monitoring. As SAR acquires images over a range of incidence angles from near-range to far-range, SAR backscatter varies substantially. To compensate this variation in SAR backscatter, incidence angle dependency of C- and L-band SAR backscatter for different FYI and MYI types is crucial to quantify, which is the objective of this study. Time-series SAR imagery from C-band RADARSAT-2 and L-band ALOS PALSAR during winter months of 2010 across 60 sites over the Canadian Arctic was acquired. Utilizing 15 images for each sites during February-March for both C- and L-band SAR, incidence angle dependency was calculated. Our study reveals that L- and C-band backscatter from FYI and MYI decreases with increasing incidence angle. The mean incidence angle dependency for FYI and MYI were estimated to be -0.21 dB/1° and -0.30 dB/1° respectively from L-band SAR, and -0.22 dB/1° and -0.16 dB/1° from C-band SAR, respectively. While the incidence angle dependency for FYI was found to be similar in both frequencies, it doubled in case of MYI from L-band, compared to C-band. After applying the incidence angle normalization method to both C- and L-band SAR images, preliminary results indicate improved sea ice type seperability between FYI and MYI types, with substantially lower number of mixed pixels; thereby offering more reliable sea ice classification accuracies. Research findings from this study can be utilized to improve seasonal sea ice classification with higher accuracy for operational Arctic sea ice monitoring, especially in regions like the Canadian Arctic, where MYI detection is crucial for safer ship navigations.
Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong
2018-01-31
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.
Zhou, Rui; Hu, Yuxin; Qi, Yaolong
2018-01-01
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059
NASA Astrophysics Data System (ADS)
Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.
2014-12-01
This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).
Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas
NASA Technical Reports Server (NTRS)
Holt, Benjamin; Cunningham, Glenn; Kwok, Ron
1993-01-01
A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.
Bistatic synthetic aperture radar
NASA Astrophysics Data System (ADS)
Yates, Gillian
Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.
NASA Astrophysics Data System (ADS)
Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang
2017-07-01
Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.
Ambiguity of non-systematic chemical identifiers within and between small-molecule databases.
Akhondi, Saber A; Muresan, Sorel; Williams, Antony J; Kors, Jan A
2015-01-01
A wide range of chemical compound databases are currently available for pharmaceutical research. To retrieve compound information, including structures, researchers can query these chemical databases using non-systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical databases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic identifiers. The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed for non-systematic identifiers that are shared between databases (17.7-60.2 %, median of 40.3 %). Removing stereochemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percentage points). Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.
Advanced Antenna Design for NASA's EcoSAR Instrument
NASA Technical Reports Server (NTRS)
Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.
2016-01-01
Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.
Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.
Chen, Xin; Liu, Zhen; Wei, Xizhang
2017-05-11
Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.
MM wave SAR sensor design: Concept for an airborne low level reconnaissance system
NASA Astrophysics Data System (ADS)
Boesswetter, C.
1986-07-01
The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.
A fast, programmable hardware architecture for spaceborne SAR processing
NASA Technical Reports Server (NTRS)
Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.
1983-01-01
The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.
Crop identification of SAR data using digital textural analysis
NASA Technical Reports Server (NTRS)
Nuesch, D. R.
1983-01-01
After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.
Laser System for Precise, Unambiguous Range Measurements
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, Oliver
2005-01-01
The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used
NASA Astrophysics Data System (ADS)
Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew
2016-08-01
Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.
SAR antenna calibration techniques
NASA Technical Reports Server (NTRS)
Carver, K. R.; Newell, A. C.
1978-01-01
Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.
2004-03-03
NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
Airborne Science personnel Walter Klein and David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
This is a photograph from the left side of the aircraft as NASA's DC-8 does an AirSAR 2004 research "line" over Honduras. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
Mr. John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe at the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
AirSAR 2004 Mesoamerica plaque unveiling by NASA Administrator Sean O'Keefe and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT). AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
2004-03-03
NASA Administrator Sean O'Keefe making a presentation to Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT), during the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Acousto-optic time- and space-integrating spotlight-mode SAR processor
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.
1993-09-01
The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.
Characterizing and estimating noise in InSAR and InSAR time series with MODIS
Barnhart, William D.; Lohman, Rowena B.
2013-01-01
InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.
Development of Animal Models Against Emerging Coronaviruses: From SARS to MERS coronavirus
Sutton, Troy C; Subbarao, Kanta
2016-01-01
Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. PMID:25791336
Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.
Sutton, Troy C; Subbarao, Kanta
2015-05-01
Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Premkumar, A. B.; Purviance, J. E.
1990-01-01
A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
The physical basis for estimating wave energy spectra from SAR imagery
NASA Technical Reports Server (NTRS)
Lyzenga, David R.
1987-01-01
Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.
Estimating Elevation Angles From SAR Crosstalk
NASA Technical Reports Server (NTRS)
Freeman, Anthony
1994-01-01
Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.
Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR
Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao
2016-01-01
The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168
Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting
2015-08-01
Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Processing techniques for software based SAR processors
NASA Technical Reports Server (NTRS)
Leung, K.; Wu, C.
1983-01-01
Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.
NASA/JPL Aircraft SAR Workshop Proceedings
NASA Technical Reports Server (NTRS)
Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)
1985-01-01
Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.
Department of Defense In-House RDT&E Activities. FY2000 Management Analysis Report
2000-01-01
Blossom Point, Maryland * White Sands Missile Range (WSMR), WSMR, New Mexico . They are presented in this publication in that location breakout. ADELPHI... MEXICO ULTRA WIDEBAND (UWB) SYNTHETIC-APERTURE RADAR (SAR) TESTBED A mobile UWB SAR testbed, featuring a 150-ft measurement system, is used to...Missile Range (WSMR) in New Mexico , this range performs assembly and live-fire testing of surface-to-air, surface-to-surface weapons, and research rockets
VIP tour of NASA DFRC's DC-8 during the AirSAR 2004 Mesoamerica campaign
2004-03-03
VIP tour of NASA DFRC's DC-8 airborne laboratory during the AirSAR 2004 Mesoamerica campaign given by Craig Dobson, NASA Program Manager for AirSAR, L-R: Dr. Sonia Marta Mora, President of the Costa Rican National Rector’s Council; NASA Administrator Sean O'Keefe; Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); Mr. John Danilovich, US Ambassador to Costa Rica; and Dobson. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Dealing With Uncertainty: Testing Risk- and Ambiguity-Attitude Across Adolescence.
Blankenstein, Neeltje E; Crone, Eveline A; van den Bos, Wouter; van Duijvenvoorde, Anna C K
2016-01-01
Attitudes to risk (known probabilities) and attitudes to ambiguity (unknown probabilities) are separate constructs that influence decision making, but their development across adolescence remains elusive. We administered a choice task to a wide adolescent age-range (N = 157, 10-25 years) to disentangle risk- and ambiguity-attitudes using a model-based approach. Additionally, this task was played in a social context, presenting choices from a high risk-taking peer. We observed age-related changes in ambiguity-attitude, but not risk-attitude. Also, ambiguity-aversion was negatively related to real-life risk taking. Finally, the social context influenced only risk-attitudes. These results highlight the importance of disentangling risk- and ambiguity-attitudes in adolescent risk taking.
Computerized ionospheric tomography based on geosynchronous SAR
NASA Astrophysics Data System (ADS)
Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng
2017-02-01
Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.
A learning tool for optical and microwave satellite image processing and analysis
NASA Astrophysics Data System (ADS)
Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.
2016-04-01
This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.
Ambiguity Within Nursing Practice: An Evolutionary Concept Analysis.
McMahon, Michelle A; Dluhy, Nancy M
2017-02-01
To analyze the concept of ambiguity in a nursing context. Ambiguity is inherent within nursing practice. As health care becomes increasingly complex, nurses must continue to successfully deal with greater amounts of clinical ambiguity. Although ambiguity is discussed in nursing, minimal concept refinement exists to capture the contextual intricacies from a nursing lens. Nurse perception of an ambiguous clinical event, in combination with nurse tolerance level for ambiguity, can impact nurse response. Yet, little is known about what constitutes ambiguity within nursing practice (AWNP). Rodgers evolutionary method was used to explore AWNP, with emphasis on nurse thinking during ambiguous clinical situations. Literature searches across multiple databases yielded 38 articles for analysis. Attributes of AWNP include (a) variations in cues/available information, (b) multiple interpretations, (c) novel/nonroutine presentations, and (d) unpredictable. Antecedents include (a) a context-specific, clinical situation with ambiguous features needing evaluation and (b) an individual to sense a knowledge gap or perceive ambiguity. Consequences include ranges of (a) emotional, (b) behavioral, and (c) cognitive clinician responses. Preliminary findings support AWNP as a distinct concept in which ambiguity perceived by the nurse likely affects judgment, decision making, and clinical interventions. AWNP is a clinically relevant concept requiring continued development.
Chen, Bingxin; Wang, Jiamin; Qi, Hongxin; Zhang, Jie; Chen, Shude; Wang, Xianghui
2017-03-01
As electromagnetic exposure experiments can only be performed on small animals, usually rats, research on the characteristics of specific absorption rate (SAR) distribution in the rat has received increasing interest. A series of calculations, which simulated the SAR in a male rat anatomical model exposed to electromagnetic plane waves ranging from 0.05 to 5 GHz with different incidence and polarization, were conducted. The whole-body-averaged SAR (SARwb) and the tissue-averaged SAR (SARavg) in 20 major tissues were determined. Results revealed that incidence has great impact on SAR in the rat at higher frequencies owing to the skin effect and the effect on SARavg in tissues is much more apparent than that on SARwb; while polarization plays an important role under lower frequencies. Not only the incidence, but also the polarization in the rat keeps changing when the rat is in free movement. Thus, this article discussed a convenient way to obtain relatively accurate SARwb in a free-moving rat.
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery
Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin
2016-01-01
With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902
Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman
2018-04-01
Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.
Interferometric synthetic aperture radar (InSAR)—its past, present and future
Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.
2007-01-01
Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.
Multisensor analysis of hydrologic features with emphasis on the Seasat SAR
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.
1981-01-01
Synthetic aperture radar (SAR) imagery of the Wind River Range area in Wyoming is compared with visible and near-infrared imagery of the same area. Data from the Seasat L-Band SAR and an aircraft X-Band SAR are compared with Landsat Return Beam Vidicon (RBV) visible data and near-infrared aerial photography and topographic maps of the same area. It is noted that visible and near-infrared data provide more information than the SAR data when conditions are the most favorable. The SAR penetrates clouds and snow, however, and data can be acquired day or night. Drainage density detail is good on SAR imagery because individual streams show up well owing to riparian vegetation; this causes higher radar reflections which result from the 'rough' surface which vegetation creates. In the winter image, the X-Band radar data show high returns because of cracks on the lake ice surfaces. High returns can also be seen in the L-Band SAR imagery of the lakes due to ripples on the surface induced by wind. It is concluded that the use of multispectral data would optimize analysis of hydrologic features.
Pseudo-color coding method for high-dynamic single-polarization SAR images
NASA Astrophysics Data System (ADS)
Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi
2018-04-01
A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.
2004-03-03
Dr. Tom Mace, NASA DFRC Director of Airborne Sciences, greets NASA Administrator Sean O'Keefe as he enters the DC-8 aircraft during a stop-off on the AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.
Interferometric synthetic aperture radar: Building tomorrow's tools today
Lu, Zhong
2006-01-01
A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.
NASA Astrophysics Data System (ADS)
Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.
2018-04-01
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.
Biweekly Maps of Wind Stress for the North Pacific from the ERS-1 Scatterometer
NASA Technical Reports Server (NTRS)
1997-01-01
The European Remote-sensing Satellite (ERS-1) was launched in July 1991 and contained several instruments for observing the Earth's ocean including a wind scatterometer. The scatterometer measurements were processed by the European Space Agency (ESA) and the Jet Propulsion Laboratory (JPL). JPL reprocessed (Freilich and Dunbar, 1992) the ERS-1 backscatter measurements to produced a 'value added' data set that contained the ESA wind vector as well as a set of up to four ambiguities. These ambiguities were further processed using a maximum-likelihood estimation (MLE) and a median filter to produce a 'selected vector.' This report describes a technique developed to produce time-averaged wind field estimates with their expected errors using only scatterometer wind vectors. The processing described in this report involved extracting regions of interest from the data tapes, checking the quality and creating the wind field estimate. This analysis also includes the derivation of biweekly average wind vectors over the North Pacific Ocean at a resolution of 0.50 x 0.50. This was done with an optimal average algorithm temporally and an over-determined biharmonic spline spatially. There have been other attempts at creating gridded wind files from ERS-1 winds, e.g., kriging techniques (Bentamy et al., 1996) and successive corrections schemes (Tang and Liu, 1996). There are several inherent problems with the ERS-1 scatterometer. Since this is a multidisciplinary mission, the satellite is flown in different orbits optimized for each phase of the mission. The scatterometer also shares several sub-systems with the Synthetic Aperture Radar (SAR) and cannot be operated while the SAR is in operation. The scatterometer is also a single-sided instrument and only measures backscatter along the right side of the satellite. The processing described here generates biweekly wind maps during the wktwo years analysis period regardless of the satellite orbit or missing data.
Schaber, G.G.
1999-01-01
Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).
Receptor recognition and cross-species infections of SARS coronavirus
Li, Fang
2013-01-01
Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:23994189
Receptor recognition and cross-species infections of SARS coronavirus.
Li, Fang
2013-10-01
Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Condition assessment of corroded steel rebar in free space using synthetic aperture radar images
NASA Astrophysics Data System (ADS)
Ingemi, Christopher M.; Owusu Twumasi, Jones; Litt, Swinderjit; Yu, Tzuyang
2017-04-01
Synthetic aperture radar (SAR) imaging of construction materials offers civil engineers an opportunity to better assess the condition of aging civil infrastructures such as reinforced concrete (RC) structures. Corrosion of steel rebar in RC structures is a major problem responsible for their premature failure and unexpected collapse. In this paper, SAR imaging is applied to the quantitative assessment of corroded steel rebar in free space as the first step toward the use of SAR imaging for subsurface sensing of aging RC structures. A 10 GHz stripmap SAR system was used inside an anechoic chamber. The bandwidth of the radar system was 1.5 GHz. Steel rebar specimens were artificially corroded to different levels by regularly applying a mist of 5% NaCl solution for different durations of time in order to simulate the condition of natural corrosion. Two sizes (No. 3 and No. 4) of steel rebar were used in this research. Different orientations of steel rebar were considered. Corrosion level was determined by measuring the mass loss of corroded steel rebar specimens. From our results, feasibility of SAR images for the condition assessment of corroded steel rebar was experimentally demonstrated. It was found that the presence of surface rust on corroded steel rebar reduces the amplitude in SAR images. The SAR image of corroded steel rebar also exhibited a distribution of SAR amplitudes different from the one of intact steel rebar. In addition, it was also found that there is an optimal range for the condition assessment of corroded steel rebar in free space. In our experiment, the optimal range was determined to be 30.4 cm.
NASA Astrophysics Data System (ADS)
Lohman, R. B.; Barnhart, W. D.
2011-12-01
We present interferometric synthetic aperture radar (InSAR) time series maps that span the eastern Zagros (Fars Arc) collisional belt and western Makran accretionary prism of Southern Iran. Given the upcoming availability of large volumes of SAR data from new platforms, such as Sentinel 1 and potentially DESDynI, we explore computationally efficient approaches for extracting deformation time series when the signal of interest is small compared to the level of noise in individual interferograms. We use 12 descending and 2 ascending multi-frame (2-4 frames) Envisat tracks and 2 ascending ALOS tracks spanning 2003-2010 and 2006-2010. We implement a linear inversion, similar to the Small Baseline Subset (SBaS) technique, to derive surface displacements at individual acquisition dates from trees of interferograms with perpendicular baselines less than 350m for Envisat and 1500m for ALOS pairs. This spatially extensive dataset allows us to investigate several attributes of interferometry that vary spatially and temporally over large distances, including changes in phase coherence relative to elevation and relief as well as land use. Through synthetic tests and observed data, we explore various sources of potential error in calculation of time series, including variable coherence of pixels between interferograms in a single track, ambiguities in phase unwrapping, and orbital ramp estimation over scenes with variable correlated noise structure. We present examples of detected signals with both temporally variable characteristics and small magnitudes, including surface/subsurface salt deformation, aseismic deformation across Minab-Zendan-Palami strike-slip zone, and subsidence due to hydrocarbon extraction.
Schoth, Daniel E; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli , and ambiguous intersected with the terms interpretation and bias * . Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed.
Geodetic imaging of tectonic deformation with InSAR
NASA Astrophysics Data System (ADS)
Fattahi, Heresh
Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M<7) similar to what has been recorded in last 100 years are expected.
Zaer, Hamed; Rasmussen, Mikkel Mylius; Zepke, Franko; Bodin, Charlotte; Domurath, Burkhard; Kutzenberger, Johannes
2018-05-10
Spinal cord injury (SCI) is a highly devastating injury with a variety of complications; among them are neurogenic bladder, bowel, and sexual dysfunction. We aimed to evaluate the effect of sacral anterior root stimulation with sacral deafferentation (SARS-SDAF) on neurogenic bladder and sexual dysfunction in a large well-defined spinal cord injury cohort. In the manner of cross-sectional study, subjects undergone SARS-SDAF between September 1986 and July 2011 answered a questionnaire concerning conditions before and after surgery in the department of Neuro-Urology, Bad Wildungen, Germany. In total 287 of 587 subjects were analyzed. Median age was 49 years (range 19-80), median time from SCI to surgery was 10 years (range 0-49), and from surgery to follow-up 13 years (range 1-25). Of the analyzed subjects, 100% of both gender used SARS for bladder emptying. On the visual analogue scale (VAS) ranging from 0 to 10 (best), satisfaction with SARS-SDAF was 10 concerning bladder emptying, however 5 and 8 regarding sexual performance, for female and male users, respectively. Baseline and follow-up comparison showed a decline in self-intermittent catheterization (p < 0.0001), partial catheterization by attendant (p = 0.0125), complete catheterization and suprapubic catheterization (p < 0.0001), transurethral catheterization (p < 0.0011), and fewer cases of involuntary urine leakage (p < 0.0001). The SARS-SDAF is a beneficial multi-potential treatment method with simultaneous positive effect on multi-organ dysfunction among SCI subjects.
Lee, W M; Gelvich, E A; van der Baan, P; Mazokhin, V N; van Rhoon, G C
2004-09-01
The electrical performance of the CFMA-12 operating at 433 MHz is assessed under laboratory conditions using a RF network analyser. From measurements of the scattering parameters of the CFMA-12 on both a multi-layered muscle- and fat/muscle-equivalent phantom, the optimal water bolus thickness, at which the transfer of the energy to the phantom configuration is maximal, is determined to be approximately 1 cm. The SAR distribution of the CFMA-12 in a multi-layered muscle-equivalent phantom is characterized using Schottky diode sheets and a TVS-600 IR camera. From the SAR measurements using the Schottky diode sheets it is shown that the contribution of the E(x) component to the SAR (SAR(x)) is maximal 7% of the contribution of the E(y)component to the SAR (SAR(y)) at different layers in both phantom configurations. The complete SAR distribution (SAR(tot)) at different depths is measured using the power pulse technique. From these measurements, it can be seen that SAR(y)at a depth of 0 cm in the muscle-equivalent phantom represents up to 80% of SAR(tot). At 1 and 2 cm depth, SAR(y) is up to 95% of SAR(tot). Therefore, in homogeneous muscle-equivalent phantoms, E(y) is the largest E-field component and measurement of SAR(y) distribution is sufficient to characterize SAR-steering performance of the CFMA-12. SAR steering measurements at 1 cm depth in the muscle-equivalent phantom show that the SAR maximum varies by 40% (1 SD) around the average value of 38.8 W kg(-1) (range 10-65 W kg(-1)) between single antenna elements. The effective fieldsize (E(50)) varies by 14% (1 SD) around the average value of 19.1 cm(2).
NASA Technical Reports Server (NTRS)
Schmullius, C.; Nithack, J.
1992-01-01
On July 12, the MAC Europe '91 (Multi-Sensor Airborne Campaign) took place over test site Oberpfaffenhofen. The DLR Institute of Radio-Frequency Technology participated with its C-VV, X-VV, and X-HH Experimental Synthetic Aperture Radar (E-SAR). The high resolution E-SAR images with a pixel size between 1 and 2 m and the polarimetric AIRSAR images were analyzed. Using both sensors in combination is a unique opportunity to evaluate SAR images in a frequency range from P- to X-band and to investigate polarimetric information.
VIP’s onboard NASA's DC-8 aircraft during the AirSAR 2004 Mesoamerica campaign
2004-03-03
VIP’s onboard NASA's DC-8 aircraft during the AirSAR 2004 Mesoamerica campaign, L-R: Mr. John Danilovich, US Ambassador to Costa Rica; Dr. Gahssem Asrar, NASA Associate Administrator for Earth Science Enterprises; Dr. Sonia Marta Mora, President of the Costa Rican National Rector’s Council; and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT). AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.
2000-01-01
Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.
NASA Technical Reports Server (NTRS)
Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle
2013-01-01
UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.
Wang, Li; Bao, Bo-Bo; Song, Guo-Qing; Chen, Cheng; Zhang, Xu-Meng; Lu, Wei; Wang, Zefang; Cai, Yan; Li, Shuang; Fu, Sheng; Song, Fu-Hang; Yang, Haitao; Wang, Jian-Guo
2017-09-08
The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (M pro ) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV M pro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV M pro . These novel compounds displayed excellent IC 50 data in the range of 0.516-5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerstroem, Sara; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Solna; Gunalan, Vithiagaran
Nitric oxide is an important molecule playing a key role in a broad range of biological process such as neurotransmission, vasodilatation and immune responses. While the anti-microbiological properties of nitric oxide-derived reactive nitrogen intermediates (RNI) such as peroxynitrite, are known, the mechanism of these effects are as yet poorly studied. Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) belongs to the family Coronaviridae, was first identified during 2002-2003. Mortality in SARS patients ranges from between 6 to 55%. We have previously shown that nitric oxide inhibits the replication cycle of SARS-CoV in vitro by an unknown mechanism. In this study, we havemore » further investigated the mechanism of the inhibition process of nitric oxide against SARS-CoV. We found that peroxynitrite, an intermediate product of nitric oxide in solution formed by the reaction of NO with superoxide, has no effect on the replication cycle of SARS-CoV, suggesting that the inhibition is either directly effected by NO or a derivative other than peroxynitrite. Most interestingly, we found that NO inhibits the replication of SARS-CoV by two distinct mechanisms. Firstly, NO or its derivatives cause a reduction in the palmitoylation of nascently expressed spike (S) protein which affects the fusion between the S protein and its cognate receptor, angiotensin converting enzyme 2. Secondly, NO or its derivatives cause a reduction in viral RNA production in the early steps of viral replication, and this could possibly be due to an effect on one or both of the cysteine proteases encoded in Orf1a of SARS-CoV.« less
Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.
2002-07-01
A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-02-26
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method.
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-01-01
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method. PMID:26927117
NASA Astrophysics Data System (ADS)
Cong, Xiaoying; Balss, Ulrich; Eineder, Michael
2015-04-01
The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-11-07
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
Ice/water Classification of Sentinel-1 Images
NASA Astrophysics Data System (ADS)
Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan
2015-04-01
Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification were revealed; * the best set of parameters including the window size, number of levels of quantization of sigma0 values and co-occurence distance was found; * a support vector machine (SVM) was trained on results of visual classification of 30 Sentinel-1 images. Despite the general high accuracy of the neural network (95% of true positive classification) problems with classification of young newly formed ice and rough water arise due to the similar average backscatter and texture. Other methods of smoothing and computation of texture characteristics (e.g. computation of GLCM from a variable size window) is assessed. The developed scheme will be utilized in NRT processing of Sentinel-1 data at NERSC within the MyOcean2 project.
Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Curlander, John C.
1991-01-01
Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.
The Grand Banks ERS-1 SAR wave spectra validation experiment
NASA Technical Reports Server (NTRS)
Vachon, P. W.; Dobson, F. W.; Smith, S. D.; Anderson, R. J.; Buckley, J. R.; Allingham, M.; Vandemark, D.; Walsh, E. J.; Khandekar, M.; Lalbeharry, R.
1993-01-01
As part of the ERS-1 validation program, the ERS-1 Synthetic Aperture Radar (SAR) wave spectra validation experiment was carried out over the Grand Banks of Newfoundland (Canada) in Nov. 1991. The principal objective of the experiment was to obtain complete sets of wind and wave data from a variety of calibrated instruments to validate SAR measurements of ocean wave spectra. The field program activities are described and the rather complex wind and wave conditions which were observed are summarized. Spectral comparisons with ERS-1 SAR image spectra are provided. The ERS-1 SAR is shown to have measured swell and range traveling wind seas, but did not measure azimuth traveling wind seas at any time during the experiment. Results of velocity bunching forward mapping and new measurements of the relationship between wind stress and sea state are also shown.
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.
2016-12-01
Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.
Schoth, Daniel E.; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli, and ambiguous intersected with the terms interpretation and bias*. Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed. PMID:28232813
Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry
NASA Astrophysics Data System (ADS)
Zhang, L.; Duan, B.; Zou, B.
2017-09-01
The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.
Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.
2004-01-01
The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.
Modified Polar-Format Software for Processing SAR Data
NASA Technical Reports Server (NTRS)
Chen, Curtis
2003-01-01
HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.
Operational shoreline mapping with high spatial resolution radar and geographic processing
Rangoonwala, Amina; Jones, Cathleen E; Chi, Zhaohui; Ramsey, Elijah W.
2017-01-01
A comprehensive mapping technology was developed utilizing standard image processing and available GIS procedures to automate shoreline identification and mapping from 2 m synthetic aperture radar (SAR) HH amplitude data. The development used four NASA Uninhabited Aerial Vehicle SAR (UAVSAR) data collections between summer 2009 and 2012 and a fall 2012 collection of wetlands dominantly fronted by vegetated shorelines along the Mississippi River Delta that are beset by severe storms, toxic releases, and relative sea-level rise. In comparison to shorelines interpreted from 0.3 m and 1 m orthophotography, the automated GIS 10 m alongshore sampling found SAR shoreline mapping accuracy to be ±2 m, well within the lower range of reported shoreline mapping accuracies. The high comparability was obtained even though water levels differed between the SAR and photography image pairs and included all shorelines regardless of complexity. The SAR mapping technology is highly repeatable and extendable to other SAR instruments with similar operational functionality.
A comparative study on methods of improving SCR for ship detection in SAR image
NASA Astrophysics Data System (ADS)
Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li
2017-10-01
Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.
Calibration and Validation of Airborne InSAR Geometric Model
NASA Astrophysics Data System (ADS)
Chunming, Han; huadong, Guo; Xijuan, Yue; Changyong, Dou; Mingming, Song; Yanbing, Zhang
2014-03-01
The image registration or geo-coding is a very important step for many applications of airborne interferometric Synthetic Aperture Radar (InSAR), especially for those involving Digital Surface Model (DSM) generation, which requires an accurate knowledge of the geometry of the InSAR system. While the trajectory and attitude instabilities of the aircraft introduce severe distortions in three dimensional (3-D) geometric model. The 3-D geometrical model of an airborne SAR image depends on the SAR processor itself. Working at squinted model, i.e., with an offset angle (squint angle) of the radar beam from broadside direction, the aircraft motion instabilities may produce distortions in airborne InSAR geometric relationship, which, if not properly being compensated for during SAR imaging, may damage the image registration. The determination of locations of the SAR image depends on the irradiated topography and the exact knowledge of all signal delays: range delay and chirp delay (being adjusted by the radar operator) and internal delays which are unknown a priori. Hence, in order to obtain reliable results, these parameters must be properly calibrated. An Airborne InSAR mapping system has been developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS) to acquire three-dimensional geo-spatial data with high resolution and accuracy. To test the performance of the InSAR system, the Validation/Calibration (Val/Cal) campaign has carried out in Sichun province, south-west China, whose results will be reported in this paper.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.; Tello, M.
2015-12-01
This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also show applications to several real life oil spill scenarios using a series of L-band ALOS PALSAR images and X-band TerraSAR-X images acquired during the Deep Water Horizon spill in the Gulf of Mexico in 2010. From our analysis, we concluded that the LR and CWT have distinct advantages in oil spill detection and lead to high performance spill mapping results.
Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites
NASA Astrophysics Data System (ADS)
Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin
TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.
Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.
2017-12-01
In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.
Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water
Li, Hui; Yang, Kunde; Duan, Rui; Lei, Zhixiong
2017-01-01
This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position. PMID:28590442
What story does geographic separation of insular bats tell? A case study on Sardinian rhinolophids.
Russo, Danilo; Di Febbraro, Mirko; Rebelo, Hugo; Mucedda, Mauro; Cistrone, Luca; Agnelli, Paolo; De Pasquale, Pier Paolo; Martinoli, Adriano; Scaravelli, Dino; Spilinga, Cristiano; Bosso, Luciano
2014-01-01
Competition may lead to changes in a species' environmental niche in areas of sympatry and shifts in the niche of weaker competitors to occupy areas where stronger ones are rarer. Although mainland Mediterranean (Rhinolophus euryale) and Mehely's (R. mehelyi) horseshoe bats mitigate competition by habitat partitioning, this may not be true on resource-limited systems such as islands. We hypothesize that Sardinian R. euryale (SAR) have a distinct ecological niche suited to persist in the south of Sardinia where R. mehelyi is rarer. Assuming that SAR originated from other Italian populations (PES)--mostly allopatric with R. mehelyi--once on Sardinia the former may have undergone niche displacement driven by R. mehelyi. Alternatively, its niche could have been inherited from a Maghrebian source population. We: a) generated Maxent Species Distribution Models (SDM) for Sardinian populations; b) calibrated a model with PES occurrences and projected it to Sardinia to see whether PES niche would increase R. euryale's sympatry with R. mehelyi; and c) tested for niche similarity between R. mehelyi and PES, PES and SAR, and R. mehelyi and SAR. Finally we predicted R. euryale's range in Northern Africa both in the present and during the Last Glacial Maximum (LGM) by calibrating SDMs respectively with SAR and PES occurrences and projecting them to the Maghreb. R. mehelyi and PES showed niche similarity potentially leading to competition. According to PES' niche, R. euryale would show a larger sympatry with R. mehelyi on Sardinia than according to SAR niche. Such niches have null similarity. The current and LGM Maghrebian ranges of R. euryale were predicted to be wide according to SAR's niche, negligible according to PES' niche. SAR's niche allows R. euryale to persist where R. mehelyi is rarer and competition probably mild. Possible explanations may be competition-driven niche displacement or Maghrebian origin.
1985-03-01
DIVISION ;! -0 N xr-0 n 0n4 1 1 I- C) 0 Ic 0 C WIx W Qr - - r -r 01............................. I Cq I1 -a I- I X 0’ an w I w kI~r 1 0r- r- r . 0~~~ Cs CW 1...object from the SAR platform . Ground range, the 102 ~RIM RADAR DIVISION 0 0 sc 0’. C4 C4 Xn en % >4-4 441i V-u -- - W 1-11 04 v4 0o 0 4 0 (A~U Go 4J...Rg = rRF -hy ,(3) for the flat earth or low-altitude case, where h is the platform altitude. Because the range and azimuth scales are not the same
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging
He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151
Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire
NASA Astrophysics Data System (ADS)
Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela
2017-09-01
The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.
NASA Astrophysics Data System (ADS)
Uemoto, Jyunpei; Nadai, Akitsugu; Kojima, Shoichiro; Kobayashi, Tatsuharu; Umehara, Toshihiko; Matsuoka, Takeshi; Uratsuka, Seiho; Satake, Makoto
2018-05-01
The geometric modulation of synthetic aperture radar (SAR) imagery such as radar shadow, foreshortening, and layover often complicates image interpretation while it contains useful information about targets. Recently, some methods for automatic building detection utilizing a peculiar pattern of phase differences (PDs) within building layovers on SAR interferograms have been proposed. One of the merits of these methods is the capability to detect buildings even taller than the height of ambiguity without incorporating any external data. In this paper, we propose a new method that has achieved the following improvements while maintaining the merit mentioned above. The first improvement is freedom from the dependence of target heights; without changing any parameters and thresholds, the proposed method can detect low-rise apartments to skyscrapers. The second one is the prevention of the false grouping of vertical structure constituents by considering relationships between their PDs. In addition, the method can measure the height of vertical structures without assuming their shape to be simple ones such as a parallelogram. These improvements have been verified by applying the method to real datasets acquired from an airborne X-band SAR. The quantitative assessment for apartment complexes has demonstrated the high performance of the method; the correctness and completeness are 94% and 83%, respectively. The mean error in the measured height is -0.2 m, while the standard deviation is 1.8 m. The verification using real datasets has revealed at the same time that the performance of the method can be degraded due to the crowdedness in dense urban areas including skyscrapers and owing to the poor discriminability between artificial vertical structures and trees. Overcoming these limitations is necessary in future studies.
Observations and modelling of inflation in the Lazufre volcanic region, South America
NASA Astrophysics Data System (ADS)
Pearse, J.; Lundgren, P.
2010-12-01
The Central Volcanic Zone (CVZ) is an active volcanic arc in the central Andes, extending through Peru, southwestern Bolivia, Chile, and northwestern Argentina [De Silva, 1989; De Silva and Francis, 1991]. The CVZ includes a number of collapsed calderas, remnants of catastrophic eruptions, which are now thought to be inactive. However, recent Interferometric Synthetic Aperture Radar (InSAR) observations [Pritchard and Simons, 2004] show surface deformation occurring at some of these large ancient volcanic regions, indicating that magma chambers are slowly inflating beneath the surface. The mechanisms responsible for the initiation and growth of large midcrustal magma chambers remains poorly understood, and InSAR provides an opportunity for us to observe volcanic systems in remote regions that are otherwise difficult to monitor and observe. The Lastarria-Cordon del Azufre ("Lazufre" [Pritchard and Simons, 2002]) volcanic area is one such complex showing recent deformation, with average surface uplift rates of approximately 2.5 cm/year [Froger et al., 2007; Ruch et al, 2008]. We have processed InSAR data from ERS-1/2 and Envisat in the Lazufre volcanic area, including both ascending and descending satellite tracks. Time series analysis of the data shows steady uplift beginning in about 2000, continuing into 2010. We use boundary-element elastic models to invert for the depth and shape of the magmatic source responsible for the surface deformation. Given data from both ascending and descending tracks, we are able to resolve the ambiguity between the source depth and size, and constrain the geometry of the inflating magma source. Finite element modelling allows us to understand the effect of viscoelasticity on the development of the magma chamber.
Target surface finding using 3D SAR data
NASA Astrophysics Data System (ADS)
Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.
2005-05-01
Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.
Activity of earthworm in Latosol under simulated acid rain stress.
Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying
2015-01-01
Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Runnova, A. E.; Andreev, A. V.; Zhuravlev, M. O.
2018-04-01
In the present paper, the possibility of classification by artificial neural networks of a certain architecture of ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG recording data of several operators. The possibilities of artificial neural network classification of ambiguous images are investigated in the different frequency ranges of EEG recording signals.
Chinese HJ-1C SAR And Its Wind Mapping Capability
NASA Astrophysics Data System (ADS)
Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan
2010-04-01
Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.
Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean
NASA Astrophysics Data System (ADS)
Phalippou, L.; Demeestere, F.
2011-12-01
The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response, altimeter transfer function) can be accurately accounted for, in order to minimise the systematic errors in the retrieval. The paper presents the retrieval of range and SWH for several Cryosat 2 orbits arcs, spanning different sea state conditions. The retrieval results are found to be in excellent agreement with the noise expectations derived from the Cramer-Rao bounds (see PE 2007.). The improvement upon conventional Low Resolution mode is about a factor of two in range. Improvements in SWH accuracy is also discussed. Comparisons with the MSL and conventional LRM-like retracking is also shown. Finally, the paper will give some insights for future oceanic altimetry missions. References : Wingham et al., 2005 : CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields. Advances in Space Research 37 (2006) 841-871 Raney, R.K. 2005 : Resolution and precision ofa delayDoppler Radar Altimeter, Proc IEEE OCEANS 2005. Phalippou L, V. Enjolras 2007 : Re-tracking of SAR altimeter ocean power waveforms and related accuracies of Sea surface Height, significant wave height and wind speed. Proc IEEE IGARSS 2007. Eyre, J. 1989 : Inversion of cloudy satellite radiances by non linear estimation : Theory and simulation for TOVS. Quaterly Journal of the Royal Meteorological Society, 115, pp1001-1026.
Dynamics of Kilauea's Magmatic System Imaged Using a Joint Analysis of Geodetic and Seismic Data
NASA Astrophysics Data System (ADS)
Wauthier, C.; Roman, D. C.; Poland, M. P.; Fukushima, Y.; Hooper, A. J.
2012-12-01
Nowadays, Interferometric Synthetic Aperture Radar (InSAR) is commonly used to study a wide range of active volcanic areas. InSAR provides high-spatial-resolution measurements of surface deformation with centimeter-scale accuracy. At Kilauea Volcano, Hawai'i, InSAR shows complex processes that are not well constrained by GPS data (which have relatively poor spatial resolution). However, GPS data have higher temporal resolution than InSAR data. Both datasets are thus complementary. To overcome some of the limitations of conventional InSAR, which are mainly induced by temporal decorrelation, topographic, orbital and atmospheric delays, a Multi-Temporal InSAR (MT-InSAR) approach can be used. MT-InSAR techniques involve the processing of multiple SAR acquisitions over the same area. Two classes of MT-InSAR algorithms are defined: the persistent scatterers (PS) and small baseline (SBAS) methods. Each method is designed for a specific type of scattering mechanism. A PS pixel is a pixel in which a single scatterer dominates, while the contributions from other scatterers are negligible. A SBAS pixel is a pixel that includes distributed scatterers, which have a phase with little decorrelation over short time periods. Here, we apply the "StaMPS" ("Stanford Method for Permanent Scatterers") technique, which incorporates both a PS and SBAS approach, on ENVISAT and ALOS datasets acquired from 2003 to 2010 at Kilauea. In particular, we focus our InSAR analysis on the time period before the June 2007 "Father's Day" dike intrusion and eruption, and also incorporate seismic and GPS data in our models. Our goal is to identify any precursors to the Father's Day event within Kilauea's summit magma system, east rift zone, and/or southwest rift zone.
Deformation in the Basin & Range Province and Rio Grande Rift using InSAR Time Series
NASA Astrophysics Data System (ADS)
Taylor, H.; Pisaniello, M.; Pritchard, M. E.
2012-12-01
High heat flow in the Basin and Range Province and Rio Grande Rift has been attributed to partial melting in the crust and upper mantle as a result of ongoing extension (e.g. Lachenbruch 1978). We would then expect to observe surface deformation in areas with actively moving magmatic fluids. The distribution of these magmatic fluids has implications for the rheology of the crust and upper mantle. For this study, we use InSAR to locate deformation due to magmatic sources as well as localized hydrologic deformation. While our focus is magmatic deformation, hydrologic signals are important for correcting geodetic data used to monitor tectonic activity. InSAR is a suitable technique for a large study in the Basin and Range and Rio Grande Rift since SAR acquisitions are both numerous and temporally extensive in these regions. We use ERS-1, ERS-2, and ENVISAT SAR images from 1992-2010 to create time series' with interferograms up to 1800km long from both ascending and descending satellite tracks. Each time series has an average of 100 interferograms reducing the atmospheric noise that masks small deformation signals in single interferograms. The time series' results are validated using overlapping tracks and are further compared to signals identified in previous geophysical studies (e.g. Reilinger and Brown 1980, Massonnet et al 1997, Finnegan and Pritchard 2009). We present results for several areas of deformation in the Basin & Range Province and Rio Grande Rift. An agricultural area near Roswell, NM exhibits seasonal uplift and subsidence of ±3.5cm/yr between 1992 and 1999. Results indicate subsidence on the order of 1cm/yr and uplift of 2cm/yr at the Raft River power plant, ID that is likely related to the start of geothermal fluid production and injection. Just north of the Raft River plant, we detect what appears to be rapid agricultural subsidence in an area extending for 50km. We discuss subsidence of ~2cm/yr in Escalante Valley, UT that is comparable to deformation observed in an earlier InSAR study on subsidence caused by ground-water withdrawal (Forster, 2006).
Ship Speed Retrieval From Single Channel TerraSAR-X Data
NASA Astrophysics Data System (ADS)
Soccorsi, Matteo; Lehner, Susanne
2010-04-01
A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.
Super-spreaders and the rate of transmission of the SARS virus
NASA Astrophysics Data System (ADS)
Small, Michael; Tse, C. K.; Walker, David M.
2006-03-01
We describe a stochastic small-world network model of transmission of the SARS virus. Unlike the standard Susceptible-Infected-Removed models of disease transmission, our model exhibits both geographically localised outbreaks and “super-spreaders”. Moreover, the combination of localised and long range links allows for more accurate modelling of partial isolation and various public health policies. From this model, we derive an expression for the probability of a widespread outbreak and a condition to ensure that the epidemic is controlled. Moreover, multiple simulations are used to make predictions of the likelihood of various eventual scenarios for fixed initial conditions. The main conclusions of this study are: (i) “super-spreaders” may occur even if the infectiousness of all infected individuals is constant; (ii) consistent with previous reports, extended exposure time beyond 3-5 days (i.e. significant nosocomial transmission) was the key factor in the severity of the SARS outbreak in Hong Kong; and, (iii) the spread of SARS can be effectively controlled by either limiting long range links (imposing a partial quarantine) or enforcing rapid hospitalisation and isolation of symptomatic individuals.
Elevated rates of atypical handedness in paedophilia: Theory and implications
Fazio, Rachel L.; Lykins, Amy D.; Cantor, James M.
2014-01-01
Multiple factors determine handedness including genetics, prenatal stress and post-natal environmental conditions. Atypical handedness, whether manifest as increased sinistrality or decreased strength of lateral preference, has been noted in a wide variety of populations with neuropathology. Those with atypical sexual preferences, specifically paedophilia, also manifest reduced rates of right-handedness. This paper uses the largest sample of phallometrically assessed men to date to establish the pattern of atypical handedness in paedophilia. Specifically, whereas prior research has largely characterized participants dichotomously as right-handed or non-right-handed and/or used self-report of writing hand, this paper expands upon such reports by using the Edinburgh Handedness Inventory's laterality quotient. Participants' handedness and phallometrically assessed sexual preference were analyzed both as continuous and categorical variables, and the responses of those scoring in the range of ambiguous-handedness were evaluated to ascertain whether they were ambiguously handed or more accurately described as mixed-handed. Results indicated those producing scores in the range of ambiguous-handedness demonstrated response patterns consistent with ambiguous-handedness, rather than mixed-handedness. Paedophiles demonstrated high rates of non-right-handedness primarily manifested as sinistrality, whereas those who had a sexual preference for pubescent children evidenced increased ambiguous-handedness. Results support a view of ambiguous-handedness as less pathological than previously hypothesized, and of a neurodevelopmental origin of paraphilic sexual preferences. PMID:24666135
Elevated rates of atypical handedness in paedophilia: theory and implications.
Fazio, Rachel L; Lykins, Amy D; Cantor, James M
2014-01-01
Multiple factors determine handedness including genetics, prenatal stress and post-natal environmental conditions. Atypical handedness, whether manifest as increased sinistrality or decreased strength of lateral preference, has been noted in a wide variety of populations with neuropathology. Those with atypical sexual preferences, specifically paedophilia, also manifest reduced rates of right-handedness. This paper uses the largest sample of phallometrically assessed men to date to establish the pattern of atypical handedness in paedophilia. Specifically, whereas prior research has largely characterized participants dichotomously as right-handed or non-right-handed and/or used self-report of writing hand, this paper expands upon such reports by using the Edinburgh Handedness Inventory's laterality quotient. Participants' handedness and phallometrically assessed sexual preference were analyzed both as continuous and categorical variables, and the responses of those scoring in the range of ambiguous-handedness were evaluated to ascertain whether they were ambiguously handed or more accurately described as mixed-handed. Results indicated those producing scores in the range of ambiguous-handedness demonstrated response patterns consistent with ambiguous-handedness, rather than mixed-handedness. Paedophiles demonstrated high rates of non-right-handedness primarily manifested as sinistrality, whereas those who had a sexual preference for pubescent children evidenced increased ambiguous-handedness. Results support a view of ambiguous-handedness as less pathological than previously hypothesized, and of a neurodevelopmental origin of paraphilic sexual preferences.
Integration of SAR and DEM data: Geometrical considerations
NASA Technical Reports Server (NTRS)
Kropatsch, Walter G.
1991-01-01
General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.
On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases
NASA Astrophysics Data System (ADS)
Khodabandeh, A.; Teunissen, P. J. G.
2018-06-01
Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples.
On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases
NASA Astrophysics Data System (ADS)
Khodabandeh, A.; Teunissen, P. J. G.
2017-11-01
Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples.
NASA Astrophysics Data System (ADS)
Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.
2017-12-01
The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.
Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf
2012-03-01
To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.
Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy
NASA Astrophysics Data System (ADS)
Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam
2017-04-01
Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which are not observed (HF radar, 4km resolution) or simulated (POLCOMS, 1.8km). The inversion strategy points to the need for accurate measurement of both the backscatter amplitude and the Doppler information (either as a Doppler centroid frequency anomaly for SAR DCA, or as an interferometric phase for ATI) as well as the need for dual polarization capability (VV+HH) for non-ambiguous inversion. Preliminary inversion results show that the retrieval accuracy for OSC velocity better than 10 cm/s can be achieved but that the OSC accuracy is strongly sensitive to the wind direction relative to the antennas orientation. This concept is a unique opportunity to improve our understanding of the air-sea interaction, the ocean submesoscale dynamic and its impact on the oceanic vertical transport. This concept is particularly well fitted for these ocean surface current and wind vectors observations in coastal and polar regions.
Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data
NASA Astrophysics Data System (ADS)
Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.
2005-11-01
The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0
Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.
2015-01-01
Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216
Moldofsky, Harvey; Patcai, John
2011-03-24
The long term adverse effects of Severe Acute Respiratory Syndrome (SARS), a viral disease, are poorly understood. Sleep physiology, somatic and mood symptoms of 22 Toronto subjects, 21 of whom were healthcare workers, (19 females, 3 males, mean age 46.29 yrs.+/- 11.02) who remained unable to return to their former occupation (mean 19.8 months, range: 13 to 36 months following SARS) were compared to 7 healthy female subjects. Because of their clinical similarities to patients with fibromyalgia syndrome (FMS) these post-SARS subjects were similarly compared to 21 drug free female patients, (mean age 42.4 +/- 11.8 yrs.) who fulfilled criteria for fibromyalgia. Chronic post-SARS is characterized by persistent fatigue, diffuse myalgia, weakness, depression, and nonrestorative sleep with associated REM-related apneas/hypopneas, an elevated sleep EEG cyclical alternating pattern, and alpha EEG sleep anomaly. Post- SARS patients had symptoms of pre and post-sleep fatigue and post sleep sleepiness that were similar to the symptoms of patients with FMS, and similar to symptoms of patients with chronic fatigue syndrome. Both post-SARS and FMS groups had sleep instability as indicated by the high sleep EEG cyclical alternating pattern rate. The post-SARS group had a lower rating of the alpha EEG sleep anomaly as compared to the FMS patients. The post-SARS group also reported less pre-sleep and post-sleep musculoskeletal pain symptoms. The clinical and sleep features of chronic post-SARS form a syndrome of chronic fatigue, pain, weakness, depression and sleep disturbance, which overlaps with the clinical and sleep features of FMS and chronic fatigue syndrome.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.
2016-12-01
In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.
Clarity and ambiguity in psychoanalytic practice.
Szajnberg, Nathan
2011-03-01
The author explores the presence and the essential tension between clarity and ambiguity as processes within our minds that become prominent in psychoanalysis. We learn from aesthetics and literary criticism that ambiguity can shade from taut disorganization to tolerating life's richness; clarity can range from a concrete fixity to a lucid grasp of one's state of mind. This article responds to Wallerstein's (1991) challenge to find common ground in psychoanalytic practice: We attempt this by avoiding metapsychological jargon and relying on more experience-near terms, such as clarity and ambiguity. The article also refers to Sandler's (1983) concept of implicit theory-that psychoanalysts use "preconscious, overlapping but not fully integrated models" (Sandler, 1988, p. 388)-in this case explicating how clarity and ambiguity are frequent but implicit phenomena in clinical work. Identifying these and the essential tension between them permits us to both improve training and identify our clinical efforts. The analyst's and analysand's tolerance of the tension between clarity and ambiguity facilitates increased structuralization and emotional robustness.
Method of resolving radio phase ambiguity in satellite orbit determination
NASA Technical Reports Server (NTRS)
Councelman, Charles C., III; Abbot, Richard I.
1989-01-01
For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.
A study on rational function model generation for TerraSAR-X imagery.
Eftekhari, Akram; Saadatseresht, Mohammad; Motagh, Mahdi
2013-09-09
The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10-3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.
A Study on Rational Function Model Generation for TerraSAR-X Imagery
Eftekhari, Akram; Saadatseresht, Mohammad; Motagh, Mahdi
2013-01-01
The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10−3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction. PMID:24021971
Making SAR Data Accessible - ASF's ALOS PALSAR Radiometric Terrain Correction Project
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Arko, S. A.; Gens, R.
2015-12-01
While SAR data have proven valuable for a wide range of geophysical research questions, so far, largely only the SAR-educated science communities have been able to fully exploit the information content of internationally available SAR archives. The main issues that have been preventing a more widespread utilization of SAR are related to (1) the diversity and complexity of SAR data formats, (2) the complexity of the processing flows needed to extract geophysical information from SAR, (3) the lack of standardization and automation of these processing flows, and (4) the often ignored geocoding procedures, leaving the data in image coordinate space. In order to improve upon this situation, ASF's radiometric terrain-correction (RTC) project is generating uniformly formatted and easily accessible value-added products from the ASF Distributed Active Archive Center's (DAAC) five-year archive of JAXA's ALOS PALSAR sensor. Specifically, the project applies geometric and radiometric corrections to SAR data to allow for an easy and direct combination of obliquely acquired SAR data with remote sensing imagery acquired in nadir observation geometries. Finally, the value-added data is provided to the user in the broadly accepted Geotiff format, in order to support the easy integration of SAR data into GIS environments. The goal of ASF's RTC project is to make SAR data more accessible and more attractive to the broader SAR applications community, especially to those users that currently have limited SAR expertise. Production of RTC products commenced October 2014 and will conclude late in 2015. As of July 2015, processing of 71% of ASF's ALOS PALSAR archive was completed. Adding to the utility of this dataset are recent changes to the data access policy that allow the full-resolution RTC products to be provided to the public, without restriction. In this paper we will introduce the processing flow that was developed for the RTC project and summarize the calibration and validation procedures that were implemented to determine and monitor system performance. The paper will also show the current progress of RTC processing, provide examples of generated data sets, and demonstrate the benefit of the RTC archives for applications such as land-use classification and change detection.
Airborne Multi-Band SAR in the Arctic
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.
2016-12-01
As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing, and some restricted to relatively low-altitude, it was difficult to obtain data co-registered with the SAR. At this meeting we will present some initial results from the SAR imagery, including differentiation of young, thin, and older ice features, and comparisons with satellite SAR with L-band and C-band frequencies.
NASA Astrophysics Data System (ADS)
Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian
2017-11-01
The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.
SAR and LIDAR fusion: experiments and applications
NASA Astrophysics Data System (ADS)
Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.
2013-05-01
In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.
Activity of earthworm in Latosol under simulated acid rain stress
Jia-En Zhang; Jiayu Yu; Ying Ouyang
2015-01-01
Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period....
NASA Technical Reports Server (NTRS)
Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland
2008-01-01
The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).
Comparison and Analysis of Geometric Correction Models of Spaceborne SAR
Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong
2016-01-01
Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973
Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.
Xiao, Shenglan; Li, Yuguo; Wong, Tze-Wai; Hui, David S C
2017-01-01
The epidemic of severe acute respiratory syndrome (SARS) had a significant effect on global society in the early 2000s and the potential of its resurgence exists. Studies on the modes of transmission of SARS are limited though a number of outbreak studies have revealed the possible airborne route. To develop more specific and effective control strategies, we conducted a detailed mechanism-based investigation that explored the role of fomite transmission in the well-known Ward 8A outbreak. We considered three hypothetical transmission routes, i.e., the long-range airborne, fomite and combined routes, in 1,744 scenarios with combinations of some important parameters. A multi-agent model was used to predict the infection risk distributions of the three hypothetical routes. Model selection was carried out for different scenarios to compare the distributions of infection risk with that of the reported attack rates and select the hypotheses with the best fitness. Our results reveal that under the assumed conditions, the SARS coronavirus was most possible to have spread via the combined long-range airborne and fomite routes, and that the fomite route played a non-negligible role in the transmission.
Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods
NASA Astrophysics Data System (ADS)
Barboux, Chloé; Strozzi, Tazio; Delaloye, Reynald; Wegmüller, Urs; Collet, Claude
2015-11-01
Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of "cm/day", "dm/month" and "cm/month", but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the "cm/yr" range.
NASA Astrophysics Data System (ADS)
Krawczyk, Artur; Grzybek, Radosław
2018-01-01
The Satellite Radar Interferometry is one of the common methods that allow to measure the land subsidence caused by the underground black coal excavation. The interferometry images processed from the repeat-pass Synthetic Aperture Radar (SAR) systems give the spatial image of the terrain subjected to the surface subsidence over mining areas. Until now, the InSAR methods using data from the SAR Systems like ERS-1/ERS-2 and Envisat-1 were limited to a repeat-pass cycle of 35-day only. Recently, the ESA launched Sentinel-1A and 1B, and together they can provide the InSAR coverage in a 6-day repeat cycle. The studied area was the Upper Silesian Coal Basin in Poland, where the underground coal mining causes continuous subsidence of terrain surface and mining tremors (mine-induced seismicity). The main problem was with overlapping the subsidence caused by the mining exploitation with the epicentre tremors. Based on the Sentinel SAR images, research was done in regard to the correlation between the short term ground subsidence range border and the mine-induced seismicity epicentres localisation.
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
Analysis of Wind and Sea State in SAR data of Hurricanes
NASA Astrophysics Data System (ADS)
Hoja, D.; Schulz-Stellenfleth, J.; Lehner, S.; Horstmann, J.
2003-04-01
Spaceborne synthetic aperture radar (SAR) is still the only instrument providing directional ocean wave and in addition surface wind information on a global and continuous basis. Operating in ASAR wave mode ENVISAT, launched in 2002, provides 10 km x 5 km SAR images every 100 km along the orbit. These SAR data continue and expand the SAR era of the European Remote Sensing satellites ERS-1 and ERS-2, which have acquired similar SAR data since 1991 on a global basis. To not only use the official ERS SAR wave mode product, which consists only of the SAR image power spectrum, but also the full SAR image information a subset of 27 days globally distributed ERS-2 SAR raw data were processed to single look complex SAR imagettes using the BSAR processor developed at the German Aerospace Center. These data have the same format as the official ESA product for ENVISAT ASAR wave mode data. This subset of 34,000 ERS-2 SAR imagettes was used to develop and validate algorithms for wind and wave retrieval, which are also applicable to ENVISAT ASAR wave mode data. The time frame of the dataset covers several tropical cyclones in the Atlantic Ocean of which hurricane Fran has been investigated in detail together with additional data available from scatterometers, buoys and weather centers. Hurricane Fran was active from August 23 to September 8, 1996. During this time, hurricane Fran developed near the African coast and progressed over the North Atlantic Ocean. Landfall occurred on September 5, 1996 at the coast of North Carolina, USA. Fran was part of a whole series of tropical cyclones travelling about the same course in a short time. The wind is extracted from SAR imagery and compared to results of the numerical model output provided by the European Center for Medium-Range Weather Forecast (ECMWF) and co-located ERS-2 scatterometer measurements. The Swell and wind sea systems generated by the tropical cyclones are measured using SAR cross spectra and a newly developed partitioning technique. For each component wave system (partition) spectral parameters like wavelength and wave propagation direction are calculated and compared to numerical model output provided by ECMWF. The progression of the tropical cyclones is presented and it is described, how the hurricanes are portrayed in the SAR data. The response of waves to fast turning winds is analyzed. Conclusions are drawn about the wave model forecast in hurricane situations using satellite wave mode data. Keywords: Hurricanes, SAR, ocean winds, ocean waves, wind sea and swell
NASA Technical Reports Server (NTRS)
Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.
1981-01-01
An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.
Hemispheric Asymmetries in Semantic Processing: Evidence from False Memories for Ambiguous Words
ERIC Educational Resources Information Center
Faust, Miriam; Ben-Artzi, Elisheva; Harel, Itay
2008-01-01
Previous research suggests that the left hemisphere (LH) focuses on strongly related word meanings; the right hemisphere (RH) may contribute uniquely to the processing of lexical ambiguity by activating and maintaining a wide range of meanings, including subordinate meanings. The present study used the word-lists false memory paradigm [Roediger,…
Coding of level of ambiguity within neural systems mediating choice.
Lopez-Paniagua, Dan; Seger, Carol A
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).
Coding of level of ambiguity within neural systems mediating choice
Lopez-Paniagua, Dan; Seger, Carol A.
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common “fronto—parietal—striatal” network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum). PMID:24367286
Long term landslide monitoring with Ground Based SAR
NASA Astrophysics Data System (ADS)
Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi
2014-05-01
In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D-GBSAR landslide monitoring will be analysed and discussed: the first example is based on DInSAR and concerns to an urban landslide located in Barberà de la Conca (Catalonia, Spain). This village has experienced deformations since 2011 that have caused cracks in the church and several buildings. The results of a one year and half monitoring will be shown. The second example is based on the amplitude based approach and concerns to the active landslide of Vallcebre (Eastern Pyrenees, Spain). For this site, the results of eight campaigns during a period of 19 months were performed. During this period displacements of up to 80 cm were measured.
Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data
NASA Astrophysics Data System (ADS)
Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.
2012-12-01
Even though the first commitment period of the Kyoto Protocol is in the offing, there is still a strong demand for profound, reliable, and up to date information in order to bridge the gap of knowledge of the land cover conversion. Despite the fact that land use change is one of the largest carbon contribution factors, it is still poorly quantified. This is particularly true for many tropical forest areas worldwide. Here, preservation of such pristine forest areas is critically endangered. Enormous population growth, the increasing global demand for various resources, and the ongoing unsustainable management practices put the remaining tropical forests under a huge pressure. Yet, only the United Nations Food and Agriculture Organization's (FAO) global Forest Resources Assessment (FRA) report provides the crucial quantitative information every 5 years on a regional scale. Nonetheless, the assembled information of the FRA reports bear the burden of ambiguity and vagueness, because they were compiled based on autonomously gathered statistics, which are usually driven by the individual country needs. There is a broad consensus among the different scientific disciplines, that only the remote sensing technology allows for a large scale robust monitoring of these widespread, and remote forest areas. Consequently, the FAO decided to supplementary analyze remote sensing data for the present (2010) and upcoming FRAs. However, it is also widely accepted that currently only microwave remote sensing techniques allow for an all-day, weather independent monitoring of the frequently cloud-covered tropics. In this context, high resolution Synthetic Aperture Radar (SAR) images of the German satellites TerraSAR-X and TanDEM-X have been investigated within the pan-tropics to support the latest FRA 2010 report. Data of more than 304 predominantly cloud-covered sites in Latin America (188), Central Africa (45) and Southeast Asia (71) have been acquired. Upon delivery, the corresponding radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
SAR11 Bacteria: The Most Abundant Plankton in the Oceans.
Giovannoni, Stephen J
2017-01-03
SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10 28 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.
Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests
NASA Technical Reports Server (NTRS)
Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark
2012-01-01
The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.
Schneider, Martha; Ackermann, Kerstin; Stuart, Melissa; Wex, Claudia; Protzer, Ulrike; Schätzl, Hermann M.
2012-01-01
The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5−/− mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle. PMID:22787216
A fine resolution multifrequency polarimetric FM radar
NASA Technical Reports Server (NTRS)
Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.
1988-01-01
A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.
The rate of rise, fall and gravity spreading at Siahou diapir (Southern Iran)
NASA Astrophysics Data System (ADS)
Aftabi, P.; Roustaie, M.
2009-04-01
InSAR imaging can be used for extracting three dimensional information of the diapirs surface by using the phase part of the radar signal. We used InSAR to examine the cumulative surface deformation between 920706 to 060518, in a 10×10 km region surrounding the salt diapir at Kuh-e-Namak Siahou. The interferograms span periods was between 35-70 and 1248 days. Images acquired in 12 increments provided by ESA. This technique used here involves computation and subsequent combinations of interferometric phase gradient maps were used for mapping the salt flow deformation in the Zagros. Kuh-e-Namak Siahou is one of the salt extrusions currently active in the Zagros range in Iran. Salt rises from a mother salt horizon about 4 km deep and extruded as a dome with glacier on the surface. The geometry and inferred flow pattern of the salt changed between the increments, emphasizing that the extrusion rate and gravity spreading is not steady. Elevations in the salt mountain range from 1000 to 1640 meters and the displacements exceed to 20cm per year . Our InSAR study(Fig1) suggest that the dimensions and velocity of the salt movements are changing between 2 to 20mm per year(-0.7 to0.59 mm per day).The rate of surface dissolution changed between 2 to 4 cm a-1, and its rate of rise out of its orifice at 0 to 200 mm per year. The InSAR study suggest that the vigorous salt extrusion in Siahou is probably active.The deep source probably rise at a similar rates in the past but it fall in the time of InSAR study. The rate of fall was 260 mm per year(for 14 years). The InSAR images suggest that salt extrusion in Siahou flow laterally at rate 20-25 mm per year and the namakiers felt at -2 mm per month. The InSAR results indicated concentric and radial flow in the diapir from a central point at summit and spreading glaciers in sideways.Phase differences measured in our interferograms generally in the range of 0-260 mm/yr(-260 mm) within the studied period, with exceptional high rates that exceed 50 mm/yr in diapir Siahou. Comparison of our InSAR observations with models suggest a similarity in the strain pattern in the model and prototype. Our observations also show that in certain locations of Zagros, movements appear to be structurally controlled by salt flow, and diapirism. This report will improve our understanding on how the salt diapirs work and our capability to predict future flow and the associated hazards for storages in salt and provides the first direct, spatially resolved, measurement of ongoing flow of salt. Key words: Salt tectonics,InSAR,Monitoring,Iran,Zagros,Salt diapir,salt kinematics, Zagros fold-thrust belt, Hormuz salt, analogue modelling,salt extrusion, crustal shortening
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, Reginald
2017-04-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.
Kuehn, Sven; Kelsh, Michael A; Kuster, Niels; Sheppard, Asher R; Shum, Mona
2013-09-01
The US FCC mandates the testing of all mobile phones to demonstrate compliance with the rule requiring that the peak spatial SAR does not exceed the limit of 1.6 W/kg averaged over any 1 g of tissue. These test data, measured in phantoms with mobile phones operating at maximum antenna input power, permitted us to evaluate the variation in SARs across mobile phone design factors such as shape and antenna design, communication technology, and test date (over a 7-year period). Descriptive statistical summaries calculated for 850 MHz and 1900 MHz phones and ANOVA were used to evaluate the influence of the foregoing factors on SARs. Service technology accounted for the greatest variability in compliance test SARs that ranged from AMPS (highest) to CDMA, iDEN, TDMA, and GSM (lowest). However, the dominant factor for SARs during use is the time-averaged antenna input power, which may be much less than the maximum power used in testing. This factor is largely defined by the communication system; e.g., the GSM phone average output can be higher than CDMA by a factor of 100. Phone shape, antenna type, and orientation of a phone were found to be significant but only on the order of up to a factor of 2 (3 dB). The SAR in the tilt position was significantly smaller than for touch. The side of the head did not affect SAR levels significantly. Among the remaining factors, external antennae produced greater SARs than internal ones, and brick and clamshell phones produced greater SARs than slide phones. Assuming phone design and usage patterns do not change significantly over time, we have developed a normalization procedure and formula that permits reliable prediction of the relative SAR between various communication systems. This approach can be applied to improve exposure assessment in epidemiological research. Copyright © 2013 Wiley Periodicals, Inc.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
SAR image dataset of military ground targets with multiple poses for ATR
NASA Astrophysics Data System (ADS)
Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc
2017-10-01
Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
VIP group in hangar during AirSAR 2004 Mesoamerica campaign
2004-03-03
VIP group in hangar during AirSAR 2004 Mesoamerica campaign, L-R: Dr. Gahssem Asrar, NASA Associate Administrator for Earth Science Enterprises; Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); Jorge Andres Diaz, Director of the Costa Rican National Hangar for Airborne Research division of the National Center for High Technology(CENAT); Dr. Pedro Leon, General Director for the Costa Rican National Center for High Technology(CENAT); NASA Administrator Sean O'Keefe; Dr. Sonia Marta Mora, President of the Costa Rican National Rector’s Council(CONARE); Mr. John Danilovich, US Ambassador to Costa Rica; and unknown. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
Pancake Ice Thickness Mapping in the Beaufort Sea From Wave Dispersion Observed in SAR Imagery
NASA Astrophysics Data System (ADS)
Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P. O. G.; Holt, B.
2018-03-01
The early autumn voyage of RV Sikuliaq to the southern Beaufort Sea in 2015 offered very favorable opportunities for observing the properties and thicknesses of frazil-pancake ice types. The operational region was overlaid by a dense network of retrieved satellite imagery, including synthetic aperture radar (SAR) imagery from Sentinel-1 and COSMO-SkyMed (CSK). This enabled us to fully test and apply the SAR-waves technique, first developed by Wadhams and Holt (1991), for deriving the thickness of frazil-pancake icefields from changed wave dispersion. A line of subimages from a main SAR image (usually CSK) is analyzed running into the ice along the main wave direction. Each subimage is spectrally analyzed to yield a wave number spectrum, and the change in the shape of the spectrum between open water and ice, or between two thicknesses of ice, is interpreted in terms of the viscous equations governing wave propagation in frazil-pancake ice. For each of the case studies considered here, there was good or acceptable agreement on thickness between the extensive in situ observations and the SAR-wave calculation. In addition, the SAR-wave analysis gave, parametrically, effective viscosities for the ice covering a consistent and narrow range of 0.03-0.05 m2 s-1.
On the merging of optical and SAR satellite imagery for surface water mapping applications
NASA Astrophysics Data System (ADS)
Markert, Kel N.; Chishtie, Farrukh; Anderson, Eric R.; Saah, David; Griffin, Robert E.
2018-06-01
Optical and Synthetic Aperture Radar (SAR) imagery from satellite platforms provide a means to discretely map surface water; however, the application of the two data sources in tandem has been inhibited by inconsistent data availability, the distinct physical properties that optical and SAR instruments sense, and dissimilar data delivery platforms. In this paper, we describe a preliminary methodology for merging optical and SAR data into a common data space. We apply our approach over a portion of the Mekong Basin, a region with highly variable surface water cover and persistent cloud cover, for surface water applications requiring dense time series analysis. The methods include the derivation of a representative index from both sensors that transforms data from disparate physical units (reflectance and backscatter) to a comparable dimensionless space applying a consistent water extraction approach to both datasets. The merging of optical and SAR data allows for increased observations in cloud prone regions that can be used to gain additional insight into surface water dynamics or flood mapping applications. This preliminary methodology shows promise for a common optical-SAR water extraction; however, data ranges and thresholding values can vary depending on data source, yielding classification errors in the resulting surface water maps. We discuss some potential future approaches to address these inconsistencies.
NASA Astrophysics Data System (ADS)
Laurin, Gaia Vaglio; Balling, Johannes; Corona, Piermaria; Mattioli, Walter; Papale, Dario; Puletti, Nicola; Rizzo, Maria; Truckenbrodt, John; Urban, Marcel
2018-01-01
The objective of this research is to test Sentinel-1 SAR multitemporal data, supported by multispectral and SAR data at other wavelengths, for fine-scale mapping of above-ground biomass (AGB) at the provincial level in a Mediterranean forested landscape. The regression results indicate good accuracy of prediction (R2=0.7) using integrated sensors when an upper bound of 400 Mg ha-1 is used in modeling. Multitemporal SAR information was relevant, allowing the selection of optimal Sentinel-1 data, as broadleaf forests showed a different response in backscatter throughout the year. Similar accuracy in predictions was obtained when using SAR multifrequency data or joint SAR and optical data. Predictions based on SAR data were more conservative, and in line with those from an independent sample from the National Forest Inventory, than those based on joint data types. The potential of S1 data in predicting AGB can possibly be improved if models are developed per specific groups (deciduous or evergreen species) or forest types and using a larger range of ground data. Overall, this research shows the usefulness of Sentinel-1 data to map biomass at very high resolution for local study and at considerable carbon density.
Carrasquer, C. Alex; Batey, Kaylind; Qamar, Shahid; Cunningham, Albert R.; Cunningham, Suzanne L.
2016-01-01
We previously demonstrated that fragment based cat-SAR carcinogenesis models consisting solely of mutagenic or non-mutagenic carcinogens varied greatly in terms of their predictive accuracy. This led us to investigate how well the rat cancer cat-SAR model predicted mutagens and non-mutagens in their learning set. Four rat cancer cat-SAR models were developed: Complete Rat, Transgender Rat, Male Rat, and Female Rat, with leave-one-out (LOO) validation concordance values of 69%, 74%, 67%, and 73%, respectively. The mutagenic carcinogens produced concordance values in the range of 69–76% as compared to only 47–53% for non-mutagenic carcinogens. As a surrogate for mutagenicity comparisons between single site and multiple site carcinogen SAR models was analyzed. The LOO concordance values for models consisting of 1-site, 2-site, and 4+-site carcinogens were 66%, 71%, and 79%, respectively. As expected, the proportion of mutagens to non-mutagens also increased, rising from 54% for 1-site to 80% for 4+-site carcinogens. This study demonstrates that mutagenic chemicals, in both SAR learning sets and test sets, are influential in assessing model accuracy. This suggests that SAR models for carcinogens may require a two-step process in which mutagenicity is first determined before carcinogenicity can be accurately predicted. PMID:24697549
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
Development of structure-activity relationship for metal oxide nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram
2013-05-01
Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e
NASA Astrophysics Data System (ADS)
Chatterjee, R. S.; Saha, S. K.; Suresh Kumar; Sharika Mathew; Lakhera, R. C.; Dadhwal, V. K.
In recent years, the problem of ravine erosion with consequent loss of usable land has received much attention worldwide. The Chambal ravine zone in India is well known for being an extremely intricate, deeply incised network of ravines in a 10 km wide zone on the flanks of the Chambal River. It occupies an area of ˜0.5 million hectares at the expense of fertile agricultural land of the Chambal Valley. The broad grouping of the ravines considering their reclamation potential, as carried out by previous workers based on visual interpretation of optical remote sensing data, is mostly descriptive in nature. In the present study, characterization of the ravines as a function of their erosion potential expressed through ravine density, ravine depth, and ravine surface cover was made in quantitative terms exploiting the preferential characteristics of side-looking, long-wavelength, coherent SAR signal and precision measurements associated with the InSAR technique. The outlines of ravines appear remarkably prominent in SAR backscattered amplitude images due to the high sensitivity of the SAR signal to terrain ruggedness. Using local statistics-based meso and macro textural information of SAR backscattered amplitude images in 7×7 pixel windows (the pixel size being 20 m×20 m), the ravine-affected area has been classified into three density classes, namely low, moderate, and high density ravine classes. C-band InSAR digital elevation models (DEMs) of sparsely vegetated ravine areas essentially give the terrain height. From the pixel-by-pixel terrain height, the ravine depth was calculated by differencing the maximum and minimum terrain heights of the pixels in a 100 m distance range. Considering the vertical precision of the ERS InSAR DEMs of ˜5 m and ravine depth classification by previous workers [Sharma, H.S., 1968. Genesis and pattern of ravines of the Lower Chambal Valley, India. Special Issue. 21st International Geographical Union Congress 30(4), 14-24; Seth, S.P., Bhatnagar, R.K., Chauhan, S.S., 1969. Reclamability classification and nature of ravines of Chambal Command Areas. Journal of Soil and Water Conservation in India 17 (3-4), 39-44.], three depth classes, namely shallow (<5 m), moderately deep (5-20 m), and deep (>20 m) ravines, were made. Using the temporal decorrelation property of the close time interval InSAR data pair, namely the ERS SAR tandem pair, four ravine surface cover classes, namely barren land, grass/scrub/crop land, sparse vegetation, and wet land/dense vegetation, could be delineated, which was corroborated by the spectral signatures in the optical range and selective ground truths.
The SIR-B science investigations plan
NASA Technical Reports Server (NTRS)
1984-01-01
Shuttle Imaging Radar-B (SIR-B) is the second synthetic aperture radar (SAR) to be flown on the National Aeronautics and Space Administration's Space Transportation System (Shuttle). It is the first spaceborne SAR to feature an antenna that allows acquisition of multiincidence angle imagery. An international team of scientists will use SIR-B to conduct investigations in a wide range of disciplines. The radar, the mission, and the investigations are described.
Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar
2013-09-01
relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA
An integrated hyperspectral and SAR satellite constellation for environment monitoring
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo
2017-09-01
A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.
What is missing? An operational inundation mapping framework by SAR data
NASA Astrophysics Data System (ADS)
Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.
2017-12-01
Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential to contribute as an operational inundation mapping algorithm to any SAR missions, such as SWOT, ALOS, Sentinel, etc. Selected results using ALOS/PALSAR-1 L-band dual polarized data around the Connecticut River is provided in the attached Figure.
Beyramysoltan, Samira; Rajkó, Róbert; Abdollahi, Hamid
2013-08-12
The obtained results by soft modeling multivariate curve resolution methods often are not unique and are questionable because of rotational ambiguity. It means a range of feasible solutions equally fit experimental data and fulfill the constraints. Regarding to chemometric literature, a survey of useful constraints for the reduction of the rotational ambiguity is a big challenge for chemometrician. It is worth to study the effects of applying constraints on the reduction of rotational ambiguity, since it can help us to choose the useful constraints in order to impose in multivariate curve resolution methods for analyzing data sets. In this work, we have investigated the effect of equality constraint on decreasing of the rotational ambiguity. For calculation of all feasible solutions corresponding with known spectrum, a novel systematic grid search method based on Species-based Particle Swarm Optimization is proposed in a three-component system. Copyright © 2013 Elsevier B.V. All rights reserved.
The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR
NASA Astrophysics Data System (ADS)
Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori
2006-09-01
This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.
Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval
NASA Astrophysics Data System (ADS)
Cao, Y.; Xu, L.; Peng, J.
2018-04-01
Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.
ISRO's dual frequency airborne SAR pre-cursor to NISAR
NASA Astrophysics Data System (ADS)
Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh
2016-05-01
The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.
Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi
2007-02-01
We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection.
Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi
2007-01-01
We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection. PMID:17202310
2004-03-03
Dr. Tom Mace, NASA DFRC Director of Airborne Sciences, and Walter Klein(far right), NASA DFRC Airborne Science Mission Manager, brief John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe onboard NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
NASA Astrophysics Data System (ADS)
Henderson, J. M.; Hoffman, R. N.; Leidner, S. M.; Atlas, R.; Brin, E.; Ardizzone, J. V.
2003-06-01
The ocean surface vector wind can be measured from space by scatterometers. For a set of measurements observed from several viewing directions and collocated in space and time, there will usually exist two, three, or four consistent wind vectors. These multiple wind solutions are known as ambiguities. Ambiguity removal procedures select one ambiguity at each location. We compare results of two different ambiguity removal algorithms, the operational median filter (MF) used by the Jet Propulsion Laboratory (JPL) and a two-dimensional variational analysis method (2d-VAR). We applied 2d-VAR to the entire NASA Scatterometer (NSCAT) mission, orbit by orbit, using European Centre for Medium-Range Weather Forecasts (ECMWF) 10-m wind analyses as background fields. We also applied 2d-VAR to a 51-day subset of the NSCAT mission using National Centers for Environmental Prediction (NCEP) 1000-hPa wind analyses as background fields. This second data set uses the same background fields as the MF data set. When both methods use the same NCEP background fields as a starting point for ambiguity removal, agreement is very good: Approximately only 3% of the wind vector cells (WVCs) have different ambiguity selections; however, most of the WVCs with changes occur in coherent patches. Since at least one of the selections is in error, this implies that errors due to ambiguity selection are not isolated, but are horizontally correlated. When we examine ambiguity selection differences at synoptic scales, we often find that the 2d-VAR selections are more meteorologically reasonable and more consistent with cloud imagery.
Learning, Teaching and Ambiguity in Virtual Worlds
NASA Astrophysics Data System (ADS)
Carr, Diane; Oliver, Martin; Burn, Andrew
What might online communities and informal learning practices teach us about virtual world pedagogy? In this chapter we describe a research project in which learning practices in online worlds such as World of Warcraft and Second LifeTM (SL) were investigated. Working within an action research framework, we employed a range of methods to investigate how members of online communities define the worlds they encounter, negotiate the terms of participation, and manage the incremental complexity of game worlds. The implications of such practices for online pedagogy were then explored through teaching in SL. SL eludes simple definitions. Users, or "residents", of SL partake of a range of pleasures and activities - socialising, building, creating and exhibiting art, playing games, exploring, shopping, or running a business, for instance. We argue that the variable nature of SL gives rise to degrees of ambiguity. This ambiguity impacts on inworld social practices, and has significant implications for online teaching and learning.
The 2014 Napa Earthquake Imaged Through A Full Exploitation Of SAR Data
NASA Astrophysics Data System (ADS)
Castaldo, R.; Casu, F.; de Luca, C.; Solaro, G.
2014-12-01
We investigate the co-seismic surface deformation related to the earthquake occurred in Napa area (California) on August 24, 2014. To this aim, we exploit both the phase and the amplitude information of SAR data acquired in Stripmap mode by the Italian COSMO-SkyMed (CSK), the Canadian RADARSAT-2 (RS2), and the recently launched Europena Sentinel-1 satellites, to evaluate and analyze the induced surface displacements through the Differential SAR Interferometry (DInSAR) and Pixel-Offset (PO) techniques. In particular, the SAR images, acquired from descending orbits on 26 July and 27 August 2014 by CSK, and on 07 August and 31 August 2014 by Sentinel-1, as well as the ones acquired on 24 July and 10 September by RS2 from ascending passes were used to generate differential SAR interferograms encompassing the main seismic events. The related deformation map, obtained by performing a complex multi-look operation resulting in a pixel size of about 30 m by 30 m, reveals two main lobes of LOS displacement with a range change decrease of about 11 cm to the NE sector and about 7 cm of range change increase to the SE sector. Moreover, by benefiting from the sensor spatial resolutions (down to 3 meters for both CSK and Sentinel-1 satellites), the Pixel-Offset maps of the same data pairs have been also computed, thus permitting us to retrieve displacement information along the azimuth direction and better describing the deformation field. In order to retrieve the earthquake source location and its geometrical characteristics, the displacement maps were modeled by finite dislocation faults in an elastic and homogeneous half-space [Okada, 1985]. In particular, we searched for all the parameters free the fault by using a nonlinear inversion based on the Levenberg-Marquardt least-squares approach. The best fit solution, consists of a right -lateral NNW-SSE oriented fault. The comparison between the model results and the measured InSAR data show a good fit, with residue values smaller than 2 cm. However, small zones far from the epicenter area, with higher residues are individuated.
ERIC Educational Resources Information Center
Norbury, C.F.
2005-01-01
Lexical ambiguity resolution was investigated in 9- to 17-year-olds with language impairment (LI, n=20), autistic spectrum disorder (ASD) plus language impairment (ALI, n=28), ASD and verbal abilities within the normal range (ASO, n=20), and typically developing children (TD, n=28). Experiment 1 investigated knowledge of dominant and subordinate…
Velsko, Stephan P; Osburn, Joanne; Allen, Jonathan
2014-11-01
This paper describes the inference-on-networks (ION) framework for forensic interpretat ION of molecular typing data in cases involving allegations of infectious microbial transmission, association of disease outbreaks with alleged sources, and identifying familial relationships using mitochondrial or Y chromosomal DNA. The framework is applicable to molecular typing data obtained using any technique, including those based on electrophoretic separations. A key insight is that the networks associated with disease transmission or DNA inheritance can be used to define specific testable relationships and avoid the ambiguity and subjectivity associated with the criteria used for inferring genetic relatedness now in use. We discuss specific applications of the framework to the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore and the 2001 foot-and-mouth disease virus (FMDV) outbreak in Great Britain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Reeves, Jessica A.; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.; Shanker Agram, Piyush; Lauknes, Tom R.
2011-12-01
In the San Luis Valley (SLV), Colorado legislation passed in 2004 requires that hydraulic head levels in the confined aquifer system stay within the range experienced in the years 1978-2000. While some measurements of hydraulic head exist, greater spatial and temporal sampling would be very valuable in understanding the behavior of the system. Interferometric synthetic aperture radar (InSAR) data provide fine spatial resolution measurements of Earth surface deformation, which can be related to hydraulic head change in the confined aquifer system. However, change in cm-scale crop structure with time leads to signal decorrelation, resulting in low quality data. Here we apply small baseline subset (SBAS) analysis to InSAR data collected from 1992 to 2001. We are able to show high levels of correlation, denoting high quality data, in areas between the center pivot irrigation circles, where the lack of water results in little surface vegetation. At three well locations we see a seasonal variation in the InSAR data that mimics the hydraulic head data. We use measured values of the elastic skeletal storage coefficient to estimate hydraulic head from the InSAR data. In general the magnitude of estimated and measured head agree to within the calculated error. However, the errors are unacceptably large due to both errors in the InSAR data and uncertainty in the measured value of the elastic skeletal storage coefficient. We conclude that InSAR is capturing the seasonal head variation, but that further research is required to obtain accurate hydraulic head estimates from the InSAR deformation measurements.
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Xu, Ru
2018-02-01
Integrating synthetic aperture radar (SAR) and optical data to improve urban land cover classification has been identified as a promising approach. However, which integration level is the most suitable remains unclear but important to many researchers and engineers. This study aimed to compare different integration levels for providing a scientific reference for a wide range of studies using optical and SAR data. SAR data from TerraSAR-X and ENVISAT ASAR in both WSM and IMP modes were used to be combined with optical data at pixel level, feature level and decision levels using four typical machine learning methods. The experimental results indicated that: 1) feature level that used both the original images and extracted features achieved a significant improvement of up to 10% compared to that using optical data alone; 2) different levels of fusion required different suitable methods depending on the data distribution and data resolution. For instance, support vector machine was the most stable at both the feature and decision levels, while random forest was suitable at the pixel level but not suitable at the decision level. 3) By examining the distribution of SAR features, some features (e.g., homogeneity) exhibited a close-to-normal distribution, explaining the improvement from the maximum likelihood method at the feature and decision levels. This indicated the benefits of using texture features from SAR data when being combined with optical data for land cover classification. Additionally, the research also shown that combining optical and SAR data does not guarantee improvement compared with using single data source for urban land cover classification, depending on the selection of appropriate fusion levels and fusion methods.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, R. R.
2017-12-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.
Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.
2007-01-01
A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.
What Story Does Geographic Separation of Insular Bats Tell? A Case Study on Sardinian Rhinolophids
Russo, Danilo; Di Febbraro, Mirko; Rebelo, Hugo; Mucedda, Mauro; Cistrone, Luca; Agnelli, Paolo; De Pasquale, Pier Paolo; Martinoli, Adriano; Scaravelli, Dino; Spilinga, Cristiano; Bosso, Luciano
2014-01-01
Competition may lead to changes in a species’ environmental niche in areas of sympatry and shifts in the niche of weaker competitors to occupy areas where stronger ones are rarer. Although mainland Mediterranean (Rhinolophus euryale) and Mehely’s (R. mehelyi) horseshoe bats mitigate competition by habitat partitioning, this may not be true on resource-limited systems such as islands. We hypothesize that Sardinian R. euryale (SAR) have a distinct ecological niche suited to persist in the south of Sardinia where R. mehelyi is rarer. Assuming that SAR originated from other Italian populations (PES) – mostly allopatric with R. mehelyi – once on Sardinia the former may have undergone niche displacement driven by R. mehelyi. Alternatively, its niche could have been inherited from a Maghrebian source population. We: a) generated Maxent Species Distribution Models (SDM) for Sardinian populations; b) calibrated a model with PES occurrences and projected it to Sardinia to see whether PES niche would increase R. euryale’s sympatry with R. mehelyi; and c) tested for niche similarity between R. mehelyi and PES, PES and SAR, and R. mehelyi and SAR. Finally we predicted R. euryale’s range in Northern Africa both in the present and during the Last Glacial Maximum (LGM) by calibrating SDMs respectively with SAR and PES occurrences and projecting them to the Maghreb. R. mehelyi and PES showed niche similarity potentially leading to competition. According to PES’ niche, R. euryale would show a larger sympatry with R. mehelyi on Sardinia than according to SAR niche. Such niches have null similarity. The current and LGM Maghrebian ranges of R. euryale were predicted to be wide according to SAR’s niche, negligible according to PES’ niche. SAR’s niche allows R. euryale to persist where R. mehelyi is rarer and competition probably mild. Possible explanations may be competition-driven niche displacement or Maghrebian origin. PMID:25340737
NASA Astrophysics Data System (ADS)
Anderson, Vitas
2003-10-01
The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4lgr dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (~0.13 to 0.14 °C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.
Synthetic Aperture Radar Signals: Formulations and Approaches for Data Analysis
1975-05-01
discussion of the nature of SAR signals, error sources, phase history correlation, and the status of SAR hardware;(2) to produce a document that is...preserving phase, thus forming a phase history of the received echoes. When all the returns from a given range interval have been accumulated, they...the functional form of their resolution, the storage of raw data (phase histories ) on film, the linear FM signal and two-dimensional holograms
Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.
Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald
2014-11-25
In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.
Ambiguity: A new way of thinking about responses to climate change.
Fleming, A; Howden, S M
2016-11-15
Diversity, interdisciplinarity and transdisciplinarity are now recognized as vital to tackling wicked problems such as those presented by a changing climate (Nature editorial 2015, Ledford 2015; Dick et al., 2016). Including diverse disciplines in science projects enables a range of different views which often facilitate the creation of innovative solutions. Supporting multiple views and options requires a different way of working beyond traditional reductionist approaches to science, communication and decision-making. To embrace diversity in scientific project teams in order to tackle complex, integrated and urgent issues but to expect singular and linear pathways forward is paradoxical. Much has been written about the need for the scientific community to embrace uncertainty (e.g. Popper, Lempert & Bankes 2005; Lempert et al., 2004; Nelson, Howden & Hayman 2013; Bammer & Smithson 2008). We argue that this in itself will not suffice, and that there is also a need to embrace ambiguity in certain situations. Thus, in this article we explore: (1) what ambiguity is, including the benefits it can offer to climate adaptation in particular, using existing approaches to ambiguity in the arts and humanities as examples (2), we discuss practical meanings of ambiguity in relation to climate change, (3) we propose possible next steps for bringing ambiguity into interdisciplinary practice, and (4) we identify some challenges and necessary preconditions to successfully and appropriately embracing ambiguity. Copyright © 2016 Elsevier B.V. All rights reserved.
Incipient criticality in ecological communities
Zillio, Tommaso; Banavar, Jayanth R.; Green, Jessica L.; Harte, John; Maritan, Amos
2008-01-01
In ecology, there have been attempts to establish links between the relative species abundance (RSA), the fraction of species in a community with a given abundance, and a power-law form of the species area relationship (SAR), the dependence of species richness on sampling area. However the SAR and other patterns in ecology often do not exhibit power-law behavior over an appreciable range of scales. This raises the question whether a scaling framework can be applied when the system under analysis does not exhibit power-law behavior. Here, we derive a general finite-size scaling framework applicable to such systems that can be used to identify incipient critical behavior and links the scale dependence of the RSA and the SAR. We confirm the generality of our theory by using data from a serpentine grassland plot, which exhibits a power-law SAR, and the Barro Colorado Island plot in Panama, whose SAR shows deviations from power-law behavior at every scale. Our results demonstrate that scaling provides a model-independent framework for analyzing and unifying ecological data and that, despite the absence of power laws, ecosystems are poised in the vicinity of a critical point. PMID:19033187
NASA Astrophysics Data System (ADS)
Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.
2008-03-01
This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org
NASA Astrophysics Data System (ADS)
Teutsch, Michael; Saur, Günter
2011-11-01
Spaceborne SAR imagery offers high capability for wide-ranging maritime surveillance especially in situations, where AIS (Automatic Identification System) data is not available. Therefore, maritime objects have to be detected and optional information such as size, orientation, or object/ship class is desired. In recent research work, we proposed a SAR processing chain consisting of pre-processing, detection, segmentation, and classification for single-polarimetric (HH) TerraSAR-X StripMap images to finally assign detection hypotheses to class "clutter", "non-ship", "unstructured ship", or "ship structure 1" (bulk carrier appearance) respectively "ship structure 2" (oil tanker appearance). In this work, we extend the existing processing chain and are now able to handle full-polarimetric (HH, HV, VH, VV) TerraSAR-X data. With the possibility of better noise suppression using the different polarizations, we slightly improve both the segmentation and the classification process. In several experiments we demonstrate the potential benefit for segmentation and classification. Precision of size and orientation estimation as well as correct classification rates are calculated individually for single- and quad-polarization and compared to each other.
Jiang, L.; Liao, M.; Lin, H.; Yang, L.
2009-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Feng, W.
2017-12-01
InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammage, R.B.
1995-01-01
Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).
NASA Astrophysics Data System (ADS)
Williams, Arnold C.; Pachowicz, Peter W.
2004-09-01
Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.
NASA Astrophysics Data System (ADS)
Hammann, Mark Gregory
The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted in higher overall classification accuracies. In many cases using more than a single SAR band also improved the classification accuracy. There was no single best SAR band for all cases; for specific study areas or LC classes, different SAR bands were better. For Wad Medani, the overall accuracy increased nearly 25% over EO by using all three SAR bands and GLCM texture. For Campinas, the improvement over EO was 4.3%; the large areas of vegetation were classified by EO with good accuracy. At Fresno-Kings Counties, EO+SAR fusion improved the overall classification accuracy by 7%. For times or regions where EO is not available due to extended cloud cover, classification with SAR is often the only option; note that SAR alone typically results in lower classification accuracies than when using EO or EO-SAR fusion. Fusion of EO and SAR was especially important to improve the separability of orchards from other crops, and separating urban areas with buildings from bare soil; those classes are difficult to accurately separate with EO. The outcome of this dissertation contributes to the understanding of the benefits of combining data from EO imagery with different SAR bands and SAR derived texture data to identify different LC classes. In times of increased public and private budget constraints and industry consolidation, this dissertation provides insight as to which band packages could be most useful for increased accuracy in LC classification.
Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
An InSAR analysis approach for identifying and extracting the temporarily coherent points (TCP) that exist between two SAR acquisitions and for determining motions of the TCP is presented for applications such as ground settlement monitoring. TCP are identified based on the spatial characteristics of the range and azimuth offsets of coherent radar scatterers. A method for coregistering TCP based on the offsets of TCP is given to reduce the coregistration errors at TCP. An improved phase unwrapping method based on the minimum cost flow (MCF) algorithm and local Delaunay triangulation is also proposed for sparse TCP data. The proposed algorithms are validated using a test site in Hong Kong. The test results show that the algorithms work satisfactorily for various ground features.
Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology
NASA Astrophysics Data System (ADS)
Sun, N.; Wang, Y. J.
2018-04-01
Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.
Using Lattice Topology Information to Investigate Persistent Scatterers at Facades in Urban Areas
NASA Astrophysics Data System (ADS)
Schack, L.; Soergel, U.
2013-05-01
Modern spaceborne SAR sensors like TerraSAR-X offer ground resolution of up to one meter in range and azimuth direction. Buildings, roads, bridges, and other man-made structures appear in such data often as regular patterns of strong and temporally stable points (Persistent Scatterer, PS). As one step in the process of unveiling what object structure actually causes the PS (i.e., physical nature) we compare those regular structures in SAR data to their correspondences in optical imagery. We use lattices as a common data representation for visible facades. By exploiting the topology information given by the lattices we can complete gaps in the structures which is one step towards the understanding of the complex scattering characteristics of distinct facade objects.
Dispersive Phase in the L-band InSAR Image Associated with Heavy Rain Episodes
NASA Astrophysics Data System (ADS)
Furuya, M.; Kinoshita, Y.
2017-12-01
Interferometric synthetic aperture radar (InSAR) is a powerful geodetic technique that allows us to detect ground displacements with unprecedented spatial resolution, and has been used to detect displacements due to earthquakes, volcanic eruptions, and glacier motion. In the meantime, due to the microwave propagation through ionosphere and troposphere, we often encounter non-negligible phase anomaly in InSAR data. Correcting for the ionsphere and troposphere is therefore a long-standing issue for high-precision geodetic measurements. However, if ground displacements are negligible, InSAR image can tell us the details of the atmosphere.Kinoshita and Furuya (2017, SOLA) detected phase anomaly in ALOS/PALSAR InSAR data associated with heavy rain over Niigata area, Japan, and performed numerical weathr model simulation to reproduce the anomaly; ALOS/PALSAR is a satellite-based L-band SAR sensor launched by JAXA in 2006 and terminated in 2011. The phase anomaly could be largely reproduced, using the output data from the weather model. However, we should note that numerical weather model outputs can only account for the non-dispersive effect in the phase anomaly. In case of severe weather event, we may expect dispersive effect that could be caused by the presence of free-electrons.In Global Navigation Satellite System (GNSS) positioning, dual frequency measurements allow us to separate the ionospheric dispersive component from tropospheric non-dispersive components. In contrast, SAR imaging is based on a single carrier frequency, and thus no operational ionospheric corrections have been performed in InSAR data analyses. Recently, Gomba et al (2016) detailed the processing strategy of split spectrum method (SSM) for InSAR, which splits the finite bandwidth of the range spectrum and virtually allows for dual-frequency measurements.We apply the L-band InSAR SSM to the heavy rain episodes, in which more than 50 mm/hour precipitations were reported. We report the presence of phase anomaly in both dispersive and non-dispersive components. While the original phase anomaly turns out to be mostly due to the non-dispersive effect, we could recognize local anomalies in the dispersive component as well. We will discuss its geophysical implications, and may show several case studies.
A fast, programmable hardware architecture for the processing of spaceborne SAR data
NASA Technical Reports Server (NTRS)
Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.
1984-01-01
The development of high-throughput SAR processors (HTSPs) for the spaceborne SARs being planned by NASA, ESA, DFVLR, NASDA, and the Canadian Radarsat Project is discussed. The basic parameters and data-processing requirements of the SARs are listed in tables, and the principal problems are identified as real-operations rates in excess of 2 x 10 to the 9th/sec, I/O rates in excess of 8 x 10 to the 6th samples/sec, and control computation loads (as for range cell migration correction) as high as 1.4 x 10 to the 6th instructions/sec. A number of possible HTSP architectures are reviewed; host/array-processor (H/AP) and distributed-control/data-path (DCDP) architectures are examined in detail and illustrated with block diagrams; and a cost/speed comparison of these two architectures is presented. The H/AP approach is found to be adequate and economical for speeds below 1/200 of real time, while DCDP is more cost-effective above 1/50 of real time.
Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues
2013-01-10
and Long-Range Ballistic Missiles Congressional Research Service Forward-Based Global Strike ( FBGS ...they may address the nuclear ambiguity issues raised by long-range ballistic missiles in the CPGS program. Forward-Based Global Strike ( FBGS
Atmospheric Phase Delay in Sentinel SAR Interferometry
NASA Astrophysics Data System (ADS)
Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.
2018-04-01
The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.
Radar signatures of road vehicles: airborne SAR experiments
NASA Astrophysics Data System (ADS)
Palubinskas, G.; Runge, H.; Reinartz, P.
2005-10-01
The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.
Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery
Sun, Jian
2017-01-01
The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) around U.S. western coastal waters. Wind speeds from NDBC in situ buoys are up to 15 m/s and buoy-measured significant wave height (SWH) has ranged from 0.5 m to 3 m. In this study, winds were retrieved using the geophysical model function (GMF) together with the polarization ratio (PR) model and waves were retrieved using a new empirical algorithm based on SAR cutoff wavelength in satellite flight direction, herein called CSAR_WAVE. Validation against buoy measurements shows a 1.4/1.9 m/s root mean square error (RMSE) of wind speed and a 24/23% scatter index (SI) of SWH for VV/HH polarization. In addition, wind and wave retrieval results from 166 GF-3 images were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis winds, as well as the SWH from the WaveWatch-III model, respectively. Comparisons show a 2.0 m/s RMSE for wind speed with a 36% SI of SWH for VV-polarization and a 2.2 m/s RMSE for wind speed with a 37% SI of SWH for HH-polarization. Our work gives a preliminary assessment of the wind and wave retrieval results from GF-3 SAR images for the first time and will provide guidance for marine applications of GF-3 SAR. PMID:28757571
Ambiguities in the retrieval of rain rates from radar returns at attenuating wavelengths
NASA Technical Reports Server (NTRS)
Haddad, Z. S.; Im, E.; Durden, S. L.
1993-01-01
It is well-known that there are significant deterministic ambiguities inherent in trying to determine the particular rain rate profile which produced some given sequence of air- or space-borne radar echo powers at a single attenuating frequency. We quantify these ambiguities mathematically, and examine their effect on various proposed rain-rate profile retrieval algorithms. When the given data consist of a single radiometer measurement together with a single-look-angle single-frequency set of range-compressed echo powers, we show that several substantially different rain profiles can realistically be considered solutions. On the other hand, if the data consist of a single-look-angle two-frequency set of echo powers, the inversion problem generically has a unique solution. We note that traditional 'back-of-the-envelope' arguments can be quite misleading in assessing the extent of the ambiguity, even in the simplest cases.
NASA Astrophysics Data System (ADS)
Valéry, Audrey; Andréassian, Vazken; Perrin, Charles
2014-09-01
This paper investigates the degree of complexity required in a snow accounting routine to ultimately simulate flows at the catchment outlet. We present a simple, parsimonious and general snow accounting routine (SAR), called Cemaneige, that can be associated with any precipitation-runoff model to simulate discharge at the catchment scale. To get results of general applicability, this SAR was tested on a large set of 380 catchments from four countries (France, Switzerland, Sweden and Canada) and combined with four different hydrological models. Our results show that five basic features provide a good reliability and robustness to the SAR, namely considering: (1) a transition range of temperature for the determination of the solid fraction of precipitation; (2) five altitudinal bands of equal area for snow accumulation; (3) the cold-content of the snowpack (with a parameter controlling snowpack inertia); (4) a degree-day factor controlling snowmelt; (5) uneven snow distribution in each band. This general SAR includes two internal states (the snowpack and its cold-content). Results also indicate that only two free parameters (snowmelt factor and cold-content factor) are warranted in a SAR at the daily time step and that further complexity is not supported by improvements in flow simulation efficiency. To justify the reasons for considering the five features above, a sensitivity analysis comparing Cemaneige with other SAR versions is performed. It analyses the snow processes which should be selected or not to bring significant improvement in model performances. Compared with the six existing SARs presented in the companion article (Valéry et al., 2014) on the 380 catchments set, Cemaneige shows better performance on average than five of these six SARs. It provides performance similar to the sixth SAR (MORD4) but with only half its number of free parameters. However, CemaNeige still appears perfectible on mountainous catchments (France and Switzerland) where the lumped SAR, MORD4, outperforms Cemaneige. Cemaneige can easily be adapted for simulation on ungauged catchments: fixing its two parameters to default values much less degrades performances than the other best performing SAR. This may partly due to the Cemaneige parsimony.
Purewal, Satvinder; Crawshaw, Marilyn; van den Akker, Olga
2012-06-01
This study investigated the attitudes of parental order reporters (PORs) towards their work with surrogacy arrangements and their experiences of role conflict and role ambiguity. A questionnaire was used to assess PORs' perceptions of their role in parental order [PO] applications, attitudes towards surrogacy arrangements and the legal process and the influence of role ambiguity or conflict. Questionnaires were distributed to all PORs employed by the Children and Family Court Advisory and Support Service in England. Thirty-three PORs participated (response rate 46%) who, on average, had each completed five PO applications (range 1-40). Positive attitudes towards surrogacy and the child's needs for openness about origins were found. Concerns about the inadequacy of preparation and assessment arrangements, overseas arrangements and non-regulation of surrogacy agencies were evident. PORs with high-role ambiguity were more likely to report less positive attitudes towards the emotional consequence of surrogacy on offspring. High scores on role ambiguity and role conflict were reflected in less positive attitudes towards the parties' preparation towards parenthood. These results have implications for training, policy and practice in this area.
Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors
NASA Astrophysics Data System (ADS)
Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh
2006-12-01
Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will generate full-swath (6 to 75 Kms) DMSAR images in 1m / 3m / 5m / 10m / 30m resolution SAR operating modes. For RISAT mission, this generic Quick Look SAR Processor will be mainly used for browse product generation at NRSA-Shadnagar (SAN) ground receive station. RISAT QLP/NRTP is also proposed to provide an alternative emergency SAR product generation chain. For this, the S/C aux data appended in Onboard SAR Frame Format (x, y, z, x', y', z', roll, pitch, yaw) and predicted orbit from previous days Orbit Determination data will be used. The QLP / NRTP will produce ground range images in real / near real time. For emergency data product generation, additional Off-line tasks like geo-tagging, masking, QC etc needs to be performed on the processed image. The QLP / NRTP would generate geo-tagged images from the annotation data available from the SAR P/L data itself. Since the orbit & attitude information are taken as it is, the location accuracy will be poorer compared to the product generated using ADIF, where smoothened attitude and orbit are made available. Additional tasks like masking, output formatting and Quality checking of the data product will be carried out at Balanagar, NRSA after the image annotated data from QLP / NRTP is sent to Balanagar. The necessary interfaces to the QLP/NRTP for Emergency product generation are also being worked out. As is widely acknowledged, QLP/NRTP for RISAT and DMSAR is an ambitious effort and the technology of future. It is expected that by the middle of next decade, the next generation SAR missions worldwide will have onboard SAR Processors of varying capabilities and generate SAR Data products and Information products onboard instead of SAR raw data. Thus, it is also envisaged that these activities related to QLP/NRTP implementation for RISAT ground segment and DMSAR will be a significant step which will directly feed into the development of onboard real time processing systems for ISRO's future space borne SAR missions. This paper describes the design requirements, configuration details and salient features, apart from highlighting the utility of these Quick Look SAR processors for RISAT and DMSAR, for generation of emergency products for Disaster management.
NASA Astrophysics Data System (ADS)
Di Martino, Gerardo; Iodice, Antonio; Natale, Antonio; Riccio, Daniele; Ruello, Giuseppe
2015-04-01
The recently proposed polarimetric two-scale two- component model (PTSTCM) in principle allows us obtaining a reasonable estimation of the soil moisture even in moderately vegetated areas, where the volumetric scattering contribution is non-negligible, provided that the surface component is dominant and the double-bounce component is negligible. Here we test the PTSTCM validity range by applying it to polarimetric SAR data acquired on areas for which, at the same times of SAR acquisitions, ground measurements of soil moisture were performed. In particular, we employ the AGRISAR'06 database, which includes data from several fields covering a period that spans all the phases of vegetation growth.
Radar systems for the water resources mission, volume 1
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.
Making Decisions under Ambiguity: Judgment Bias Tasks for Assessing Emotional State in Animals
Roelofs, Sanne; Boleij, Hetty; Nordquist, Rebecca E.; van der Staay, Franz Josef
2016-01-01
Judgment bias tasks (JBTs) are considered as a family of promising tools in the assessment of emotional states of animals. JBTs provide a cognitive measure of optimism and/or pessimism by recording behavioral responses to ambiguous stimuli. For instance, a negative emotional state is expected to produce a negative or pessimistic judgment of an ambiguous stimulus, whereas a positive emotional state produces a positive or optimistic judgment of the same ambiguous stimulus. Measuring an animal’s emotional state or mood is relevant in both animal welfare research and biomedical research. This is reflected in the increasing use of JBTs in both research areas. We discuss the different implementations of JBTs with animals, with a focus on their potential as an accurate measure of emotional state. JBTs have been successfully applied to a very broad range of species, using many different types of testing equipment and experimental protocols. However, further validation of this test is deemed necessary. For example, the often extensive training period required for successful judgment bias testing remains a possible factor confounding results. Also, the issue of ambiguous stimuli losing their ambiguity with repeated testing requires additional attention. Possible improvements are suggested to further develop the JBTs in both animal welfare and biomedical research. PMID:27375454
Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping
NASA Technical Reports Server (NTRS)
Fujita, M.; Ulaby, F. (Principal Investigator)
1982-01-01
The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging.
A high SFDR 6-bit 20-MS/s SAR ADC based on time-domain comparator
NASA Astrophysics Data System (ADS)
Xue, Han; Hua, Fan; Qi, Wei; Huazhong, Yang
2013-08-01
This paper presents a 6-bit 20-MS/s high spurious-free dynamic range (SFDR) and low power successive approximation register analog to digital converter (SAR ADC) for the radio-frequency (RF) transceiver front-end, especially for wireless sensor network (WSN) applications. This ADC adopts the modified common-centroid symmetry layout and the successive approximation register reset circuit to improve the linearity and dynamic range. Prototyped in a 0.18-μm 1P6M CMOS technology, the ADC performs a peak SFDR of 55.32 dB and effective number of bits (ENOB) of 5.1 bit for 10 MS/s. At the sample rate of 20 MS/s and the Nyquist input frequency, the 47.39-dB SFDR and 4.6-ENOB are achieved. The differential nonlinearity (DNL) is less than 0.83 LSB and the integral nonlinearity (INL) is less than 0.82 LSB. The experimental results indicate that this SAR ADC consumes a total of 522 μW power and occupies 0.98 mm2.
Ionospheric effects on synthetic aperture radar at VHF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.
1997-02-01
Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations ofmore » the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.« less
2008-10-01
resolution orthophoto and LiDAR datasets, as well as for the vegetation modeling conducted for SAR FAR mitigation. 3.4.4 Navigation Systems An Applanix A...these accuracies. By registering eight cardinal pass-direction images per tile to the orthophotography and to each other, the horizontal error in... orthophoto image, which successfully increased the HSI image resolution to 0.25-m. 22 Table 4. SAR Performance Data. Type of Performance
Processing Ultra Wide Band Synthetic Aperture Radar Data with Motion Detectors
NASA Technical Reports Server (NTRS)
Madsen, Soren Norvang
1996-01-01
Several issues makes the processing of ultra wide band (UWB) SAR data acquired from an airborne platform difficult. The character of UWB data invalidates many of the usual SAR batch processing techniques, leading to the application of wavenumber domain type processors...This paper will suggest and evaluate an algorithm which combines a wavenumber domain processing algorithm with a motion compensation procedure which enables motion compensation to be applied as a function of target range and the azimuth angle.
Personnel viewing posters showing how NASA activities have made an impact on Costa Rican people
2004-03-03
L-R; Jorge Andres Diaz, Director of the Costa Rican National Hangar for Airborne Research division of the National Center for High Technology(CENAT); NASA Administrator Sean O'Keefe; and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT), viewing posters showing how NASA activities have made an impact on Costa Rican people. Mr. O'Keefe was in Costa Rica to participate in the AirSAR 2004 Mesoamerica campaign, which used NASA DFRC's DC-8 airborne laboratory aircraft. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Keller, M. R.
1986-01-01
Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.
Determining Titan surface topography from Cassini SAR data
Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini
2009-01-01
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.
Software for Generating Strip Maps from SAR Data
NASA Technical Reports Server (NTRS)
Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto
2004-01-01
Jurassicprok is a computer program that generates strip-map digital elevation models and other data products from raw data acquired by an airborne synthetic-aperture radar (SAR) system. This software can process data from a variety of airborne SAR systems but is designed especially for the GeoSAR system, which is a dual-frequency (P- and X-band), single-pass interferometric SAR system for measuring elevation both at the bare ground surface and top of the vegetation canopy. Jurassicprok is a modified version of software developed previously for airborne-interferometric- SAR applications. The modifications were made to accommodate P-band interferometric processing, remove approximations that are not generally valid, and reduce processor-induced mapping errors to the centimeter level. Major additions and other improvements over the prior software include the following: a) A new, highly efficient multi-stage-modified wave-domain processing algorithm for accurately motion compensating ultra-wideband data; b) Adaptive regridding algorithms based on estimated noise and actual measured topography to reduce noise while maintaining spatial resolution; c) Exact expressions for height determination from interferogram data; d) Fully calibrated volumetric correlation data based on rigorous removal of geometric and signal-to-noise decorrelation terms; e) Strip range-Doppler image output in user-specified Doppler coordinates; f) An improved phase-unwrapping and absolute-phase-determination algorithm; g) A more flexible user interface with many additional processing options; h) Increased interferogram filtering options; and i) Ability to use disk space instead of random- access memory for some processing steps.
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
NASA Astrophysics Data System (ADS)
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.
2017-12-01
Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.
Glaciological studies in the central Andes using AIRSAR/TOPSAR
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.
1993-01-01
The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.
Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E
2014-01-01
Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901
Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E
2014-05-01
Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.
Ionospheric effects on DInSAR measurements of interseismic deformation in China
NASA Astrophysics Data System (ADS)
Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.
2017-12-01
Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This study will summarize the general spatial pattern of ionospheric phase at middle latitude zone and its impacts in fault displacement studies.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-12-26
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.
Detection of moving humans in UHF wideband SAR
NASA Astrophysics Data System (ADS)
Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy
2014-06-01
In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.
SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change
NASA Astrophysics Data System (ADS)
Rosen, P. A.
2016-12-01
Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.
Significant wave heights from Sentinel-1 SAR: Validation and applications
NASA Astrophysics Data System (ADS)
Stopa, J. E.; Mouche, A.
2017-03-01
Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.
NASA Astrophysics Data System (ADS)
Chu, T.; Lindenschmidt, K. E.
2016-12-01
Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2
UAVSAR Active Electronically Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.
2011-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the results are compared using a lumped system thermal model. The various uncertainties involved in SAR estimation are categorized as material uncertainties, thermodynamic uncertainties and parametric uncertainties. The adiabatic reconstruction is found to decrease the uncertainties in SAR measurement by approximately three times. Additionally, a set of experimental guidelines for accurate SAR estimation using adiabatic reconstruction protocol is also recommended. These results warrant a universal experimental and data analysis protocol for SAR measurements during field induced heating of magnetic fluids under non-adiabatic conditions.
Renga, Alfredo; Moccia, Antonio
2009-01-01
During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes. PMID:22389594
Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.
1998-01-01
Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (±10 mm in change of land surface elevation) were developed for a groundwater basin (∼103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993–1995) subsidence patterns and those detected historically (1926–1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.
Airborne microwave radar measurements of surface velocity in a tidally-driven inlet
NASA Astrophysics Data System (ADS)
Farquharson, G.; Thomson, J. M.
2012-12-01
A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.
User-friendly InSAR Data Products: Fast and Simple Timeseries (FAST) Processing
NASA Astrophysics Data System (ADS)
Zebker, H. A.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) methods provide high resolution maps of surface deformation applicable to many scientific, engineering and management studies. Despite its utility, the specialized skills and computer resources required for InSAR analysis remain as barriers for truly widespread use of the technique. Reduction of radar scenes to maps of temporal deformation evolution requires not only detailed metadata describing the exact radar and surface acquisition geometries, but also a software package that can combine these for the specific scenes of interest. Furthermore, the radar range-Doppler radar coordinate system itself is confusing, so that many users find it hard to incorporate even useful products in their customary analyses. And finally, the sheer data volume needed to represent interferogram time series makes InSAR analysis challenging for many analysis systems. We show here that it is possible to deliver radar data products to users that address all of these difficulties, so that the data acquired by large, modern satellite systems are ready to use in more natural coordinates, without requiring further processing, and in as small volume as possible.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing
2011-01-01
An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.
NASA Astrophysics Data System (ADS)
Massironi, Matteo; Zampieri, Dario; Schiavo, Alessio; Bianchi, Marco; Franceschini, Andrea
2010-05-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR) methodology provides high resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
NASA Astrophysics Data System (ADS)
Zerbini, S.; Prati, C.; Errico, M.; Novali, F.; Santi, E.
2012-12-01
Integrating and exploiting the synergetic combination of the InSAR and GPS techniques allows overcoming the limitations inherent in the use of each technique alone. GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. The test area chosen for the comparison between InSAR and GPS data is in northeastern Italy, in particular, in the city of Bologna (urbanized area) and in the surroundings of Medicina (agricultural area). In these sites, two permanent GPS stations (EUREF EPN sites) of the University of Bologna are operational since mid 1999 (BOLG) and 1996 (MSEL) respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI). The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate, on the one hand, the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the results of both techniques. For the comparison of differential tropospheric delays, two GPS solutions derived with different session length and data acquisition rate were considered. The InSAR results are those relevant to two PSs located at very close distance from the GPS stations. These are representative of the majority of PSs identified around the two stations. A similar behavior is present in the results achieved by both GPS and PS-InSAR techniques, despite of expected differences due to the almost instantaneous nature of the PS-InSAR estimates compared to the GPS 5-minute averaged results.
Observing crustal deformation and atmospheric signals from COSMO-SKYMED and GPS data
NASA Astrophysics Data System (ADS)
Zerbini, S.; Prati, C.; Cappello, G.; Errico, M.; Novali, F.
2012-04-01
The combined use of InSAR and GPS allows for the full exploitation of the complementary aspects of the two techniques by overcoming the limitations inherent in the use of each technique alone. Additionally, GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. We have compared the InSAR and GPS data at Bologna (urbanized area) and Medicina (agricultural area), in northeastern Italy, where two permanent GPS stations of the University of Bologna are operational since mid 1999 and 1996 respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate on the one hand the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the results of both techniques. The comparison of differential tropospheric delays has been carried out. Two GPS solutions derived with different session length and data acquisition rate were considered. The InSAR results were those relevant to two PS located at a very close distance from the GPS stations. These are representative of the majority of PSs identified around the two stations. A similar behavior is present in the results achieved by both GPS and PS-InSAR techniques, despite of expected differences due to the almost instantaneous nature of the PS-InSAR estimates compared to the GPS 5-min averaged results.
Bethell, Emily J.; Koyama, Nicola F.
2015-01-01
Recent developments in the study of animal cognition and emotion have resulted in the ‘judgement bias’ model of animal welfare. Judgement biases describe the way in which changes in affective state are characterized by changes in information processing. In humans, anxiety and depression are characterized by increased expectation of negative events and negative interpretation of ambiguous information. Positive wellbeing is associated with enhanced expectation of positive outcomes and more positive interpretation of ambiguous information. Mood-congruent judgement biases for ambiguous information have been demonstrated in a range of animal species, with large variation in the way tests are administered and in the robustness of analyses. We highlight and address some issues using a laboratory species not previously tested: the Syrian hamster (Mesocricetus auratus). Hamsters were tested using a spatial judgement go/no-go task in enriched and unenriched housing. We included a number of controls and additional behavioural tests and applied a robust analytical approach using linear mixed effects models. Hamsters approached the ambiguous cues significantly more often when enriched than unenriched. There was no effect of enrichment on responses to the middle cue. We discuss these findings in light of mechanisms underlying processing cues to reward, punishment and true ambiguity, and the implications for the welfare of laboratory hamsters. PMID:26587255
Single-Chip FPGA Azimuth Pre-Filter for SAR
NASA Technical Reports Server (NTRS)
Gudim, Mimi; Cheng, Tsan-Huei; Madsen, Soren; Johnson, Robert; Le, Charles T-C; Moghaddam, Mahta; Marina, Miguel
2005-01-01
A field-programmable gate array (FPGA) on a single lightweight, low-power integrated-circuit chip has been developed to implement an azimuth pre-filter (AzPF) for a synthetic-aperture radar (SAR) system. The AzPF is needed to enable more efficient use of data-transmission and data-processing resources: In broad terms, the AzPF reduces the volume of SAR data by effectively reducing the azimuth resolution, without loss of range resolution, during times when end users are willing to accept lower azimuth resolution as the price of rapid access to SAR imagery. The data-reduction factor is selectable at a decimation factor, M, of 2, 4, 8, 16, or 32 so that users can trade resolution against processing and transmission delays. In principle, azimuth filtering could be performed in the frequency domain by use of fast-Fourier-transform processors. However, in the AzPF, azimuth filtering is performed in the time domain by use of finite-impulse-response filters. The reason for choosing the time-domain approach over the frequency-domain approach is that the time-domain approach demands less memory and a lower memory-access rate. The AzPF operates on the raw digitized SAR data. The AzPF includes a digital in-phase/quadrature (I/Q) demodulator. In general, an I/Q demodulator effects a complex down-conversion of its input signal followed by low-pass filtering, which eliminates undesired sidebands. In the AzPF case, the I/Q demodulator takes offset video range echo data to the complex baseband domain, ensuring preservation of signal phase through the azimuth pre-filtering process. In general, in an SAR I/Q demodulator, the intermediate frequency (fI) is chosen to be a quarter of the range-sampling frequency and the pulse-repetition frequency (fPR) is chosen to be a multiple of fI. The AzPF also includes a polyphase spatial-domain pre-filter comprising four weighted integrate-and-dump filters with programmable decimation factors and overlapping phases. To prevent aliasing of signals, the bandwidth of the AzPF is made 80 percent of fPR/M. The choice of four as the number of overlapping phases is justified by prior research in which it was shown that a filter of length 4M can effect an acceptable transfer function. The figure depicts prototype hardware comprising the AzPF and ancillary electronic circuits. The hardware was found to satisfy performance requirements in real-time tests at a sampling rate of 100 MHz.
Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study.
Chowell, Gerardo; Abdirizak, Fatima; Lee, Sunmi; Lee, Jonggul; Jung, Eunok; Nishiura, Hiroshi; Viboud, Cécile
2015-09-03
The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied highly across individual hospital outbreaks (Kruskal-Wallis test; P < 0.0001), with significantly higher transmission heterogeneity in the distribution of secondary cases for MERS than SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (>100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses.
Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A
2018-01-01
Research shows grab sampling is inadequate for evaluating military ranges contaminated with energetics because of their highly heterogeneous distribution. Similar studies assessing the heterogeneous distribution of metals at small-arms ranges (SAR) are lacking. To address this we evaluated whether grab sampling provides appropriate data for performing risk analysis at metal-contaminated SARs characterized with 30-48 grab samples. We evaluated the extractable metal content of Cu, Pb, Sb, and Zn of the field data using a Monte Carlo random resampling with replacement (bootstrapping) simulation approach. Results indicate the 95% confidence interval of the mean for Pb (432 mg/kg) at one site was 200-700 mg/kg with a data range of 5-4500 mg/kg. Considering the U.S. Environmental Protection Agency screening level for lead is 400 mg/kg, the necessity of cleanup at this site is unclear. Resampling based on populations of 7 and 15 samples, a sample size more realistic for the area yielded high false negative rates.
Ambiguity and Uncertainty in Probabilistic Inference.
1983-09-01
whether one was to judge the like- lihood that the majority or minority position was true . In order to sample a wide range of values of n and p, 40...AFD-A133 418 AMBIGUITY AND UNCERTAINTY IN PROBABILISTIC INFERENCE i/i U CLRS (U) CHICGO UNIT’ IL CENTER FOR DECISION RESERCH H J EINHORN ET AL. SEP...been demonstrated experimentally (Becker & Brownson, 1964; Yates & Zukowski, 1976). On the other hand, the process by which such second-order uncertainty
Blankenstein, N E; Schreuders, E; Peper, J S; Crone, E A; van Duijvenvoorde, A C K
2018-05-15
Although many neuroimaging studies have investigated adolescent risk taking, few studies have dissociated between decision-making under risk (known probabilities) and ambiguity (unknown probabilities). Furthermore, which brain regions are sensitive to individual differences in task-related and self-reported risk taking remains elusive. We presented 198 adolescents (11-24 years, an age-range in which individual differences in risk taking are prominent) with an fMRI paradigm that separated decision-making (choosing to gamble or not) and reward outcome processing (gains, no gains) under risky and ambiguous conditions, and related this to task-related and self-reported risk taking. We observed distinct neural mechanisms underlying risky and ambiguous gambling, with risk more prominently associated with activation in parietal cortex, and ambiguity more prominently with dorsolateral prefrontal cortex (PFC), as well as medial PFC during outcome processing. Individual differences in task-related risk taking were positively associated with ventral striatum activation in the decision phase, specifically for risk, and negatively associated with insula and dorsomedial PFC activation, specifically for ambiguity. Moreover, dorsolateral PFC activation in the outcome phase seemed a prominent marker for individual differences in task-related risk taking under ambiguity as well as self-reported daily-life risk taking, in which greater risk taking was associated with reduced activation in dorsolateral PFC. Together, this study demonstrates the importance of considering multiple risk-taking measures, and contextual moderators, in understanding the neural mechanisms underlying adolescent risk taking. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
In vitro fertilization of mouse ova by spermatozoa exposed isothermally to radio-frequency radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, S.F.; Liu, L.M.; Graham, R.
Mouse spermatozoa were exposed in vitro for 1 h to 27- or 2,450-MHz CW RF radiation at SARs of 0 to 90 W/kg under isothermal (37 +/- 0.2 degrees C) conditions. Exposure at either frequency to RF radiation at SARs of 50 W/kg or greater resulted in a statistically significant reduction in the ability of irradiated sperm to fertilize mouse ova in vitro (P less than .05). Over the range of SARs there was no apparent difference in the effects of 27- vs. 2,450-MHz RF radiation. There were no readily detectable exposure effects on spermatozoan morphology, ultrastructure, or capacitation. Themore » reduction of in vitro fertilization is attributed to a direct effect of RF radiation on spermatozoa rather than to heating.« less
Measuring human-induced land subsidence from space
Bawden, Gerald W.; Sneed, M.; Stork, S.V.; Galloway, D.L.
2003-01-01
Satellite Interferometric Synthetic Aperture Radar (InSAR) is a revolutionary technique that allows scientists to measure and map changes on the Earth's surface as small as a few millimeters. By bouncing radar signals off the ground surface from the same point in space but at different times, the radar satellite can measure the change in distance between the satellite and ground (range change) as the land surface uplifts or subsides. Maps of relative ground-surface change (interferograms) are constructed from the InSAR data to help scientists understand how ground-water pumping, hydrocarbon production, or other human activities cause the land surface to uplift or subside. Interferograms developed by the USGS for study areas in California, Nevada, and Texas are used in this fact sheet to demonstrate some of the applications of InSAR to assess human-induced land deformation
3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea
2013-04-01
Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.
Investigating subsidence at volcanoes in northern California using InSAR
NASA Astrophysics Data System (ADS)
Parker, A. L.; Biggs, J.; Annen, C.; Lu, Z.
2013-12-01
Both Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LVC), northern CA, show signs of subsidence at rates of ~1 cm/yr. Leveling and campaign GPS measurements show that MLV has subsided at a constant rate for over 50 years, making the geodetic history of this volcano unique in both its duration and continuity. Here, we summarise and build upon the existing geodetic records at MLV and LVC, using interferometric synthetic aperture radar (InSAR) to extend the time-series of deformation measurements to 2011. We also use the improved spatial resolution of InSAR measurements to investigate causes of long-term subsidence, providing new insight into magmatic storage conditions at MLV and the timescales of deformation due to cooling and crystallization. A large InSAR dataset has been acquired for the volcanoes of northern CA, but application of the data has been limited by extensive noise and incoherence. We analyse multiple datasets from MLV and LVC and, with the use of multi-temporal InSAR analysis methods (noise-based stacking, π-RATE and StaMPS), demonstrate how InSAR may be used more successfully as a monitoring tool in this region. By comparing InSAR results for MLV to past geodetic studies, we demonstrate that subsidence is on going at ~1 cm/yr with no detectable change in rate. We find that the best fitting source geometry to InSAR data is a sill approximated by a horizontal penny-shaped crack, with radius 2 km and depth 11 km, undergoing volume loss at a rate of -0.0022 km3/yr. We discuss possible source mechanisms of long-term subsidence, investigating volume loss due to cooling and crystallization of an intrusion. We calculate the temperature, melt fraction and volume loss of an intrusion over time using petrological information and a numerical thermal model of heat loss by conduction. The geometry of the intrusion is based upon the depth and radius of the penny-shaped crack model. We run simulations for a range of thicknesses between that of a single intrusion (~50 m) and that of the larger column of intrusive material thought to exist beneath the edifice (~7000 m). Using constraints from the geodetic record, we identify a range of sills with volumes < 10 km3 that can account for the deformation recorded at MLV. We use these models to discuss the timing of intrusion and forecast the total duration of cooling. These processes are also significant at LVC and other Cascade volcanoes, where hydrothermal activity is likely to be driven by heat from magmatic intrusions and the exsolution of volatiles that occurs during cooling and crystallization.
NASA Astrophysics Data System (ADS)
Bigdeli, Behnaz; Pahlavani, Parham
2017-01-01
Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.
Limitations and potential of satellite imagery to monitor environmental response to coastal flooding
Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong
2012-01-01
Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.
NASA Astrophysics Data System (ADS)
Cigna, F.; Confuorto, P.; Novellino, A.; Tapete, D.; Di Martire, D.; Ramondini, M.; Calcaterra, D.; Plank, S.; Ietto, F.; Brigante, A.; Sowter, A.
2016-10-01
For centuries the promontory of Capo Colonna in Calabria region, southern Italy, experienced land subsidence and coastline retreat to an extent that the archaeological ruins of the ancient Greek sanctuary are currently under threat of cliff failure, toppling and irreversible loss. Gas extraction in nearby wells is a further anthropogenic element to account for at the regional scale. Exploiting an unprecedented satellite Synthetic Aperture Radar (SAR) time series including ERS-1/2, ENVISAT, TerraSAR-X, COSMO-SkyMed and Sentinel-1A data stacks acquired between 1992 and 2016, this paper presents the first and most complete Interferometric SAR (InSAR) baseline assessment of land subsidence and coastal processes affecting Capo Colonna. We analyse the regional displacement trends, the correlation between vertical displacements with gas extraction volumes, the impact on stability of the archaeological heritage, and the coastal geohazard susceptibility. In the last 25 years, the land has subsided uninterruptedly, with highest annual line-of-sight deformation rates ranging between -15 and -20 mm/year in 2011-2014. The installation of 40 pairs of corner reflectors along the northern coastline and within the archaeological park resulted in an improved imaging capability and higher density of measurement points. This proved to be beneficial for the ground stability assessment of recent archaeological excavations, in an area where field surveying in November 2015 highlighted new events of cliff failure. The conceptual model developed suggests that combining InSAR results, geomorphological assessments and inventorying of wave-storms will contribute to unveil the complexity of coastal geohazards in Capo Colonna.
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
Image synthesis for SAR system, calibration and processor design
NASA Technical Reports Server (NTRS)
Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.
1978-01-01
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.
Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu
2017-01-23
Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.
Natural Time Analysis and Complex Networks
NASA Astrophysics Data System (ADS)
Sarlis, Nicholas; Skordas, Efthimios; Lazaridou, Mary; Varotsos, Panayiotis
2013-04-01
Here, we review the analysis of complex time series in a new time domain, termed natural time, introduced by our group [1,2]. This analysis conforms to the desire to reduce uncertainty and extract signal information as much as possible [3]. It enables [4] the distinction between the two origins of self-similarity when analyzing data from complex systems, i.e., whether self-similarity solely results from long-range temporal correlations (the process's memory only) or solely from the process's increments infinite variance (heavy tails in their distribution). Natural time analysis captures the dynamical evolution of a complex system and identifies [5] when the system enters a critical stage. Hence, this analysis plays a key role in predicting forthcoming catastrophic events in general. Relevant examples, compiled in a recent monograph [6], have been presented in diverse fields, including Solid State Physics [7], Statistical Physics (for example systems exhibiting self-organized criticality [8]), Cardiology [9,10], Earth Sciences [11] (Geophysics, Seismology), Environmental Sciences (e.g. see Ref. [12]), etc. Other groups have proposed and developed a network approach to earthquake events with encouraging results. A recent study [13] reveals that this approach is strengthened if we combine it with natural time analysis. In particular, we find [13,14] that the study of the spatial distribution of the variability [15] of the order parameter fluctuations, defined in natural time, provides important information on the dynamical evolution of the system. 1. P. Varotsos, N. Sarlis, and E. Skordas, Practica of Athens Academy, 76, 294-321, 2001. 2. P.A. Varotsos, N.V. Sarlis, and E.S. Skordas, Phys. Rev. E, 66, 011902 , 2002. 3. S. Abe, N.V. Sarlis, E.S. Skordas, H.K. Tanaka and P.A. Varotsos, Phys. Rev. Lett. 94, 170601, 2005. 4. P.A. Varotsos, N.V. Sarlis, E.S. Skordas, H.K. Tanaka and M.S. Lazaridou, Phys. Rev. E, 74, 021123, 2006. 5. P.Varotsos, N. V. Sarlis, E. S. Skordas, S. Uyeda, and M. Kamogawa, Proc Natl Acad Sci USA 108, 11361-11364, 2011. 6. P.A.Varotsos, N.V.Sarlis and E.S.Skordas, NATURAL TIME ANALYSIS: THE NEW VIEW OF TIME. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series, Springer-Verlag, Berlin, Heidelberg, 2011. 7. N.V. Sarlis, P.A. Varotsos, and E.S. Skordas, Phys. Rev. B 73, 054504, 2006. 8. N. V. Sarlis, E. S. Skordas, and P. A. Varotsos, EPL 96, 28006, 2011. 9. P.A. Varotsos, N.V. Sarlis, E.S. Skordas, and M.S. Lazaridou, Appl. Phys. Lett. 91, 064106, 2007. 10. N.V. Sarlis, E.S. Skordas and P.A. Varotsos, EuroPhysics Letters EPL, 87, 18003, (2009). 11. P.A. Varotsos, N. V. Sarlis and E. S. Skordas, EPL 96 59002, 2011; 99, 59001 2012; 100 39002, 2012. 12. C.A. Varotsos and C. Tzanis, Atmospheric Environment 47, 428-434, 2012. 13. P. Varotsos, N. Sarlis, E. Skordas and M. Lazaridou, Tectonophysics (DOI 10.1016/j.tecto.2012.12.020). 14. P. Varotsos, N. Sarlis and E. Skordas, EPL to be published. 15. N. V. Sarlis, E. S. Skordas and P. A. Varotsos, EPL 91, 59001, 2010.
UAV-based L-band SAR with precision flight path control
NASA Astrophysics Data System (ADS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAV-Based L-Band SAR with Precision Flight Path Control
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul
2004-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
Kinsey, Stacy M.; Nimick, David A.
2011-01-01
Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to direct CBM discharges were smaller. In September 2005, the SC of 12 measured CBM discharges ranged from 1,750 to 2,440 .μS/cm, and the combined discharges increased SC in the river by an estimated 4.5 percent. In April 2006, the SC of eight measured CBM discharges ranged from 1,720 to 2,070 μS/cm; the largest of these discharges likely increased SC in the river by 5.8 percent. Estimates of potential effects of the CBM discharges on the SC of the Tongue River near the Tongue River Reservoir were calculated using a two-step process involving linear regression and mass-balance calculations for a range of streamflow and CBM-discharge conditions. Potential effects from CBM discharges are larger increases of SC and SAR at lower flows than at higher flows and relative increases that are substantially smaller for SC than for SAR. For example, if the streamflow was 100 cubic feet per second (ft3/s) in the Tongue River near the Tongue River Reservoir and CBM discharge ranged from 1,250 to 5,000 gallons per minute, the projected increases would range from 4.4 to 16 percent for SC and from 39 to 151 percent for SAR. In comparison, if the streamflow was 600 ft3/s, the projected increases would range from 2.2 to 8.4 percent for SC and from 21 to 79 percent for SAR. This analysis of potential water-quality effects on the SC and SAR of the Tongue River in the study area assumes that the quantity and quality of water flowing into the study reach at the time of this study was the same as during the period before CBM development (data from water years 1985-99).
NASA Astrophysics Data System (ADS)
Essen, Helmut; Brehm, Thorsten; Boehmsdorff, Stephan
2007-10-01
Interferometric Synthetic Aperture Radar has the capability to provide the user with the 3-D-Information of land surfaces. To gather data with high height estimation accuracy it is necessary to use a wide interferometric baseline or a high radar frequency. However the problem of resolving the phase ambiguity at smaller wavelengths is more critical than at longer wavelengths, as the unambiguous height interval is inversely proportional to the radar wavelength. To solve this shortcoming, a multiple baseline approach can be used with a number of neighbouring horns and an increasing baselength going from narrow to wide. The narrowest, corresponding to adjacent horns, is then assumed to be unambiguous in phase. This initial interferogram is used as a starting point for the algorithm, which in the next step, unwraps the interferogram with the next wider baseline using the coarse height information to solve the phase ambiguities. This process is repeated consecutively until the interferogram with highest precision is unwrapped. On the expense of this multi-channel-approach the algorithm is simple and robust, and even the amount of processing time is reduced considerably, compared to traditional methods. The multiple baseline approach is especially adequate for millimeterwave radars as antenna horns with relatively small aperture can be used, while a sufficient 3-dB beamwidth is maintained. The paper describes the multiple baseline algorithm and shows the results of tests on real data and a synthetic area. Possibilities and limitations of this approach are discussed. Examples of digital elevation maps derived from measured data at millimeterwaves are shown.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-01-01
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765
Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Le, Charles
2008-01-01
Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.
Coastal Sea Level along the North Eastern Atlantic Shelf from Delay Doppler Altimetry
NASA Astrophysics Data System (ADS)
Fenoglio-Marc, L.; Benveniste, J.; Andersen, O. B.; Gravelle, M.; Dinardo, S.; Uebbing, B.; Scharroo, R.; Kusche, J.; Kern, M.; Buchhaupt, C.
2017-12-01
Satellite altimetry data of the CryoSat-2 and Sentinel-3 missions processed with Delay Doppler methodology (DDA) provide improved coastal sea level measurements up to 2-4 km from coast, thanks to an along-track resolution of about 300m and a higher signal to noise ratio. We investigate the 10 Kilometre stripe along the North-Eastern Atlantic shelf from Lisbon to Bergen to detect the possible impacts in sea level change studies of this enhanced dataset. We consider SAR CryoSat-2 and Sentinel-3 altimetry products from the ESA GPOD processor and in-house reduced SAR altimetry (RDSAR) products. Improved processing includes in RDSAR the application of enhanced retrackers for the RDSAR waveform. Improved processing in SAR includes modification both in the generation of SAR waveforms, (as Hamming weighting window on the burst data prior to the azimuth FFT, zero-padding prior to the range FFT, doubling of the extension for the radar range swath) and in the SAMOSA2 retracker. Data cover the full lifetime of CryoSat-2 (6 years) and Sentinel-3 (1 year). Conventional altimetry are from the sea level CCI database. First we analyse the impact of these SAR altimeter data on the sea level trend and on the estimation of vertical motion from the altimeter minus tide gauge differences. VLM along the North-Eastern Atlantic shelf is generally small compared to the North-Western Atlantic Coast VLM, with a smaller signal to noise ratio. Second we investigate impact on the coastal mean sea level surface and the mean dynamic topography. We evaluate a mean surface from the new altimeter data to be combined to state of the art geoid models to derive the mean dynamic topography. We compare the results to existing oceanographic and geodetic mean dynamic topography solutions, both on grid and pointwise at the tide gauge stations. This study is supported by ESA through the Sea Level CCI and the GOCE++DYCOT projects
Attenuation of Selected Emerging Contaminants During River Transport
NASA Astrophysics Data System (ADS)
Reinhard, M.; Gross, B.; Hadeler, A.
2002-12-01
The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant to up to 97% for some APEO metabolites. The two pharmaceuticals gemfibrozil and ibuprofen were attenuated by more than 90%. Whether photochemical transformations are mainly responsible for the observed removals remains to be investigated.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M.
2008-12-01
Introduction: A catastrophic earthquake struck China"fs Sichuan area on May 12, 2008, with the moment magnitude of 7.9 (USGS). The hypocenter and their aftershocks are distributed along the western edge of the Sichuan Basin, suggesting that this seismic event occurred at the Longmeng Shan fault zone which is constituted of major three active faults (Wenchuan-Maowen, Beichuan, and Pengguan faults). However, it is unclear whether these faults were directly involved in the mainshock rupture. An interferometry SAR (InSAR) analysis generally has a merit that we can detect ground deformation in a vast region with high precision, however, for the Sichuan event, the surface deformation near the fault zone has not been satisfactorily detected from the InSAR analyses due to a low coherency. An offset-tracking method is less precise but more robust for detecting large ground deformation than the interferometric approach. Our purpose is to detect the detail ground deformation immediately near the faults involved in the Sichuan event with applying the offset-tracking method. Analysis Method: We analyzed ALOS/PALSAR images, which have been taken from Path 471 to 476 of ascending track, acquired before and after the mainshock. We processed SAR data from the level-1.0 product, using a software package from Gamma Remote Sensing. For offset-tracking analysis we adopt intensity tracking method which is performed by cross-correlating samples of backscatter intensity of a master SAR image with samples from the corresponding search area of a slave image in order to estimate range and azimuth offset fields. We reduce stereoscopic effects that produce apparent offsets, using SRTM3 DEM data. Results: We have successfully obtained the surface deformation in range (radar look direction) component, while in azimuth (flight direction) no significant deformation can be detected in some orbits due to "gazimuth streaks"h that are errors caused by ionospheric effects. Some concluding remarks are as follows: On the Beichuan F. and its northeastward extension, a clear boundary of a motion toward and away from the satellite can be recognized just along the fault, which is almost consistent with a right-lateral fault motion. On the other hand, in the southwestern region from the Beichuan city where the three major faults are running almost parallel, two boundaries of motions can be recognized; On the Beichuan F. there are a clear displacement boundary in range component, while on the Pengguan F. a boundary can be identified in azimuth component rather than in range, suggesting that the seismic ruptures proceeded with different fault motions at each fault. For the Wenchuan-Maowen F., no significant displacement boundary can be recognized. Acknowledgments: PALSAR data are provided from Earthquake Working Group and PIXEL (PALSAR Interferometry Consortium to Study our Evolving Land surface) under a cooperative research contract with JAXA. The ownership of PALSAR data belongs to METI (Ministry of Economy, Trade and Industry) and JAXA.
Space-borne polarimetric SAR sensors or the golden age of radar polarimetry
NASA Astrophysics Data System (ADS)
Pottier, E.
2010-06-01
SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR) system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR) whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height…), urban mapping etc…. In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode), TerraSAR-X (Dual-pol mode) and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes), by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE). The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrila, J.; Gabelli, S; Bacha, U
Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many ofmore » the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.« less
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.
2010-12-01
In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.
Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors
NASA Astrophysics Data System (ADS)
Yang, J.
2017-12-01
GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Heinrichs, John
1994-01-01
Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.
Utilization of Envisat/ers SAR Data Over the Jharia Coalfield, India for Subsidence Monitoring
NASA Astrophysics Data System (ADS)
Srivastava, Vinay Kumar
2012-07-01
Extended abstract Jharia coalfield the prime coking coal-producing belt in India, started commercial production in 1894. Mining in Jharia coalfield (JCF) is in form of both opencast and underground mining. The area is affected by various environmental hazards such as, coal fire, subsidence, land degradation and toxic gas emissions. Currently, coal fire and subsidence are the major problems in the coalfield and causes continuous changes in topography. Monitoring of such dynamic topographic changes in a hazard-prone mining belt is a critical input for land environmental management. Such temporal topographic changes over span of the time and even short term mining activity within a year could be done from Digital Elevation Model (DEM) generated using various space-borne techniques.. Among all techniques available for generating DEM, SAR Interferometry technique has been successful and effective which offers high resolution spatial detail to a level of few cm. DEM obtained from processing of SAR Interferometry (InSAR) technique using ERS SAR data of April 12 and 13, 1995 provides high spatial resolution images which is useful for monitoring and measuring dynamic changes in land topography. Several workers have successfully InSAR this technique for mapping and monitoring of changes in land surface due to various causes. Using ERS tandem data sets of 16 and 17 May 1996 passes, DInSAR map over the Jharia coal field has been obtained from the interferogram generated by integrating information from ground control points and precise high coherence orbital parameters. Further, using ENVISAT/ ASAR data of June 5 and 6, 2007 and integrating GPS measurements at 4 ground points where corner reflectors were preinstalled for getting bright spots on images and using orbital parameters, a slant range corrected image over the study area has been obtained. shows the plot of differential phases along a particular profile l over a subsidence region in Jharia coal field and the corresponding correlation coefficients. . Further an attempt has been made to delineate subsidence area in Jharia coal field using SAR Interoferometry technique..
NASA Astrophysics Data System (ADS)
Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.; Bates, P. D.
2015-12-01
Synthetic Aperture Radar (SAR) satellites are capable of all-weather day and night observations that can discriminate between land and smooth open water surfaces over large scales. Because of this there has been much interest in the use of SAR satellite data to improve our understanding of water processes, in particular for fluvial flood inundation mechanisms. Past studies prove that integrating SAR derived data with hydraulic models can improve simulations of flooding. However while much of this work focusses on improving model channel roughness values or inflows in ungauged catchments, improvement of model bathymetry is often overlooked. The provision of good bathymetric data is critical to the performance of hydraulic models but there are only a small number of ways to obtain bathymetry information where no direct measurements exist. Spatially distributed river depths are also rarely available. We present a methodology for calibration of model average channel depth and roughness parameters concurrently using SAR images of flood extent and a Sub-Grid model utilising hydraulic geometry concepts. The methodology uses real data from the European Space Agency's archive of ENVISAT[1] Wide Swath Mode images of the River Severn between Worcester and Tewkesbury during flood peaks between 2007 and 2010. Historic ENVISAT WSM images are currently free and easy to access from archive but the methodology can be applied with any available SAR data. The approach makes use of the SAR image processing algorithm of Giustarini[2] et al. (2013) to generate binary flood maps. A unique feature of the calibration methodology is to also use parameter 'identifiability' to locate the parameters with higher accuracy from a pre-assigned range (adopting the DYNIA method proposed by Wagener[3] et al., 2003). [1] https://gpod.eo.esa.int/services/ [2] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4. [3] Wagener. 2003. 'Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis'. Hydrol. Process. 17, 455-476.
Advanced Corrections for InSAR Using GPS and Numerical Weather Models
NASA Astrophysics Data System (ADS)
Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.
2017-12-01
We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
NASA Astrophysics Data System (ADS)
Wdowinski, S.; Greene, F.; Amelung, F.
2013-12-01
Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the groundwater level records to model and better understand aquifer recovery processes.
Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.
2015-04-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.
Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin
2015-04-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.
Tetko, Igor V; Maran, Uko; Tropsha, Alexander
2017-03-01
Thousands of (Quantitative) Structure-Activity Relationships (Q)SAR models have been described in peer-reviewed publications; however, this way of sharing seldom makes models available for the use by the research community outside of the developer's laboratory. Conversely, on-line models allow broad dissemination and application representing the most effective way of sharing the scientific knowledge. Approaches for sharing and providing on-line access to models range from web services created by individual users and laboratories to integrated modeling environments and model repositories. This emerging transition from the descriptive and informative, but "static", and for the most part, non-executable print format to interactive, transparent and functional delivery of "living" models is expected to have a transformative effect on modern experimental research in areas of scientific and regulatory use of (Q)SAR models. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid subsidence over oil fields measured by SAR
NASA Technical Reports Server (NTRS)
Fielding, E. J.; Blom, R. G.; Goldstein, R. M.
1998-01-01
The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
Menachery, Vineet D.; Yount, Boyd L.; Josset, Laurence; Gralinski, Lisa E.; Scobey, Trevor; Agnihothram, Sudhakar; Katze, Michael G.
2014-01-01
ABSTRACT The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2′-O-methyltransferase (2′-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2′-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2′-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2′-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2′-O-MTase activity to subvert the immune system. IMPORTANCE Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2′-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2′-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections. PMID:24478444
Signals of Systemic Immunity in Plants: Progress and Open Questions
Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya
2018-01-01
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens. PMID:29642641
NASA Astrophysics Data System (ADS)
Castellazzi, Pascal; Garfias, Jaime; Martel, Richard; Brouard, Charles; Rivera, Alfonso
2017-12-01
This paper illustrates how InSAR alone can be used to delineate potential ground fractures related to aquifer system compaction. An InSAR-derived ground fracturing map of the Toluca Valley, Mexico, is produced and validated through a field campaign. The results are of great interest to support sustainable urbanization and show that InSAR processing of open-access Synthetic Aperture Radar (SAR) data from the Sentinel-1 satellites can lead to reliable and cost-effective products directly usable by cities to help decision-making. The Toluca Valley Aquifer (TVA) sustains the water needs of two million inhabitants living within the valley, a growing industry, an intensively irrigated agricultural area, and 38% of the water needs of the megalopolis of Mexico City, located 40 km east of the valley. Ensuring water sustainability, infrastructure integrity, along with supporting the important economic and demographic growth of the region, is a major challenge for water managers and urban developers. This paper presents a long-term analysis of ground fracturing by interpreting 13 years of InSAR-derived ground displacement measurements. Small Baseline Subset (SBAS) and Persistent Scatterer Interferometry (PSI) techniques are applied over three SAR datasets totalling 93 acquisitions from Envisat, Radarsat-2, and Sentinel-1A satellites and covering the period from 2003 to 2016. From 2003 to 2016, groundwater level declines of up to 1.6 m/yr, land subsidence up to 77 mm/yr, and major infrastructure damages are observed. Groundwater level data show highly variable seasonal responses according to their connectivity to recharge areas. However, the trend of groundwater levels consistently range from -0.5 to -1.5 m/yr regardless of the well location and depth. By analysing the horizontal gradients of vertical land subsidence, we provide a potential ground fracture map to assist in future urban development planning in the Toluca Valley.
NASA Astrophysics Data System (ADS)
Mangla, Rohit; Kumar, Shashi; Nandy, Subrata
2016-05-01
SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.
NASA Astrophysics Data System (ADS)
Vesecky, John F.; Stewart, Robert H.
1982-04-01
Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.
IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences
NASA Astrophysics Data System (ADS)
Cao, Yun-He; Xia, Xiang-Gen
2015-05-01
Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profiles for a single swath, which may be too long in time for a reasonable swath width. In this letter, we propose a CP based MIMO-OFDM synthetic aperture radar (SAR) system, where each transmitter transmits only a single OFDM pulse to obtain range profiles for a swath and has the same frequency band, thus the range resolution is not reduced. It is IRCI free and can collect the full spatial diversity if the transmit antennas are distributed. Our main idea is to use circularly shifted Zadoff-Chu sequences as the weighting coefficients in the OFDM pulses for different transmit antennas and apply spatial filters with multiple receive antennas to divide the whole swath into multiple subswaths, and then each subswath is reconstructed/imaged using our proposed IRCI free range reconstruction method.
Shim, Jihyun; Mackerell, Alexander D
2011-05-01
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.
Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR
NASA Astrophysics Data System (ADS)
Furuya, Masato; Suzuki, Takato; Maeda, Jun; Heki, Kosuke
2017-12-01
Sporadic-E (Es) is a layer of ionization that irregularly appears within the E region of the ionosphere and is known to generate an unusual propagation of very high frequency waves over long distances. The detailed spatial structure of Es remains unclear due to the limited spatial resolution in the conventional ionosonde observations. We detect midlatitude Es by interferometric synthetic aperture radar (InSAR), which can clarify the spatial structure of Es with unprecedented resolution. Moreover, we use the range split-spectrum method (SSM) to separate dispersive and nondispersive components in the InSAR image. While InSAR SSM largely succeeds in decomposing into dispersive and nondispersive signals, our results indicate that small-scale dispersive signals due to the total electron content anomalies are accompanied by nondispersive signals with similar spatial scale at the same locations. We also examine the effects of higher-order terms in the refractive index for dispersive media. Both of these detected Es episodes indicate that smaller-scale dispersive effects originate from higher-order effects. We interpret that the smaller-scale nondispersive signals could indicate the emergence of nitric oxide (NO) generated by the reactions of metals, Mg and Fe, with nitric oxide ion (NO+) during the Es.
An all-optronic synthetic aperture lidar
NASA Astrophysics Data System (ADS)
Turbide, Simon; Marchese, Linda; Terroux, Marc; Babin, François; Bergeron, Alain
2012-09-01
Synthetic Aperture Radar (SAR) is a mature technology that overcomes the diffraction limit of an imaging system's real aperture by taking advantage of the platform motion to coherently sample multiple sections of an aperture much larger than the physical one. Synthetic Aperture Lidar (SAL) is the extension of SAR to much shorter wavelengths (1.5 μm vs 5 cm). This new technology can offer higher resolution images in day or night time as well as in certain adverse conditions. It could be a powerful tool for Earth monitoring (ship detection, frontier surveillance, ocean monitoring) from aircraft, unattended aerial vehicle (UAV) or spatial platforms. A continuous flow of high-resolution images covering large areas would however produce a large amount of data involving a high cost in term of post-processing computational time. This paper presents a laboratory demonstration of a SAL system complete with image reconstruction based on optronic processing. This differs from the more traditional digital approach by its real-time processing capability. The SAL system is discussed and images obtained from a non-metallic diffuse target at ranges up to 3m are shown, these images being processed by a real-time optronic SAR processor origiinally designed to reconstruct SAR images from ENVISAT/ASAR data.
SAR in human head model due to resonant wireless power transfer system.
Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin
2016-04-29
Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.
Interferometric synthetic aperture radar imagery of the Gulf Stream
NASA Technical Reports Server (NTRS)
Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.
1993-01-01
The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.
NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission
NASA Astrophysics Data System (ADS)
Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana
2016-05-01
The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.
Findlay, R P; Dimbylow, P J
2009-04-21
If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.
Answering the right question - integration of InSAR with other datasets
NASA Astrophysics Data System (ADS)
Holley, Rachel; McCormack, Harry; Burren, Richard
2014-05-01
The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.
TELAER: a multi-mode/multi-antenna interferometric airborne SAR system
NASA Astrophysics Data System (ADS)
Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo
2014-05-01
The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of a degradation of the geometric resolution, which in this case becomes equal to 5m. Such an operational flexibility, added to the above discussed single-pass interferometric capability and to the intrinsic flexibility of airborne platforms, renders the TELAER airborne SAR system a powerful instrument for fast generation of high resolution Digital Elevation Models, even in natural disaster scenarios. Accordingly, this system can play today a key role not only for strictly scientific purposes, but also for the monitoring of natural hazards, especially if properly integrated with other remote sensing sensors. [1] S. Perna et al., "Capabilities of the TELAER airborne SAR system upgraded to the multi-antenna mode", In Proceedings IGARSS 2012 Symposium, Munich, 2012. [2] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.
NASA Astrophysics Data System (ADS)
Pinel, V.; Hooper, A.; De la Cruz-Reyna, S.; Reyes-Davila, G.; Doin, M. P.; Bascou, P.
2011-02-01
Despite the ability of synthetic aperture radar (SAR) interferometry to measure ground motion with high-resolution, application of this remote sensing technique to monitor andesitic stratovolcanoes remains limited. Specific acquisition conditions characterizing andesitic stratovolcanoes, mainly vegetated areas with large elevation ranges, induce low signal coherence as well as strong tropospheric artefacts that result in small signal-to-noise ratio. We propose here a way to mitigate these difficulties and improve the SAR measurements. We derive ground motions for two of the most active Mexican stratovolcanoes: Popocatepetl and Colima Volcano, from the time series of SAR data acquired from December 2002 to August 2006. The SAR data are processed using a method that combines both persistent scatterers and small baseline approaches. Stratified tropospheric delays are estimated for each interferogram using inputs from the global atmospheric model NARR, up to a maximum of 10 rad/km. These delays are validated using spectrometer data, as well as the correlation between the wrapped phase and the elevation. The tropospheric effect is removed from the wrapped phase in order to improve the unwrapping process. On Popocatepetl, we observe no significant deformation. The Colima summit area exhibits a constant subsidence rate of more than 1 cm/year centered on the summit but enhanced (reaching more than 2 cm/year) around the 1998 lava flow. We model this subsidence considering both a deflating magma source at depth and the effect of the eruptive deposits load.
Friedel, Caroline C.; Müller, Marcel A.; Carbajo-Lozoya, Javier; Stellberger, Thorsten; von Dall’Armi, Ekatarina; Herzog, Petra; Kallies, Stefan; Niemeyer, Daniela; Ditt, Vanessa; Kuri, Thomas; Züst, Roland; Pumpor, Ksenia; Hilgenfeld, Rolf; Schwarz, Frank; Zimmer, Ralf; Steffen, Imke; Weber, Friedemann; Thiel, Volker; Herrler, Georg; Thiel, Heinz-Jürgen; Schwegmann-Weßels, Christel; Pöhlmann, Stefan; Haas, Jürgen; Drosten, Christian; von Brunn, Albrecht
2011-01-01
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock. PMID:22046132
NASA Astrophysics Data System (ADS)
Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando
2015-01-01
Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.
FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
Kok, H Petra; De Greef, Martijn; Correia, Davi; Vörding, Paul J Zum Vörde Sive; Van Stam, Gerard; Gelvich, Edward A; Bel, Arjan; Crezee, Johannes
2009-01-01
Contact flexible microstrip applicators (CFMA), operating at 434 MHz, are applied at the Academic Medical Center (AMC) for superficial hyperthermia (e.g. chest wall recurrences and melanoma). This paper investigates the performance of CFMA, evaluating the stability of the specific absorption rate (SAR) distribution, effective heating depth (EHD) and effective field size (EFS) under different conditions. Simulations were performed using finite differences and were compared to existing measurement data, performed using a rectangular phantom with a superficial fat-equivalent layer of 1 cm and filled with saline solution. The electrode plates of the applicators measure approximately 7 x 20, 29 x 21 and 20 x 29 cm(2). Bolus thickness varied between 1 and 2 cm. The impact of the presence of possible air layers between the rubber frame and the electrodes on the SAR distribution was investigated. The EHD was approximately 1.4 cm and the EFS ranged between approximately 60 and approximately 300 cm(2), depending on the applicator type. Both measurements and simulations showed a split-up of the SAR focus with a 2 cm water bolus. The extent and location of air layers has a strong influence on the shape and size of the iso-SAR contours with a value higher than 50%, but the impact on EFS and EHD is limited. Simulations, confirmed by measurements, showed that the presence of air between the rubber and the electrodes changes the iso-SAR contours, but the impact on the EFS and EHD is limited.
NASA Astrophysics Data System (ADS)
Latini, Daniele; Del Frate, Fabio; Jones, Cathleen E.
2014-10-01
SAR instruments with polarimetric capabilities, high resolution and short revisit time can provide powerful support in oil spill monitoring and different techniques of analysis have been developed for this purpose [1][2]. An oil film on the sea surface results in darker areas in SAR images, but careful interpretation is required because dark spots can also be caused by natural phenomena. In view of the very low backscatter from slicks, the Noise Equivalent Sigma Zero (NESZ) is a primary sensor parameter to be considered when using a sensor for slick analysis. Among the existing full polarimetric sensors, the high resolution and very low NESZ values of UAVSAR (L-band) and RADARSAT-2 (C-band) make them preferable for oil spill analysis compared to the last generation SAR instruments. The Deepwater Horizon disaster that occurred in the Gulf of Mexico in 2010 represents a unique and extensive test site where large amounts of SAR imagery and ground validation data are available. By applying the Cloude-Pottier decomposition method to full polarimetric UAVSAR (L-band) and RADARSAT-2 (C-band), it is possible to extract parameters that describe the scattering mechanism of the target. By comparing quasi-simultaneous acquisitions and exploiting the different penetration capabilities of the sensors, we investigate the potential of full polarimetric SAR to discriminate oil on the sea surface from look-alike phenomena covering the full range of backscattering values down to those at the instrument noise floor.
NASA Astrophysics Data System (ADS)
Eneva, M.; Baker, E.
2002-12-01
We have processed ERS SAR scenes for several sites of rockbursts and mining subsidence, including South Africa (gold), Colorado (coal), the state of New York (salt), Germany (potash), and Poland (copper). We are also looking at JERS-1 scenes from a potash mine in the Ural mountains (Russia) for which no suitable ERS data exist. Sizeable mining-induced events have occurred at most of these sites: mb5.1 in April 1999, S. Africa; ML3.6 in March 1994, New York; ML4.8 in September 1996, Germany; mb4.9 in April 2000, Poland; and mb4.7 in January 1995, Urals. It is reasonable to expect detectable surface displacements from rockbursts, as they are rather shallow compared with tectonic earthquakes of similar size. Indeed, in the case of the 1999 S. African event differential InSAR detects up to 9-cm displacement away from the satellite, while the 1995 collapse in the Urals has resulted in up to 4.5-m surface subsidence. Some of the study rockbursts have occurred on the background of ongoing mining subsidence (e. g., Poland, Urals, New York), adding a detectable boost to the existing subsidence rate. In other cases, mining subsidence is planned and intermittent, without unexpected collapse (e.g., long-wall coal mining in Colorado). We have applied deformation modeling using a 3D finite-difference code, focusing on the April 1999 event that was associated with a normal slip along the Dagbreek fault. Seismic events in this area (Welkom, S. Africa) are commonly associated with collapse of mined out volumes around west-dipping normal faults, but it is not clear how these faults contribute to the seismic and static displacements. The 1999 event provides an opportunity to address this ambiguity, as our InSAR measurements of surface displacements are complemented by local, regional, and teleseismic waveform records, as well as by measurements of displacements in the mine tunnels intersecting the Dagbreek fault. We are using these data to constrain the source and are investigating the use of 3D modeling methods in resolving discrepancies between seismically and geodetically based models. Other than contributing to the mining practice, our InSAR results are relevant to the identification of ground truth to be compared with seismically determined epicenters. The 1999 S. African event is our best example in this respect, with an interferogram showing a clear fringe pattern that is easy to compare with existing seismic locations. For the purpose of ground truth, we have also examined ERS SAR scenes over sites of moderate tectonic earthquakes in Algeria (northern Africa). Due to the configuration of the existing seismic networks, these events are commonly located much too to the north. So far we have identified a possible signal (~ 2 cm LOS) in the differential interferograms from descending and ascending interferometric pairs over the site of a December 1999 Mw5.6 earthquake, and are in the process of looking at additional SAR scenes over a site of a November 2000 Mw5.7 event. Our results show that differential InSAR can be effective in providing detailed spatial coverage of surface changes associated with mining activities, as well as in establishing ground truth for the seismic locations of moderate tectonic earthquakes. The main limitation of the technique for such purposes is the insufficient temporal coverage of sites of interest by the ERS satellites, resulting in extensive decorrelation in some of the study cases. ENVISAT data are likely to be more effective in the future, especially if regular data collection is supplemented with ordering of data acquisitions on as-needed basis.
Insights into Seismic and Volcanic Processes around the Arabian Plate from InSAR Observations
NASA Astrophysics Data System (ADS)
Jónsson, Sigurjón; Wang, Teng; Akoglu, Ahmet; Feng, Guangcai; Xu, Wenbin; Harrington, Jonathan; Cavalié, Olivier
2014-05-01
We use InSAR observations to study a variety of seismic and volcanic processes at the plate boundary surrounding the Arabian plate. The plate-boundary motion ranges from extension in the Red Sea and Gulf of Aden to the south, to compression in Turkey and Iran to the north, with transform motion to the west and to the east. Many large earthquakes have occurred during the past two decades in the region, some of which we are studying, including the 1995 magnitude 7.2 earthquake in the Gulf of Aqaba, the 2011 magnitude 7.1 Van earthquake in eastern Turkey, the 2012 Ahar earthquake duplet in northwestern Iran, as well as the 2013 magnitude 7.7 Baluchistan (Pakistan) earthquake. These earthquakes took place in tectonic settings ranging from a transtension in the Gulf of Aqaba, to transpression in Baluchistan, to almost pure compression in eastern Turkey. For the Aqaba earthquake we add previously unused InSAR data and use modern data processing methods to improve earlier fault-model estimations. In the case of the Baluchistan earthquake we find surprisingly uniform and simple fault slip along the over 200 km long rupture, with maximum slip of almost 10 m near the surface. In addition, for the Van earthquake we use SAR-image offset tracking in the near-field, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we are able to derive better pixel offsets between SAR sub-images than with standard offset-tracking methods. We use the azimuth- and range offsets to derive the 3D coseismic displacements, which help constraining the geometry and slip of the causative northward-dipping thrust fault. Further west, in the region near the triple junction between the Arabian, Eurasian, and Anatolian plates, we use large-scale InSAR data processing to map the interseismic deformation near the triple junction and find very shallow locking depth of the eastern part of the East Anatolian Fault, indicating limited strain accumulation and less-than-expected earthquake potential. In addition to the seismic processes, we are studying three volcanic eruptions that took place in the southern Red Sea during the past several years, on Jebel at Tair Island (2007-8) and within the Zubair archipelago (2011-12 and 2013). We use InSAR and optical data to study these eruptions and to constrain the feeder-dike geometry and the associated stress directions. On Jebel at Tair we find evidence for a temporarily varying stress field that is isolated from the regional Red Sea stress regime. The two eruptions in the Zubair archipelago were surtseyan and produced two small islands. The islands were formed entirely from explosive phreatomagmatic activity, as the eruptions did not last long enough to progress to an effusive eruption. The reawakened volcanic activity in the southern Red Sea comes after more than century-long quiescence and seems to be a part the recent increase in activity in the region near the Afar triple junction, following the onset of the Dabbahu (Afar) rifting episode in 2005.
2014-01-01
and distance between all of the vector ambiguity pairs for the combined N−sequences. To simplify our derivation, we define the center of ambiguity (COA...modulo N . The resulting structure of the N sequences ensures that two successive RSNS vectors (paired terms from all N sequences) when considered...represented by a vector , Xh = [x1,h, x2,h, . . . , xN,h] T , of N paired integers from each se- quence at h. For example, a left-shifted, three-sequence
A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome
2016-08-01
The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Pezzo, Giuseppe; Merryman Boncori, John Peter; Atzori, Simone; Antonioli, Andrea; Salvi, Stefano
2014-05-01
We use Synthetic Aperture Radar Differential Interferometry (DInSAR) and Multi-Aperture Interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hours apart and an Mw 5.7event occurred 40 days later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan block of the Eurasian Plate. Elastic dislocation modelling of the surface displacements, derived from ascending and descending ENVISAT ASAR acquisitions, yields slip distributions with peak values of 80 cm and 70 cm for the two main events on a pair of strike-slip near-vertical faults, and values up to 50 cm for the largest aftershock on a NE-SW strike-slip fault. The MAI measurements, with their high sensitivity to the north-south motion component, are crucial in this area to resolve the fault plane ambiguity of moment tensors. We also studied the relationships between the largest earthquakes of the sequence by means of the Coulomb Failure Function to verify the agreement of our source modelling with the stress variations induced by the October 28 earthquake on the October 29 fault plane, and the stress variations induced by the two mainshocks on the December 09 fault plane. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at intermediate depths on large NW fault planes is compatible with contemporaneous left-lateral activation on NE-SW minor faults at shallower depths, in agreement with a bookshelf deformation mechanism.
12 CFR 563.180 - Suspicious Activity Reports and other reports and statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
....C. 1813(u) and 1818(b)(9)). (iii) SAR means a Suspicious Activity Report. (3) SARs required. A... action. (11) Obtaining SARs. A savings association or service corporation may obtain SARs and the...) Confidentiality of SARs. A SAR, and any information that would reveal the existence of a SAR, are confidential...
12 CFR 563.180 - Suspicious Activity Reports and other reports and statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
....C. 1813(u) and 1818(b)(9)). (iii) SAR means a Suspicious Activity Report. (3) SARs required. A... action. (11) Obtaining SARs. A savings association or service corporation may obtain SARs and the...) Confidentiality of SARs. A SAR, and any information that would reveal the existence of a SAR, are confidential...
12 CFR 563.180 - Suspicious Activity Reports and other reports and statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
....C. 1813(u) and 1818(b)(9)). (iii) SAR means a Suspicious Activity Report. (3) SARs required. A... action. (11) Obtaining SARs. A savings association or service corporation may obtain SARs and the...) Confidentiality of SARs. A SAR, and any information that would reveal the existence of a SAR, are confidential...
Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping
NASA Astrophysics Data System (ADS)
Maghsoudi, Yasser
Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be useful for forest mapping. To assess the potential of the proposed methods their performance have been compared with each other and with the baseline classifiers. The baseline methods include the Wishart classifier, which is a commonly used classification method in PolSAR community, as well as an SVM classifier with the full set of parameters. Experimental results showed a better performance of the leaf-off image compared to that of leaf-on image for forest mapping. It is also shown that combining leaf-off parameters with leaf-on parameters can significantly improve the classification accuracy. Also, the classification results (in terms of the overall accuracy) compared to the baseline classifiers demonstrate the effectiveness of the proposed nonparametric scheme for forest mapping.
Xing, Weijia; Hejblum, Gilles; Leung, Gabriel M.; Valleron, Alain-Jacques
2010-01-01
Background Outbreaks of emerging infectious diseases, especially those of a global nature, require rapid epidemiological analysis and information dissemination. The final products of those activities usually comprise internal memoranda and briefs within public health authorities and original research published in peer-reviewed journals. Using the 2003 severe acute respiratory syndrome (SARS) epidemic as an example, we conducted a comprehensive time-stratified review of the published literature to describe the different types of epidemiological outputs. Methods and Findings We identified and analyzed all published articles on the epidemiology of the SARS outbreak in Hong Kong or Toronto. The analysis was stratified by study design, research domain, data collection, and analytical technique. We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication. The impact factors of the publishing journals were examined according to the time of publication of SARS articles, and the numbers of citations received by SARS-case and matched-control articles submitted during and after the epidemic were compared. Descriptive, analytical, theoretical, and experimental epidemiology concerned, respectively, 54%, 30%, 11%, and 6% of the studies. Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic. The submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted during the epidemic period were significantly shorter than the corresponding intervals of matched-control non-SARS articles published in the same journal issues (p<0.001 and p<0.01, respectively). The differences of median submission-to-acceptance intervals and median acceptance-to-publication intervals between SARS articles and their corresponding control articles were 106.5 d (95% confidence interval [CI] 55.0–140.1) and 63.5 d (95% CI 18.0–94.1), respectively. The median numbers of citations of the SARS articles submitted during the epidemic and over the 2 y thereafter were 17 (interquartile range [IQR] 8.0–52.0) and 8 (IQR 3.2–21.8), respectively, significantly higher than the median numbers of control article citations (15, IQR 8.5–16.5, p<0.05, and 7, IQR 3.0–12.0, p<0.01, respectively). Conclusions A majority of the epidemiological articles on SARS were submitted after the epidemic had ended, although the corresponding studies had relevance to public health authorities during the epidemic. To minimize the lag between research and the exigency of public health practice in the future, researchers should consider adopting common, predefined protocols and ready-to-use instruments to improve timeliness, and thus, relevance, in addition to standardizing comparability across studies. To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources. Please see later in the article for the Editors' Summary PMID:20454570
Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data
NASA Astrophysics Data System (ADS)
Chen, A. C.; Zebker, H. A.
2012-12-01
The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive years allows us to investigate the variability of L-band InSAR correlation over time. [1] Howat I.M., A. Negrete, T. Scambos, T. Haran, in prep, A high-resolution elevation model for the Greenland Ice Sheet from combined stereoscopic and photoclinometric data. [2] [1] R. C. Bales, J. R. McConnell, E. Mosley-Thompson, and B. Csatho, "Accumulation over the Greenland ice sheet from historical and recent records," Journal of Geophysical Research, vol. 106, pp. 33813-33825, 2001.
NASA Astrophysics Data System (ADS)
Findlay, R. P.; Dimbylow, P. J.
2006-05-01
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
Findlay, R P; Dimbylow, P J
2006-05-07
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
NASA Astrophysics Data System (ADS)
Nico, Giovanni; Mateus, Pedro; Catalão, João.
2010-05-01
The knowledge of water vapor spatial distribution in the Earth's atmosphere at a given time is an important information for numerical forecasting. In fact this is the most varying atmospheric constituent both in space and in time. The water vapor is basically concentrated in the troposphere, the atmosphere layer where the most important phenomena related to weather occur. This layer is destabilized by radiative heating and vertical wind shear near the surfce. The accuracy of quantitative precipitation forecasting over a given region strongly depends on the knowledge of the temporal and spatial variations in the water vapor spatial distribution. Currently, measurements based on ground-based and upper-air sounding networks furnish water vapor distribution only at a coarse scales. This could not be enough to capture variations of the local concentrations of water vapor. Spaceborne radiometer observations can observe atmospheric layers above 3 km due to absorption by water vapor and in any case maps of vater vapour density are too coarse. Availability of GPS measurements of on a routine basis is improving numerical forecasting. However, the density of meuserements which can be obtained by a GPS network is too low to capture spatial variations of local concentrations of water vapor. Synthetic Aperture Radar (SAR) interferometry provides maps of temporal variations of the vertically integrated water vapor density with a horizontal resolution as fine as 10-20 m depending on the radar wavelength and over a swath typically 100 km wide. In the past, the availability of the tandem ERS-1/2 interferometric SAR data allowed to get maps of the vertically-integrated with a temporal baseline of 1 day. In those maps it was possible to recognize signature of a precipitating cumulonimbus cloud, the effects of a cold front and the phenomenon of horizontal convective rolls. Current interferometric spaceborne missions use SAR sensors working at different frequency bands: L (ALOS-PALSAR), C (ENVISAT-ASAR, RADARSAT) and X (TerraSAR, Cosmo-Sky-Med) and with a repetition cycle ranging from 11 (TerraSAR-X) to 35 days (ENVISAT-ASAR). From each SAR sensor, it can be obtained a map of the temporal changes of the IPW occurred between the two subsequent acquisitions by interferometrically processing the SAR data. The accuracy of these maps depends on the radar wavelength and on spatial filtering. A procedure to properly merge all these maps could give information about the temporal evolution of the IPW spatial distribution with a sampling period shorter than the revisiting times of each of the SAR sensors. The main difficulty of this operation is related to the fact that the integration of temporal changes of IPW is not direct when maps are obtained by different SAR sensors. The aim of this work is to describe a methodologiy to merge IPW maps obtained by the different SAR sensor based on the availbality of GPS time series measuring the IPW over the same area. The Lisbon region, Portugal, was chosen as a study area. This region is monitored by a network of 12 GPS permanent stations covering an area of about squared kilometers. A set of SAR interferograms were processed using data acquired by ENVISAT-ASAR and TerraSAR-X mission over the Lisbon region during the period from 2009 to 2010. A time series with GPS measurement of IPW was processed to cover the time interval between the first and last SAR acquisition. This time series is then used to integrate all maps of temporal changes of IPW obtained by the different interferometric SAR couples. This results in a time series giving with the information about the spatial distribution of the IPW.
NASA Astrophysics Data System (ADS)
Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.
2013-12-01
In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and creepmeter datasets for comparison. Exercises were developed following Backward Design and initial feedback was provided by curriculum experts and several undergraduate students. Evaluation of the impact of the module on student understanding of InSAR will be conducted in the fall with volunteers from tectonics and geophysics classes. Students will be given pre- and post-module surveys to evaluate overall effectiveness and areas for improvement. This module will be disseminated on the UNAVCO website after finalization.
NASA Astrophysics Data System (ADS)
Schrön, M.; Fersch, B.; Jagdhuber, T.
2017-12-01
The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.
Limitation on the use of a spaceborne SAR for rain measurements
NASA Technical Reports Server (NTRS)
Ahamad, Atiq
1994-01-01
A proof-of-concept experiment for remote sensing of precipitation by SAR is part of the SIR-C/X-SAR experiment. This thesis presents a feasibility study and recommendations for detection of precipitation using SIR-C/X-SAR. The principal limitation to rain measurement from a spaceborne SAR is the poor SCR (signal-to-clutter ratio). This is in part due to the system configuration and largely due to the large magnitude of echoes associated with the surface component. Two geometries apply: off-vertical and vertical pointing angles. Here we present calculations for both. With vertical geometry a large clutter component is associated with range sidelobes of the chirped transmitter pulse. To overcome this problem a narrow transmitted pulse (3 mu sec) processed without dechirping was used. Since the magnitude of the clutter over the ocean is high it is recommended that data in the chirped mode be obtained over the forest due to the significantly lower backscatter associated with it at nadir. With these recommendations, at nadir, it is believed that rain rates greater than 5 mm/hr may be detected. The use of a better weighting function that gives lower sidelobe levels than that used (a raised cos(exp 2)) is also recommended. At off-vertical look angles all the range cells have a large clutter component associated with them due to the geometry. The use of higher angles of incidence (theta greater than 60 deg) is recommended because of better SCR at these angles. With this recommendation, at off-vertical, it is believed that rain rates greater than 10 mm/hr may be detected. Various other techniques are described and recommended to improve the minimum detectable precipitation rate. These include trying to subtract the estimate of the clutter from the combined signal and clutter and trying to separate the Doppler of the rain echo and the surface echo. With these recommendations it is believed that it is possible to detect precipitation as low as 1 mm/hr at vertical and greater than 5 mm/hr at off-vertical look angles.
NASA Astrophysics Data System (ADS)
Murray, K. D.; Lohman, R.
2017-12-01
Areas of large-scale subsidence are observed over much of the San Joaquin Valley of California due to the extraction of groundwater and hydrocarbons from the subsurface.These signals span regions with spatial extents of up to 100 km and have rates of up to 45 cm/yr or more. InSAR and GPS are complementary methods commonly used to measure such ground displacements and can provide important constraints on crustal deformation models, support groundwater studies, and inform water resource management efforts. However, current standard methods for processing these data sets and creating displacement time series are suboptimal for the deformation observed in areas like the San Joaquin Valley because (1) the ground surface properties are constantly changing due largely to agricultural activity, resulting in low coherence in half or more of a SAR frame, and (2) the deformation signals are distributed throughout the SAR frames, and are comparable to the size of the frames themselves. Therefore, referencing areas of deformation to non-deforming areas and correcting for long wavelength signals (e.g. atmospheric delays, orbital errors) is particularly difficult. We address these challenges by exploiting pixels that are stable in space and time, and use them for weighted spatial averaging and selective filtering before unwrapping. We then compare a range of methods for both long wavelength corrections and referencing via automatic partitioning of non-deforming areas, then benchmark results against continuous GPS measurements. Our final time series consist of nearly 15 years of displacement measurements from continuous GPS data, and Envisat, ALOS-1, Sentinel SAR data, and show significant temporal and spatial variations. We find that the choice of reference and long wavelength corrections can significantly bias long-term rate and seasonal amplitude estimates, causing variations of as much as 100% of the mean estimate. As we enter an era with free and open data access and regular observations plans from missions such as NISAR and the Sentinel constellation, our approach will help users evaluate the significance of observed deformation at a range of spatial scales and in areas with challenging surface properties.
Model improvements and validation of TerraSAR-X precise orbit determination
NASA Astrophysics Data System (ADS)
Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M.
2017-05-01
The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk-dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from -3 ± 17 to 2 ± 13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from the 2012-2014 period. The radar range bias is reduced from -10.3 to -6.1 mm with the updated orbit solutions, which coincides with the reduced standard deviation of the SLR residuals. The improvements are mainly driven by the satellite macro-model for the purpose of solar radiation pressure modeling, improved atmospheric density models, and the use of state-of-the-art gravity field models.
Rabbitt, Sarah M; Kazdin, Alan E; Scassellati, Brian
2015-02-01
As a field, mental healthcare is faced with major challenges as it attempts to close the huge gap between those who need services and those who receive services. In recent decades, technological advances have provided exciting new resources in this battle. Socially assistive robotics (SAR) is a particularly promising area that has expanded into several exciting mental healthcare applications. Indeed, a growing literature highlights the variety of clinically relevant functions that these robots can serve, from companion to therapeutic play partner. This paper reviews the ways that SAR have already been used in mental health service and research and discusses ways that these applications can be expanded. We also outline the challenges and limitations associated with further integrating SAR into mental healthcare. SAR is not proposed as a replacement for specially trained and knowledgeable professionals nor is it seen as a panacea for all mental healthcare needs. Instead, robots can serve as clinical tools and assistants in a wide range of settings. Given the dramatic growth in this area, now is a critical moment for individuals in the mental healthcare community to become engaged in this research and steer it toward our field's most pressing clinical needs. Copyright © 2014. Published by Elsevier Ltd.
Risk and Outbreak Communication: Lessons from Taiwan's Experiences in the Post-SARS Era.
Hsu, Yu-Chen; Chen, Yu-Ling; Wei, Han-Ning; Yang, Yu-Wen; Chen, Ying-Hwei
In addition to the impact of a disease itself, public reaction could be considered another outbreak to be controlled during an epidemic. Taiwan's experience with SARS in 2003 highlighted the critical role played by the media during crisis communication. After the SARS outbreak, Taiwan's Centers for Disease Control (Taiwan CDC) followed the WHO outbreak communication guidelines on trust, early announcements, transparency, informing the public, and planning, in order to reform its risk communication systems. This article describes the risk communication framework in Taiwan, which has been used to respond to the 2009-2016 influenza epidemics, Ebola in West Africa (2014-16), and MERS-CoV in South Korea (2015) during the post-SARS era. Many communication strategies, ranging from traditional media to social and new media, have been implemented to improve transparency in public communication and promote civic engagement. Taiwan CDC will continue to maintain the strengths of its risk communication systems and resolve challenges as they emerge through active evaluation and monitoring of public opinion to advance Taiwan's capacity in outbreak communication and control. Moreover, Taiwan CDC will continue to implement the IHR (2005) and to promote a global community working together to fight shared risks and to reach the goal of "One World, One Health."
Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie
2015-01-01
This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892
Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie
2015-10-20
This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.
NASA Astrophysics Data System (ADS)
Seleem, Tarek A.; Foumelis, Michael; Parcharidis, Issaak
2009-09-01
Sharm El-Shiekh area is located in the most southern part of Sinai Peninsula boarded by the Gulf of Suez to the west and by the Gulf of Aqaba to the east. The present study concerns the application of Multibaseline/Stacking Differential SAR Interferometry (DInSAR) in order to monitor ground deformation rates in the southern part of Sharm El-Shiekh area. The specific technique was applied in order to reduce the influence of atmospheric effects on ground deformation estimates. For this purpose a total number of 24 ENVISAT ASAR scenes covering the period between 2002 and 2008 were processed and analysed. Interferometric results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N-S direction, corresponding to the build up zone of Sharm El-Shiekh, shows average annual subsidence rates between -5 and -7 mm/yr along the line of sight (LOS). On the contrary, Sharm El Maya, an inner zone parallel to the above subsided area, shows slant range uplift of around 5 mm/yr. The obtained results of SAR inteferometry probably indicate the presence of an active fault that affects the coastal zones of Sharm El-Shiekh area.
Risk and Outbreak Communication: Lessons from Taiwan's Experiences in the Post-SARS Era
Chen, Yu-Ling; Wei, Han-Ning; Yang, Yu-Wen; Chen, Ying-Hwei
2017-01-01
In addition to the impact of a disease itself, public reaction could be considered another outbreak to be controlled during an epidemic. Taiwan's experience with SARS in 2003 highlighted the critical role played by the media during crisis communication. After the SARS outbreak, Taiwan's Centers for Disease Control (Taiwan CDC) followed the WHO outbreak communication guidelines on trust, early announcements, transparency, informing the public, and planning, in order to reform its risk communication systems. This article describes the risk communication framework in Taiwan, which has been used to respond to the 2009-2016 influenza epidemics, Ebola in West Africa (2014-16), and MERS-CoV in South Korea (2015) during the post-SARS era. Many communication strategies, ranging from traditional media to social and new media, have been implemented to improve transparency in public communication and promote civic engagement. Taiwan CDC will continue to maintain the strengths of its risk communication systems and resolve challenges as they emerge through active evaluation and monitoring of public opinion to advance Taiwan's capacity in outbreak communication and control. Moreover, Taiwan CDC will continue to implement the IHR (2005) and to promote a global community working together to fight shared risks and to reach the goal of “One World, One Health.” PMID:28418746
Studies of ice sheet hydrology using SAR
NASA Technical Reports Server (NTRS)
Bindschadler, R. A.; Vornberger, P. L.
1989-01-01
Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.
Han, Bing; Ding, Chibiao; Zhong, Lihua; Liu, Jiayin; Qiu, Xiaolan; Hu, Yuxin; Lei, Bin
2018-01-01
The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format. PMID:29534464
2011-05-01
involving bending at the waist with straight legs (stooped), bending of the knees with the buttocks resting on the heels (squatted), non-neutral...oscillations. Additional headroom clearance is required for the tallest SAR Techs to reduce the risk of neck injury caused by the head striking the...address concerns regarding future risk of musculoskeletal injury to SAR Techs working in the cargo compartment of a FWSAR aircraft. The full range
Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management
NASA Astrophysics Data System (ADS)
Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide
2005-06-01
Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and practical knowledge of landfill management practices, we propose to evaluate the use of hyperspectral and radar images for landfill monitoring and management. CHRIS offers hyperspectral data of commensurate spatial resolution with Envisat radarimages and thus appears ideally suited for studies using multi-sensor data fusion.The goal of the research is to identify practical ways in which EO data can support landfill management and monitoring, providing quantitative data where possible. Our objectives (based on fieldwork in UK landfills) are (1) to develop robust methods of detecting and mapping landfill sites, (2) to correlate EO data with on-site operational procedures, and (3) to investigate data fusion techniques based on our findings with the separate sensors. Dissemination of the findings will be through scientific journals, professional waste management publications and workshops. It is expected that the research will help the development of techniques which could be applied to monitor waste disposal to land beyond the UK scope of this study, including global monitoring.
Generation and assessment of turntable SAR data for the support of ATR development
NASA Astrophysics Data System (ADS)
Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby
1998-10-01
Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.
UHF Microstrip Antenna Array for Synthetic- Aperture Radar
NASA Technical Reports Server (NTRS)
Thomas, Robert F.; Huang, John
2003-01-01
An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.
Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements
Tizzani, Pietro; Battaglia, Maurizio; Zeni, Giovanni; Atzori, Simone; Berardino, Paolo; Lanari, Riccardo
2009-01-01
The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic field includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fluid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest.
Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale
2011-01-01
SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752
Uncertainty of InSAR velocity fields for measuring long-wavelength displacement
NASA Astrophysics Data System (ADS)
Fattahi, H.; Amelung, F.
2014-12-01
Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and examine the estimated uncertainties in several non-deforming areas. We show the efficiency of the approach to study the continental deformation across the Chaman fault system at the western Indian plate boundary. Ref: Fattahi, H., & Amelung, F., (2014), InSAR uncertainty due to orbital errors, Geophys, J. Int (in press).
An RF dosimeter for independent SAR measurement in MRI scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.
2013-12-15
Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less
NASA Astrophysics Data System (ADS)
Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.
2017-12-01
The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We present model results to assess the influence of anthropogenic processes on surface deformation and fault mechanics.
NASA Astrophysics Data System (ADS)
Koyama, C.; Watanabe, M.; Shimada, M.
2016-12-01
Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground biomass. The proposed methods are validated against independent in situ measurements for a variety of crops including winter wheat, rice, corn, and soy beans. Our results demonstrate the suitability of the approach to estimate biomass with an error smaller than 15%.
NASA Astrophysics Data System (ADS)
Gong, Xiaopeng; Lou, Yidong; Liu, Wanke; Zheng, Fu; Gu, Shengfeng; Wang, Hua
2017-02-01
Medium-long baseline RTK positioning generally needs a long initial time to find an accurate position due to non-negligible atmospheric delay residual. In order to shorten the initial or re-convergence time, a rapid phase ambiguity resolution method is employed based on GPS/BDS multi-frequency observables in this paper. This method is realized by two steps. First, double-differenced un-combined observables (i.e., L1/L2 and B1/B2/B3 observables) are used to obtain a float solution with atmospheric delay estimated as random walk parameter by using Kalman filter. This model enables an easy and consistent implementation for different systems and different frequency observables and can readily be extended to use more satellite navigation systems (e.g., Galileo, QZSS). Additional prior constraints for atmospheric information can be quickly added as well, because atmospheric delay is parameterized. Second, in order to fix ambiguity rapidly and reliably, ambiguities are divided into three types (extra-wide-lane (EWL), wide-lane (WL) and narrow-lane (NL)) according to their wavelengths and are to be fixed sequentially by using the LAMBDA method. Several baselines ranging from 61 km to 232 km collected by Trimble and Panda receivers are used to validate the method. The results illustrate that it only takes approximately 1, 2 and 6 epochs (30 s intervals) to fix EWL, WL and NL ambiguities, respectively. More epochs' observables are needed to fix WL and NL ambiguity around local time 14:00 than other time mainly due to more active ionosphere activity. As for the re-convergence time, the simulated results show that 90% of epochs can be fixed within 2 epochs by using prior atmospheric delay information obtained from previously 5 min. Finally, as for positioning accuracy, meter, decimeter and centimeter level positioning results are obtained according to different ambiguity resolution performances, i.e., EWL, WL and NL fixed solutions.
SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.
Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen
2012-07-23
We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.
NASA Astrophysics Data System (ADS)
Xue, F.; Gao, W.; Duan, Y.; Zheng, R.; Hu, Y.
2018-02-01
This paper presents a 12-bit pipelined successive approximation register (SAR) ADC for CZT-based hard X-ray Imager. The proposed ADC is comprised of a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. A novel MDAC architecture using Vcm-based Switching method is employed to maximize the energy efficiency and improve the linearity of the ADC. Moreover, the unit-capacitor array instead of the binary-weighted capacitor array is adopted to improve the conversion speed and linearity of the ADC in the first-stage MDAC. In addition, a new layout design method for the binary-weighted capacitor array is proposed to reduce the capacitor mismatches and make the routing become easier and less-time-consuming. Finally, several radiation-hardened-by-design technologies are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μm mixed-signal 1.8V/3.3V process and operated at 1.8 V supply. The chip occupies a core area of only 0.58 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 66.7 dB and a peak spurious-free dynamic range (SFDR) of 78.6 dB at 10 MS/s sampling rate and consumes 10 mW. The figure of merit (FOM) of the proposed ADC is 0.56 pJ/conversion-step.
NASA Astrophysics Data System (ADS)
Kim, K.
2015-12-01
SAR observations over planetary surface have been conducted mainly in two ways. The first is the subsurface sounding, for example Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD), using ground penetration capability of long wavelength electromagnetic waves. On the other hand, imaging SAR sensors using burst mode design have been employed to acquire surface observations in the presence of opaque atmospheres such as in the case of Venus and Titan. We propose a lightweight SAR imaging system with P/L band wavelength to cover the vertical observation gap of these planetary radar observation schemes. The sensor is for investigating prominent surface and near-subsurface geological structures and physical characteristics. Such measurements will support landers and rover missions as well as future manned missions. We evaluate required power consumption, and estimate mass and horizontal resolution, which can be as good as 3-7 meters. Initial specifications for P/L dual band SARs for the lunar case at 130 km orbital altitude were designed already based on a assumptions that sufficient size antenna (>3m width diameter or width about 3m and >10kg weight) can be equipped. Useful science measurements to be obtained include: (1) derivation of subsurface regolith depth; 2) Surface and shallow subsurface radar imaging, together with radar ranging techniques such as radargrammetry and inteferometry. The concepts in this study can be used as an important technical basis for the future solid plant/satellite missions and already proposed for the 2018 Korean Lunar mission.
High-accuracy single-pass InSAR DEM for large-scale flood hazard applications
NASA Astrophysics Data System (ADS)
Schumann, G.; Faherty, D.; Moller, D.
2017-12-01
In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.
The outbreak of SARS at Tan Tock Seng Hospital--relating epidemiology to control.
Chen, Mark I C; Leo, Yee-Sin; Ang, Brenda S P; Heng, Bee-Hoon; Choo, Philip
2006-05-01
The outbreak of severe acute respiratory syndrome (SARS) began after the index case was admitted on 1 March 2003. We profile the cases suspected to have acquired the infection in Tan Tock Seng Hospital (TTSH), focussing on major transmission foci, and also describe and discuss the impact of our outbreak control measures. Using the World Health Organization (WHO) case definitions for probable SARS adapted to the local context, we studied all cases documented to have passed through TTSH less than 10 days prior to the onset of fever. Key data were collected in liaison with clinicians and through a team of onsite epidemiologists. There were 105 secondary cases in TTSH. Healthcare staff (57.1%) formed the majority, followed by visitors (30.5%) and inpatients (12.4%). The earliest case had onset of fever on 4 March 2003, and the last case, on 5 April 2003. Eighty-nine per cent had exposures to 7 wards which had cases of SARS that were not isolated on admission. In 3 of these wards, major outbreaks resulted, each with more than 20 secondary cases. Attack rates amongst ward-based staff ranged from 0% to 32.5%. Of 13 inpatients infected, only 4 (30.8%) had been in the same room or cubicle as the index case for the ward. The outbreak of SARS at TTSH showed the challenges of dealing with an emerging infectious disease with efficient nosocomial spread. Super-spreading events and initial delays in outbreak response led to widespread dissemination of the outbreak to multiple wards.
Abril Hernández, José-María
2015-05-01
After half a century, the use of unsupported (210)Pb ((210)Pbexc) is still far off from being a well established dating tool for recent sediments with widespread applicability. Recent results from the statistical analysis of time series of fluxes, mass sediment accumulation rates (SAR), and initial activities, derived from varved sediments, place serious constraints to the assumption of constant fluxes, which is widely used in dating models. The Sediment Isotope Tomography (SIT) model, under the assumption of non post-depositional redistribution, is used for dating recent sediments in scenarios in that fluxes and SAR are uncorrelated and both vary with time. By using a simple graphical analysis, this paper shows that under the above assumptions, any given (210)Pbexc profile, even with the restriction of a discrete set of reference points, is compatible with an infinite number of chronological lines, and thus generating an infinite number of mathematically exact solutions for histories of initial activity concentrations, SAR and fluxes onto the SWI, with these two last ranging from zero up to infinity. Particularly, SIT results, without additional assumptions, cannot contain any statistically significant difference with respect to the exact solutions consisting in intervals of constant SAR or constant fluxes (both being consistent with the reference points). Therefore, there is not any benefit in its use as a dating tool without the explicit introduction of additional restrictive assumptions about fluxes, SAR and/or their interrelationship. Copyright © 2015 Elsevier Ltd. All rights reserved.
InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area
NASA Astrophysics Data System (ADS)
Xu, Caijun; Wang, Hua; Ge, Linlin; Yonezawa, Chinatsu; Cheng, Pu
2006-03-01
Like other space geodetic techniques, interferometric synthetic aperture radar (InSAR) is limited by the variations of tropospheric delay noise. In this paper, we analyze the double-difference (DD) feature of tropospheric delay noise in SAR interferogram. By processing the ERS-2 radar pair, we find some tropospheric delay fringes, which have similar patterns with the GMS-5 visible-channel images acquired at almost the same epoch. Thirty-five continuous GPS (CGPS) stations are distributed in the radar scene. We analyze the GPS data by GIPSY-OASIS (II) software and extract the wet zenith delay (WZD) parameters at each station at the same epoch with the master and the slave image, respectively. A cosine mapping function is applied to transform the WZD to wet slant delay (WSD) in line-of-sight direction. Based on the DD WSD parameters, we establish a two-dimensional (2D) semi-variogram model, with the parameters 35.2, 3.6 and 0.88. Then we predict the DD WSD parameters by the kriging algorithm for each pixel of the interferogram, and subtract it from the unwrapped phase. Comparisons between CGPS and InSAR range changes in LOS direction show that the root of mean squares (RMS) decreased from 1.33 cm before correction to 0.87 cm after correction. From the result, we can conclude that GPS WZD parameters can be effectively used to identify and mitigate the large-scale InSAR tropospheric delay noise if the spatial resolution of GPS stations is dense enough.
Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing.
Guo, Jiming; Zhou, Lv; Yao, Chaolong; Hu, Jiyuan
2016-09-14
The aim of this study was to investigate the relationship between surface subsidence and groundwater changes. To investigate this relationship, we first analyzed surface subsidence. This paper presents the results of a case study of surface subsidence in Beijing from 1 August 2007 to 29 September 2010. The Multi-temporal Interferometric Synthetic Aperture Radar (multi-temporal InSAR) technique, which can simultaneously detect point-like stable reflectors (PSs) and distributed scatterers (DSs), was used to retrieve the subsidence magnitude and distribution in Beijing using 18 ENVISAT ASAR images. The multi-temporal InSAR-derived subsidence was verified by leveling at an accuracy better than 5 mm/year. Based on the verified multi-temporal InSAR results, a prominent uneven subsidence was identified in Beijing. Specifically, most of the subsidence velocities in the downtown area were within 10 mm/year, and the largest subsidence was detected in Tongzhou, with velocities exceeding 140 mm/year. Furthermore, Gravity Recovery and Climate Experiment (GRACE) data were used to derive the groundwater change series and trend. By comparison with the multi-temporal InSAR-derived subsidence results, the long-term decreasing trend between groundwater changes and surface subsidence showed a relatively high consistency, and a significant impact of groundwater changes on the surface subsidence was identified. Additionally, the spatial distribution of the subsidence funnel was partially consistent with that of groundwater depression, i.e., the former possessed a wider range than the latter. Finally, the relationship between surface subsidence and groundwater changes was determined.
Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing
Guo, Jiming; Zhou, Lv; Yao, Chaolong; Hu, Jiyuan
2016-01-01
The aim of this study was to investigate the relationship between surface subsidence and groundwater changes. To investigate this relationship, we first analyzed surface subsidence. This paper presents the results of a case study of surface subsidence in Beijing from 1 August 2007 to 29 September 2010. The Multi-temporal Interferometric Synthetic Aperture Radar (multi-temporal InSAR) technique, which can simultaneously detect point-like stable reflectors (PSs) and distributed scatterers (DSs), was used to retrieve the subsidence magnitude and distribution in Beijing using 18 ENVISAT ASAR images. The multi-temporal InSAR-derived subsidence was verified by leveling at an accuracy better than 5 mm/year. Based on the verified multi-temporal InSAR results, a prominent uneven subsidence was identified in Beijing. Specifically, most of the subsidence velocities in the downtown area were within 10 mm/year, and the largest subsidence was detected in Tongzhou, with velocities exceeding 140 mm/year. Furthermore, Gravity Recovery and Climate Experiment (GRACE) data were used to derive the groundwater change series and trend. By comparison with the multi-temporal InSAR-derived subsidence results, the long-term decreasing trend between groundwater changes and surface subsidence showed a relatively high consistency, and a significant impact of groundwater changes on the surface subsidence was identified. Additionally, the spatial distribution of the subsidence funnel was partially consistent with that of groundwater depression, i.e., the former possessed a wider range than the latter. Finally, the relationship between surface subsidence and groundwater changes was determined. PMID:27649183
NASA Astrophysics Data System (ADS)
Ozawa, Taku; Ueda, Hideki
2011-12-01
InSAR time series analysis is an effective tool for detecting spatially and temporally complicated volcanic deformation. To obtain details of such deformation, we developed an advanced InSAR time series analysis using interferograms of multiple-orbit tracks. Considering only right- (or only left-) looking SAR observations, incidence directions for different orbit tracks are mostly included in a common plane. Therefore, slant-range changes in their interferograms can be expressed by two components in the plane. This approach estimates the time series of their components from interferograms of multiple-orbit tracks by the least squares analysis, and higher accuracy is obtained if many interferograms of different orbit tracks are available. Additionally, this analysis can combine interferograms for different incidence angles. In a case study on Miyake-jima, we obtained a deformation time series corresponding to GPS observations from PALSAR interferograms of six orbit tracks. The obtained accuracy was better than that with the SBAS approach, demonstrating its effectiveness. Furthermore, it is expected that higher accuracy would be obtained if SAR observations were carried out more frequently in all orbit tracks. The deformation obtained in the case study indicates uplift along the west coast and subsidence with contraction around the caldera. The speed of the uplift was almost constant, but the subsidence around the caldera decelerated from 2009. A flat deformation source was estimated near sea level under the caldera, implying that deceleration of subsidence was related to interaction between volcanic thermal activity and the aquifer.
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Dille, A.; Nobile, A.; d'Oreye, N.; Kervyn, F.; Dewitte, O.
2017-12-01
Landslides can lead to high impacts in less developed countries, particularly in some urban tropical environments where a combination of intense rainfall, active tectonics, steep topography and high population density can be found. However, the processes controlling landslides initiation and their evolution through time remains poorly understood. Here we show the relevance of the use of multi-temporal differential SAR interferometry (DInSAR) to characterize ground deformations associated to landslides in the rapidly expanding city of Bukavu (DR Congo). A series of 70 COSMO-SkyMed SAR images acquired between March 2015 and April 2016 with a mean revisiting time of 8 days were used to produce displacement rate maps and ground deformation time series using the Small Baseline Subset approach. Results show that various landslide processes of different ages, mechanisms and state of activity can be identified across Bukavu city. InSAR ground deformation maps reveal for instance the complexity of a large (1.5 km²) active slide affecting a densely inhabited slum neighbourhood and characterized by the presence of sectors moving at different rates (ranging from 10 mm/yr up to 75 mm/yr in LOS direction). The evaluation of the ground deformations captured by DInSAR through a two-step validation procedure combining Differential GPS measurements and field observations attested the reliability of the measurements as well as the capability of the technique to grasp the deformation pattern affecting this complex tropical-urban environment. However, longer time series will be needed to infer landside response to climate, seismic and anthropogenic activities.
SARS Grid--an AG-based disease management and collaborative platform.
Hung, Shu-Hui; Hung, Tsung-Chieh; Juang, Jer-Nan
2006-01-01
This paper describes the development of the NCHC's Severe Acute Respiratory Syndrome (SARS) Grid project-An Access Grid (AG)-based disease management and collaborative platform that allowed for SARS patient's medical data to be dynamically shared and discussed between hospitals and doctors using AG's video teleconferencing (VTC) capabilities. During the height of the SARS epidemic in Asia, SARS Grid and the SARShope website significantly curved the spread of SARS by helping doctors manage the in-hospital and in-home care of quarantined SARS patients through medical data exchange and the monitoring of the patient's symptoms. Now that the SARS epidemic has ended, the primary function of the SARS Grid project is that of a web-based informatics tool to increase pubic awareness of SARS and other epidemic diseases. Additionally, the SARS Grid project can be viewed and further studied as an outstanding model of epidemic disease prevention and/or containment.
12 CFR 21.11 - Suspicious Activity Report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Activity Report. (c) SARs required. A national bank shall file a SAR with the appropriate Federal law... supervisory action. (j) Obtaining SARs. A national bank may obtain SARs and the Instructions from the appropriate OCC District Office listed in 12 CFR part 4. (k) Confidentiality of SARs. A SAR, and any...
12 CFR 21.11 - Suspicious Activity Report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Activity Report. (c) SARs required. A national bank shall file a SAR with the appropriate Federal law... supervisory action. (j) Obtaining SARs. A national bank may obtain SARs and the Instructions from the appropriate OCC District Office listed in 12 CFR part 4. (k) Confidentiality of SARs. A SAR, and any...
Controlling Data Collection to Support SAR Image Rotation
Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.
2008-10-14
A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.
NASA Astrophysics Data System (ADS)
Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.
2016-12-01
Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory turbulences is analyzed and several possible solutions are proposed to improve the airborne SAR performance. In the long run, an improved airborne SAR system will open avenues for differential interferometry to be used in scientific studies and commercial applications previously prohibited by orbital constraints of spaceborne SAR.
Han, Paul K J; Williams, Andrew E; Haskins, Amy; Gutheil, Caitlin; Lucas, F Lee; Klein, William M P; Mazor, Kathleen M
2014-12-01
Aversion to "ambiguity"-uncertainty about the reliability, credibility, or adequacy of information-about medical tests and treatments is an important psychological response that varies among individuals, but little is known about its nature and extent. The purpose of this study was to examine how individual-level ambiguity aversion relates to important health cognitions related to different cancer screening tests. A survey of 1,074 adults, ages 40 to 70 years, was conducted in four integrated U.S. healthcare systems. The Ambiguity Aversion in Medicine (AA-Med) scale, a measure of individual differences in aversion to ambiguity (AA) about medical tests and treatments, was administered along with measures of several cancer screening-related cognitions: perceived benefits and harms of colonoscopy, mammography, and PSA screening, and ambivalence and future intentions regarding these tests. Multivariable analyses were conducted to assess the associations between AA-Med scores and cancer screening cognitions. Individual-level AA as assessed by the AA-Med scale was significantly associated (P < 0.05) with lower perceived benefits, greater perceived harms, and greater ambivalence about all three screening tests, and lower intentions for colonoscopy but not mammography or PSA screening. Individual-level AA is broadly and simultaneously associated with various pessimistic cognitive appraisals of multiple cancer screening tests. The breadth of these associations suggests that the influence of individual-level AA is insensitive to the degree and nonspecific with respect to the causes of ambiguity. Individual-level AA constitutes a measurable, wide-ranging cognitive bias against medical intervention, and more research is needed to elucidate its mechanisms and effects. ©2014 American Association for Cancer Research.
The skew ray ambiguity in the analysis of videokeratoscopic data.
Iskander, D Robert; Davis, Brett A; Collins, Michael J
2007-05-01
Skew ray ambiguity is present in most videokeratoscopic measurements when azimuthal components of the corneal curvature are not taken into account. There have been some reported studies based on theoretical predictions and measured test surfaces suggesting that skew ray ambiguity is significant for highly deformed corneas or decentered corneal measurements. However, the effect of skew ray ambiguity in ray tracing through videokeratoscopic data has not been studied in depth. We have evaluated the significance of the skew ray ambiguity and its effect on the analyzed corneal optics. This has been achieved by devising a procedure in which we compared the corneal wavefront aberrations estimated from 3D ray tracing with those determined from 2D (meridional based) estimates of the refractive power. The latter was possible due to recently developed concept of refractive Zernike power polynomials which links the refractive power domain with that of the wavefront. Simulated corneal surfaces as well as data from a range of corneas (from two different Placido disk-based videokeratoscopes) were used to find the limit at which the difference in estimated corneal wavefronts (or the corresponding refractive powers) would have clinical significance (e.g., equivalent to 0.125 D or more). The inclusion/exclusion of the skew ray in the analyses showed some differences in the results. However, the proposed procedure showed clinically significant differences only for highly deformed corneas and only for large corneal diameters. For the overwhelming majority of surfaces, the skew ray ambiguity is not a clinically significant issue in the analysis of the videokeratoscopic data indicating that the meridional processing such as that encountered in calculation of the refractive power maps is adequate.
New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity
NASA Astrophysics Data System (ADS)
Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Müller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Tonnesen, Gail S.
2017-08-01
Satellite-based measurements of the column CH2O/NO2 ratio have previously been used to estimate near-surface ozone (O3) sensitivity (i.e., NOx or VOC limited), and the forthcoming launch of air quality-focused geostationary satellites provides a catalyst for reevaluating the ability of satellite-measured CH2O/NO2 to be used in this manner. In this study, we use a 0-D photochemical box model to evaluate O3 sensitivity and find that the relative rate of radical termination from radical-radical interactions to radical-NOx interactions (referred to as LROx/LNOx) provides a good indicator of maximum O3 production along NOx ridgelines. Using airborne measurements from NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relative to Air Quality (DISCOVER-AQ) deployments in Colorado, Maryland, and Houston, we show that in situ measurements of CH2O/NO2 can be used to indicate O3 sensitivity, but there is an important "transition/ambiguous" range whereby CH2O/NO2 fails to categorize O3 sensitivity, and the range and span of this transition/ambiguous range varies regionally. Then, we apply these findings to aircraft-derived column density measurements from DISCOVER-AQ and find that inhomogeneities in vertical mixing in the lower troposphere further degrades the ability of column CH2O/NO2 to indicate near-surface O3 sensitivity (i.e., the transition/ambiguous range is much larger than indicated by in situ data alone), and we hypothesize that the global transition/ambiguous range is sufficiently large to make the column CH2O/NO2 ratio unuseful for classifying near-surface O3 sensitivity. Lastly, we present a case study from DISCOVER-AQ-Houston that suggests that O3 sensitivity on exceedance days may be substantially different than on nonexceedance days (which may be observable from space) and explore the diurnal evolution of O3 sensitivity, O3 production, and the column CH2O/NO2 ratio. The results of these studies suggest that although satellite measurements of CH2O/NO2 alone may not be sufficient for accurately classifying near-surface O3 sensitivity, new techniques offered by geostationary platforms may nonetheless provide methods for using space-based measurements to develop O3 mitigation strategies.
Method for ambiguity resolution in range-Doppler measurements
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)
1994-01-01
A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.
NASA Astrophysics Data System (ADS)
Kooistra, Wiebe H. C. F.; de Boer, M. Karin; Vrieling, Engel G.; Connell, Laurie B.; Gieskes, Winfried W. C.
2001-12-01
The flagellate micro-alga Fibrocapsa japonica can form harmful algal blooms along all temperate coastal regions of the world. The species was first observed in coastal waters of Japan and the western US in the 1970s; it has been reported regularly worldwide since. To unravel whether this apparent range expansion can be tracked, we assessed genetic variation among nuclear ribosomal DNA ITS sequences, obtained from sixteen global strains collected over the course of three decades. Ten sequence positions showed polymorphism across the strains. Nine out of these revealed ambiguities in several or most sequences sampled. The oldest strain collected (LB-2161) was the only one without such intra-individual polymorphism. In the others, the proportion of ambiguities at variable sites increased with more recent collection date. The pattern does not result from loss of variation due to sexual reproduction and random drift in culture because sister cultures CS-332 and NIES-136 showed virtually the same ITS-pattern after seven years of separation. Neither are the patterns explained by recent range expansion of a single genotype, because in that case one would expect lowest genetic diversity in the recently invaded North Sea; instead, polymorphism is highest there. Recent ballast-water-mediated mixing of formerly isolated populations and subsequent ongoing sexual reproduction among them can explain the increase in ambiguities. The species' capacity to form harmful blooms may well have been enhanced through increased genetic diversity of regional populations.
12 CFR 21.11 - Suspicious Activity Report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Activity Report on the form prescribed by the OCC. (c) SARs required. A national bank shall file a SAR with... supervisory action. (j) Obtaining SARs. A national bank may obtain SARs and the Instructions from the appropriate OCC District Office listed in 12 CFR part 4. (k) Confidentiality of SARs. SARs are confidential...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Graham, E-mail: gsimmons@bloodsystems.or; Bertram, Stephanie; Glowacka, Ilona
Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a proteasemore » essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.« less
NASA Astrophysics Data System (ADS)
Pisano, A.; De Dominicis, M.; Biamino, W.; Bignami, F.; Gherardi, S.; Colao, F.; Coppini, G.; Marullo, S.; Sprovieri, M.; Trivero, P.; Zambianchi, E.; Santoleri, R.
2016-11-01
A research cruise was organized on board the Italian National Research Council (CNR) R/V Urania to test the oil spill monitoring system developed during the PRogetto pilota Inquinamento Marino da Idrocarburi project (PRIMI, pilot project for marine oil pollution). For the first time, this system integrated in a modular way satellite oil spill detection (Observation Module) and oil spill displacement forecasting (Forecast Module) after detection. The Observation Module was based on both Synthetic Aperture RADAR (SAR) and optical satellite detection, namely SAR and Optical Modules, while the Forecast Module on Lagrangian numerical circulation models. The cruise (Aug. 6-Sep. 7, 2009) took place in the Mediterranean Sea, around Sicily, an area affected by heavy oil tanker traffic with frequent occurrence of oil spills resulting from illegal tank washing. The cruise plan was organized in order to have the ship within the SAR image frames selected for the cruise, at acquisition time. In this way, the ship could rapidly reach oil slicks detected in the images by the SAR Module, and/or eventually by the Optical Module, in order to carry out visual and instrumental inspection of the slicks. During the cruise, several oil spills were detected by the two Observation Modules and verified in situ, with the essential aid of the Forecasting Module which provided the slick position by the time the ship reached the area after the alert given by the SAR and/or optical imagery. Results confirm the good capability of oil spill SAR detection and indicate that also optical sensors are able to detect oil spills, ranging from thin films to slicks containing heavily polluted water. Also, results confirm the useful potential of oil spill forecasting models, but, on the other hand, that further work combining satellite, model and in situ data is necessary to refine the PRIMI system.
NASA Astrophysics Data System (ADS)
Liorni, I.; Parazzini, M.; Varsier, N.; Hadjem, A.; Ravazzani, P.; Wiart, J.
2016-04-01
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg-1 in uplink mode and 65 μW kg-1 in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
NASA Astrophysics Data System (ADS)
Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2017-04-01
Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.
NASA Astrophysics Data System (ADS)
Hayati, Noorlaila; Riedel, Björn; Niemeier, Wolfgang
2016-04-01
Ciloto is one of the most prone landslide hazard areas in Indonesia. Several landslides in 2012 and 2013 had been recorded in Ciloto and damaged infrastructure around the area. Investigating the history of ground movement along slope area before the landslide happened could support the hazard mitigation in the future. Considering to an efficient surveying method, space-borne SAR processing is the one appropriate way to monitor the phenomenon in past years. The purpose of this study is detecting ground movement using multi-temporal synthetic aperture radar images. We use 13 ALOS PALSAR images from 2007 to 2009 with combination Fine Beam Single (FBS) and Fine Beam Double (FBD) polarization to investigate the slow movement on slope topography. MAI (Multiple Aperture Interferometry) InSAR method is used to analyze the ground movement from both line-of-sight and along-track direction. We split the synthetic aperture into two-looking aperture so that along-track displacement could be created by the difference of forward-backward looking interferograms. With integration of both methods, we could more precisely detect the movement in prone landslide area and achieve two measurements produced by the same interferogram. However, InSAR requires smaller baseline and good temporal baseline between master and slave images to avoid decorellation. There are only several pairs that meet the condition of proper length and temporal baseline indeed the location is also on the agriculture area where is mostly covered by vegetation. The result for two years observation shows that there is insignificant slow movement along slope surface in Ciloto with -2 - -7 cm in range looks or line of sight and 9-40 cm in along track direction. Based on geometry SAR , the most visible detecting of displacement is on the north-west area due to utilization of ascending SAR images.
Advanced corrections for InSAR using GPS and numerical weather models
NASA Astrophysics Data System (ADS)
Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.
2016-12-01
The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
NASA Astrophysics Data System (ADS)
McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.
2014-12-01
Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.
Liorni, I; Parazzini, M; Varsier, N; Hadjem, A; Ravazzani, P; Wiart, J
2016-04-21
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg(-1) in uplink mode and 65 μW kg(-1) in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
Measuring higher order ambiguity preferences.
Baillon, Aurélien; Schlesinger, Harris; van de Kuilen, Gijs
2018-01-01
We report the results from an experiment designed to measure attitudes towards ambiguity beyond ambiguity aversion. In particular, we implement recently-proposed model-free preference conditions of ambiguity prudence and ambiguity temperance. Ambiguity prudence has been shown to play an important role in precautionary behavior and the mere presence of ambiguity averse agents in markets. We observe that the majority of individuals' decisions are consistent with ambiguity aversion, ambiguity prudence and ambiguity temperance. This finding confirms the prediction of many popular (specifications of) ambiguity models and has important implications for models of prevention behavior.
12 CFR 208.62 - Suspicious activity reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (c) SARs required. A member bank shall file a SAR with the appropriate Federal law enforcement... SARs. SARs are confidential. Any member bank subpoenaed or otherwise requested to disclose a SAR or the...
12 CFR 208.62 - Suspicious activity reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (c) SARs required. A member bank shall file a SAR with the appropriate Federal law enforcement... SARs. SARs are confidential. Any member bank subpoenaed or otherwise requested to disclose a SAR or the...
PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucker, D.F.
2000-09-01
This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have beenmore » overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.« less
2013-01-01
local oscillator to measure the phase of both the transmitted and received pulses and then matching them to the correct range ambiguity. 2.5 High...track closely spaced objects. White Sands Missile Range (WSMR) and Patrick Air Force Base (AFB) operate the phased -array AN/MPS-39 MOTRs. The...ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE YUMA PROVING GROUND WHITE SANDS MISSILE RANGE NAVAL AIR WARFARE CENTER AIRCRAFT
NASA Astrophysics Data System (ADS)
Hammond, William C.; Burgette, Reed J.; Johnson, Kaj M.; Blewitt, Geoffrey
2018-01-01
We estimate the rate of vertical land motion (VLM) in the region around the Western Transverse Ranges (WTR), Ventura, and Big Bend of the San Andreas Fault (SAF) of southern California using data from four geodetic techniques: GPS, interferometric synthetic aperture radar (InSAR), leveling, and tide gauges. We use a new analysis technique called GPS Imaging to combine the techniques and leverage the synergy between (1) high geographic resolution of InSAR, (2) precision, stability, and geocentric reference frame of GPS, (3) decades long observation of VLM with respect to the sea surface from tide gauges, and (4) relative VLM along dense leveling lines. The uncertainty in the overall rate field is 1 mm/yr, though some individual techniques have uncertainties as small as 0.2 mm/yr. The most rapid signals are attributable to subsidence in aquifers and groundwater changes. Uplift of the WTR is geographically continuous, adjacent to the SAF and appears related to active crustal contraction across Pacific/North America plate boundary fault system. Uplift of the WTR and San Gabriel Mountains is 2 mm/yr and is asymmetrically focused west of the SAF, consistent with interseismic strain accumulation across thrust faults in the Ventura area and Santa Barbara channel that accommodate contraction against the near vertical SAF.
Bertram, Stephanie; Glowacka, Ilona; Müller, Marcel A.; Lavender, Hayley; Gnirss, Kerstin; Nehlmeier, Inga; Niemeyer, Daniela; He, Yuxian; Simmons, Graham; Drosten, Christian; Soilleux, Elizabeth J.; Jahn, Olaf; Steffen, Imke; Pöhlmann, Stefan
2011-01-01
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients. PMID:21994442
SAR Altimetry Processing on Demand Service for Cryosat-2 and Sentinel-3 at ESA G-Pod
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Benveniste, Jérôme; Ambrózio, Américo; Restano, Marco
2016-07-01
The G-POD SARvatore service to users for the exploitation of CryoSat-2 data was designed and developed by the Altimetry Team at ESA-ESRIN EOP-SER (Earth Observation - Exploitation, Research and Development). The G-POD service coined SARvatore (SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation) is a web platform that allows any scientist to process on-line, on-demand and with user-selectable configuration CryoSat-2 SAR/SARIN data, from L1a (FBR) data products up to SAR/SARin Level-2 geophysical data products. The Processor takes advantage of the G-POD (Grid Processing On Demand) distributed computing platform (350 CPUs in ~70 Working Nodes) to timely deliver output data products and to interface with ESA-ESRIN FBR data archive (155'000 SAR passes and 41'000 SARin passes). The output data products are generated in standard NetCDF format (using CF Convention), therefore being compatible with the Multi-Mission Radar Altimetry Toolbox (BRAT) and other NetCDF tools. By using the G-POD graphical interface, it is straightforward to select a geographical area of interest within the time-frame related to the Cryosat-2 SAR/SARin FBR data products availability in the service catalogue. The processor prototype is versatile, allowing users to customize and to adapt the processing according to their specific requirements by setting a list of configurable options. After the task submission, users can follow, in real time, the status of the processing, which can be lengthy due to the required intense number-crunching inherent to SAR processing. From the web interface, users can choose to generate experimental SAR data products as stack data and RIP (Range Integrated Power) waveforms. The processing service, initially developed to support the awarded development contracts by confronting the deliverables to ESA's prototype, is now made available to the worldwide SAR Altimetry Community for research & development experiments, for on-site demonstrations/training in training courses and workshops, for cross-comparison to third party products (e.g. CLS/CNES CPP or ESA SAR COP data products), for the preparation of the Sentinel-3 Surface Topography Mission, for producing data and graphics for publications, etc. Initially, the processing was designed and uniquely optimized for open ocean studies. It was based on the SAMOSA model developed for the Sentinel-3 Ground Segment using CryoSat data (Cotton et al., 2008; Ray et al., 2014). However, since June 2015, a new retracker (SAMOSA+) is offered within the service as a dedicated retracker for coastal zone, inland water and sea-ice/ice-sheet. In view of the Sentinel-3 launch, a new flavor of the service will be initiated, exclusively dedicated to the processing of Sentinel-3 mission data products. The scope of this new service will be to maximize the exploitation of the upcoming Sentinel-3 Surface Topography Mission's data over all surfaces. The service is open, free of charge (supported by the ESA SEOM Programme Element) for worldwide scientific applications and available at https://gpod.eo.esa.int/services/CRYOSAT_SAR/
Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment
NASA Astrophysics Data System (ADS)
Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia
2015-04-01
Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.
Estimating ambiguity preferences and perceptions in multiple prior models: Evidence from the field.
Dimmock, Stephen G; Kouwenberg, Roy; Mitchell, Olivia S; Peijnenburg, Kim
2015-12-01
We develop a tractable method to estimate multiple prior models of decision-making under ambiguity. In a representative sample of the U.S. population, we measure ambiguity attitudes in the gain and loss domains. We find that ambiguity aversion is common for uncertain events of moderate to high likelihood involving gains, but ambiguity seeking prevails for low likelihoods and for losses. We show that choices made under ambiguity in the gain domain are best explained by the α-MaxMin model, with one parameter measuring ambiguity aversion (ambiguity preferences) and a second parameter quantifying the perceived degree of ambiguity (perceptions about ambiguity). The ambiguity aversion parameter α is constant and prior probability sets are asymmetric for low and high likelihood events. The data reject several other models, such as MaxMin and MaxMax, as well as symmetric probability intervals. Ambiguity aversion and the perceived degree of ambiguity are both higher for men and for the college-educated. Ambiguity aversion (but not perceived ambiguity) is also positively related to risk aversion. In the loss domain, we find evidence of reflection, implying that ambiguity aversion for gains tends to reverse into ambiguity seeking for losses. Our model's estimates for preferences and perceptions about ambiguity can be used to analyze the economic and financial implications of such preferences.
Cameron, Mark J; Kelvin, Alyson A; Leon, Alberto J; Cameron, Cheryl M; Ran, Longsi; Xu, Luoling; Chu, Yong-Kyu; Danesh, Ali; Fang, Yuan; Li, Qianjun; Anderson, Austin; Couch, Ronald C; Paquette, Stephane G; Fomukong, Ndingsa G; Kistner, Otfried; Lauchart, Manfred; Rowe, Thomas; Harrod, Kevin S; Jonsson, Colleen B; Kelvin, David J
2012-01-01
In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)(3)-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.
Serology of severe acute respiratory syndrome: implications for surveillance and outcome.
Chen, Xinchun; Zhou, Boping; Li, Meizhong; Liang, Xiaorong; Wang, Huosheng; Yang, Guilin; Wang, Hui; Le, Xiaohua
2004-04-01
Severe acute respiratory syndrome (SARS) is a novel infectious disease. No information is currently available on host-specific immunity against the SARS coronavirus (CoV), and detailed characteristics of the epidemiology of SARS CoV infection have not been identified. ELISA was used to detect antibody to SARS CoV. Reverse-transcriptase polymerase chain reaction was used to detect SARS CoV RNA. T cells in peripheral blood of patients were quantified by flow cytometry. Of 36 patients with probable SARS CoV infection, 30 (83.3%) were positive for IgG antibody to SARS CoV; in contrast, only 3 of 48 patients with suspected SARS CoV infection, 0 of 112 patients with fever but without SARS, and 0 of 96 healthy control individuals were positive for it. IgG antibody to SARS CoV was first detected between day 5 and day 47 after onset of illness (mean +/- SD, 18.7+/-10.4). Detection of antibody to SARS CoV is useful in the diagnosis of SARS; however, at the incubation and initial phases of the illness, serological assay is of little value, because of late seroconversion in most patients.
Ilhan, Harun; Goritschan, Anna; Paprottka, Phillip; Jakobs, Tobias F; Fendler, Wolfgang P; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R
2015-03-01
The aim of this study was to evaluate the (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) uptake of primary and secondary liver tumors in a large patient cohort before (90)Y radioembolization. We included 502 patients during the years 2005-2013 (55% male; mean age, 62 ± 11 y), who were examined with (99m)Tc-MAA SPECT or SPECT/CT before planned radioembolization. The patients had colorectal cancer (CRC; n = 195, 38.8%), neuroendocrine tumors (NET; n = 77, 15.3%), mammary cancer (MAM; n = 68, 13.5%), hepatocellular carcinoma (HCC; n = 59, 11.8%), cholangiocellular carcinoma (CCC; n = 40, 8.0%), or urologic tumors (URO; n = 14, 2.8%). SPECT with coregistered contrast-enhanced CT or MR imaging and SPECT/CT images of these patients were analyzed using dedicated software with regard to the (99m)Tc-MAA uptake of the liver tumors. Regions of interest were drawn around the lesions manually and quantified the uptake of up to 3 lesions per patient and also adjacent healthy liver tissue without evidence of tumor. We quantified maximum and mean counts per pixel and calculated tumor-to-background ratio (TBR). Data are reported as mean ± SD. Lesion uptake was classified as being homogeneously high (grade 1), heterogeneously high (grade 2), equal to that of the liver (grade 3), or low (grade 4). Grade 1 uptake was seen in 230 of 1,008 lesions (with the highest rates in sarcoma [47%], MAM [37%], and NET [32%]), grade 2 in 706 lesions (with the highest rates in CRC [77%], HCC [75%], and CCC [74%]), grade 4 in 57 lesions (with the highest rates in pancreatic cancer [17%], sarcoma [SAR] [13%], and MAM [8%]), and grade 3 in only 15 lesions. In quantitative analysis, the mean TBRmax of all lesions was 4.8 ± 4.1 (range, 0.2-50.1), with the highest values in HCC (6.0 ± 4.7; range, 1.4-21.6), NET (5.4 ± 4.9; range, 0.8-43.0), pancreatic cancer (4.0 ± 2.8; range, 0.9-12.2), and CCC (4.7 ± 2.9; range, 0.9-11.6), and the lowest values in SAR (3.5 ± 1.8; range, 0.8-2.7) and MAM (3.6 ± 2.2; range, 0.9-11.6). The mean TBRmean was 1.9 ± 1.0 (range, 0.1-7.2), with the highest values in NET (2.2 ± 1.2; range, 0.2-7.2), HCC (2.1 ± 1.2; range, 0.3-6.3), and CCC (2.0 ± 1.0; range, 0.2-6.3) and the lowest values in MAM (1.7 ± 0.8; range, 0.2-4.1), CRC (1.8 ± 0.9; range, 0.4-6.6), and SAR (1.7 ± 1.1; range, 0.3-3.9). The (99m)Tc-MAA uptake of different tumor entities shows a wide variation, with generally highest values for NET, HCC, and CCC and lowest values for MAM, CRC, and SAR. However, the variation of uptake within the different tumor entities is high. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Statistical properties of superactive regions during solar cycles 19-23
NASA Astrophysics Data System (ADS)
Chen, A. Q.; Wang, J. X.; Li, J. W.; Feynman, J.; Zhang, J.
2011-10-01
Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims: We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods: We select 45 SARs in solar cycles 21-23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19-23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19-23 are studied statistically. Results: Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21-23, and that all the SARs are likely to produce a very fast CME. The latitudinal distributions of SARs display the Maunder butterfly diagrams and SARs occur preferentially in the maximum period of each solar cycle. Northern hemisphere SARs dominated in solar cycles 19 and 20 and southern hemisphere SARs dominated in solar cycles 21 and 22. In solar cycle 23, however, SARs occurred about equally in each hemisphere. There are two active longitudes in both the northern and southern hemispheres, about 160°-200° apart. Applying the improved dynamic reference frame to SARs, we find that SARs rotate faster than the Carrington rate and there is no significant difference between the two hemispheres. The synodic periods are 27.19 days and 27.25 days for the northern and southern hemispheres, respectively. The longitudinal distribution of SARs is significantly non-axisymmetric and about 75% SARs occurred near two active longitudes with half widths of 45°. Appendix A is available in electronic form at http://www.aanda.org
Inferring Short-Range Linkage Information from Sequencing Chromatograms
Beggel, Bastian; Neumann-Fraune, Maria; Kaiser, Rolf; Verheyen, Jens; Lengauer, Thomas
2013-01-01
Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip. PMID:24376502
Combination of Insar and GPS to Measure Ground Motions and Atmospheric Signals
NASA Astrophysics Data System (ADS)
Zerbini, S.; Prati, C.; Errico, M.; Ferri, S.; Novali, F.; Scirpoli, S.; Tiberi, L.
2010-12-01
The combination of different techniques such as InSAR and GPS is characterized by the added value of taking advantage of their complementary strengths and of minimizing their respective weaknesses, thus allowing for the full exploitation of the complementary aspects by overcoming the limitations inherent in the use of each technique alone. Another important aspect of the GPS/InSAR integration regards the fact that today’s application of interferometric SAR techniques is limited by the knowledge of the wet tropospheric path delay in microwave observations. GPS-based estimates of tropospheric delays may help in obtaining better corrections which will enhance the coherence and will allow the application of InSAR in a wider range of applications. The area selected for the InSAR/GPS comparison/integration is in northeastern Italy and includes the town of Bologna, and two nearby sites Medicina (agricultural area) and Loiano (a small city on the Apennines) where a small network of permanent GPS stations is operated by the University of Bologna. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique will be applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the towns mentioned above. Ultimately this work will contribute demonstrating the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. A PS is a target whose radar signature is stable with time. Such targets can be identified by means of multiple SAR observations and they can be exploited for jointly estimating their relative motion and the atmospheric artifacts on a grid that can be quite dense in space but not in time (depending on the SAR revisiting time interval). On the contrary the GPS can provide very frequent time measurements in correspondence of a few measuring points. Elevation, ground deformation and atmospheric artifacts estimated in correspondence of the identified PS will be compared with independent measurements carried out at the same acquisition time by permanent GPS stations in the area of Bologna, Medicina and Loiano. The comparison of these independent measurements is itself a cross-validation of the obtained results. The value of cross-validation of different and compatible techniques is to provide reliable vertical crustal motion determinations in space and time. Urban areas such as that of Bologna will be examined to evaluate CSK capabilities to measure extended subsidence (or up-swelling) and single building deformation.
Observation of Drifting Icebergs and Sea Ice from Space by TerraSAR-X and TanDEM-X
NASA Astrophysics Data System (ADS)
Won, Joong-Sun
2017-04-01
Detection and monitoring drifting icebergs and sea ice is of interest across wide range of Arctic and Antarctic coastal studies such as security of navigation, climatic impact, geological impact, etc. It is not easy to discriminate drifting ices from stationary ones, and to measure their drifting speeds. There is a potential to use space-borne SAR for this purpose, but it is difficult to precisely measure because the drift velocity is usually very slow. In this study, we investigate two approaches for discriminating drifting ices on the sea from surrounding static ones and for measuring their range velocity. The first method is to utilize the quad-pol TerraSAR-X which adopts dual receive antenna (DRA), and the second one is to examine the potential use of TanDEM-X bistatic along-track interferometry (ATI). To utilize DRA mode quad-pol SAR as ATI, it is necessary to remove the phase difference of scattering centers between transmitted H- and V-pol signals. By assume that the individual scattering center of returned signal does not change for a few inter-pulse periods, it is possible to measure the Doppler frequency induced by motion through measuring slow-time (or azimuth time) Doppler phase derivative of co-pol or cross-pol pairs. Results applied to TerraSAR-X quad-pol data over the Cape Columbia in the Arctic Ocean are to be presented and discussed. It was successful to detect and measure drift sea ice that was flowing away from the antenna with a velocity of about 0.37 m/s (or 1.4 km/h) to 0.67 m/s (or 2.4 km/h) while neighboring ones were static. A more sophisticated approach would be a bistatic ATI which exploits a long along-track baseline for observation of slowly moving ground objects. TanDEM-X bistatic ATI pairs are examined, which were acquired at an Antarctic coast. The ATI interferograms show an innovative capability of TanDEM-X/TerraSAR-X constellation. An along-track baseline of a few hundred meters is superior to a few meter baseline of DRA mode ATI system. However, topographic phase is inevitably mixed with Doppler phase associated with target motion because of a non-zero perpendicular baseline (or effective baseline). Thus it is necessary to separate target motion components from topographic components that are unknown for icebergs. Here we examine characteristics of the topographic phase of drift sea ice in the bistatic ATI interferograms, and discuss a detouring approach to quick detection of drifting icebergs by TanDEM-X bistatic ATI. The results demonstrate that it would be efficient to detect drifting icebergs and sea ice from space by utilizing high resolution SAR systems while the precise measurement of the drifting speeds requires further studies.
Flood extent and water level estimation from SAR using data-model integration
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2017-12-01
Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.
Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.
Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo
2016-04-12
Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Local SAR in Parallel Transmission Pulse Design
Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar
2011-01-01
The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594
Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen
1992-01-01
Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
Data acquired by synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) were processed and analyzed to derive forest-related resources inventory information. The SAR data were acquired by using the NASA aircraft X-band SAR with linear (HH, VV) and cross (HV, VH) polarizations and the SEASAT L-band SAR. After data processing and data quality examination, the three polarization (HH, HV, and VV) data from the aircraft X-band SAR were used in conjunction with LANDSAT MSS for multisensor data classification. The results of accuracy evaluation for the SAR, MSS and SAR/MSS data using supervised classification show that the SAR-only data set contains low classification accuracy for several land cover classes. However, the SAR/MSS data show that significant improvement in classification accuracy is obtained for all eight land cover classes. These results suggest the usefulness of using combined SAR/MSS data for forest-related cover mapping. The SAR data also detect several small special surface features that are not detectable by MSS data.
Regla-Nava, Jose A.; Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; Gallagher, Thomas M.; Enjuanes, Luis; DeDiego, Marta L.
2013-01-01
Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. PMID:23911968
Mathematical modeling and SAR simulation multifunction SAR technology efforts
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.
Estimating ambiguity preferences and perceptions in multiple prior models: Evidence from the field
Dimmock, Stephen G.; Kouwenberg, Roy; Mitchell, Olivia S.; Peijnenburg, Kim
2016-01-01
We develop a tractable method to estimate multiple prior models of decision-making under ambiguity. In a representative sample of the U.S. population, we measure ambiguity attitudes in the gain and loss domains. We find that ambiguity aversion is common for uncertain events of moderate to high likelihood involving gains, but ambiguity seeking prevails for low likelihoods and for losses. We show that choices made under ambiguity in the gain domain are best explained by the α-MaxMin model, with one parameter measuring ambiguity aversion (ambiguity preferences) and a second parameter quantifying the perceived degree of ambiguity (perceptions about ambiguity). The ambiguity aversion parameter α is constant and prior probability sets are asymmetric for low and high likelihood events. The data reject several other models, such as MaxMin and MaxMax, as well as symmetric probability intervals. Ambiguity aversion and the perceived degree of ambiguity are both higher for men and for the college-educated. Ambiguity aversion (but not perceived ambiguity) is also positively related to risk aversion. In the loss domain, we find evidence of reflection, implying that ambiguity aversion for gains tends to reverse into ambiguity seeking for losses. Our model’s estimates for preferences and perceptions about ambiguity can be used to analyze the economic and financial implications of such preferences. PMID:26924890
Deng, J-F; Olowokure, B; Kaydos-Daniels, S C; Chang, H-J; Barwick, R S; Lee, M-L; Deng, C-Y; Factor, S H; Chiang, C-E; Maloney, S A
2006-01-01
In June 2003, Taiwan introduced a severe acute respiratory syndrome (SARS) telephone hotline service to provide concerned callers with rapid access to information, advice and appropriate referral where necessary. This paper reports an evaluation of the knowledge, attitude, practices and sources of information relating to SARS among physicians who staffed the SARS fever hotline service. A retrospective survey was conducted using a self-administered postal questionnaire. Participants were physicians who staffed a SARS hotline during the SARS epidemic in Taipei, Taiwan from June 1 to 10, 2003. A response rate of 83% was obtained. All respondents knew the causative agent of SARS, and knowledge regarding SARS features and preventive practices was good. However, only 54% of respondents knew the incubation period of SARS. Hospital guidelines and news media were the major information sources. In responding to two case scenarios most physicians were likely to triage callers at high risk of SARS appropriately, but not callers at low risk. Less than half of all respondents answered both scenarios correctly. The results obtained suggest that knowledge of SARS was generally good although obtained from both medical and non-medical sources. Specific knowledge was however lacking in certain areas and this affected the ability to appropriately triage callers. Standardized education and assessment of prior knowledge of SARS could improve the ability of physicians to triage callers in future outbreaks.
Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern
Doerry, Armin W.
2013-04-30
Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.
Evaluation of the operational SAR based Baltic sea ice concentration products
NASA Astrophysics Data System (ADS)
Karvonen, Juha
Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.