Sample records for sar image compression

  1. Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.

    1984-01-01

    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.

  2. Alaska SAR Facility (ASF5) SAR Communications (SARCOM) Data Compression System

    NASA Technical Reports Server (NTRS)

    Mango, Stephen A.

    1989-01-01

    The real-time operational requirements for SARCOM translation into a high speed image data handler and processor to achieve the desired compression ratios and the selection of a suitable image data compression technique with as low as possible fidelity (information) losses and which can be implemented in an algorithm placing a relatively low arithmetic load on the system are described.

  3. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  4. A data compression technique for synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Minden, G. J.

    1986-01-01

    A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.

  5. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.

    PubMed

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-06-25

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  6. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  7. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    PubMed Central

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-01-01

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830

  8. SAR data compression: Application, requirements, and designs

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Chang, C. Y.

    1991-01-01

    The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression.

  9. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.

  10. A learning tool for optical and microwave satellite image processing and analysis

    NASA Astrophysics Data System (ADS)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  11. Software For Tie-Point Registration Of SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice

    1995-01-01

    SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.

  12. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information.

    PubMed

    Becquaert, Mathias; Cristofani, Edison; Van Luong, Huynh; Vandewal, Marijke; Stiens, Johan; Deligiannis, Nikos

    2018-05-31

    This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1) between the components inside the side information and (2) between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  13. Curvelet-based compressive sensing for InSAR raw data

    NASA Astrophysics Data System (ADS)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.

  14. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    NASA Astrophysics Data System (ADS)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  15. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  16. Pre-processing SAR image stream to facilitate compression for transport on bandwidth-limited-link

    DOEpatents

    Rush, Bobby G.; Riley, Robert

    2015-09-29

    Pre-processing is applied to a raw VideoSAR (or similar near-video rate) product to transform the image frame sequence into a product that resembles more closely the type of product for which conventional video codecs are designed, while sufficiently maintaining utility and visual quality of the product delivered by the codec.

  17. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.

    PubMed

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-07-14

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.

  18. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    PubMed Central

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  19. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    DOEpatents

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  20. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  1. Summary of SAR (Synthetic Aperture Radar) Ocean Wave Data Archived at ERIM (Environmental Research Institute of Michigan).

    DTIC Science & Technology

    1984-05-01

    transform (FFT) techniques achieve the required azi- muthal compression of the SAR Doppler history (Ausherman, 1980). Specially- designed digital...processors have also been designed for 3 -[RIM RADAR DIVISION real-time processing of SAR data aboard the aircraft for display or transmission to a ground...included a multi-sided box pattern designed to image the dominant waves from various directions. Figure 2 presents the results obtained as a function of

  2. Methods of evaluating the effects of coding on SAR data

    NASA Technical Reports Server (NTRS)

    Dutkiewicz, Melanie; Cumming, Ian

    1993-01-01

    It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important.

  3. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation.

    PubMed

    Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi

    2018-05-07

    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  4. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  5. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  6. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  7. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  8. SAR correlation technique - An algorithm for processing data with large range walk

    NASA Technical Reports Server (NTRS)

    Jin, M.; Wu, C.

    1983-01-01

    This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.

  9. A comparative study of SAR data compression schemes

    NASA Technical Reports Server (NTRS)

    Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.

    1994-01-01

    The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.

  10. Onboard Data Compression of Synthetic Aperture Radar Data: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Moision, Bruce

    2008-01-01

    Synthetic aperture radar (SAR) instruments on spacecraft are capable of producing huge quantities of data. Onboard lossy data compression is commonly used to reduce the burden on the communication link. In this paper an overview is given of various SAR data compression techniques, along with an assessment of how much improvement is possible (and practical) and how to approach the problem of obtaining it. Synthetic aperture radar (SAR) instruments on spacecraft are capable of acquiring huge quantities of data. As a result, the available downlink rate and onboard storage capacity can be limiting factors in mission design for spacecraft with SAR instruments. This is true both for Earth-orbiting missions and missions to more distant targets such as Venus, Titan, and Europa. (Of course for missions beyond Earth orbit downlink rates are much lower and thus potentially much more limiting.) Typically spacecraft with SAR instruments use some form of data compression in order to reduce the storage size and/or downlink rate necessary to accommodate the SAR data. Our aim here is to give an overview of SAR data compression strategies that have been considered, and to assess the prospects for additional improvements.

  11. Spaceborne synthetic aperture radar signal processing using FPGAs

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu

    2017-10-01

    Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.

  12. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  13. Method and apparatus for Delta Kappa synthetic aperture radar measurement of ocean current

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1985-01-01

    A synthetic aperture radar (SAR) employed for delta k measurement of ocean current from a spacecraft without the need for a narrow beam and long observation times. The SAR signal is compressed to provide image data for different sections of the chirp band width, equivalent to frequencies and a common area for the separate image fields is selected. The image for the selected area at each frequency is deconvolved to obtain the image signals for the different frequencies and the same area. A product of pairs of signals is formed, Fourier transformed and squared. The spectrum thus obtained from different areas for the same pair of frequencies are added to provide an improved signal to noise ratio. The shift of the peak from the center of the spectrum is measured and compared to the expected shift due to the phase velocity of the Bragg scattering wave. Any difference is a measure of current velocity v sub o (delta k).

  14. Local SAR in parallel transmission pulse design.

    PubMed

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L; Adalsteinsson, Elfar

    2012-06-01

    The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14-66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. Copyright © 2011 Wiley Periodicals, Inc.

  15. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    PubMed

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  16. LUCAS(™)2 in Danish Search and Rescue Helicopters.

    PubMed

    Winther, Kasper; Bleeg, René Christian

    2016-01-01

    Prehospital resuscitation is often challenging. Giving uninterrupted and effective compressions is relatively impossible during transportation. In 2012, The Royal Danish Air Force received a donation of 8 mechanical chest compression devices (LUCAS(™)2; Physio-Control/Jolife AB, Lund, Sweden) to be used onboard the Danish search and rescue (SAR) helicopters. The scope of this investigation was to establish whether or not mechanical chest compression devices should be considered a necessity onboard the Danish SAR helicopters. Data were compiled from SAR medical journals. From the data collected, observations were made as to when LUCAS(™)2 was used and what diagnosis the SAR physician made. One thousand ninety missions were registered in the 24-month research period, and LUCAS(™)2 was used in 25 missions. Cardiac emergencies amounted for 25% of the missions. The Danish SAR helicopters retrieved 33 drowned/hypothermic patients during the research period, and the LUCAS(™)2 was used in 11 of the patients requiring resuscitation. The LUCAS(™)2 was frequently used during other emergencies like sudden cardiac arrest. Cardiac emergencies were the predominant type of mission. LUCAS(™)2 is now considered mandatory on Danish SAR helicopters. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  17. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  18. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    DOEpatents

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  19. Synthetic aperture radar image formation for the moving-target and near-field bistatic cases

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.

  20. Method for removing RFI from SAR images

    DOEpatents

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  1. Controlling Data Collection to Support SAR Image Rotation

    DOEpatents

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  2. Segmentation of oil spills in SAR images by using discriminant cuts

    NASA Astrophysics Data System (ADS)

    Ding, Xianwen; Zou, Xiaolin

    2018-02-01

    The discriminant cut is used to segment the oil spills in synthetic aperture radar (SAR) images. The proposed approach is a region-based one, which is able to capture and utilize spatial information in SAR images. The real SAR images, i.e. ALOS-1 PALSAR and Sentinel-1 SAR images were collected and used to validate the accuracy of the proposed approach for oil spill segmentation in SAR images. The accuracy of the proposed approach is higher than that of the fuzzy C-means classification method.

  3. Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ozawa, T.

    2016-12-01

    The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.

  4. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions

    PubMed Central

    Huang, Shiqi; Huang, Wenzhun; Zhang, Ting

    2016-01-01

    The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application. PMID:27924935

  5. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions.

    PubMed

    Huang, Shiqi; Huang, Wenzhun; Zhang, Ting

    2016-12-07

    The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.

  6. BOREAS RSS-16 AIRSAR CM Images: Integrated Processor Version 6.1 Level-3b

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Saatchi, Susan; Newcomer, Jeffrey A.; Strub, Richard; Irani, Fred

    2000-01-01

    The BOREAS RSS-16 team used satellite and aircraft SAR data in conjunction with various ground measurements to determine the moisture regime of the boreal forest. RSS-16 assisted with the acquisition and ordering of NASA JPL AIRSAR data collected from the NASA DC-8 aircraft. The NASA JPL AIRSAR is a side-looking imaging radar system that utilizes the SAR principle to obtain high resolution images that represent the radar backscatter of the imaged surface at different frequencies and polarizations. The information contained in each pixel of the AIRSAR data represents the radar backscatter for all possible combinations of horizontal and vertical transmit and receive polarizations (i.e., HH, HV, VH, and VV). Geographically, the data cover portions of the BOREAS SSA and NSA. Temporally, the data were acquired from 12-Aug-1993 to 31-Jul-1995. The level-3b AIRSAR CM data are in compressed Stokes matrix format, which has 10 bytes per pixel. From this data format, it is possible to synthesize a number of different radar backscatter measurements. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Insights into Seismic and Volcanic Processes around the Arabian Plate from InSAR Observations

    NASA Astrophysics Data System (ADS)

    Jónsson, Sigurjón; Wang, Teng; Akoglu, Ahmet; Feng, Guangcai; Xu, Wenbin; Harrington, Jonathan; Cavalié, Olivier

    2014-05-01

    We use InSAR observations to study a variety of seismic and volcanic processes at the plate boundary surrounding the Arabian plate. The plate-boundary motion ranges from extension in the Red Sea and Gulf of Aden to the south, to compression in Turkey and Iran to the north, with transform motion to the west and to the east. Many large earthquakes have occurred during the past two decades in the region, some of which we are studying, including the 1995 magnitude 7.2 earthquake in the Gulf of Aqaba, the 2011 magnitude 7.1 Van earthquake in eastern Turkey, the 2012 Ahar earthquake duplet in northwestern Iran, as well as the 2013 magnitude 7.7 Baluchistan (Pakistan) earthquake. These earthquakes took place in tectonic settings ranging from a transtension in the Gulf of Aqaba, to transpression in Baluchistan, to almost pure compression in eastern Turkey. For the Aqaba earthquake we add previously unused InSAR data and use modern data processing methods to improve earlier fault-model estimations. In the case of the Baluchistan earthquake we find surprisingly uniform and simple fault slip along the over 200 km long rupture, with maximum slip of almost 10 m near the surface. In addition, for the Van earthquake we use SAR-image offset tracking in the near-field, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we are able to derive better pixel offsets between SAR sub-images than with standard offset-tracking methods. We use the azimuth- and range offsets to derive the 3D coseismic displacements, which help constraining the geometry and slip of the causative northward-dipping thrust fault. Further west, in the region near the triple junction between the Arabian, Eurasian, and Anatolian plates, we use large-scale InSAR data processing to map the interseismic deformation near the triple junction and find very shallow locking depth of the eastern part of the East Anatolian Fault, indicating limited strain accumulation and less-than-expected earthquake potential. In addition to the seismic processes, we are studying three volcanic eruptions that took place in the southern Red Sea during the past several years, on Jebel at Tair Island (2007-8) and within the Zubair archipelago (2011-12 and 2013). We use InSAR and optical data to study these eruptions and to constrain the feeder-dike geometry and the associated stress directions. On Jebel at Tair we find evidence for a temporarily varying stress field that is isolated from the regional Red Sea stress regime. The two eruptions in the Zubair archipelago were surtseyan and produced two small islands. The islands were formed entirely from explosive phreatomagmatic activity, as the eruptions did not last long enough to progress to an effusive eruption. The reawakened volcanic activity in the southern Red Sea comes after more than century-long quiescence and seems to be a part the recent increase in activity in the region near the Afar triple junction, following the onset of the Dabbahu (Afar) rifting episode in 2005.

  8. Radar image and data fusion for natural hazards characterisation

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  9. Techniques in processing multi-frequency multi-polarization spaceborne SAR data

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Chang, C. Y.

    1991-01-01

    This paper presents the algorithm design of the SIR-C ground data processor, with emphasis on the unique elements involved in the production of registered multifrequency polarimetric data products. A quick-look processing algorithm used for generation of low-resolution browse image products and estimation of echo signal parameters is also presented. Specifically the discussion covers: (1) azimuth reference function generation to produce registered polarimetric imagery; (2) geometric rectification to accommondate cross-track and along-track Doppler drifts; (3) multilook filtering designed to generate output imagery with a uniform resolution; and (4) efficient coding to compress the polarimetric image data for distribution.

  10. Multitask saliency detection model for synthetic aperture radar (SAR) image and its application in SAR and optical image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Chunhui; Zhang, Duona; Zhao, Xintao

    2018-03-01

    Saliency detection in synthetic aperture radar (SAR) images is a difficult problem. This paper proposed a multitask saliency detection (MSD) model for the saliency detection task of SAR images. We extract four features of the SAR image, which include the intensity, orientation, uniqueness, and global contrast, as the input of the MSD model. The saliency map is generated by the multitask sparsity pursuit, which integrates the multiple features collaboratively. Detection of different scale features is also taken into consideration. Subjective and objective evaluation of the MSD model verifies its effectiveness. Based on the saliency maps obtained by the MSD model, we apply the saliency map of the SAR image to the SAR and color optical image fusion. The experimental results of real data show that the saliency map obtained by the MSD model helps to improve the fusion effect, and the salient areas in the SAR image can be highlighted in the fusion results.

  11. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  12. SAR image registration based on Susan algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi

    2011-10-01

    Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.

  13. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  14. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  15. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  16. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  17. Brain MR imaging at ultra-low radiofrequency power.

    PubMed

    Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B

    2011-05-01

    To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011

  18. Image based SAR product simulation for analysis

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  19. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    PubMed Central

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  20. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks.

    PubMed

    Wang, Lei; Xu, Xin; Dong, Hao; Gui, Rong; Pu, Fangling

    2018-03-03

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods.

  1. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.

    PubMed

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  2. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    PubMed Central

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966

  3. Polarimetric SAR image classification based on discriminative dictionary learning model

    NASA Astrophysics Data System (ADS)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  4. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  5. SAR target recognition using behaviour library of different shapes in different incidence angles and polarisations

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas

    2018-05-01

    Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.

  6. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  7. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR

    PubMed Central

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-01-01

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973

  8. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  9. Applications of independent component analysis in SAR images

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping

    2009-07-01

    The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.

  10. A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification

    NASA Astrophysics Data System (ADS)

    He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue

    2014-11-01

    In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.

  11. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  12. Satellite SAR geocoding with refined RPC model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2012-04-01

    Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.

  13. A discussion on the use of X-band SAR images in marine applications

    NASA Astrophysics Data System (ADS)

    Schiavulli, D.; Sorrentino, A.; Migliaccio, M.

    2012-10-01

    The Synthetic Aperture Radar (SAR) is able to generate images of the sea surface that can be exploited to extract geophysical information of environmental interest. In order to enhance the operational use of these data in the marine applications the revisit time is to be improved. This goal can be achieved by using SAR virtual or real constellations and/or exploiting new antenna technologies that allow huge swath and fine resolution. Within this framework, the presence of the Italian and German X-band SAR constellations is of special interest while the new SAR technologies are not nowadays operated. Although SAR images are considered to be independent of weather conditions, this is only partially true at higher frequencies, e.g. X-band. In fact, observations can present signature corresponding to high intensity precipitating clouds, i.e. rain cells. Further, ScanSAR images may be characterized by the presence of processing artifacts, called scalloping, that corrupt image interpretation. In this paper we review these key facts that are at the basis of an effective use of X-band SAR images for marine applications.

  14. Composite SAR imaging using sequential joint sparsity

    NASA Astrophysics Data System (ADS)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  15. Fusion method of SAR and optical images for urban object extraction

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  16. Despeckling Polsar Images Based on Relative Total Variation Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.

    2018-04-01

    Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.

  17. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Erdnüß, Bastian; Zhu, Xiao Xiang; Hinz, Stefan

    2018-06-01

    In this work, the reconstruction quality of an approach for neutrospheric water vapor tomography based on Slant Wet Delays (SWDs) obtained from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) is investigated. The novelties of this approach are (1) the use of both absolute GNSS and absolute InSAR SWDs for tomography and (2) the solution of the tomographic system by means of compressive sensing (CS). The tomographic reconstruction is performed based on (i) a synthetic SWD dataset generated using wet refractivity information from the Weather Research and Forecasting (WRF) model and (ii) a real dataset using GNSS and InSAR SWDs. Thus, the validation of the achieved results focuses (i) on a comparison of the refractivity estimates with the input WRF refractivities and (ii) on radiosonde profiles. In case of the synthetic dataset, the results show that the CS approach yields a more accurate and more precise solution than least squares (LSQ). In addition, the benefit of adding synthetic InSAR SWDs into the tomographic system is analyzed. When applying CS, adding synthetic InSAR SWDs into the tomographic system improves the solution both in magnitude and in scattering. When solving the tomographic system by means of LSQ, no clear behavior is observed. In case of the real dataset, the estimated refractivities of both methodologies show a consistent behavior although the LSQ and CS solution strategies differ.

  18. Colorizing SENTINEL-1 SAR Images Using a Variational Autoencoder Conditioned on SENTINEL-2 Imagery

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Hughes, L. H.; Körner, M.; Zhu, X. X.

    2018-05-01

    In this paper, we have shown an approach for the automatic colorization of SAR backscatter images, which are usually provided in the form of single-channel gray-scale imagery. Using a deep generative model proposed for the purpose of photograph colorization and a Lab-space-based SAR-optical image fusion formulation, we are able to predict artificial color SAR images, which disclose much more information to the human interpreter than the original SAR data. Future work will aim at further adaption of the employed procedure to our special case of multi-sensor remote sensing imagery. Furthermore, we will investigate if the low-level representations learned intrinsically by the deep network can be used for SAR image interpretation in an end-to-end manner.

  19. Pre-Processes for Urban Areas Detection in SAR Images

    NASA Astrophysics Data System (ADS)

    Altay Açar, S.; Bayır, Ş.

    2017-11-01

    In this study, pre-processes for urban areas detection in synthetic aperture radar (SAR) images are examined. These pre-processes are image smoothing, thresholding and white coloured regions determination. Image smoothing is carried out to remove noises then thresholding is applied to obtain binary image. Finally, candidate urban areas are detected by using white coloured regions determination. All pre-processes are applied by utilizing the developed software. Two different SAR images which are acquired by TerraSAR-X are used in experimental study. Obtained results are shown visually.

  20. Analysis of ROC on chest direct digital radiography (DR) after image processing in diagnosis of SARS

    NASA Astrophysics Data System (ADS)

    Lv, Guozheng; Lan, Rihui; Zeng, Qingsi; Zheng, Zhong

    2004-05-01

    The Severe Acute Respiratory Syndrome (SARS, also called Infectious Atypical Pneumonia), which initially broke out in late 2002, has threatened the public"s health seriously. How to confirm the patients contracting SARS becomes an urgent issue in diagnosis. This paper intends to evaluate the importance of Image Processing in the diagnosis on SARS at the early stage. Receiver Operating Characteristics (ROC) analysis has been employed in this study to compare the value of DR images in the diagnosis of SARS patients before and after image processing by Symphony Software supplied by E-Com Technology Ltd., and DR image study of 72 confirmed or suspected SARS patients were reviewed respectively. All the images taken from the studied patients were processed by Symphony. Both the original and processed images were taken into ROC analysis, based on which the ROC graph for each group of images has been produced as described below: For processed images: a = 1.9745, b = 1.4275, SA = 0.8714; For original images: a = 0.9066, b = 0.8310, SA = 0.7572; (a - intercept, b - slop, SA - Area below the curve). The result shows significant difference between the original images and processed images (P<0.01). In summary, the images processed by Symphony are superior to the original ones in detecting the opacity lesion, and increases the accuracy of SARS diagnosis.

  1. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  2. Structural Information Detection Based Filter for GF-3 SAR Images

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Song, Y.

    2018-04-01

    GF-3 satellite with high resolution, large swath, multi-imaging mode, long service life and other characteristics, can achieve allweather and all day monitoring for global land and ocean. It has become the highest resolution satellite system in the world with the C-band multi-polarized synthetic aperture radar (SAR) satellite. However, due to the coherent imaging system, speckle appears in GF-3 SAR images, and it hinders the understanding and interpretation of images seriously. Therefore, the processing of SAR images has big challenges owing to the appearance of speckle. The high-resolution SAR images produced by the GF-3 satellite are rich in information and have obvious feature structures such as points, edges, lines and so on. The traditional filters such as Lee filter and Gamma MAP filter are not appropriate for the GF-3 SAR images since they ignore the structural information of images. In this paper, the structural information detection based filter is constructed, successively including the point target detection in the smallest window, the adaptive windowing method based on regional characteristics, and the most homogeneous sub-window selection. The despeckling experiments on GF-3 SAR images demonstrate that compared with the traditional filters, the proposed structural information detection based filter can well preserve the points, edges and lines as well as smooth the speckle more sufficiently.

  3. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  4. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  5. Watershed identification of polygonal patterns in noisy SAR images.

    PubMed

    Moreels, Pierre; Smrekar, Suzanne E

    2003-01-01

    This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.

  6. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    NASA Astrophysics Data System (ADS)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  7. Flood extent and water level estimation from SAR using data-model integration

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  8. Sparsity-driven coupled imaging and autofocusing for interferometric SAR

    NASA Astrophysics Data System (ADS)

    Zengin, Oǧuzcan; Khwaja, Ahmed Shaharyar; ćetin, Müjdat

    2018-04-01

    We propose a sparsity-driven method for coupled image formation and autofocusing based on multi-channel data collected in interferometric synthetic aperture radar (IfSAR). Relative phase between SAR images contains valuable information. For example, it can be used to estimate the height of the scene in SAR interferometry. However, this relative phase could be degraded when independent enhancement methods are used over SAR image pairs. Previously, Ramakrishnan et al. proposed a coupled multi-channel image enhancement technique, based on a dual descent method, which exhibits better performance in phase preservation compared to independent enhancement methods. Their work involves a coupled optimization formulation that uses a sparsity enforcing penalty term as well as a constraint tying the multichannel images together to preserve the cross-channel information. In addition to independent enhancement, the relative phase between the acquisitions can be degraded due to other factors as well, such as platform location uncertainties, leading to phase errors in the data and defocusing in the formed imagery. The performance of airborne SAR systems can be affected severely by such errors. We propose an optimization formulation that combines Ramakrishnan et al.'s coupled IfSAR enhancement method with the sparsity-driven autofocus (SDA) approach of Önhon and Çetin to alleviate the effects of phase errors due to motion errors in the context of IfSAR imaging. Our method solves the joint optimization problem with a Lagrangian optimization method iteratively. In our preliminary experimental analysis, we have obtained results of our method on synthetic SAR images and compared its performance to existing methods.

  9. Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.

    2013-08-01

    In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.

  10. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  11. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    PubMed Central

    Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng

    2008-01-01

    This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794

  12. Schatten Matrix Norm Based Polarimetric SAR Data Regularization Application over Chamonix Mont-Blanc

    NASA Astrophysics Data System (ADS)

    Le, Thu Trang; Atto, Abdourrahmane M.; Trouve, Emmanuel

    2013-08-01

    The paper addresses the filtering of Polarimetry Synthetic Aperture Radar (PolSAR) images. The filtering strategy is based on a regularizing cost function associated with matrix norms called the Schatten p-norms. These norms apply on matrix singular values. The proposed approach is illustrated upon scattering and coherency matrices on RADARSAT-2 PolSAR images over the Chamonix Mont-Blanc site. Several p values of Schatten p-norms are surveyed and their capabilities on filtering PolSAR images is provided in comparison with conventional strategies for filtering PolSAR data.

  13. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  14. A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets.

    PubMed

    Li, Xiaofeng; Zheng, Weizhong; Zou, Cheng-Zhi; Pichel, William G

    2008-05-21

    The sea surface imprints of Atmospheric Vortex Street (AVS) off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR) images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS's in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.

  15. Application of Polarimetric-Interferometric Phase Coherence Optimization (PIPCO) Procedure to SIR-C/X-SAR Tien-Shan Tracks 122.20(94 Oct. 08)/154.20(94 Oct. 09) Repeat-Orbit C/L-Band Pol-D-InSAR Imag

    NASA Technical Reports Server (NTRS)

    Boerner, W. M.; Mott, H.; Verdi, J.; Darizhapov, D.; Dorjiev, B.; Tsybjito, T.; Korsunov, V.; Tatchkov, G.; Bashkuyev, Y.; Cloude, S.; hide

    1998-01-01

    During the past decade, Radar Polarimetry has established itself as a mature science and advanced technology in high resolution POL-SAR imaging, image target characterization and selective image feature extraction.

  16. Synthetic aperture design for increased SAR image rate

    DOEpatents

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  17. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    NASA Technical Reports Server (NTRS)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  18. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    NASA Astrophysics Data System (ADS)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  19. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  20. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  1. Automatic Coregistration for Multiview SAR Images in Urban Areas

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  2. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    PubMed Central

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-01-01

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902

  3. Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman

    2018-04-01

    Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.

  4. SAR processing using SHARC signal processing systems

    NASA Astrophysics Data System (ADS)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  5. Marine Targets Detection in Pol-SAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong

    2016-08-01

    In this poster, we present a new method of marine target detection in Pol-SAR data. One band SAR image, like HH, VV or VH, can be used to find marine target using a Contant False Alarm Ratio (CFAR) algorithm. But some false detection may happen, as the sidelobe of antenna, Azimuth ambiguity, strong speckle noise and so on in the single band SAR image. Pol-SAR image can get more information of targets. After decomposition and false color composite, the sidelobe of antenna and Azimuth ambiguity could be deleted. So, the method presented include three steps, decomposion, false color composite and supervised classification. The result of Radarsat-2 SAR image test indicates a good accuracy. The detection results are compared with Automatic Indentify Sistem (AIS) data, the accuracy of right detection is above 95% and false detection ratio is below 5%.

  6. SAR imaging - Seeing the unseen

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1982-01-01

    The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.

  7. Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters.

    PubMed

    Gade, M; Alpers, W

    1999-09-30

    More than 660 synthetic aperture radar (SAR) images acquired over the southern Baltic Sea, the North Sea, and the Gulf of Lion in the Mediterranean Sea by the Second European Remote Sensing Satellite (ERS-2) have been analyzed since December 1996 with respect to radar signatures of marine pollution and other phenomena causing similar signatures. First results of our analysis reveal that the seas are most polluted along the main shipping routes. The sizes of the detected oil spills vary between < 0.1 km2 and > 56 km2. SAR images acquired during descending (morning) and ascending (evening) satellite passes show different percentages of oil pollution, because most of this pollution occurs during night time and is still visible on the SAR images acquired in the morning time. Moreover, we found a higher amount of oil spills on SAR images acquired during summer (April-September) than on SAR images acquired during winter (October-March). We attribute this finding to the higher mean wind speed encountered in all three test areas during winter. By using an ERS-2 SAR image of the North Sea test area we show how the reduction of the normalized radar backscattering cross section (NRCS) by an oil spill depends on wind speed.

  8. Calibration and Validation of Airborne InSAR Geometric Model

    NASA Astrophysics Data System (ADS)

    Chunming, Han; huadong, Guo; Xijuan, Yue; Changyong, Dou; Mingming, Song; Yanbing, Zhang

    2014-03-01

    The image registration or geo-coding is a very important step for many applications of airborne interferometric Synthetic Aperture Radar (InSAR), especially for those involving Digital Surface Model (DSM) generation, which requires an accurate knowledge of the geometry of the InSAR system. While the trajectory and attitude instabilities of the aircraft introduce severe distortions in three dimensional (3-D) geometric model. The 3-D geometrical model of an airborne SAR image depends on the SAR processor itself. Working at squinted model, i.e., with an offset angle (squint angle) of the radar beam from broadside direction, the aircraft motion instabilities may produce distortions in airborne InSAR geometric relationship, which, if not properly being compensated for during SAR imaging, may damage the image registration. The determination of locations of the SAR image depends on the irradiated topography and the exact knowledge of all signal delays: range delay and chirp delay (being adjusted by the radar operator) and internal delays which are unknown a priori. Hence, in order to obtain reliable results, these parameters must be properly calibrated. An Airborne InSAR mapping system has been developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS) to acquire three-dimensional geo-spatial data with high resolution and accuracy. To test the performance of the InSAR system, the Validation/Calibration (Val/Cal) campaign has carried out in Sichun province, south-west China, whose results will be reported in this paper.

  9. SAR image dataset of military ground targets with multiple poses for ATR

    NASA Astrophysics Data System (ADS)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  10. Research on Airborne SAR Imaging Based on Esc Algorithm

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  11. Impact of the timing of a SAR image acquisition on the calibration of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Gobeyn, Sacha; Van Wesemael, Alexandra; Neal, Jeffrey; Lievens, Hans; Eerdenbrugh, Katrien Van; De Vleeschouwer, Niels; Vernieuwe, Hilde; Schumann, Guy J.-P.; Di Baldassarre, Giuliano; Baets, Bernard De; Bates, Paul D.; Verhoest, Niko E. C.

    2017-02-01

    Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modelled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.

  12. Impact of the Timing of a SAR Image Acquisition on the Calibration of a Flood Inundation Model

    NASA Technical Reports Server (NTRS)

    Gobeyn, Sacha; Van Wesemael, Alexandra; Neal, Jeffrey; Lievens, Hans; Van Eerdenbrugh, Katrien; De Vleeschouwer, Niels; Vernieuwe, Hilde; Schumann, Guy J.-P.; Di Baldassarre, Giuliano; De Baets, Bernard; hide

    2016-01-01

    Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modeled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.

  13. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  14. Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Li, Ying; Cao, Ying; Shen, Qiang

    2017-10-01

    This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable margin.

  15. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    NASA Astrophysics Data System (ADS)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  16. Flight path-driven mitigation of wavefront curvature effects in SAR images

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2009-06-23

    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.

  17. SAR image classification based on CNN in real and simulation datasets

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-04-01

    Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.

  18. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  19. Direct Geolocation of TerraSAR-X Spotlight Mode Image and Error Correction

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa; Gong, Lixia

    2013-01-01

    The GERMAN TerraSAR-X mission was launched in June 2007, operating a versatile new-generation SAR sensor in X-band. Its Spotlight mode providing SAR images at very high resolution of about 1m. The product’s specified 3-D geolocation accuracy is tightened to 1m according to the official technical report. However, this accuracy is able to be achieved relies on not only robust mathematical basis of SAR geolocation, but also well knowledge of error sources and their correction. The research focuses on geolocation of TerraSAR-X spotlight image. Mathematical model and resolving algorithms have been analyzed. Several error sources have been researched and corrected especially. The effectiveness and accuracy of the research was verified by the experiment results.

  20. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Dong, Junyu; Li, Bo; Xu, Qizhi; Xie, Cui

    2016-10-01

    Change detection is of high practical value to hazard assessment, crop growth monitoring, and urban sprawl detection. A synthetic aperture radar (SAR) image is the ideal information source for performing change detection since it is independent of atmospheric and sunlight conditions. Existing SAR image change detection methods usually generate a difference image (DI) first and use clustering methods to classify the pixels of DI into changed class and unchanged class. Some useful information may get lost in the DI generation process. This paper proposed an SAR image change detection method based on neighborhood-based ratio (NR) and extreme learning machine (ELM). NR operator is utilized for obtaining some interested pixels that have high probability of being changed or unchanged. Then, image patches centered at these pixels are generated, and ELM is employed to train a model by using these patches. Finally, pixels in both original SAR images are classified by the pretrained ELM model. The preclassification result and the ELM classification result are combined to form the final change map. The experimental results obtained on three real SAR image datasets and one simulated dataset show that the proposed method is robust to speckle noise and is effective to detect change information among multitemporal SAR images.

  1. Coastline detection with time series of SAR images

    NASA Astrophysics Data System (ADS)

    Ao, Dongyang; Dumitru, Octavian; Schwarz, Gottfried; Datcu, Mihai

    2017-10-01

    For maritime remote sensing, coastline detection is a vital task. With continuous coastline detection results from satellite image time series, the actual shoreline, the sea level, and environmental parameters can be observed to support coastal management and disaster warning. Established coastline detection methods are often based on SAR images and wellknown image processing approaches. These methods involve a lot of complicated data processing, which is a big challenge for remote sensing time series. Additionally, a number of SAR satellites operating with polarimetric capabilities have been launched in recent years, and many investigations of target characteristics in radar polarization have been performed. In this paper, a fast and efficient coastline detection method is proposed which comprises three steps. First, we calculate a modified correlation coefficient of two SAR images of different polarization. This coefficient differs from the traditional computation where normalization is needed. Through this modified approach, the separation between sea and land becomes more prominent. Second, we set a histogram-based threshold to distinguish between sea and land within the given image. The histogram is derived from the statistical distribution of the polarized SAR image pixel amplitudes. Third, we extract continuous coastlines using a Canny image edge detector that is rather immune to speckle noise. Finally, the individual coastlines derived from time series of .SAR images can be checked for changes.

  2. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    NASA Astrophysics Data System (ADS)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will generate full-swath (6 to 75 Kms) DMSAR images in 1m / 3m / 5m / 10m / 30m resolution SAR operating modes. For RISAT mission, this generic Quick Look SAR Processor will be mainly used for browse product generation at NRSA-Shadnagar (SAN) ground receive station. RISAT QLP/NRTP is also proposed to provide an alternative emergency SAR product generation chain. For this, the S/C aux data appended in Onboard SAR Frame Format (x, y, z, x', y', z', roll, pitch, yaw) and predicted orbit from previous days Orbit Determination data will be used. The QLP / NRTP will produce ground range images in real / near real time. For emergency data product generation, additional Off-line tasks like geo-tagging, masking, QC etc needs to be performed on the processed image. The QLP / NRTP would generate geo-tagged images from the annotation data available from the SAR P/L data itself. Since the orbit & attitude information are taken as it is, the location accuracy will be poorer compared to the product generated using ADIF, where smoothened attitude and orbit are made available. Additional tasks like masking, output formatting and Quality checking of the data product will be carried out at Balanagar, NRSA after the image annotated data from QLP / NRTP is sent to Balanagar. The necessary interfaces to the QLP/NRTP for Emergency product generation are also being worked out. As is widely acknowledged, QLP/NRTP for RISAT and DMSAR is an ambitious effort and the technology of future. It is expected that by the middle of next decade, the next generation SAR missions worldwide will have onboard SAR Processors of varying capabilities and generate SAR Data products and Information products onboard instead of SAR raw data. Thus, it is also envisaged that these activities related to QLP/NRTP implementation for RISAT ground segment and DMSAR will be a significant step which will directly feed into the development of onboard real time processing systems for ISRO's future space borne SAR missions. This paper describes the design requirements, configuration details and salient features, apart from highlighting the utility of these Quick Look SAR processors for RISAT and DMSAR, for generation of emergency products for Disaster management.

  3. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  4. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  5. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    NASA Astrophysics Data System (ADS)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  6. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  7. Variance based joint sparsity reconstruction of synthetic aperture radar data for speckle reduction

    NASA Astrophysics Data System (ADS)

    Scarnati, Theresa; Gelb, Anne

    2018-04-01

    In observing multiple synthetic aperture radar (SAR) images of the same scene, it is apparent that the brightness distributions of the images are not smooth, but rather composed of complicated granular patterns of bright and dark spots. Further, these brightness distributions vary from image to image. This salt and pepper like feature of SAR images, called speckle, reduces the contrast in the images and negatively affects texture based image analysis. This investigation uses the variance based joint sparsity reconstruction method for forming SAR images from the multiple SAR images. In addition to reducing speckle, the method has the advantage of being non-parametric, and can therefore be used in a variety of autonomous applications. Numerical examples include reconstructions of both simulated phase history data that result in speckled images as well as the images from the MSTAR T-72 database.

  8. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  9. Azimuthal resolution degradation due to ocean surface motion in focused arrays and SARS

    NASA Astrophysics Data System (ADS)

    1990-06-01

    During the meeting at WHOI (5-18-90), a discussion arose of the ability of the focused array to simulate the R/v ratios typical of airborne and/or spaceborne SARs. In particular, the ability was questioned of the focused array to yield the same azimuthal resolution, rho, as the SAR. Although the focused array can be sampled to yield the same azimuthal resolution as the SAR, it is likely that the images generated by the focused array will not be identical to those produced by a SAR with the same azimuth resolution. For a true SAR, biases in the Doppler history of azimuthally traveling waves due to their along-track motion will cause shifts in their apparent position. This will cause waves which are physically at one location to shift over several pixel widths in the image. The limited swath width of the focused array will prevent if from observing scattered power from waves falling outside the swath, thus such waves will not affect the image formed within the swath, as would happen in the SAR. Thus, it is likely that the focused array will not yield the same image as a SAR having the same resolution.

  10. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Treesearch

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  11. Scattering angle resolved optical coherence tomography for in vivo murine retinal imaging

    NASA Astrophysics Data System (ADS)

    Gardner, Michael R.; Katta, Nitesh; McElroy, Austin; Baruah, Vikram; Rylander, H. G.; Milner, Thomas E.

    2017-02-01

    Optical coherence tomography (OCT) retinal imaging contributes to understanding central nervous system (CNS) diseases because the eye is an anatomical "window to the brain" with direct optical access to nonmylenated retinal ganglion cells. However, many CNS diseases are associated with neuronal changes beyond the resolution of standard OCT retinal imaging systems. Though studies have shown the utility of scattering angle resolved (SAR) OCT for particle sizing and detecting disease states ex vivo, a compact SAR-OCT system for in vivo rodent retinal imaging has not previously been reported. We report a fiber-based SAR-OCT system (swept source at 1310 nm +/- 65 nm, 100 kHz scan rate) for mouse retinal imaging with a partial glass window (center aperture) for angular discrimination of backscattered light. This design incorporates a dual-axis MEMS mirror conjugate to the ocular pupil plane and a high collection efficiency objective. A muring retina is imaged during euthanasia, and the proposed SAR-index is examined versus time. Results show a positive correlation between the SAR-index and the sub-cellular hypoxic response of neurons to isoflurane overdose during euthanasia. The proposed SAR-OCT design and image process technique offer a contrast mechanism able to detect sub-resolution neuronal changes for murine retinal imaging.

  12. Integration of SAR and AIS for ship detection and identification

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho

    2012-06-01

    This abstract describes the preliminary design concept for an integration system of SAR and AIS data. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Once both data reports are obtained, one need to match the timings of AIS data acquisition over the SAR image acquisition time with consideration of local time & boundary to extract the closest time signal from AIS report in order to know the AIS based ship positions, but still one cannot be able to distinguish which ships have the AIS transponder after projection of AIS based position onto the SAR image acquisition boundary. As far as integration is concerned, the ship dead-reckoning concept is most important forecasted position which provides the AIS based ship position at the time of SAR image acquisition and also provides the hints for azimuth shift which occurred in SAR image for the case of moving ships which moves in the direction perpendicular to the direction of flight path. Unknown ship's DR estimation is to be carried out based on the initial positions, speed and course over ground, which has already been shorted out from AIS reports, during the step of time matching. This DR based ship's position will be the candidate element for searching the SAR based ship targets for the purpose of identification & matching within the certain boundary around DR. The searching method is performed by means of estimation of minimum distance from ship's DR to SAR based ship position, and once it determines, so the candidate element will look for matching like ship size match of DR based ship's dimension wrt SAR based ship's edge, there may be some error during the matching with SAR based ship edges with actual ship's hull design as per the longitudinal and transverse axis size information obtained from the AIS reports due to blurring effect in SAR based ship signatures, once the conditions are satisfied, candidate element will move & shift over the SAR based ship signature target with the minimum displacement and it is known to be the azimuth shift compensation and this overall methodology are known to be integration of AIS report data over the SAR image acquisition boundary with assessment of time matching. The expected result may provide the good accuracy of the SAR and AIS contact position along with dimension and classification of ships over SAR image. There may be possibilities of matching speed and course from candidate element with SAR based ship signature, but still the challenges are presents in front of us that to estimation of speed and course by means of SAR data, if it may be possible so the expected final result may be more accurate as due to extra matching effects and the results may be used for the near real time performance for ship identification with help of integrated system design based on SAR and AIS data reports.

  13. Arctic coastal polynya observations with ERS-1 SAR and DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Onstott, R. G.

    1993-01-01

    Work to improve the characterization of the distribution of new and young sea ice types and open water amount within Arctic coastal polynyas through the combined use of ERS-1 SAR (Synthetic Aperture Radar) and DMSP SSM/I (Defense Meteorological Satellite Program Special Sensor Microwave/Imager) data is described. Two St. Lawrence Island polynya events are studied using low resolution, geocoded SAR images and coincident SSM/I data. The SAR images are analyzed in terms of polarization and spectral gradient ratios. Results of the combined analysis show that the SAR ice type classification is consistent with that from SSM/I and that the combined use of SAR and SSM/I can improve the characterization of thin ice better than either data set can do alone.

  14. Registering coherent change detection products associated with large image sets and long capture intervals

    DOEpatents

    Perkins, David Nikolaus; Gonzales, Antonio I

    2014-04-08

    A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.

  15. Hardware Development and Error Characterization for the AFIT RAIL SAR System

    DTIC Science & Technology

    This research is focused on updating the Air Force Institute of Technology (AFIT) Radar Instrumentation Lab (RAIL)Synthetic Aperture Radar ( SAR ...collections from a receiver in motion. Secondly, orthogonal frequency-division multiplexing (OFDM) signals are used to form ( SAR ) images in multiple...experimental and simulation configurations. This research analyses, characterizes and attempts compensation of relevant SAR image error sources, such as Doppler

  16. Developing an interactive teleradiology system for SARS diagnosis

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Zhang, Jianguo; Zhuang, Jun; Chen, Xiaomeng; Yong, Yuanyuan; Tan, Yongqiang; Chen, Liu; Lian, Ping; Meng, Lili; Huang, H. K.

    2004-04-01

    Severe acute respiratory syndrome (SARS) is a respiratory illness that had been reported in Asia, North America, and Europe in last spring. Most of the China cases of SARS have occurred by infection in hospitals or among travelers. To protect the physicians, experts and nurses from the SARS during the diagnosis and treatment procedures, the infection control mechanisms were built in SARS hospitals. We built a Web-based interactive teleradiology system to assist the radiologists and physicians both in side and out side control area to make image diagnosis. The system consists of three major components: DICOM gateway (GW), Web-based image repository server (Server), and Web-based DICOM viewer (Viewer). This system was installed and integrated with CR, CT and the hospital information system (HIS) in Shanghai Xinhua hospital to provide image-based ePR functions for SARS consultation between the radiologists, physicians and experts inside and out side control area. The both users inside and out side the control area can use the system to process and manipulate the DICOM images interactively, and the system provide the remote control mechanism to synchronize their operations on images and display.

  17. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  18. Comparison of JPL-AIRSAR and DLR E-SAR images from the MAC Europe 1991 campaign over testsite Oberpfaffenhofen: Frequency and polarization dependent backscatter variations from agricultural fields

    NASA Technical Reports Server (NTRS)

    Schmullius, C.; Nithack, J.

    1992-01-01

    On July 12, the MAC Europe '91 (Multi-Sensor Airborne Campaign) took place over test site Oberpfaffenhofen. The DLR Institute of Radio-Frequency Technology participated with its C-VV, X-VV, and X-HH Experimental Synthetic Aperture Radar (E-SAR). The high resolution E-SAR images with a pixel size between 1 and 2 m and the polarimetric AIRSAR images were analyzed. Using both sensors in combination is a unique opportunity to evaluate SAR images in a frequency range from P- to X-band and to investigate polarimetric information.

  19. Bistatic SAR: Signal Processing and Image Formation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Daniel E.; Yocky, David A.

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013more » on Kirtland Air Force Base, New Mexico.« less

  20. Geologic interpretation of Seasat SAR imagery near the Rio Lacantum, Mexico

    NASA Technical Reports Server (NTRS)

    Rebillard, PH.; Dixon, T.

    1984-01-01

    A mosaic of the Seasat Synthetic Aperture Radar (SAR) optically processed images over Central America is presented. A SAR image of the Rio Lacantum area (southeastern Mexico) has been digitally processed and its interpretation is presented. The region is characterized by low relief and a dense vegetation canopy. Surface is believed to be indicative of subsurface structural features. The Seasat-SAR system had a steep imaging geometry (incidence angle 23 + or - 3 deg off-nadir) which is favorable for detection of subtle topographic variations. Subtle textural features in the image corresponding to surface topography were enhanced by image processing techniques. A structural and lithologic interpretation of the processed images is presented. Lineaments oriented NE-SW dominate and intersect broad folds trending NW-SE. Distinctive karst topography characterizes one high relief area

  1. An Accurate Co-registration Method for Airborne Repeat-pass InSAR

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.

    2017-10-01

    Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.

  2. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  3. Speckle noise reduction in SAR images ship detection

    NASA Astrophysics Data System (ADS)

    Yuan, Ji; Wu, Bin; Yuan, Yuan; Huang, Qingqing; Chen, Jingbo; Ren, Lin

    2012-09-01

    At present, there are two types of method to detect ships in SAR images. One is a direct detection type, detecting ships directly. The other is an indirect detection type. That is, it firstly detects ship wakes, and then seeks ships around wakes. The two types all effect by speckle noise. In order to improve the accuracy of ship detection and get accurate ship and ship wakes parameters, such as ship length, ship width, ship area, the angle of ship wakes and ship outline from SAR images, it is extremely necessary to remove speckle noise in SAR images before data used in various SAR images ship detection. The use of speckle noise reduction filter depends on the specification for a particular application. Some common filters are widely used in speckle noise reduction, such as the mean filter, the median filter, the lee filter, the enhanced lee filter, the Kuan filter, the frost filter, the enhanced frost filter and gamma filter, but these filters represent some disadvantages in SAR image ship detection because of the various types of ship. Therefore, a mathematical function known as the wavelet transform and multi-resolution analysis were used to localize an SAR ocean image into different frequency components or useful subbands, and effectively reduce the speckle in the subbands according to the local statistics within the bands. Finally, the analysis of the statistical results are presented, which demonstrates the advantages and disadvantages of using wavelet shrinkage techniques over standard speckle filters.

  4. Local SAR in Parallel Transmission Pulse Design

    PubMed Central

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar

    2011-01-01

    The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594

  5. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment

    NASA Astrophysics Data System (ADS)

    Vesecky, John F.; Stewart, Robert H.

    1982-04-01

    Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.

  6. Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    NASA Technical Reports Server (NTRS)

    Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero

    1988-01-01

    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.

  7. Relevant Scatterers Characterization in SAR Images

    NASA Astrophysics Data System (ADS)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  8. Condition assessment of corroded steel rebar in free space using synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Litt, Swinderjit; Yu, Tzuyang

    2017-04-01

    Synthetic aperture radar (SAR) imaging of construction materials offers civil engineers an opportunity to better assess the condition of aging civil infrastructures such as reinforced concrete (RC) structures. Corrosion of steel rebar in RC structures is a major problem responsible for their premature failure and unexpected collapse. In this paper, SAR imaging is applied to the quantitative assessment of corroded steel rebar in free space as the first step toward the use of SAR imaging for subsurface sensing of aging RC structures. A 10 GHz stripmap SAR system was used inside an anechoic chamber. The bandwidth of the radar system was 1.5 GHz. Steel rebar specimens were artificially corroded to different levels by regularly applying a mist of 5% NaCl solution for different durations of time in order to simulate the condition of natural corrosion. Two sizes (No. 3 and No. 4) of steel rebar were used in this research. Different orientations of steel rebar were considered. Corrosion level was determined by measuring the mass loss of corroded steel rebar specimens. From our results, feasibility of SAR images for the condition assessment of corroded steel rebar was experimentally demonstrated. It was found that the presence of surface rust on corroded steel rebar reduces the amplitude in SAR images. The SAR image of corroded steel rebar also exhibited a distribution of SAR amplitudes different from the one of intact steel rebar. In addition, it was also found that there is an optimal range for the condition assessment of corroded steel rebar in free space. In our experiment, the optimal range was determined to be 30.4 cm.

  9. ImSyn: photonic image synthesis applied to synthetic aperture radar, microscopy, and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Turpin, Terry M.; Lafuse, James L.

    1993-02-01

    ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.

  10. Using InSAR Remote Sensing Technology to Analyze 3 Basin Aquifer Recharge Areas in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Smilovsky, D.; Rucker, M. L.

    2016-12-01

    Land subsidence due to pumping-induced groundwater decline has been well documented in alluviual basins in southern Arizona. Beginning in 2002, satellite-based interferometric synthetic aperture radar (InSAR) began to document post-1992 subsidence across these basins. Several basin aquifer recharge projects using water delivered by the Central Arizona Project (CAP) also began in the early 2000s. Reversal of land subsidence (elastic rebound) associated with recharge is evident in InSAR results across these basins. Projects with rebound documented using InSAR include the Tonopah Desert Recharge Project (permitted 150,000 [ac-ft/yr] starting in 2006) located 40 miles west of Phoenix, and the Hieroglyphic Mountains Recharge Project (permitted 35,000 ac-ft/yr starting in 2003) located several miles north of McMicken Dam in the West Salt River Valley. The Superstition Mountains Recharge Project (ultimate permitting of 85,000 ac-ft/yr, completed in 2011), located at Queen Creek in the East Salt River Valley, has also begun to develop a clear InSAR signature feature. Groundwater level index wells up to several miles downstream from these recharge facilities have indicated groundwater level recoveries of about 70 to 200 feet in the time corresponding to the InSAR studies. Resulting elastic rebound of ground surface elevations due to reduction of effective stresses in the compressible basin alluvium is a function of the effective stress change, the basin alluvium elastic moduli, and the thickness of the effected compressible basin alluvium. The areas and magnitudes of effective stress unloading are indicated from the rebound documented using InSAR. The volumes of aquifer recharge are anticipated to be related to the volumes of InSAR-derived rebound. It is also anticipated that estimates of large-scale horizontal hydraulic conductivity may be approximately verified by areas of ground surface rebound, and gradients driving groundwater flow may be inferred from magnitudes of rebound. These concepts are tested using documented recharge volumes, water level records at index wells, and concurrent InSAR results at the Tonopah and Hieroglyphic Mountains Recharge Projects, and basin alluvium moduli derived from subsidence studies associated with rehabilitation of McMicken Dam.

  11. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  12. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  13. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  14. A Modified Subpulse SAR Processing Procedure Based on the Range-Doppler Algorithm for Synthetic Wideband Waveforms

    PubMed Central

    Lim, Byoung-Gyun; Woo, Jea-Choon; Lee, Hee-Young; Kim, Young-Soo

    2008-01-01

    Synthetic wideband waveforms (SWW) combine a stepped frequency CW waveform and a chirp signal waveform to achieve high range resolution without requiring a large bandwidth or the consequent very high sampling rate. If an efficient algorithm like the range-Doppler algorithm (RDA) is used to acquire the SAR images for synthetic wideband signals, errors occur due to approximations, so the images may not show the best possible result. This paper proposes a modified subpulse SAR processing algorithm for synthetic wideband signals which is based on RDA. An experiment with an automobile-based SAR system showed that the proposed algorithm is quite accurate with a considerable improvement in resolution and quality of the obtained SAR image. PMID:27873984

  15. Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report

    NASA Technical Reports Server (NTRS)

    Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)

    1996-01-01

    The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.

  16. Hybrid space-airborne bistatic SAR geometric resolutions

    NASA Astrophysics Data System (ADS)

    Moccia, Antonio; Renga, Alfredo

    2009-09-01

    Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.

  17. Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi

    2016-05-01

    Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.

  18. Synthetic aperture radar/LANDSAT MSS image registration

    NASA Technical Reports Server (NTRS)

    Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)

    1979-01-01

    Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.

  19. Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1996-01-01

    An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.

  20. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  1. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    NASA Astrophysics Data System (ADS)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).

  2. Evaluation of C-band SAR data from SAREX 1992: Tapajos study site

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Filho, Pedro Hernandez; Lee, David Chung Liang; Ahern, F. J.; Paivadossantosfilho, Celio; Rolodealmeida, Rionaldo

    1993-01-01

    As part of the SAREX'92 (South American Radar Experiment), the Tapajos study site, located in Para State, Brazil was imaged by the Canada Center for Remote Sensing (CCRS) Convair 580 SAR system using a C-band frequency in HH and VV polarization and 3 different imaging modes (nadir, narrow, and wide swath). A preliminary analysis of this dataset is presented. The wide swath C-band HH polarized image was enlarged to 1:100,000 in a photographic form for manual interpretation. This was compared with a vegetation map produced primarily from Landsat Thematic Mapper (TM) data and with single-band and color composite images derived from a decomposition analysis of TM data. The Synthetic Aperture Radar (SAR) image shows well the topography and drainage network defining the different geomorphological units, and canopy texture differences which appear to be related to the size and maturity of the forest canopy. Areas of recent clearing of the primary forest can also be identified on the SAR image. The SAR system appears to be a source of information for monitoring tropical forest which is complementary to the Landsat Thematic Mapper.

  3. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  4. Rapid Disaster Analysis based on Remote Sensing: A Case Study about the Tohoku Tsunami Disaster 2011

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Soergel, U.; Lanaras, Ch.; Baltsavias, E.; Cho, K.; Remondino, F.; Wakabayashi, H.

    2014-09-01

    In this study, we present first results of RAPIDMAP, a project funded by European Union in a framework aiming to foster the cooperation of European countries with Japan in R&D. The main objective of RAPIDMAP is to construct a Decision Support System (DSS) based on remote sensing data and WebGIS technologies, where users can easily access real-time information assisting with disaster analysis. In this paper, we present a case study of the Tohoku Tsunami Disaster 2011. We address two approaches namely change detection based on SAR data and co-registration of optical and SAR satellite images. With respect to SAR data, our efforts are subdivided into three parts: (1) initial coarse change detection for entire area, (2) flood area detection, and (3) linearfeature change detection. The investigations are based on pre- and post-event TerraSAR-X images. In (1), two pre- and post-event TerraSAR-X images are accurately co-registered and radiometrically calibrated. Data are fused in a false-color image that provides a quick and rough overview of potential changes, which is useful for initial decision making and identifying areas worthwhile to be analysed further in more depth. However, a bunch of inevitable false alarms appear within the scene caused by speckle, temporal decorrelation, co-registration inaccuracy and so on. In (2), the post-event TerraSAR-X data are used to extract the flood area by using thresholding and morphological approaches. The validated result indicates that using SAR data combining with suitable morphological approaches is a quick and effective way to detect flood area. Except for usage of SAR data, the false-color image composed of optical images are also used to detect flood area for further exploration in this part. In (3), Curvelet filtering is applied in the difference image of pre- and post-event TerraSAR-X images not only to suppress false alarms of irregular-features, but also to enhance the change signals of linear-features (e.g. buildings) in settlements. Afterwards, thresholding is exploited to extract the linear-feature changes. In rapid mapping of disasters various sensors are often employed, including optical and SAR, since they provide complementary information. Such data needs to be analyzed in an integrated fashion and the results from each dataset should be integrated in a GIS with a common coordinate reference system. Thus, if no orthoimages can be generated, the images should be co-registered employing matching of common features. We present results of co-registration between optical (FORMOSAT-2) and TerraSAR-X images based on different matching methods, and also techniques for detecting and eliminating matching errors.

  5. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate.

    PubMed

    Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L

    2015-05-01

    To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.

  6. The artificial object detection and current velocity measurement using SAR ocean surface images

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  7. Robust GNSS and InSAR tomography of neutrospheric refractivity using a Compressive Sensing approach

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2017-04-01

    Motivation: An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. In addition, a precise determination of water vapor is also required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). Several approaches for 3D tomographic water vapor reconstruction from GNSS-based Slant Wet Delay (SWD) estimates using the least squares (LSQ) adjustment exist. However, the tomographic system is in general ill-conditioned and its solution is unstable. Therefore, additional information or constraints need to be added in order to regularize the system. Goal of this work: In this work, we analyze the potential of Compressive Sensing (CS) for robustly reconstructing neutrospheric refractivity from GNSS SWD estimates. Moreover, the benefit of adding InSAR SWD estimates into the tomographic system is studied. Approach: A sparse representation of the refractivity field is obtained using a dictionary composed of Discrete Cosine Transforms (DCT) in longitude and latitude direction and of an Euler transform in height direction. This sparsity of the signal can be used as a prior for regularization and the CS inversion is solved by minimizing the number of non-zero entries of the sparse solution in the DCT-Euler domain. No other regularization constraints or prior knowledge is applied. The tomographic reconstruction relies on total SWD estimates from GNSS Precise Point Positioning (PPP) and Persistent Scatterer (PS) InSAR. On the one hand, GNSS PPP SWD estimates are included into the system of equations. On the other hand, 2D ZWD maps are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data at given points as if corresponding to GNSS sites within the study area. The made-up ZWD values can be mapped into different elevation and azimuth angles. Moreover, using the same observation geometry as in the case of the GNSS and InSAR data, a synthetic set of SWD values was generated based on WRF simulations. Results: The CS approach shows particular strength in the case of a small number of SWD estimates. When compared to LSQ, the sparse reconstruction is much more robust. In the case of a low density of GNSS sites, adding InSAR SWD estimates improves the reconstruction accuracy for both LSQ and CS. Based on a synthetic SWD dataset generated using WRF simulations of wet refractivity, the CS based solution of the tomographic system is validated. In the vertical direction, the refractivity distribution deduced from GNSS and InSAR SWD estimates is compared to a tropospheric humidity data set provided by EUMETSAT consisting of daily mean values of specific humidity given on six pressure levels between 1000 hPa and 200 hPa. Study area: The Upper Rhine Graben (URG) characterized by negligible surface deformations is chosen as study area. A network of seven permanent GNSS receivers is used for this study, and a total number of 17 SAR images, acquired by ENVISAT ASAR is available.

  8. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  9. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  10. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.

  11. Image enhancements of Landsat 8 (OLI) and SAR data for preliminary landslide identification and mapping applied to the central region of Kenya

    NASA Astrophysics Data System (ADS)

    Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.

    2017-04-01

    Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.

  12. 3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden

    NASA Astrophysics Data System (ADS)

    Feng, L.; Muller, J. P., , Prof

    2017-12-01

    3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract tomograms (imaging), their 3D positions and motion parameters (deformation). A progress report will be shown on these different aspects.This work is partially supported by the CSC and UCL MAPS Dean prize through a PhD studentship at UCL-MSSL.

  13. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635

  14. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.

  15. Apodized RFI filtering of synthetic aperture radar images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less

  16. Rabi cropped area forecasting of parts of Banaskatha District,Gujarat using MRS RISAT-1 SAR data

    NASA Astrophysics Data System (ADS)

    Parekh, R. A.; Mehta, R. L.; Vyas, A.

    2016-10-01

    Radar sensors can be used for large-scale vegetation mapping and monitoring using backscatter coefficients in different polarisations and wavelength bands. Due to cloud and haze interference, optical images are not always available at all phonological stages important for crop discrimination. Moreover, in cloud prone areas, exclusively SAR approach would provide operational solution. This paper presents the results of classifying the cropped and non cropped areas using multi-temporal SAR images. Dual polarised C- band RISAT MRS (Medium Resolution ScanSAR mode) data were acquired on 9thDec. 2012, 28thJan. 2013 and 22nd Feb. 2013 at 18m spatial resolution. Intensity images of two polarisations (HH, HV) were extracted and converted into backscattering coefficient images. Cross polarisation ratio (CPR) images and Radar fractional vegetation density index (RFDI) were created from the temporal data and integrated with the multi-temporal images. Signatures of cropped and un-cropped areas were used for maximum likelihood supervised classification. Separability in cropped and umcropped classes using different polarisation combinations and classification accuracy analysis was carried out. FCC (False Color Composite) prepared using best three SAR polarisations in the data set was compared with LISS-III (Linear Imaging Self-Scanning System-III) image. The acreage under rabi crops was estimated. The methodology developed was for rabi cropped area, due to availability of SAR data of rabi season. Though, the approach is more relevant for acreage estimation of kharif crops when frequent cloud cover condition prevails during monsoon season and optical sensors fail to deliver good quality images.

  17. Classification Comparisons Between Compact Polarimetric and Quad-Pol SAR Imagery

    NASA Astrophysics Data System (ADS)

    Souissi, Boularbah; Doulgeris, Anthony P.; Eltoft, Torbjørn

    2015-04-01

    Recent interest in dual-pol SAR systems has lead to a novel approach, the so-called compact polarimetric imaging mode (CP) which attempts to reconstruct fully polarimetric information based on a few simple assumptions. In this work, the CP image is simulated from the full quad-pol (QP) image. We present here the initial comparison of polarimetric information content between QP and CP imaging modes. The analysis of multi-look polarimetric covariance matrix data uses an automated statistical clustering method based upon the expectation maximization (EM) algorithm for finite mixture modeling, using the complex Wishart probability density function. Our results showed that there are some different characteristics between the QP and CP modes. The classification is demonstrated using a E-SAR and Radarsat2 polarimetric SAR images acquired over DLR Oberpfaffenhofen in Germany and Algiers in Algeria respectively.

  18. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  19. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  20. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  1. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  2. Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2017-12-01

    GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.

  3. Reducing Speckle In One-Look SAR Images

    NASA Technical Reports Server (NTRS)

    Nathan, K. S.; Curlander, J. C.

    1990-01-01

    Local-adaptive-filter algorithm incorporated into digital processing of synthetic-aperture-radar (SAR) echo data to reduce speckle in resulting imagery. Involves use of image statistics in vicinity of each picture element, in conjunction with original intensity of element, to estimate brightness more nearly proportional to true radar reflectance of corresponding target. Increases ratio of signal to speckle noise without substantial degradation of resolution common to multilook SAR images. Adapts to local variations of statistics within scene, preserving subtle details. Computationally simple. Lends itself to parallel processing of different segments of image, making possible increased throughput.

  4. Estimating IMU heading error from SAR images.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  5. SAR Speckle Noise Reduction Using Wiener Filter

    NASA Technical Reports Server (NTRS)

    Joo, T. H.; Held, D. N.

    1983-01-01

    Synthetic aperture radar (SAR) images are degraded by speckle. A multiplicative speckle noise model for SAR images is presented. Using this model, a Wiener filter is derived by minimizing the mean-squared error using the known speckle statistics. Implementation of the Wiener filter is discussed and experimental results are presented. Finally, possible improvements to this method are explored.

  6. SAR imaging and hydrodynamic analysis of ocean bottom topographic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Quanan; Li, Li; Guo, Xiaogang; Ge, Yong; Zhu, Dayong; Li, Chunyan

    2006-09-01

    The satellite synthetic aperture radar (SAR) images display wave-like patterns of the ocean bottom topographic features at the south outlet of Taiwan Strait (TS). Field measurements indicate that the most TS water body is vertically stratified. However, SAR imaging models available were developed for homogeneous waters. Hence explaining SAR imaging mechanisms of bottom features in a stratified ocean is beyond the scope of those models. In order to explore these mechanisms and to determine the quantitative relations between the SAR imagery and the bottom features, a two-dimensional, three-layer ocean model with sinusoidal bottom topographic features is developed. Analytical solutions and inferences of the momentum equations of the ocean model lead to the following conditions. (1) In the lower layer, the topography-induced waves (topographic waves hereafter) exist in the form of stationary waves, which satisfy a lower boundary resonance condition σ = kC0, here σ is an angular frequency of the stationary waves, k is a wavenumber of bottom topographic corrugation, and C0 is a background current speed. (2) As internal waves, the topographic waves may propagate vertically to the upper layer with an unchanged wavenumber k, if a frequency relation N3 < σ < N2 is satisfied, here N2 and N3 are the Brunt-Wäisälä frequencies of middle layer and upper layer, respectively. (3) The topographic waves are extremely amplified if an upper layer resonance condition is satisfied. The SAR image of topographic waves is derived on the basis of current-modulated small wave spectra. The results indicate that the topographic waves on SAR images have the same wavelength of bottom topographic corrugation, and the imagery brightness peaks are either inphase or antiphase with respect to the topographic corrugation, depending on a sign of a coupling factor. These theoretical predictions are verified by field observations. The results of this study provide a physical basis for quantitative interpretation of SAR images of bottom topographic waves in the stratified ocean.

  7. Layover and shadow detection based on distributed spaceborne single-baseline InSAR

    NASA Astrophysics Data System (ADS)

    Huanxin, Zou; Bin, Cai; Changzhou, Fan; Yun, Ren

    2014-03-01

    Distributed spaceborne single-baseline InSAR is an effective technique to get high quality Digital Elevation Model. Layover and Shadow are ubiquitous phenomenon in SAR images because of geometric relation of SAR imaging. In the signal processing of single-baseline InSAR, the phase singularity of Layover and Shadow leads to the phase difficult to filtering and unwrapping. This paper analyzed the geometric and signal model of the Layover and Shadow fields. Based on the interferometric signal autocorrelation matrix, the paper proposed the signal number estimation method based on information theoretic criteria, to distinguish Layover and Shadow from normal InSAR fields. The effectiveness and practicability of the method proposed in the paper are validated in the simulation experiments and theoretical analysis.

  8. Monitoring of precursor landslide surface deformation using InSAR image in Kuchi-Sakamoto, Shizuoka Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Sato, H. P.; Nakajima, H.; Nakano, T.; Daimaru, H.

    2014-12-01

    Synthetic Aperture Radar (SAR) is the technique to obtain ground surface images using microwave that is emitted from and received on the antenna. The Kuchi-Sakamoto area, 2.2 km2 in precipitous mountains, central Japan, has suffered from frequent landslides, and slow landslide surface deformation has been monitored by on-site extensometer; however, such the monitoring method cannot detect the deformation in the whole area. Because satellite InSAR is effective tool to monitor slow landslide suface deformation, it is a promising tool for detecting precursor deformation and preparing effective measures against serious landslide disasters. In this study Advanced Land Observing Satellite (ALOS) / Phased Array type L-band SAR (PALSAR) data were used, and InSAR images were produced from the PALSAR data that were observed between 5 Sep 2008 and 21 Oct 2008 (from descending orbit) and between 20 Jul 2008 and 7 Sep 2009 (from ascending orbit). InSAR image from descending orbit was found to detect clear precursor landslide surface deformation on a slope; however, InSAR image on ascending orbit did not always detect clear precursor deformation. It is thought to be related with atmospheric moisture condition, length of observation baseline and so on. Furthermore, after phase unwrapping on InSAR images, 2.5-dimensional deformation was analized. This analysis needed both ascending and descending InSAR images and culculated quasi east-west deformation component (Figs. (a) and (b)) and quasi up-down deformation component (Figs. (c) and (d)). The resulting 2.5D calculation gave westward deformation and mixture of upward and downward deformations on the precursor landslide surface deformation slope (blue circles in Figs. (c) and (d)), where remarkable disrupted deep landslide occurred during Nov 2012 and 25 Jun 2013, judging from result of airborne LiDAR survey and field survey; the occurrence date is not precisely identified. The figure remains the issue that eliminating "real" precursor deformation from other candidate deformations. Preparation of this paper was supported by part of Individual Research Fund in College of Humanities and Sciences, Nihon University and part of Grants-in-Aid for Scientific Research, Challenging Exploratory (#25560185, Principal Investigator: Dr. Hiromu Daimaru).

  9. Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy

    PubMed Central

    Huang, Yulin; Pei, Jifang; Zhang, Qian; Gu, Qin; Yang, Jianyu

    2018-01-01

    Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues in maritime surveillance. However, due to the varying ocean waves and the strong echo of the sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds. In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with low computational complexity. Then, the proposed local contrast variance weighted information entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of the candidate regions are compared with an adaptive threshold to obtain the final detection result. Experimental results based on measured ocean SAR images have shown that the proposed method can obtain stable detection performance both in strong clutter and heterogeneous backgrounds. Meanwhile, it has a low computational complexity compared with some existing detection methods. PMID:29652863

  10. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface

    NASA Astrophysics Data System (ADS)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang

    2018-04-01

    To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.

  11. Application of SEASAT-1 Synthetic Aperture Radar (SAR) data to enhance and detect geological lineaments and to assist LANDSAT landcover classification mapping. [Appalachian Region, West Virginia

    NASA Technical Reports Server (NTRS)

    Sekhon, R.

    1981-01-01

    Digital SEASAT-1 synthetic aperture radar (SAR) data were used to enhance linear features to extract geologically significant lineaments in the Appalachian region. Comparison of Lineaments thus mapped with an existing lineament map based on LANDSAT MSS images shows that appropriately processed SEASAT-1 SAR data can significantly improve the detection of lineaments. Merge MSS and SAR data sets were more useful fo lineament detection and landcover classification than LANDSAT or SEASAT data alone. About 20 percent of the lineaments plotted from the SEASAT SAR image did not appear on the LANDSAT image. About 6 percent of minor lineaments or parts of lineaments present in the LANDSAT map were missing from the SEASAT map. Improvement in the landcover classification (acreage and spatial estimation accuracy) was attained by using MSS-SAR merged data. The aerial estimation of residential/built-up and forest categories was improved. Accuracy in estimating the agricultural and water categories was slightly reduced.

  12. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  13. Mathematical modeling and SAR simulation multifunction SAR technology efforts

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.

  14. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.

    1981-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.

  15. SAR/LANDSAT image registration study

    NASA Technical Reports Server (NTRS)

    Murphrey, S. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.

  16. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  17. An Adaptive Ship Detection Algorithm for Hrws SAR Images Under Complex Background: Application to SENTINEL1A Data

    NASA Astrophysics Data System (ADS)

    He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.

    2018-04-01

    Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.

  18. Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1991-01-01

    Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.

  19. Acousto-optic time- and space-integrating spotlight-mode SAR processor

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.

    1993-09-01

    The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.

  20. GF-3 SAR Image Despeckling Based on the Improved Non-Local Means Using Non-Subsampled Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Shi, R.; Sun, Z.

    2018-04-01

    GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.

  1. Extraction of Coastlines with Fuzzy Approach Using SENTINEL-1 SAR Image

    NASA Astrophysics Data System (ADS)

    Demir, N.; Kaynarca, M.; Oy, S.

    2016-06-01

    Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of coastline with the extracted coastline. The statistics of the distances are calculated as following; the mean is 5.82m, standard deviation is 5.83m and the median value is 4.08 m. Secondly, the extracted coastline is also evaluated with manually created lines on SAR image. Both lines are converted to dense points with 1 m interval. Then the closest distances are calculated between the points from extracted coastline and manually created coastline. The mean is 5.23m, standard deviation is 4.52m. and the median value is 4.13m for the calculated distances. The evaluation values are within the accuracy of used SAR data for both quality assessment approaches.

  2. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  3. FIREX mission requirements document for nonrenewable resources

    NASA Technical Reports Server (NTRS)

    Dixon, T.; Carsey, F.

    1982-01-01

    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest.

  4. A comparative study on methods of improving SCR for ship detection in SAR image

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li

    2017-10-01

    Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.

  5. Change detection of polarimetric SAR images based on the KummerU Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Zou, Pengfei; Li, Zhen; Zhang, Ping

    2014-11-01

    In the society of PolSAR image segmentation, change detection and classification, the classical Wishart distribution has been used for a long time, but it especially suit to low-resolution SAR image, because in traditional sensors, only a small number of scatterers are present in each resolution cell. With the improving of SAR systems these years, the classical statistical models can therefore be reconsidered for high resolution and polarimetric information contained in the images acquired by these advanced systems. In this study, SAR image segmentation algorithm based on level-set method, added with distance regularized level-set evolution (DRLSE) is performed using Envisat/ASAR single-polarization data and Radarsat-2 polarimetric images, respectively. KummerU heterogeneous clutter model is used in the later to overcome the homogeneous hypothesis at high resolution cell. An enhanced distance regularized level-set evolution (DRLSE-E) is also applied in the later, to ensure accurate computation and stable level-set evolution. Finally, change detection based on four polarimetric Radarsat-2 time series images is carried out at Genhe area of Inner Mongolia Autonomous Region, NorthEastern of China, where a heavy flood disaster occurred during the summer of 2013, result shows the recommend segmentation method can detect the change of watershed effectively.

  6. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons

    PubMed Central

    Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun

    2018-01-01

    The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068

  7. Calibrating a hydraulic model using water levels derived from time series high-resolution Radarsat-2 synthetic aperture radar images and elevation data

    NASA Astrophysics Data System (ADS)

    Trudel, M.; Desrochers, N.; Leconte, R.

    2017-12-01

    Knowledge of water extent (WE) and level (WL) of rivers is necessary to calibrate and validate hydraulic models and thus to better simulate and forecast floods. Synthetic aperture radar (SAR) has demonstrated its potential for delineating water bodies, as backscattering of water is much lower than that of other natural surfaces. The ability of SAR to obtain information despite cloud cover makes it an interesting tool for temporal monitoring of water bodies. The delineation of WE combined with a high-resolution digital terrain model (DTM) allows extracting WL. However, most research using SAR data to calibrate hydraulic models has been carried out using one or two images. The objectives of this study is to use WL derived from time series high resolution Radarsat-2 SAR images for the calibration of a 1-D hydraulic model (HEC-RAS). Twenty high-resolution (5 m) Radarsat-2 images were acquired over a 40 km reach of the Athabasca River, in northern Alberta, Canada, between 2012 and 2016, covering both low and high flow regimes. A high-resolution (2m) DTM was generated combining information from LIDAR data and bathymetry acquired between 2008 and 2016 by boat surveying. The HEC-RAS model was implemented on the Athabasca River to simulate WL using cross-sections spaced by 100 m. An image histogram thresholding method was applied on each Radarsat-2 image to derive WE. WE were then compared against each cross-section to identify those were the slope of the banks is not too abrupt and therefore amenable to extract WL. 139 observations of WL at different locations along the river reach and with streamflow measurements were used to calibrate the HEC-RAS model. The RMSE between SAR-derived and simulated WL is under 0.35 m. Validation was performed using in situ observations of WL measured in 2008, 2012 and 2016. The RMSE between the simulated water levels calibrated with SAR images and in situ observations is less than 0.20 m. In addition, a critical success index (CSI) was performed to compare the WE simulated by HEC-RAS and that derived from SARs images. The CSI is higher than 0.85 for each date, which means that simulated WE is highly similar to the WE derived from SARs images. Thereby, the results of our analysis indicate that calibration of a hydraulic model can be performed from WL derived from time series of high-resolution SAR images.

  8. Exploitation of Digital Surface Models Generated from WORLDVIEW-2 Data for SAR Simulation Techniques

    NASA Astrophysics Data System (ADS)

    Ilehag, R.; Auer, S.; d'Angelo, P.

    2017-05-01

    GeoRaySAR, an automated SAR simulator developed at DLR, identifies buildings in high resolution SAR data by utilizing geometric knowledge extracted from digital surface models (DSMs). Hitherto, the simulator has utilized DSMs generated from LiDAR data from airborne sensors with pre-filtered vegetation. Discarding the need for pre-optimized model input, DSMs generated from high resolution optical data (acquired with WorldView-2) are used for the extraction of building-related SAR image parts in this work. An automatic preprocessing of the DSMs has been developed for separating buildings from elevated vegetation (trees, bushes) and reducing the noise level. Based on that, automated simulations are triggered considering the properties of real SAR images. Locations in three cities, Munich, London and Istanbul, were chosen as study areas to determine advantages and limitations related to WorldView-2 DSMs as input for GeoRaySAR. Beyond, the impact of the quality of the DSM in terms of building extraction is evaluated as well as evaluation of building DSM, a DSM only containing buildings. The results indicate that building extents can be detected with DSMs from optical satellite data with various success, dependent on the quality of the DSM as well as on the SAR imaging perspective.

  9. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  10. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  11. Polarimetric SAR calibration experiment using active radar calibrators

    NASA Astrophysics Data System (ADS)

    Freeman, Anthony; Shen, Yuhsyen; Werner, Charles L.

    1990-03-01

    Active radar calibrators are used to derive both the amplitude and phase characteristics of a multichannel polarimetric SAR from the complex image data. Results are presented from an experiment carried out using the NASA/JPL DC-8 aircraft SAR over a calibration site at Goldstone, California. As part of the experiment, polarimetric active radar calibrators (PARCs) with adjustable polarization signatures were deployed. Experimental results demonstrate that the PARCs can be used to calibrate polarimetric SAR images successfully. Restrictions on the application of the PARC calibration procedure are discussed.

  12. Polarimetric SAR calibration experiment using active radar calibrators

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Shen, Yuhsyen; Werner, Charles L.

    1990-01-01

    Active radar calibrators are used to derive both the amplitude and phase characteristics of a multichannel polarimetric SAR from the complex image data. Results are presented from an experiment carried out using the NASA/JPL DC-8 aircraft SAR over a calibration site at Goldstone, California. As part of the experiment, polarimetric active radar calibrators (PARCs) with adjustable polarization signatures were deployed. Experimental results demonstrate that the PARCs can be used to calibrate polarimetric SAR images successfully. Restrictions on the application of the PARC calibration procedure are discussed.

  13. Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama

    1994-01-01

    Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.

  14. Playback system designed for X-Band SAR

    NASA Astrophysics Data System (ADS)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  15. Global Boreal Forest Mapping with JERS-1: North America

    NASA Technical Reports Server (NTRS)

    Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce

    2000-01-01

    Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.

  16. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  17. Analysis of Benefits and Pitfalls of Satellite SAR for Coastal Area Monitoring

    NASA Astrophysics Data System (ADS)

    Nunziata, F.; Buono, A.; Mgliaccio, M.; Li, X.; Wei, Y.

    2016-08-01

    This study aims at describing the outcomes of the Dragon-3 project no. 10689. The undertaken activities deal with coastal area monitoring and they include sea pollution and coastline extraction. The key remote sensing tool is the Synthetic Aperture Radar (SAR) that provides fine resolution images of the microwave reflectivity of the observed scene. However, the interpretation of SAR images is not at all straightforward and all the above-mentioned coastal area applications cannot be easily addressed using single-polarization SAR. Hence, the main outcome of this project is investigating the capability of multi-polarization SAR measurements to generate added-vale product in the frame of coastal area management.

  18. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.

    1984-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295

  19. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  20. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the project organisation and major milestones. Then an overview on the satellite as well as the SAR instrument is given followed by a description of the system design. Finally the principle layout of the TerraSAR-X Ground Segment and some remarks on the European context are presented.

  1. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds, waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.

  2. DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI

    NASA Astrophysics Data System (ADS)

    He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun

    2009-10-01

    The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.

  3. Spacecraft on-board SAR image generation for EOS-type missions

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.; Assal, H. M.; Vesecky, J. F.

    1987-01-01

    Spacecraft on-board synthetic aperture radar (SAR) image generation is an extremely difficult problem because of the requirements for high computational rates (usually on the order of Giga-operations per second), high reliability (some missions last up to 10 years), and low power dissipation and mass (typically less than 500 watts and 100 Kilograms). Recently, a JPL study was performed to assess the feasibility of on-board SAR image generation for EOS-type missions. This paper summarizes the results of that study. Specifically, it proposes a processor architecture using a VLSI time-domain parallel array for azimuth correlation. Using available space qualifiable technology to implement the proposed architecture, an on-board SAR processor having acceptable power and mass characteristics appears feasible for EOS-type applications.

  4. Tie Points Extraction for SAR Images Based on Differential Constraints

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.

    2018-04-01

    Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  5. Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits.

    PubMed

    Sarkar, Subhendra N; Papavassiliou, Efstathios; Hackney, David B; Alsop, David C; Shih, Ludy C; Madhuranthakam, Ananth J; Busse, Reed F; La Ruche, Susan; Bhadelia, Rafeeque A

    2014-04-01

    For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2 , fast fluid-attenuated inversion recovery (FLAIR) and T1 -weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.

  6. Extraction of lead and ridge characteristics from SAR images of sea ice

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Smith, Martha P.; Samadani, Ramin

    1990-01-01

    Image-processing techniques for extracting the characteristics of lead and pressure ridge features in SAR images of sea ice are reported. The methods are applied to a SAR image of the Beaufort Sea collected from the Seasat satellite on October 3, 1978. Estimates of lead and ridge statistics are made, e.g., lead and ridge density (number of lead or ridge pixels per unit area of image) and the distribution of lead area and orientation as well as ridge length and orientation. The information derived is useful in both ice science and polar operations for such applications as albedo and heat and momentum transfer estimates, as well as ship routing and offshore engineering.

  7. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  8. Design and realization of an active SAR calibrator for TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  9. Acoustic Characterization of Soil

    DTIC Science & Technology

    1996-03-28

    modified SAR imaging algorithm. Page 26 Final Report In the acoustic subsurface imaging scenario, the "object" to be imaged (i.e., cultural artifacts... subsurface imaging scenario. To combat this potential difficulty we can utilize a new SAR imaging algorithm (Lee et al., 1996) derived from a geophysics...essentially a transmit plane wave. This is a cost-effective means to evaluate the feasibility of subsurface imaging . A more complete (and costly

  10. Space Radar Image of West Texas - SAR Scan

    NASA Image and Video Library

    1999-04-15

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by "scanning" the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. http://photojournal.jpl.nasa.gov/catalog/PIA01787

  11. Resolution Enhancement Algorithm for Spaceborn SAR Based on Hanning Function Weighted Sidelobe Suppression

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhou, X.; Tang, D.; Zhu, Z.

    2018-04-01

    Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.

  12. JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  13. Combating speckle in SAR images - Vector filtering and sequential classification based on a multiplicative noise model

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Allebach, Jan P.

    1990-01-01

    An adaptive vector linear minimum mean-squared error (LMMSE) filter for multichannel images with multiplicative noise is presented. It is shown theoretically that the mean-squared error in the filter output is reduced by making use of the correlation between image bands. The vector and conventional scalar LMMSE filters are applied to a three-band SIR-B SAR, and their performance is compared. Based on a mutliplicative noise model, the per-pel maximum likelihood classifier was derived. The authors extend this to the design of sequential and robust classifiers. These classifiers are also applied to the three-band SIR-B SAR image.

  14. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    PubMed

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  15. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  16. Computational efficient unsupervised coastline detection from single-polarization 1-look SAR images of complex coastal environments

    NASA Astrophysics Data System (ADS)

    Garzelli, Andrea; Zoppetti, Claudia; Pinelli, Gianpaolo

    2017-10-01

    Coastline detection in synthetic aperture radar (SAR) images is crucial in many application fields, from coastal erosion monitoring to navigation, from damage assessment to security planning for port facilities. The backscattering difference between land and sea is not always documented in SAR imagery, due to the severe speckle noise, especially in 1-look data with high spatial resolution, high sea state, or complex coastal environments. This paper presents an unsupervised, computationally efficient solution to extract the coastline acquired by only one single-polarization 1-look SAR image. Extensive tests on Spotlight COSMO-SkyMed images of complex coastal environments and objective assessment demonstrate the validity of the proposed procedure which is compared to state-of-the-art methods through visual results and with an objective evaluation of the distance between the detected and the true coastline provided by regional authorities.

  17. Research on Multi-Temporal PolInSAR Modeling and Applications

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Pottier, Eric; Chen, Erxue

    2014-11-01

    In the study of theory and processing methodology, we apply accurate topographic phase to the Freeman-Durden decomposition for PolInSAR data. On the other hand, we present a TomoSAR imaging method based on convex optimization regularization theory. The target decomposition and reconstruction performance will be evaluated by multi-temporal Land P-band fully polarimetric images acquired in BioSAR campaigns. In the study of hybrid Quad-Pol system performance, we analyse the expression of range ambiguity to signal ratio (RASR) in this architecture. Simulations are used to testify its advantage in the improvement of range ambiguities.

  18. Research on Multi-Temporal PolInSAR Modeling and Applications

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Pottier, Eric; Chen, Erxue

    2014-11-01

    In the study of theory and processing methodology, we apply accurate topographic phase to the Freeman- Durden decomposition for PolInSAR data. On the other hand, we present a TomoSAR imaging method based on convex optimization regularization theory. The target decomposition and reconstruction performance will be evaluated by multi-temporal L- and P-band fully polarimetric images acquired in BioSAR campaigns. In the study of hybrid Quad-Pol system performance, we analyse the expression of range ambiguity to signal ratio (RASR) in this architecture. Simulations are used to testify its advantage in the improvement of range ambiguities.

  19. Non-Reporting Ship Traffic in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Greidanus, Harm; Santamaria, Carlos; Alvarez, Marlene; Krause, Detmar; Stasolla, Mattia; Vachon, Paris W.

    2016-08-01

    AIS ship position reporting data from up to 17 satellites and several coastal locations covering the Western Indian Ocean were collected during a period of one year, that ended 15 Sep 2015. In addition, 1,361 satellite SAR images that were acquired over the region in the same timeframe, were analysed for ship detection. The major part of these were Sentinel-1 images that were analysed fully automatically, yielding 11,510 ship detections that were deemed reliable. Correlating these detections with the reporting ship traffic indicates that, overall, fully one-third of the ships detected with satellite SAR are not reporting on AIS. Some of the analysed SAR data was subjected to manual verification. This concerned data from TerraSAR-X, RADARSAT-2, COSMO-SkyMed, and ALOS-2- PALSAR of various image modes, plus some of the Sentinel-1 images. This confirmed the quoted average for the fraction of non-reporting ships. However, within the overall average there are large geographical variations, besides variations with image resolution.

  20. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  1. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests

    USGS Publications Warehouse

    Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Detailed analysis of C-band European Remote Sensing 1 and 2 (ERS-1/ERS-2) and Radarsat-1 interferometric synthetic aperture radar (InSAR) imagery was conducted to study water-level changes of coastal wetlands of southeastern Louisiana. Radar backscattering and InSAR coherence suggest that the dominant radar backscattering mechanism for swamp forest and saline marsh is double-bounce backscattering, implying that InSAR images can be used to estimate water-level changes with unprecedented spatial details. On the one hand, InSAR images suggest that water-level changes over the study site can be dynamic and spatially heterogeneous and cannot be represented by readings from sparsely distributed gauge stations. On the other hand, InSAR phase measurements are disconnected by structures and other barriers and require absolute water-level measurements from gauge stations or other sources to convert InSAR phase values to absolute water-level changes. ?? 2006 IEEE.

  2. Urban Monitoring Based on SENTINEL-1 Data Using Permanent Scatterer Interferometry and SAR Tomography

    NASA Astrophysics Data System (ADS)

    Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.

    2018-04-01

    A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.

  3. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations

    NASA Astrophysics Data System (ADS)

    Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian

    2018-04-01

    Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.

  4. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  5. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  6. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  7. JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  8. Rock type discrimination and structural analysis with LANDSAT and Seasat data: San Rafael swell, Utah

    NASA Technical Reports Server (NTRS)

    Stewart, H. E.; Blom, R.; Abrams, M.; Daily, M.

    1980-01-01

    Satellite synthetic aperture radar (SAR) images is evaluated in terms of its geologic applications. The benchmark to which the SAR images are compared is LANDSAT, used both for structural and lithologic interpretations.

  9. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  10. On The Spatial Homogeneity Of The Wave Spectra In Deep Water Employing ERS-2 SAR Precision Image

    NASA Astrophysics Data System (ADS)

    Violante-Carvalho, Nelson; Robinson, Ian; Gommenginger, Christine; Carvalho, Luiz Mariano; Goldstein, Brunno

    2010-04-01

    Using wave spectra extracted from image mode ERS-2 SAR, the spatial homogeneity of the wave field in deep water is investigated against directional buoy measurements. From the 100 x 100 km image, several small images of 6.4 x 6.4 km are selected and the wave spectra are computed. The locally disturbed wind velocity pat- tern, caused by the sheltering effect of large mountains near the coast, translates into the selected SAR image as regions of higher and lower wind speed. Assuming that a swell component is uniform over the whole image, SAR wave spectra retrieved from the sheltered and non-sheltered areas are intercompared. Any difference between them could be related to a possible interaction between wind sea and swell, since the wind sea part of the spectrum would be slightly different due to the different wind speeds. The results show that there is no significative variation, and apparently there is no clear difference in the swell spectra despite the different wind sea components.

  11. Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M. (Principal Investigator)

    1980-01-01

    Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.

  12. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  13. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  14. Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions

    USGS Publications Warehouse

    Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.

    2009-01-01

    We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.

  15. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  16. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    NASA Astrophysics Data System (ADS)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  17. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  18. Remote sensing with spaceborne synthetic aperture imaging radars: A review

    NASA Technical Reports Server (NTRS)

    Cimino, J. B.; Elachi, C.

    1983-01-01

    A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.

  19. Compact time- and space-integrating SAR processor: performance analysis

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.

    1995-06-01

    Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.

  20. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  1. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and extensively in the field. High resolution TerraSAR-X (TSX) images, covering the entire research area were acquired for the period of October 2011 to July 2012 (15 images in total). All images were co-registreted, the first image was used as the master image. A coherence index was calculated for all the images. Analysis was performed in GIS software. The results display minor changes (coherence index in range of 0.4-0.65) on dune crests depending on the dune location relative to its distance from the sea and distance from the city. In addition, field results indicate erosion / deposition of sand in a cumulatively amount of approximately 30mm annually. The results of this study confirm that it is possible to monitor subtle changes in dunes and to identify dune stability or instability, only by the use of SAR images.

  2. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    PubMed

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  3. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    PubMed Central

    An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features. PMID:28792477

  4. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  5. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  6. Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    DTIC Science & Technology

    2010-03-01

    Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for

  7. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    PubMed

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  8. Ship Detection Using High Resolution Satellite Imagery and Space-Based AIS

    NASA Astrophysics Data System (ADS)

    Hannevik, Tonje Nanette; Skauen, Andreas N.; Olsen, R. B.

    2013-03-01

    This paper presents a trial carried out in the Malangen area close to Tromsø city in the north of Norway in September 2010. High resolution Synthetic Aperture Radar (SAR) images from RADARSAT-2 were used to analyse how SAR images and cooperative reporting can be combined. Data from the Automatic Identification System, both land-based and space-based, have been used to identify detected vessels in the SAR images. The paper presents results of ship detection in high resolution RADARSAT-2 Standard Quad-Pol images, and how these results together with land-based and space-based AIS can be used. Some examples of tracking of vessels are also shown.

  9. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  10. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  11. An all-optronic synthetic aperture lidar

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Babin, François; Bergeron, Alain

    2012-09-01

    Synthetic Aperture Radar (SAR) is a mature technology that overcomes the diffraction limit of an imaging system's real aperture by taking advantage of the platform motion to coherently sample multiple sections of an aperture much larger than the physical one. Synthetic Aperture Lidar (SAL) is the extension of SAR to much shorter wavelengths (1.5 μm vs 5 cm). This new technology can offer higher resolution images in day or night time as well as in certain adverse conditions. It could be a powerful tool for Earth monitoring (ship detection, frontier surveillance, ocean monitoring) from aircraft, unattended aerial vehicle (UAV) or spatial platforms. A continuous flow of high-resolution images covering large areas would however produce a large amount of data involving a high cost in term of post-processing computational time. This paper presents a laboratory demonstration of a SAL system complete with image reconstruction based on optronic processing. This differs from the more traditional digital approach by its real-time processing capability. The SAL system is discussed and images obtained from a non-metallic diffuse target at ranges up to 3m are shown, these images being processed by a real-time optronic SAR processor origiinally designed to reconstruct SAR images from ENVISAT/ASAR data.

  12. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  13. An evaluation of processing InSAR Sentinel-1A/B data for correlation of mining subsidence with mining induced tremors in the Upper Silesian Coal Basin (Poland)

    NASA Astrophysics Data System (ADS)

    Krawczyk, Artur; Grzybek, Radosław

    2018-01-01

    The Satellite Radar Interferometry is one of the common methods that allow to measure the land subsidence caused by the underground black coal excavation. The interferometry images processed from the repeat-pass Synthetic Aperture Radar (SAR) systems give the spatial image of the terrain subjected to the surface subsidence over mining areas. Until now, the InSAR methods using data from the SAR Systems like ERS-1/ERS-2 and Envisat-1 were limited to a repeat-pass cycle of 35-day only. Recently, the ESA launched Sentinel-1A and 1B, and together they can provide the InSAR coverage in a 6-day repeat cycle. The studied area was the Upper Silesian Coal Basin in Poland, where the underground coal mining causes continuous subsidence of terrain surface and mining tremors (mine-induced seismicity). The main problem was with overlapping the subsidence caused by the mining exploitation with the epicentre tremors. Based on the Sentinel SAR images, research was done in regard to the correlation between the short term ground subsidence range border and the mine-induced seismicity epicentres localisation.

  14. Separated Component-Based Restoration of Speckled SAR Images

    DTIC Science & Technology

    2013-01-01

    unsupervised change detection from SAR amplitude imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, Oct. 2006. [5] F. Argenti , T...Sens., vol. 40, no. 10, pp. 2196–2212, Oct. 2002. [13] F. Argenti and L. Alparone, “Speckle removal from SAR images in the undecimated wavelet domain...iterative thresh- olding algorithm for linear inverse problems with a sparsity con- straint,” Commun . Pure Appl. Math., vol. 57, no. 11, pp. 1413

  15. Flood Extent Delineation by Thresholding Sentinel-1 SAR Imagery Based on Ancillary Land Cover Information

    NASA Astrophysics Data System (ADS)

    Liang, J.; Liu, D.

    2017-12-01

    Emergency responses to floods require timely information on water extents that can be produced by satellite-based remote sensing. As SAR image can be acquired in adverse illumination and weather conditions, it is particularly suitable for delineating water extent during a flood event. Thresholding SAR imagery is one of the most widely used approaches to delineate water extent. However, most studies apply only one threshold to separate water and dry land without considering the complexity and variability of different dry land surface types in an image. This paper proposes a new thresholding method for SAR image to delineate water from other different land cover types. A probability distribution of SAR backscatter intensity is fitted for each land cover type including water before a flood event and the intersection between two distributions is regarded as a threshold to classify the two. To extract water, a set of thresholds are applied to several pairs of land cover types—water and urban or water and forest. The subsets are merged to form the water distribution for the SAR image during or after the flooding. Experiments show that this land cover based thresholding approach outperformed the traditional single thresholding by about 5% to 15%. This method has great application potential with the broadly acceptance of the thresholding based methods and availability of land cover data, especially for heterogeneous regions.

  16. Detecting and monitoring UCG subsidence with InSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidencemore » related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.« less

  17. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network

    PubMed Central

    You, Hongjian

    2018-01-01

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach. PMID:29364194

  18. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    PubMed

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  19. Detecting Subsidence Along a High Speed Railway by Ultrashort Baseline TCP-InSAR with High Resolution Images

    NASA Astrophysics Data System (ADS)

    Dai, K. R.; Liu, G. X.; Yu, B.; Jia, H. G.; Ma, D. Y.; Wang, X. W.

    2013-10-01

    A High Speed Railway goes across Wuqing district of Tianjin, China. Historical studies showed that the land subsidence of this area was very serious, which would give rise to huge security risk to the high speed railway. For detecting the detailed subsidence related to the high speed railway, we use the multi-temporal InSAR (MT-InSAR) technique to extract regional scale subsidence of Wuqing district. Take it into consideration that Wuqing district is a suburban region with large area of low coherence farmland, we select the temporarily coherent point InSAR (TCP-InSAR) approach for MT-InSAR analysis. The TCP-InSAR is a potential approach for detecting land subsidence in low coherence areas as it can identify and analysis coherent points between just two images and can acquire a reliable solution without conventional phase unwrapping. This paper extended the TCP-InSAR with use of ultrashort spatial baseline (USB) interferograms. As thetopographic effects are negligible in the USB interferograms, an external digital elevation model (DEM) is no longer needed in interferometric processing, and the parameters needed to be estimated were simplified at the same time. With use of 17 TerraSAR-X (TSX) images acquired from 2009 to 2010 over Wuqing district, the annual subsidence rates along the high speed railway were derived by the USB-TCPInSAR approach. Two subsidence funnels were found at ShuangJie town and around Wuqing Station with subsidence rate of -17 ∼ -27 mm/year and -7 ∼ -17 mm/year, respectively. The subsidence rates derived by USB-TCPInSAR were compared with those derived by the conventional TCP-InSAR that uses an external DEM for differential interferometry. The mean and the standard deviation of the differences between two types of results at 370697 TCPs are -4.43 × 10-6 mm/year and ±1.4673 mm/year, respectively. Further comparison with the subsidence results mentioned in several other studies were made, which shows good consistencies. The results verify that even without using a DEM the USB-TCPInSAR method can detect land subsidence accurately in flat areas.

  20. Crustal Deformation at the Arabian Plate-Boundary observed by InSAR

    NASA Astrophysics Data System (ADS)

    Jonsson, S.; Cavalié, O.; Akoglu, A. M.; Wang, T.; Xu, W.; Feng, G.; Dutta, R.; Abdullin, A. K.

    2013-12-01

    The Arabian plate is bounded by a variety of active plate boundaries, with extension in the Red Sea and Gulf of Aden to the south, compression in Turkey and Iran to the north, and transform faults to the west and to the east. Internally, however, the Arabian plate has been shown to be tectonically rather stable, despite evidence of recent volcanism and earthquake faulting. We use InSAR observations to study recent tectonic and volcanic activity at several locations at the Arabian plate boundary as well within the plate itself. The region near the triple junction between the Arabian, Eurasian, and Anatolian plates has often been the focus of studies on continental deformation behavior and interseismic deformation. Here we use large-scale InSAR data processing to map the deformation near the triple junction and find the deformation to be focused on major faults with little intra-plate deformation. The eastern part of the East Anatolian Fault appears to have a very shallow locking depth with limited fault-normal deformation. Several major earthquakes that have occurred in recent years on the Arabian plate boundary, including the 2011 magnitude 7.1 Van earthquake in eastern Turkey. It occurred as a result of convergence of the Arabian plate towards Eurasia and caused significant surface deformation that we have analyzed with multiple coseismic InSAR, GPS, and coastal uplift observations. We use high-resolution Cosmo-Skymed and TerraSAR-X data to derive 3D coseismic displacements from offsets alone, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we were able to derive accurate pixel offsets between SAR sub-images containing such targets, which we used to estimate the 3D coseismic displacements. The derived 3D displacement field helped in constraining the causative northward dipping thrust-fault. The Qadimah fault is a recently discovered fault located on the Red Sea coast north of Jeddah and under the King Abdullah Economic City, a planned $50 billion harbor city. The fault is a normal fault, parallel to the Red Sea, but it is unclear if the fault is still active and poses significant hazard to the new city. We use MERIS-corrected Envisat InSAR data to study the limited interseismic deformation across the fault and the results suggest that more investigations will be needed to assess the activity of the fault. Several volcanic events have taken place in the region during the past several years, including the 2007-8 Jebel at Tair island (Red Sea) eruption, the 2009 Harrat Lunayyir (western Saudi Arabia) magmatic intrusion, and the 2011-12 Zubair islands (Red Sea) eruption. All these three volcanic events were fed by dike intrusions whose geometry we constrain using the InSAR and optical data. The derived dike orientations provide information about extensional stress field in and around the Red Sea, although on Tair island the upper-most part of the feeder dike was controlled by local stresses within the volcanic edifice.

  1. SAR imaging of ocean waves - Theory

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1981-01-01

    A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.

  2. Upper ocean fine-scale features in synthetic aperture radar imagery. Part I: Simultaneous satellite and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Maingot, C.; Matt, S.; Fenton, J.; Lehner, S.; Brusch, S.; Perrie, W. A.; Zhang, B.

    2011-12-01

    The new generation of synthetic aperture radar (SAR) satellites provides high resolution images that open new opportunities for identifying and studying fine features in the upper ocean. The problem is, however, that SAR images of the sea surface can be affected by atmospheric phenomena (rain cells, fronts, internal waves, etc.). Implementation of in-situ techniques in conjunction with SAR is instrumental for discerning the origin of features on the image. This work is aimed at the interpretation of natural and artificial features in SAR images. These features can include fresh water lenses, sharp frontal interfaces, internal wave signatures, as well as slicks of artificial and natural origin. We have conducted field experiments in the summer of 2008 and 2010 and in the spring of 2011 to collect in-situ measurements coordinated with overpasses of the TerraSAR-X, RADARSAT-2, ALOS PALSAR, and COSMO SkyMed satellites. The in-situ sensors deployed in the Straits of Florida included a vessel-mounted sonar and CTD system to record near-surface data on stratification and frontal boundaries, a bottom-mounted Nortek AWAC system to gather information on currents and directional wave spectra, an ADCP mooring at a 240 m isobath, and a meteorological station. A nearby NOAA NEXRAD Doppler radar station provided a record of rainfall in the area. Controlled releases of menhaden fish oil were performed from our vessel before several satellite overpasses in order to evaluate the effect of surface active materials on visibility of sea surface features in SAR imagery under different wind-wave conditions. We found evidence in the satellite images of rain cells, squall lines, internal waves of atmospheric and possibly oceanic origin, oceanic frontal interfaces and submesoscale eddies, as well as anthropogenic signatures of ships and their wakes, and near-shore surface slicks. The combination of satellite imagery and coordinated in-situ measurements was helpful in interpreting fine-scale features on the sea surface observed in the SAR images and, in some cases, linking them to thermohaline features in the upper ocean. Finally, we have been able to reproduce SAR signatures of freshwater plumes and sharp frontal interfaces interacting with wind stress, as well as internal waves by combining hydrodynamic simulations with a radar imaging algorithm. The modeling results are presented in a companion paper (Matt et al., 2011).

  3. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  4. Generation and assessment of turntable SAR data for the support of ATR development

    NASA Astrophysics Data System (ADS)

    Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby

    1998-10-01

    Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.

  5. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    PubMed Central

    Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo

    2015-01-01

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977

  6. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    PubMed

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  7. Ship Speed Retrieval From Single Channel TerraSAR-X Data

    NASA Astrophysics Data System (ADS)

    Soccorsi, Matteo; Lehner, Susanne

    2010-04-01

    A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.

  8. SAR-based sea traffic monitoring: a reliable approach for maritime surveillance

    NASA Astrophysics Data System (ADS)

    Renga, Alfredo; Graziano, Maria D.; D'Errico, M.; Moccia, A.; Cecchini, A.

    2011-11-01

    Maritime surveillance problems are drawing the attention of multiple institutional actors. National and international security agencies are interested in matters like maritime traffic security, maritime pollution control, monitoring migration flows and detection of illegal fishing activities. Satellite imaging is a good way to identify ships but, characterized by large swaths, it is likely that the imaged scenes contain a large number of ships, with the vast majority, hopefully, performing legal activities. Therefore, the imaging system needs a supporting system which identifies legal ships and limits the number of potential alarms to be further monitored by patrol boats or aircrafts. In this framework, spaceborne Synthetic Aperture Radar (SAR) sensors, terrestrial AIS and the ongoing satellite AIS systems can represent a great potential synergy for maritime security. Starting from this idea the paper develops different designs for an AIS constellation able to reduce the time lag between SAR image and AIS data acquisition. An analysis of SAR-based ship detection algorithms is also reported and candidate algorithms identified.

  9. An Evaluation of ALOS Data in Disaster Applications

    NASA Astrophysics Data System (ADS)

    Igarashi, Tamotsu; Igarashi, Tamotsu; Furuta, Ryoich; Ono, Makoto

    ALOS is the advanced land observing satellite, providing image data from onboard sensors; PRISM, AVNIR-2 and PALSAR. PRISM is the sensor of panchromatic stereo, high resolution three-line-scanner to characterize the earth surface. The accuracy of position in image and height of Digital Surface Model (DSM) are high, therefore the geographic information extraction is improved in the field of disaster applications with providing images of disaster area. Especially pan-sharpened 3D image composed with PRISM and the four-band visible near-infrared radiometer AVNIR-2 data is expected to provide information to understand the geographic and topographic feature. PALSAR is the advanced multi-functional synthetic aperture radar (SAR) operated in L-band, appropriate for the use of land surface feature characterization. PALSAR has many improvements from JERS-1/SAR, such as high sensitivity, having high resolution, polarimetric and scan SAR observation modes. PALSAR is also applicable for SAR interferometry processing. This paper describes the evaluation of ALOS data characteristic from the view point of disaster applications, through some exercise applications.

  10. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Zheng, Y. Y.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    Land subsidence is a very serious problem of Zhuoshui River alluvial fan, Taiwan. The main reason of land subsidence is a compression of soil, but the compression measured in the wide area is very extensive (Maryam et al., 2013; Linlin et al., 2014). Chen et al. [2010] studied the linear relationship between groundwater level and subsurface altitude variations from Global Positioning System (GPS) station in Zhuoshui River alluvial fan. But the subsurface altitude data were only from two GPS stations. Their distributions are spared and small, not enough to express the altitude variations of Zhuoshui River alluvial fan. Hung et al. [2011] used Interferometry Synthetic Aperture Radar (InSAR) to measure the surface subsidence in Zhuoshui River alluvial fan, but haven't compared with groundwater level. The study compares the correlation between rainfall events and groundwater level and compares the correlation between groundwater level and subsurface altitude, these two correlation affected by heterogeneous soil. From these relationships, a numerical model is built to simulate the land subsidence variations and estimate the coefficient of aquifer soil compressibility. Finally, the model can estimate the long-term land subsidence. Keywords: Land Subsidence, InSAR, Groundwater Level, Numerical Model, Correlation Analyses

  11. SAR imaging of vortex ship wakes. Volume 3: An overview of pre-ERS-1 observations and models

    NASA Astrophysics Data System (ADS)

    Skoeelv, Aage; Wahl, Terje

    1991-05-01

    The visibility of dark turbulent wakes in Synthetic Aperture Radar (SAR) imagery is focused upon. An overview of various wake observations prior to ERS-1 is given. This includes images from Seasat and airborne SAR as well as photographic observations. Different turbulent wake models and simulation, schemes are reviewed. The requirements for a complete turbulent wake model are discussed, and from results available, some conclusions are drawn with respect to possible ERS-1 applications.

  12. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  13. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  14. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    NASA Technical Reports Server (NTRS)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  15. Near Real-Time Automatic Marine Vessel Detection on Optical Satellite Images

    NASA Astrophysics Data System (ADS)

    Máttyus, G.

    2013-05-01

    Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR) satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI) can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation). Optical satellite images (OSI) can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width) and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image) on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  16. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error of the order of 2m compared to LiDAR estimates, is then used to generalize this tomographic technique by selecting in an adaptive way the height at which reflectivity is estimated. Results indicate that this generalized techniques reduces the estimation error to values inferior to 10% and improve the representativity of the obtained AGB maps.

  17. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  18. Operational shoreline mapping with high spatial resolution radar and geographic processing

    USGS Publications Warehouse

    Rangoonwala, Amina; Jones, Cathleen E; Chi, Zhaohui; Ramsey, Elijah W.

    2017-01-01

    A comprehensive mapping technology was developed utilizing standard image processing and available GIS procedures to automate shoreline identification and mapping from 2 m synthetic aperture radar (SAR) HH amplitude data. The development used four NASA Uninhabited Aerial Vehicle SAR (UAVSAR) data collections between summer 2009 and 2012 and a fall 2012 collection of wetlands dominantly fronted by vegetated shorelines along the Mississippi River Delta that are beset by severe storms, toxic releases, and relative sea-level rise. In comparison to shorelines interpreted from 0.3 m and 1 m orthophotography, the automated GIS 10 m alongshore sampling found SAR shoreline mapping accuracy to be ±2 m, well within the lower range of reported shoreline mapping accuracies. The high comparability was obtained even though water levels differed between the SAR and photography image pairs and included all shorelines regardless of complexity. The SAR mapping technology is highly repeatable and extendable to other SAR instruments with similar operational functionality.

  19. Target discrimination method for SAR images based on semisupervised co-training

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Du, Lan; Dai, Hui

    2018-01-01

    Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.

  20. Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.

    2002-07-01

    A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less

  1. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  2. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  3. Multiscale Observation System for Sea Ice Drift and Deformation

    NASA Astrophysics Data System (ADS)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when combined with SAR images gives information on how large scale ice cover motions manifest as local scale deformations. The research includes also ice stress measurements for relating the kinematic state and modeled stresses to local scale ice cover stresses, and ice thickness mappings with profiling sonars and EM methods. Downscaling results based on four-month campaing during winter 2011 are presented.

  4. On the appropriate feature for general SAR image registration

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhang, Yunhua

    2012-09-01

    An investigation to the appropriate feature for SAR image registration is conducted. The commonly-used features such as tie points, Harris corner, the scale invariant feature transform (SIFT), and the speeded up robust feature (SURF) are comprehensively evaluated in terms of several criteria such as the geometrical invariance of feature, the extraction speed, the localization accuracy, the geometrical invariance of descriptor, the matching speed, the robustness to decorrelation, and the flexibility to image speckling. It is shown that SURF outperforms others. It is particularly indicated that SURF has good flexibility to image speckling because the Fast-Hessian detector of SURF has a potential relation with the refined Lee filter. It is recommended to perform SURF on the oversampled image with unaltered sampling step so as to improve the subpixel registration accuracy and speckle immunity. Thus SURF is more appropriate and competent for general SAR image registration.

  5. Analysis of Wind and Sea State in SAR data of Hurricanes

    NASA Astrophysics Data System (ADS)

    Hoja, D.; Schulz-Stellenfleth, J.; Lehner, S.; Horstmann, J.

    2003-04-01

    Spaceborne synthetic aperture radar (SAR) is still the only instrument providing directional ocean wave and in addition surface wind information on a global and continuous basis. Operating in ASAR wave mode ENVISAT, launched in 2002, provides 10 km x 5 km SAR images every 100 km along the orbit. These SAR data continue and expand the SAR era of the European Remote Sensing satellites ERS-1 and ERS-2, which have acquired similar SAR data since 1991 on a global basis. To not only use the official ERS SAR wave mode product, which consists only of the SAR image power spectrum, but also the full SAR image information a subset of 27 days globally distributed ERS-2 SAR raw data were processed to single look complex SAR imagettes using the BSAR processor developed at the German Aerospace Center. These data have the same format as the official ESA product for ENVISAT ASAR wave mode data. This subset of 34,000 ERS-2 SAR imagettes was used to develop and validate algorithms for wind and wave retrieval, which are also applicable to ENVISAT ASAR wave mode data. The time frame of the dataset covers several tropical cyclones in the Atlantic Ocean of which hurricane Fran has been investigated in detail together with additional data available from scatterometers, buoys and weather centers. Hurricane Fran was active from August 23 to September 8, 1996. During this time, hurricane Fran developed near the African coast and progressed over the North Atlantic Ocean. Landfall occurred on September 5, 1996 at the coast of North Carolina, USA. Fran was part of a whole series of tropical cyclones travelling about the same course in a short time. The wind is extracted from SAR imagery and compared to results of the numerical model output provided by the European Center for Medium-Range Weather Forecast (ECMWF) and co-located ERS-2 scatterometer measurements. The Swell and wind sea systems generated by the tropical cyclones are measured using SAR cross spectra and a newly developed partitioning technique. For each component wave system (partition) spectral parameters like wavelength and wave propagation direction are calculated and compared to numerical model output provided by ECMWF. The progression of the tropical cyclones is presented and it is described, how the hurricanes are portrayed in the SAR data. The response of waves to fast turning winds is analyzed. Conclusions are drawn about the wave model forecast in hurricane situations using satellite wave mode data. Keywords: Hurricanes, SAR, ocean winds, ocean waves, wind sea and swell

  6. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  8. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.

    1992-01-01

    The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.

  9. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  10. A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency's Grid Processing of Demand Fast Access to Imagery environment

    NASA Astrophysics Data System (ADS)

    Matgen, Patrick; Giustarini, Laura; Hostache, Renaud

    2012-10-01

    This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.

  11. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  12. The Advanced Rapid Imaging and Analysis (ARIA) Project's Response to the April 25, 2015 M7.8 Nepal Earthquake: Rapid Measurements and Models for Science and Situational Awareness

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Fielding, E. J.; Yun, S. H.; Yue, H.; Polet, J.; Riel, B. V.; Liang, C.; Huang, M. H.; Webb, F.; Simons, M.; Moore, A. W.; Agram, P. S.; Barnhart, W. D.; Hua, H.; Liu, Z.; Milillo, P.; Sacco, G. F.; Rosen, P. A.; Manipon, G.

    2015-12-01

    On April 25, 2015, the M7.8 Gorkha earthquake struck Nepal and the city of Kathmandu. The quake caused a significant humanitarian crisis and killed more than 8,000 due to widespread building damage and triggered landslides throughout the region. This was the strongest earthquake to occur in the region since the 1934 Nepal-Bihar magnitude 8.0 quake caused more than 10,000 fatalities. In the days following the earthquake, the JPL/Caltech ARIA project produced coseismic GPS and SAR displacements, fault slip models, and damage assessments from SAR coherence change that were helpful in both understanding the event and in the response efforts. The ARIA project produced InSAR observations from two new SAR missions - JAXA's ALOS-2 and ESA's Sentinel 1a. The GPS coseismic displacements showed ~1.8 meters of southward motion and ~1.3 meters of uplift in Kathmandu. InSAR images of the displacement field and fault models show that the rupture extended 135 km southeast of the epicenter. The SAR imagery also confirmed that the fault slip did not extend to the surface, though localized offsets formed due to liquefaction. The GPS and SAR analysis has continued to image the large M7.3 aftershock and postseismic deformation. The damage assessments from coherence change were used by several organizations guiding the response effort, including the NGA, the World Bank, and OFDA/USAID. We will present imaging, modeling, and damage assessment results from the recent April 25, 2015 M7.8 earthquake in Nepal, and its largest aftershock, a M7.3 event on May 12, 2015. We also discuss how these data were used for understanding the event, guiding the response, and for educational outreach.

  13. Study on Landslide Disaster Extraction Method Based on Spaceborne SAR Remote Sensing Images - Take Alos Palsar for AN Example

    NASA Astrophysics Data System (ADS)

    Xue, D.; Yu, X.; Jia, S.; Chen, F.; Li, X.

    2018-04-01

    In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  14. Extreme Magnetosphere-Ionosphere Coupling at the Plasmapause: a - In-A Bright SAR Arc

    NASA Astrophysics Data System (ADS)

    Baumgardner, J.; Wroten, J.; Semeter, J.; Mendillo, M.; Kozyra, J.

    2007-05-01

    Heat conduction from the ring current - plasmapause interaction region generates high electron temperature within the ionosphere that drive stable auroral red (SAR) arc emission at 6300 A. On the night of 29 October 1991, a SAR arc was observed using an all-sky imager and meridional imaging spectrograph at Millstone Hill. At xxxx UT, the SAR arc was south of Millstone at approximate L = 2 and reached emission levels of 13,000 rayleighs (R). Over two solar cycle of imaging observations have been made at Millstone Hill, and SAR arc brightness levels (excluding this event) averaged ~ 500 R. Simultaneous observations using the incoherent scatter radar (ISR), a DMSP satellite pass, the MSIS neutral atmosphere and SAR arc modeling using the Rees and Roble formalism succeeded in simulations of the observed emission. The reason for the unusual brightness was not the extreme temperatures achieved (and therefore heat conduction input), but the fact that the end of the plasmapause field line where the elevated Te values were measured did not occur in the ionospheric trough, but equatorward of it, thereby having far more ambient electrons to heat and subsequently collide with atomic oxygen. This unusual spatial geometry probably resulted from unusual convection patterns early in a superstorm scenario.

  15. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884

  16. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.

    PubMed

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-05-23

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  17. SAR Image Change Detection Based on Fuzzy Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Huang, G.; Zhao, Z.

    2018-04-01

    Most existing SAR image change detection algorithms only consider single pixel information of different images, and not consider the spatial dependencies of image pixels. So the change detection results are susceptible to image noise, and the detection effect is not ideal. Markov Random Field (MRF) can make full use of the spatial dependence of image pixels and improve detection accuracy. When segmenting the difference image, different categories of regions have a high degree of similarity at the junction of them. It is difficult to clearly distinguish the labels of the pixels near the boundaries of the judgment area. In the traditional MRF method, each pixel is given a hard label during iteration. So MRF is a hard decision in the process, and it will cause loss of information. This paper applies the combination of fuzzy theory and MRF to the change detection of SAR images. The experimental results show that the proposed method has better detection effect than the traditional MRF method.

  18. Investigation of Joint Visibility Between SAR and Optical Images of Urban Environments

    NASA Astrophysics Data System (ADS)

    Hughes, L. H.; Auer, S.; Schmitt, M.

    2018-05-01

    In this paper, we present a work-flow to investigate the joint visibility between very-high-resolution SAR and optical images of urban scenes. For this task, we extend the simulation framework SimGeoI to enable a simulation of individual pixels rather than complete images. Using the extended SimGeoI simulator, we carry out a case study using a TerraSAR-X staring spotlight image and a Worldview-2 panchromatic image acquired over the city of Munich, Germany. The results of this study indicate that about 55 % of the scene are visible in both images and are thus suitable for matching and data fusion endeavours, while about 25 % of the scene are affected by either radar shadow or optical occlusion. Taking the image acquisition parameters into account, our findings can provide support regarding the definition of upper bounds for image fusion tasks, as well as help to improve acquisition planning with respect to different application goals.

  19. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    NASA Astrophysics Data System (ADS)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe in Japan, Merapi in Indonesia. Preliminary results reveal that the fractal dimension of natural areas, being related only to the roughness of the observed surface, is very stable as the radar illumination geometry, the resolution and the wavelength change, thus holding a very unique property in SAR data inversion. Such a behavior is not verified in case of non-natural objects. As a matter of fact, when the fractal estimation is performed in the presence of either man-made objects or SAR image features depending on geometrical distortions due to the SAR system acquisition (i.e. layover, shadowing), fractal dimension (D) values outside the range of fractality of natural surfaces (2 < D < 3) are retrieved. These non-fractal characteristics show to be heavily dependent on sensor acquisition parameters (e.g. view angle, resolution). In this work, the behaviour of the maps generated starting from the C- and X- band SAR data, relevant to all the considered volcanoes, is analyzed: the distribution of the obtained fractal dimension values is investigated on different zones of the maps. In particular, it is verified that the fore-slope and back-slope areas of the image share a very similar fractal dimension distribution that is placed around the mean value of D=2.3. We conclude that, in this context, the fractal dimension could be considered as a signature of the identification of the volcano growth as a natural process. The COSMO-SkyMed data used in this study have been processed at IREA-CNR within the SAR4Volcanoes project under Italian Space Agency agreement n. I/034/11/0.

  20. A method to calibrate channel friction and bathymetry parameters of a Sub-Grid hydraulic model using SAR flood images

    NASA Astrophysics Data System (ADS)

    Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.; Bates, P. D.

    2015-12-01

    Synthetic Aperture Radar (SAR) satellites are capable of all-weather day and night observations that can discriminate between land and smooth open water surfaces over large scales. Because of this there has been much interest in the use of SAR satellite data to improve our understanding of water processes, in particular for fluvial flood inundation mechanisms. Past studies prove that integrating SAR derived data with hydraulic models can improve simulations of flooding. However while much of this work focusses on improving model channel roughness values or inflows in ungauged catchments, improvement of model bathymetry is often overlooked. The provision of good bathymetric data is critical to the performance of hydraulic models but there are only a small number of ways to obtain bathymetry information where no direct measurements exist. Spatially distributed river depths are also rarely available. We present a methodology for calibration of model average channel depth and roughness parameters concurrently using SAR images of flood extent and a Sub-Grid model utilising hydraulic geometry concepts. The methodology uses real data from the European Space Agency's archive of ENVISAT[1] Wide Swath Mode images of the River Severn between Worcester and Tewkesbury during flood peaks between 2007 and 2010. Historic ENVISAT WSM images are currently free and easy to access from archive but the methodology can be applied with any available SAR data. The approach makes use of the SAR image processing algorithm of Giustarini[2] et al. (2013) to generate binary flood maps. A unique feature of the calibration methodology is to also use parameter 'identifiability' to locate the parameters with higher accuracy from a pre-assigned range (adopting the DYNIA method proposed by Wagener[3] et al., 2003). [1] https://gpod.eo.esa.int/services/ [2] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4. [3] Wagener. 2003. 'Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis'. Hydrol. Process. 17, 455-476.

  1. Evaluation of the Potentials and Challenges of an Airborne InSAR System for Deformation Mapping: A Case Study over the Slumgullion Landslide

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.

    2016-12-01

    Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory turbulences is analyzed and several possible solutions are proposed to improve the airborne SAR performance. In the long run, an improved airborne SAR system will open avenues for differential interferometry to be used in scientific studies and commercial applications previously prohibited by orbital constraints of spaceborne SAR.

  2. Airborne Multi-Band SAR in the Arctic

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.

    2016-12-01

    As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing, and some restricted to relatively low-altitude, it was difficult to obtain data co-registered with the SAR. At this meeting we will present some initial results from the SAR imagery, including differentiation of young, thin, and older ice features, and comparisons with satellite SAR with L-band and C-band frequencies.

  3. Frequency Diversity for Improving Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    2009-03-01

    for broadside spotlight SAR imaging is shown to be δθ = λ 4Yo . (2.34) When θ is small, as is often the case in spotlight SAR imaging, the required...maximum distance ∆y between samples along the y-axis is shown to be ∆y ≤ λRc 4Yo . (2.35) With platform velocity vy along the y-axis, the minimum PRF is

  4. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    USGS Publications Warehouse

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat images by a relatively thin, but extensive blanket of blow sand. Basement rock units and associated fractures at the Bir Safsaf are clearly delineated using C- and L-band SAR images. The detectability of most geologic features depend primarily on radar frequency. The SIR-C/X-SAR data also provide recommendations about the utility of certain radar configurations for geologic and paleoenvironmental reconnaissance in deserts.

  5. Multitemporal Observations of Sugarcane by TerraSAR-X Images

    PubMed Central

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases about 5dB for images acquired some days after the cut and 3 dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1 dB) between harvested fields and mature canes for sugarcane harvested since three months or more. PMID:22163387

  6. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  8. Classification of fully polarimetric F-SAR ( X / S ) airborne radar images using decomposition methods. (Polish Title: Klasyfikacja treści polarymetrycznych obrazów radarowych z wykorzystaniem metod dekompozycji na przykładzie systemu F-SAR ( X / S ))

    NASA Astrophysics Data System (ADS)

    Mleczko, M.

    2014-12-01

    Polarimetric SAR data is not widely used in practice, because it is not yet available operationally from the satellites. Currently we can distinguish two approaches in POL - In - SAR technology: alternating polarization imaging (Alt - POL) and fully polarimetric (QuadPol). The first represents a subset of another and is more operational, while the second is experimental because classification of this data requires polarimetric decomposition of scattering matrix in the first stage. In the literature decomposition process is divided in two types: the coherent and incoherent decomposition. In this paper the decomposition methods have been tested using data from the high resolution airborne F - SAR system. Results of classification have been interpreted in the context of the land cover mapping capabilities

  9. Complex phase error and motion estimation in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Soumekh, M.; Yang, H.

    1991-06-01

    Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.

  10. Development of Oil Spill Monitoring System for the Black Sea, Caspian Sea and the Barents/Kara Seas (DEMOSS)

    NASA Astrophysics Data System (ADS)

    Sandven, Stein; Kudriavtsev, Vladimir; Malinovsky, Vladimir; Stanovoy, Vladimir

    2008-01-01

    DEMOSS will develop and demonstrate elements of a marine oil spill detection and prediction system based on satellite Synthetic Aperture Radar (SAR) and other space data. In addition, models for prediction of sea surface pollution drift will be developed and tested. The project implements field experiments to study the effect of artificial crude oil and oil derivatives films on short wind waves and multi-frequency (Ka-, Ku-, X-, and C-band) dual polarization radar backscatter power and Doppler shift at different wind and wave conditions. On the basis of these and other available experimental data, the present model of short wind waves and radar scattering will be improved and tested.A new approach for detection and quantification of the oil slicks/spills in satellite SAR images is developed that can discriminate human oil spills from biogenic slicks and look-alikes in the SAR images. New SAR images are obtained in coordination with the field experiments to test the detection algorithm. Satellite SAR images from archives as well as from new acquisitions will be analyzed for the Black/Caspian/Kara/Barents seas to investigate oil slicks/spills occurrence statistics.A model for oil spills/slicks transport and evolution is developed and tested in ice-infested arctic seas, including the Caspian Sea. Case studies using the model will be conducted to simulate drift and evolution of oil spill events observed in SAR images. The results of the project will be disseminated via scientific publications and by demonstration to users and agencies working with marine monitoring. The project lasts for two years (2007 - 2009) and is funded under INTAS Thematic Call with ESA 2006.

  11. NASA Administrator Sean O'Keefe speaking at the AirSAR 2004 Mesoamerica hangar naming ceremony

    NASA Image and Video Library

    2004-03-03

    NASA Administrator Sean O'Keefe speaking at the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  12. David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  13. Using SAR satellite data time series for regional glacier mapping

    NASA Astrophysics Data System (ADS)

    Winsvold, Solveig H.; Kääb, Andreas; Nuth, Christopher; Andreassen, Liss M.; van Pelt, Ward J. J.; Schellenberger, Thomas

    2018-03-01

    With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.

  14. Space Radar Image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These L-band images of the Manaus region of Brazil were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. The left image was acquired on April 12, 1994, and the middle image was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (top) and the Rio Solimoes (bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The differences in brightness between the images reflect changes in the scattering of the radar channel. In this case, the changes are indicative of flooding. A flooded forest has a higher backscatter at L-band (horizontally transmitted and received) than an unflooded river. The extent of the flooding is much greater in the April image than in the October image, and corresponds to the annual, 10-meter (33-foot) rise and fall of the Amazon River. A third image at right shows the change in the April and October images and was created by determining which areas had significant decreases in the intensity of radar returns. These areas, which appear blue on the third image at right, show the dramatic decrease in the extent of flooded forest, as the level of the Amazon River falls. The flooded forest is a vital habitat for fish and floating meadows are an important source of atmospheric methane. This demonstrates the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies obscure monitoring of floods. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  15. The use of the DInSAR method in the monitoring of road damage caused by mining activities

    NASA Astrophysics Data System (ADS)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    This paper reviews existing remote sensing methods of road damage detection and demonstrates the possibility of using DInSAR (Differential Interferometry SAR) method to identify endangered road sections. In this study two radar images collected by Sentinel-1 satellite have been used. Images were acquired with 24 days interval in 2015. The analysis allowed to estimate the scale of the post-mining deformation that occurred in Upper Silesia and to indicate areas where road infrastructure is particularly vulnerable to damage.

  16. Radar backscatter from the sea: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1992-04-01

    The subwindowing method of modelling synthetic-aperture-radar (SAR) imaging of ocean waves was extended to allow wave propagation in arbitrary directions. Simulated images show that the SAR image response to swells that are imaged by velocity bunching is reduced by random smearing due to wind-generated waves. The magnitude of this response is not accurately predicted by introducing a finite coherence time in the radar backscatter. The smearing does not affect the imaging of waves by surface radar cross-section modulation, and is independent of the wind direction. Adjusting the focus of the SAR processor introduces an offset in the image response of the surface scatters. When adjusted by one-half the azimuthal phase velocity of the wave, this compensates the incoherent advance of the wave being imaged, leading to a higher image contrast. The azimuthal cut-off and range rotation of the spectral peak are predicted when the imaging of wind-generated wave trains is simulated. The simulated images suggest that velocity bunching and azimuthal smearing are strongly interdependent, and cannot be included in a model separately.

  17. Chinese HJ-1C SAR And Its Wind Mapping Capability

    NASA Astrophysics Data System (ADS)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  18. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  19. Urban Modelling Performance of Next Generation SAR Missions

    NASA Astrophysics Data System (ADS)

    Sefercik, U. G.; Yastikli, N.; Atalay, C.

    2017-09-01

    In synthetic aperture radar (SAR) technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX) and Cosmo-SkyMed (CSK) since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM) acquisition for urban areas utilizing interferometric SAR (InSAR) technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS) InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS) DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8-10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  20. InSAR observation of the September 3rd nuclear test in North Korea

    NASA Astrophysics Data System (ADS)

    Wei, M.

    2017-12-01

    InSAR data from ALOS-2 and Sentinel-1B satellites show significant loss of coherence in phase images covering the September 3rd event at Mt Mantap, which provide strong evidence that the nuclear test occurred there. The area with low coherence is consistent with several seismic-determined locations. The loss of coherence is much more significant than that of the January 6, 2016 event, which also has good InSAR data coverage and show surface displacement. For regions that stay coherent at peripheral area of Mt Mantap, the data show line-of-sight displacement up to 10 cm. In comparison, TerraSAR-X InSAR data (generated by Dr. Teng Wang) show subsidence up to 2 m and horizontal displacement up to 4 m in the area that ALOS2 and Sentinel-1B lost coherence. The large displacement is calculated from the shift of pixels in amplitude images, which does not work for ALOS and Sentinel-1B data. Nevertheless, all InSAR data suggest that the event occurred at Mt Mantap. We conclude that InSAR provides a powerful, independent tool for monitoring and characterizing nuclear tests, whether announced or not, to complement the seismic method.

  1. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    PubMed Central

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  2. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  3. Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. M.; Lang, H. T.

    2015-10-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. The parameter is denoted as "CP-Ratio". In model simulations we investigated the sensitivity of CP-Ratio to the dielectric constant, thickness, surface roughness, and incidence angle. From the results of the simulations we deduced optimal conditions for the thickness retrieval. On the basis of C-band CTLR SAR data, which were generated from Radarsat-2 quad-polarization images acquired jointly with helicopter-borne sea ice thickness measurements in the region of the Sea of Labrador, we tested empirical equations for thickness retrieval. An exponential fit between CP-Ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.92 for the retrieval procedure when applying it on level ice of 0.9 m mean thickness.

  4. Gradient-Modulated SWIFT

    PubMed Central

    Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael

    2017-01-01

    Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547

  5. SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.

    PubMed

    Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony

    2018-05-01

    The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm 3 ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med 79:2620-2628, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.

    2018-04-01

    Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.

  7. Decorrelation of L-band and C-band interferometry to volcanic risk prevention

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.

    2013-10-01

    SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.

  8. Radargrammetric DSM generation in mountainous areas through adaptive-window least squares matching constrained by enhanced epipolar geometry

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Zhang, Lu; Balz, Timo; Luo, Heng; Liao, Mingsheng

    2018-03-01

    Radargrammetry is a powerful tool to construct digital surface models (DSMs) especially in heavily vegetated and mountainous areas where SAR interferometry (InSAR) technology suffers from decorrelation problems. In radargrammetry, the most challenging step is to produce an accurate disparity map through massive image matching, from which terrain height information can be derived using a rigorous sensor orientation model. However, precise stereoscopic SAR (StereoSAR) image matching is a very difficult task in mountainous areas due to the presence of speckle noise and dissimilar geometric/radiometric distortions. In this article, an adaptive-window least squares matching (AW-LSM) approach with an enhanced epipolar geometric constraint is proposed to robustly identify homologous points after compensation for radiometric discrepancies and geometric distortions. The matching procedure consists of two stages. In the first stage, the right image is re-projected into the left image space to generate epipolar images using rigorous imaging geometries enhanced with elevation information extracted from the prior DEM data e.g. SRTM DEM instead of the mean height of the mapped area. Consequently, the dissimilarities in geometric distortions between the left and right images are largely reduced, and the residual disparity corresponds to the height difference between true ground surface and the prior DEM. In the second stage, massive per-pixel matching between StereoSAR epipolar images identifies the residual disparity. To ensure the reliability and accuracy of the matching results, we develop an iterative matching scheme in which the classic cross correlation matching is used to obtain initial results, followed by the least squares matching (LSM) to refine the matching results. An adaptively resizing search window strategy is adopted during the dense matching step to help find right matching points. The feasibility and effectiveness of the proposed approach is demonstrated using Stripmap and Spotlight mode TerraSAR-X stereo data pairs covering Mount Song in central China. Experimental results show that the proposed method can provide a robust and effective matching tool for radargrammetry in mountainous areas.

  9. Evolution of Nonlinear Internal Waves in China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.

    1997-01-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.

  10. Remote sensing of a dynamic sub-arctic peatland reservoir using optical and synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Larter, Jarod Lee

    Stephens Lake, Manitoba is an example of a peatland reservoir that has undergone physical changes related to mineral erosion and peatland disintegration processes since its initial impoundment. In this thesis I focused on the processes of peatland upheaval, transport, and disintegration as the primary drivers of dynamic change within the reservoir. The changes related to these processes are most frequent after initial reservoir impoundment and decline over time. They continue to occur over 35 years after initial flooding. I developed a remote sensing approach that employs both optical and microwave sensors for discriminating land (Le. floating peatlands, forested land, and barren land) from open water within the reservoir. High spatial resolution visible and near-infrared (VNIR) optical data obtained from the QuickBird satellite, and synthetic aperture radar (SAR) microwave data obtained from the RADARSAT-1 satellite were implemented. The approach was facilitated with a Geographic Information System (GIS) based validation map for the extraction of optical and SAR pixel data. Each sensor's extracted data set was first analyzed separately using univariate and multivariate statistical methods to determine the discriminant ability of each sensor. The initial analyses were followed by an integrated sensor approach; the development of an image classification model; and a change detection analysis. Results showed excellent (> 95%) classification accuracy using QuickBird satellite image data. Discrimination and classification of studied land cover classes using SAR image texture data resulted in lower overall classification accuracies (˜ 60%). SAR data classification accuracy improved to > 90% when classifying only land and water, demonstrating SAR's utility as a land and water mapping tool. An integrated sensor data approach showed no considerable improvement over the use of optical satellite image data alone. An image classification model was developed that could be used to map both detailed land cover classes and the land and water interface within the reservoir. Change detection analysis over a seven year period indicated that physical changes related to mineral erosion, peatland upheaval, transport, and disintegration, and operational water level variation continue to take place in the reservoir some 35 years after initial flooding. This thesis demonstrates the ability of optical and SAR satellite image remote sensing data sets to be used in an operational context for the routine discrimination of the land and water boundaries within a dynamic peatland reservoir. Future monitoring programs would benefit most from a complementary image acquisition program in which SAR images, known for their acquisition reliability under cloud cover, are acquired along with optical images given their ability to discriminate land cover classes in greater detail.

  11. Automatic SAR/optical cross-matching for GCP monograph generation

    NASA Astrophysics Data System (ADS)

    Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa

    2016-10-01

    Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.

  12. Demonstration of Synthetic Aperture Radar and Hyperspectral Imaging for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado

    DTIC Science & Technology

    2008-10-01

    resolution orthophoto and LiDAR datasets, as well as for the vegetation modeling conducted for SAR FAR mitigation. 3.4.4 Navigation Systems An Applanix A...these accuracies. By registering eight cardinal pass-direction images per tile to the orthophotography and to each other, the horizontal error in... orthophoto image, which successfully increased the HSI image resolution to 0.25-m. 22 Table 4. SAR Performance Data. Type of Performance

  13. The influence of processor focus on speckle correlation statistics for a Shuttle imaging radar scene of Hurricane Josephine

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1988-01-01

    The surface wave field produced by Hurricane Josephine was imaged by the L-band SAR aboard the Challenger on October 12, 1984. Exponential trends found in the two-dimensional autocorrelations of speckled image data support an equilibrium theory model of sea surface hydrodynamics. The notions of correlated specular reflection, surface coherence, optimal Doppler parameterization and spatial resolution are discussed within the context of a Poisson-Rayleigh statistical model of the SAR imaging process.

  14. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  15. Contextual descriptors and neural networks for scene analysis in VHR SAR images

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Picchiani, Matteo; Falasco, Alessia; Schiavon, Giovanni

    2016-10-01

    The development of SAR technology during the last decade has made it possible to collect a huge amount of data over many regions of the world. In particular, the availability of SAR images from different sensors, with metric or sub-metric spatial resolution, offers novel opportunities in different fields as land cover, urban monitoring, soil consumption etc. On the other hand, automatic approaches become crucial for the exploitation of such a huge amount of information. In such a scenario, especially if single polarization images are considered, the main issue is to select appropriate contextual descriptors, since the backscattering coefficient of a single pixel may not be sufficient to classify an object on the scene. In this paper a comparison among three different approaches for contextual features definition is presented so as to design optimum procedures for VHR SAR scene understanding. The first approach is based on Gray Level Co- Occurrence Matrix since it is widely accepted and several studies have used it for land cover classification with SAR data. The second approach is based on the Fourier spectra and it has been already proposed with positive results for this kind of problems, the third one is based on Auto-associative Neural Networks which have been already proven effective for features extraction from polarimetric SAR images. The three methods are evaluated in terms of the accuracy of the classified scene when the features extracted using each method are considered as input to a neural network classificator and applied on different Cosmo-SkyMed spotlight products.

  16. Brady's Geothermal Field - Metadata for InSAR Holdings

    DOE Data Explorer

    Ali, Tabrez

    2016-07-29

    List of synthetic aperture radar (SAR) images acquired by TerraSAR-X and TanDEM-X satellite missions and archived at UNAVCO's WINSAR facility. See file "Bradys TSX Holdings.csv" for individual links. NOTE: The user must create an account in order to access the data (See "Instructions for Creating an Account" below).

  17. The Influence of Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed with Cross-polarized C-band SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.

    2017-12-01

    Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.

  18. North Central Thailand

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This radar image shows the dramatic landscape in the Phang Hoei Range of north central Thailand, about 40 kilometers (25 miles) northeast of the city of Lom Sak. The plateau, shown in green to the left of center, is the area of Phu Kradung National Park. This plateau is a remnant of a once larger plateau, another portion of which is seen along the right side of the image. The plateaus have been dissected by water erosion over thousands of years. Forest areas appear green on the image; agricultural areas and settlements appear as red and blue. North is toward the lower right. The area shown is 38 by 50 kilometers (24 by 31 miles) and is centered at 16.96 degrees north latitude, 101.67 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar on October 3, 1994, when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.

    Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  19. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  20. Integration of SAR and DEM data: Geometrical considerations

    NASA Technical Reports Server (NTRS)

    Kropatsch, Walter G.

    1991-01-01

    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.

  1. Pre-Columbian archaeological ruins are revealed through Costa Rican rain forest in this photo taken during NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-05

    Pre-Columbian archaeological ruins are revealed through Costa Rican rain forest in this photo taken during NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. Much of the archaeological evidence needed to understand Pre-Columbian societies in Central America comes from features on the landscape. Difficult terrain and logistics have limited ground data collection. AirSAR helped to detect signs of ancient civilizations hidden beneath the forest. Its images will shed insights into the way modern humans interact with their landscape, and how ancient peoples lived and what became of their civilizations.

  2. C- and L-band space-borne SAR incidence angle normalization for efficient Arctic sea ice monitoring

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Geldsetzer, T.; Howell, S.; Yackel, J.; Nandan, V.

    2017-12-01

    C-band Synthetic Aperture Radar (SAR) has been widely used effectively for operational sea ice monitoring, owing to its greater seperability between snow-covered first-year (FYI) and multi-year (MYI) ice types, during winter. However, during the melt season, C-band SAR backscatter contrast reduces between FYI and MYI. To overcome the limitations of C-band, several studies have recommended utlizing L-band SAR, as it has the potential to significantly improve sea ice classification. Given its longer wavelength, L-band can efficiently separate FYI and MYI types, especially during melt season. Therefore, the combination of C- and L-band SAR is an optimal solution for efficient seasonal sea ice monitoring. As SAR acquires images over a range of incidence angles from near-range to far-range, SAR backscatter varies substantially. To compensate this variation in SAR backscatter, incidence angle dependency of C- and L-band SAR backscatter for different FYI and MYI types is crucial to quantify, which is the objective of this study. Time-series SAR imagery from C-band RADARSAT-2 and L-band ALOS PALSAR during winter months of 2010 across 60 sites over the Canadian Arctic was acquired. Utilizing 15 images for each sites during February-March for both C- and L-band SAR, incidence angle dependency was calculated. Our study reveals that L- and C-band backscatter from FYI and MYI decreases with increasing incidence angle. The mean incidence angle dependency for FYI and MYI were estimated to be -0.21 dB/1° and -0.30 dB/1° respectively from L-band SAR, and -0.22 dB/1° and -0.16 dB/1° from C-band SAR, respectively. While the incidence angle dependency for FYI was found to be similar in both frequencies, it doubled in case of MYI from L-band, compared to C-band. After applying the incidence angle normalization method to both C- and L-band SAR images, preliminary results indicate improved sea ice type seperability between FYI and MYI types, with substantially lower number of mixed pixels; thereby offering more reliable sea ice classification accuracies. Research findings from this study can be utilized to improve seasonal sea ice classification with higher accuracy for operational Arctic sea ice monitoring, especially in regions like the Canadian Arctic, where MYI detection is crucial for safer ship navigations.

  3. An automatic target recognition system based on SAR image

    NASA Astrophysics Data System (ADS)

    Li, Qinfu; Wang, Jinquan; Zhao, Bo; Luo, Furen; Xu, Xiaojian

    2009-10-01

    In this paper, an automatic target recognition (ATR) system based on synthetic aperture radar (SAR) is proposed. This ATR system can play an important role in the simulation of up-to-data battlefield environment and be used in ATR research. To establish an integral and available system, the processing of SAR image was divided into four main stages which are de-noise, detection, cluster-discrimination and segment-recognition, respectively. The first three stages are used for searching region of interest (ROI). Once the ROIs are extracted, the recognition stage will be taken to compute the similarity between the ROIs and the templates in the electromagnetic simulation software National Electromagnetic Scattering Code (NESC). Due to the lack of the SAR raw data, the electromagnetic simulated images are added to the measured SAR background to simulate the battlefield environment8. The purpose of the system is to find the ROIs which can be the artificial military targets such as tanks, armored cars and so on and to categorize the ROIs into the right classes according to the existing templates. From the results we can see that the proposed system achieves a satisfactory result.

  4. Final Report (O1-ERD-051) Dynamic InSAR: Imaging Seismic Waves Remotely from Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, P; Rodgers, A; Dodge, D

    2003-02-07

    The purpose of this LDRD project was to determine the feasibility of using InSAR (interferometric synthetic aperture radar) to image seismic waves remotely from space. If shown to be feasible, the long-term goal of this project would be to influence future SAR satellite missions and airborne SAR platforms to include a this new capability. This final report summarizes the accomplishments of the originally-planned 2-year project that was cut short to 1 year plus 2 months due to a funding priority change that occurred in the aftermath of the September 11th tragedy. The LDRD-ER project ''Dynamic InSAR: Imaging Seismic Waves frommore » Space'' (01-ERD-051) began in October, (FY01) and ended in December (FY02). Consequently, most of the results and conclusions for this project are represented in the FY0l Annual Report. Nonetheless, additional conclusions and insights regarding the progress of this work are included in this report. In should be noted that this work was restarted and received additional funding under the NA-22 DOE Nonproliferation Program in FY03.« less

  5. Personnel viewing AirSAR hardware while touring the outside of NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-03

    Personnel viewing AirSAR hardware while touring the outside of NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign, L-R: Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); NASA Administrator Sean O'Keefe; Dr. Gahssem Asrar, NASA Associate Administrator for Earth Science Enterprises; JPL scientist Bruce Chapman; and Craig Dobson, NASA Program Manager for AirSAR. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  6. Neural network-based feature point descriptors for registration of optical and SAR images

    NASA Astrophysics Data System (ADS)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  7. Comparative Study of Speckle Filtering Methods in PolSAR Radar Images

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Bouchemakh, L.; Smara, Y.

    2015-04-01

    Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria: smoothing homogeneous areas, preserving edges and polarimetric information.Experimental results are included to illustrate the different implemented methods.

  8. The Performance Analysis Based on SAR Sample Covariance Matrix

    PubMed Central

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976

  9. Speckle noise reduction of 1-look SAR imagery

    NASA Technical Reports Server (NTRS)

    Nathan, Krishna S.; Curlander, John C.

    1987-01-01

    Speckle noise is inherent to synthetic aperture radar (SAR) imagery. Since the degradation of the image due to this noise results in uncertainties in the interpretation of the scene and in a loss of apparent resolution, it is desirable to filter the image to reduce this noise. In this paper, an adaptive algorithm based on the calculation of the local statistics around a pixel is applied to 1-look SAR imagery. The filter adapts to the nonstationarity of the image statistics since the size of the blocks is very small compared to that of the image. The performance of the filter is measured in terms of the equivalent number of looks (ENL) of the filtered image and the resulting resolution degradation. The results are compared to those obtained from different techniques applied to similar data. The local adaptive filter (LAF) significantly increases the ENL of the final image. The associated loss of resolution is also lower than that for other commonly used speckle reduction techniques.

  10. SAR Image Simulation of Ship Targets Based on Multi-Path Scattering

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.

    2018-04-01

    Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.

  11. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  12. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging

    PubMed Central

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057

  13. Compact time- and space-integrating SAR processor: design and development status

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.

    1994-06-01

    Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.

  14. Convolutional neural network using generated data for SAR ATR with limited samples

    NASA Astrophysics Data System (ADS)

    Cong, Longjian; Gao, Lei; Zhang, Hui; Sun, Peng

    2018-03-01

    Being able to adapt all weather at all times, it has been a hot research topic that using Synthetic Aperture Radar(SAR) for remote sensing. Despite all the well-known advantages of SAR, it is hard to extract features because of its unique imaging methodology, and this challenge attracts the research interest of traditional Automatic Target Recognition(ATR) methods. With the development of deep learning technologies, convolutional neural networks(CNNs) give us another way out to detect and recognize targets, when a huge number of samples are available, but this premise is often not hold, when it comes to monitoring a specific type of ships. In this paper, we propose a method to enhance the performance of Faster R-CNN with limited samples to detect and recognize ships in SAR images.

  15. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  16. The physical basis for estimating wave energy spectra from SAR imagery

    NASA Technical Reports Server (NTRS)

    Lyzenga, David R.

    1987-01-01

    Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.

  17. Monitoring Seawall Deformation With Repeat-Track Space-Borne SAR Images

    NASA Astrophysics Data System (ADS)

    Pei, Yuanyuan; Wan, Qing; Wei, Lianhuan; Fang, Zhilei; Liao, Mingsheng

    2010-10-01

    Seawalls are constructed to protect coastal cities from typhoon, flood and sea tide. It is necessary to monitor the deformation of seawalls in real time. Repeat-track space-borne SAR images are useful for environment monitoring, especially ground deformation monitoring. Shanghai sits on the Yangtze River Delta on China's eastern coast. Each year, the city is hit by typhoons from Pacific Ocean and threatened by the flood of the Yangtze River. PS-InSAR technique is carried out to monitor the deformation of the seawalls. Experiment exhibits that the seawalls around Pudong airport and Lingang town suffered serious deformation.

  18. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color, three-frequency image of the Oberpfaffenhofen supersite, southwest of Munich in southern Germany, which shows the differences in what the three radar bands can see on the ground. The image covers a 27- by 36-kilometer (17- by 22-mile) area. The center of the site is 48.09 degrees north and 11.29 degrees east. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on April 13, 1994, just after a heavy storm which covered the all area with 20 centimeters (8 inches) of snow. The dark area in the center of the image is Lake Ammersee. The two smaller lakes above the Ammersee are the Worthsee and the Pilsensee. On the right of the image is the tip of the Starnbergersee. The outskirt of the city of Munich can be seen at the top of the image. The Oberpfaffenhofen supersite is the major test site for X-SAR calibration and scientific experiments such as ecology, hydrology and geology. This color composite image is a three-frequency overlay. L-band total power was assigned red, the C-band total power is shown in green and the X-band VV polarization appears blue. The colors on the image stress the differences between the L-band, C-band and X-band images. If the three frequencies were seeing the same thing, the image will appear in black and white. For example, the blue areas corresponds to area for which the X-band backscatter is relatively higher than the backscatter at L-and C-band; this behavior is characteristic of clear cuts or shorter vegetation. Similarly, the forested areas have a reddish tint. Finally, the green areas seen at the southern tip of both the Ammersee and the Pilsensee lakes indicate a marshy area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  19. The Research on Dryland Crop Classification Based on the Fusion of SENTINEL-1A SAR and Optical Images

    NASA Astrophysics Data System (ADS)

    Liu, F.; Chen, T.; He, J.; Wen, Q.; Yu, F.; Gu, X.; Wang, Z.

    2018-04-01

    In recent years, the quick upgrading and improvement of SAR sensors provide beneficial complements for the traditional optical remote sensing in the aspects of theory, technology and data. In this paper, Sentinel-1A SAR data and GF-1 optical data were selected for image fusion, and more emphases were put on the dryland crop classification under a complex crop planting structure, regarding corn and cotton as the research objects. Considering the differences among various data fusion methods, the principal component analysis (PCA), Gram-Schmidt (GS), Brovey and wavelet transform (WT) methods were compared with each other, and the GS and Brovey methods were proved to be more applicable in the study area. Then, the classification was conducted based on the object-oriented technique process. And for the GS, Brovey fusion images and GF-1 optical image, the nearest neighbour algorithm was adopted to realize the supervised classification with the same training samples. Based on the sample plots in the study area, the accuracy assessment was conducted subsequently. The values of overall accuracy and kappa coefficient of fusion images were all higher than those of GF-1 optical image, and GS method performed better than Brovey method. In particular, the overall accuracy of GS fusion image was 79.8 %, and the Kappa coefficient was 0.644. Thus, the results showed that GS and Brovey fusion images were superior to optical images for dryland crop classification. This study suggests that the fusion of SAR and optical images is reliable for dryland crop classification under a complex crop planting structure.

  20. Working group organizational meeting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.

  1. Brady Geothermal Field InSAR Raw Data

    DOE Data Explorer

    Ali, Tabrez

    2015-03-31

    List of TerraSAR-X/TanDEM-X images acquired between 2015-01-01 and 2015-03-31, and archived at https://winsar.unavco.org. See file "BHS InSAR Data with URLs.csv" for individual links. NOTE: The user must create an account in order to access the data (See "Instructions for Creating an Account" below).

  2. A penguin near Punta Arena, Chile, photographed in its natural summer habitat during NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-13

    A penguin near Punta Arena, Chile, photographed in its natural summer habitat during NASA's AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct.

  3. Dispersive Phase in the L-band InSAR Image Associated with Heavy Rain Episodes

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Kinoshita, Y.

    2017-12-01

    Interferometric synthetic aperture radar (InSAR) is a powerful geodetic technique that allows us to detect ground displacements with unprecedented spatial resolution, and has been used to detect displacements due to earthquakes, volcanic eruptions, and glacier motion. In the meantime, due to the microwave propagation through ionosphere and troposphere, we often encounter non-negligible phase anomaly in InSAR data. Correcting for the ionsphere and troposphere is therefore a long-standing issue for high-precision geodetic measurements. However, if ground displacements are negligible, InSAR image can tell us the details of the atmosphere.Kinoshita and Furuya (2017, SOLA) detected phase anomaly in ALOS/PALSAR InSAR data associated with heavy rain over Niigata area, Japan, and performed numerical weathr model simulation to reproduce the anomaly; ALOS/PALSAR is a satellite-based L-band SAR sensor launched by JAXA in 2006 and terminated in 2011. The phase anomaly could be largely reproduced, using the output data from the weather model. However, we should note that numerical weather model outputs can only account for the non-dispersive effect in the phase anomaly. In case of severe weather event, we may expect dispersive effect that could be caused by the presence of free-electrons.In Global Navigation Satellite System (GNSS) positioning, dual frequency measurements allow us to separate the ionospheric dispersive component from tropospheric non-dispersive components. In contrast, SAR imaging is based on a single carrier frequency, and thus no operational ionospheric corrections have been performed in InSAR data analyses. Recently, Gomba et al (2016) detailed the processing strategy of split spectrum method (SSM) for InSAR, which splits the finite bandwidth of the range spectrum and virtually allows for dual-frequency measurements.We apply the L-band InSAR SSM to the heavy rain episodes, in which more than 50 mm/hour precipitations were reported. We report the presence of phase anomaly in both dispersive and non-dispersive components. While the original phase anomaly turns out to be mostly due to the non-dispersive effect, we could recognize local anomalies in the dispersive component as well. We will discuss its geophysical implications, and may show several case studies.

  4. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (±10 mm in change of land surface elevation) were developed for a groundwater basin (∼103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993–1995) subsidence patterns and those detected historically (1926–1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  5. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  6. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR).

    PubMed

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-09

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

  7. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

    PubMed Central

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-01

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367

  8. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  9. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1992-01-01

    Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.

  10. Modeling COSMO-SkyMed measurements of precipitating clouds over the sea using simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.

    2014-07-01

    Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.

  11. Using SAR and GPS for Hazard Management and Response: Progress and Examples from the Advanced Rapid Imaging and Analysis (ARIA) Project

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Simons, M.; Hua, H.; Yun, S. H.; Agram, P. S.; Milillo, P.; Sacco, G. F.; Webb, F.; Rosen, P. A.; Lundgren, P.; Milillo, G.; Manipon, G. J. M.; Moore, A. W.; Liu, Z.; Polet, J.; Cruz, J.

    2014-12-01

    ARIA is a joint JPL/Caltech project to automate synthetic aperture radar (SAR) and GPS imaging capabilities for scientific understanding, hazard response, and societal benefit. We have built a prototype SAR and GPS data system that forms the foundation for hazard monitoring and response capability, as well as providing imaging capabilities important for science studies. Together, InSAR and GPS have the ability to capture surface deformation in high spatial and temporal resolution. For earthquakes, this deformation provides information that is complementary to seismic data on location, geometry and magnitude of earthquakes. Accurate location information is critical for understanding the regions affected by damaging shaking. Regular surface deformation measurements from SAR and GPS are useful for monitoring changes related to many processes that are important for hazard and resource management such as volcanic deformation, groundwater withdrawal, and landsliding. Observations of SAR coherence change have a demonstrated use for damage assessment for hazards such as earthquakes, tsunamis, hurricanes, and volcanic eruptions. These damage assessment maps can be made from imagery taken day or night and are not affected by clouds, making them valuable complements to optical imagery. The coherence change caused by the damage from hazards (building collapse, flooding, ash fall) is also detectable with intelligent algorithms, allowing for rapid generation of damage assessment maps over large areas at fine resolution, down to the spatial scale of single family homes. We will present the progress and results we have made on automating the analysis of SAR data for hazard monitoring and response using data from the Italian Space Agency's (ASI) COSMO-SkyMed constellation of X-band SAR satellites. Since the beginning of our project with ASI, our team has imaged deformation and coherence change caused by many natural hazard events around the world. We will present progress on our data system technology that enables rapid and reliable production of imagery. Lastly, we participated in the March 2014 FEMA exercise based on a repeat of the 1964 M9.2 Alaska earthquake, providing simulated data products for use in this hazards response exercise. We will present lessons learned from this and other simulation exercises.

  12. Landslide precursory deformation interpretation using ALOS-2/PALSAR-2 InSAR image along Min River in Maoxien, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Sato, H. P.

    2017-12-01

    Maoxien area in Sichuan Province, China has many landslide. For example, landslide (rock avalanche) occurred on the slope in Xinmocun Village in Maoxeien on 24 June 2017. I produced and interpreetd InSAR image using ALOS/PALSAR data observed on 19 Jul 2007-3 Sep 2007 and on 27 Jan 2011-14 Mar 2011, and ALOS-2/PALSAR-2 data observed on 26 Jul 2015-13 Dec 2015 and on 13 Dec 2015-11 Dec 2016. These images give good coherence and it was easy to identify local landslide surface deformation. As a result, e.g., two slopes were estimated to have local landslide surface deformation; one is at 103.936587 deg E and 32.04462 deg N, another is at 103.674754 deg E and 31.852838 N. However, the slope in Xinmocun Village was not identified as landslide precursory deformation. In the poster I will present more InSAR image observed after 11 Dec 2016 and discuss the possibility of local landslide surface deformaton using InSAR image. ALOS/PALSAR and ALOS-2/PALSAR-2 data were provided by JAXA through Landslide Working Group in JAXA and through Special Research 2015-B-02 of Earthquake Research Institute/Tokyo University. This study was supported by KAKENHI (17H02973).

  13. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  14. Making Mosaics Of SAR Imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.; Pang, Amy A.

    1990-01-01

    Spaceborne synthetic-aperture-radar (SAR) images useful for mapping of planets and investigations in Earth sciences. Produces multiframe mosaic by combining images along ground track, in adjacent cross-track swaths, or in ascending and descending passes. Images registered with geocoded maps such as ones produced by MAPJTC (NPO-17718), required as input. Minimal intervention by operator required. MOSK implemented on DEC VAX 11/785 computer running VMS 4.5. Most subroutines in FORTRAN, but three in MAXL and one in APAL.

  15. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  16. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  17. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  18. NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  19. NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  20. NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica, during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    NASA Dryden's DC-8 on the ramp at Jaun Santamaria International Airport, San Jose, Costa Rica during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  1. Airborne Science personnel Walter Klein and David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    Airborne Science personnel Walter Klein and David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  2. This is a photograph from the left side of the aircraft as NASA's DC-8 does an AirSAR 2004 research "line" over Honduras

    NASA Image and Video Library

    2004-03-03

    This is a photograph from the left side of the aircraft as NASA's DC-8 does an AirSAR 2004 research "line" over Honduras. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  3. Mr. John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe at the AirSAR 2004 Mesoamerica hangar naming ceremony

    NASA Image and Video Library

    2004-03-03

    Mr. John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe at the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  4. AirSAR 2004 plaque unveiling by NASA Administrator Sean O'Keefe and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT)

    NASA Image and Video Library

    2004-03-03

    AirSAR 2004 Mesoamerica plaque unveiling by NASA Administrator Sean O'Keefe and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT). AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  5. NASA Administrator Sean O'Keefe making a presentation to Fernando Gutierrez during the AirSAR 2004 hangar naming ceremony

    NASA Image and Video Library

    2004-03-03

    NASA Administrator Sean O'Keefe making a presentation to Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT), during the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  6. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region

    PubMed Central

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-01-01

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data. PMID:28587066

  7. Real-time multiple-look synthetic aperture radar processor for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wu, C.; Tyree, V. C. (Inventor)

    1981-01-01

    A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.

  8. Linear landmark extraction in SAR images with application to augmented integrity aero-navigation: an overview to a novel processing chain

    NASA Astrophysics Data System (ADS)

    Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.

    2011-10-01

    In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.

  9. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  10. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  11. An ice-motion tracking system at the Alaska SAR facility

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  12. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962more » leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.« less

  13. The InSAR Scientific Computing Environment (ISCE): An Earth Science SAR Processing Framework, Toolbox, and Foundry

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Gurrola, E. M.; Lavalle, M.; Sacco, G. F.; Rosen, P. A.

    2016-12-01

    The InSAR Scientific Computing Environment (ISCE) provides both a modular, flexible, and extensible framework for building software components and applications that work together seamlessly as well as a toolbox for processing InSAR data into higher level geodetic image products from a diverse array of radar satellites and aircraft. ISCE easily scales to serve as the SAR processing engine at the core of the NASA JPL Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards as well as a software toolbox for individual scientists working with SAR data. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these data. ISCE in ARIA is also a SAR Foundry for development of new processing components and workflows to meet the needs of both large processing centers and individual users. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. The Python user interface enables both command-line deployment of workflows as well as an interactive "sand box" (the Python interpreter) where scientists can "play" with the data. Recent developments in ISCE include the addition of components to ingest Sentinel-1A SAR data (both stripmap and TOPS-mode) and a new workflow for processing the TOPS-mode data. New components are being developed to exploit polarimetric-SAR data to provide the ecosystem and land-cover/land-use change communities with rigorous and efficient tools to perform multi-temporal, polarimetric and tomographic analyses in order to generate calibrated, geocoded and mosaicked Level-2 and Level-3 products (e.g., maps of above-ground biomass or forest disturbance). ISCE has been downloaded by over 200 users by a license for WinSAR members through the Unavco.org website. Others may apply directly to JPL for a license at download.jpl.nasa.gov.

  14. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  15. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  16. JPEG and wavelet compression of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  17. An Improved Method for Deriving Mountain Glacier Motion by Integrating Information of Intensity and Phase Based on SAR Images

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.

    2016-12-01

    Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.

  18. Global Rapid Flood Mapping System with Spaceborne SAR Data

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from ground, air, and space will provide reliable snapshot extent of many flooding events. SAR missions with easy data access, such as the Sentinel-1 and NASA's upcoming NISAR mission, combined with the ARIA system, will enable forming a library of flood extent maps, which can soon support flood modeling community, by providing observation-based constraints.

  19. Theory and measure of certain image norms in SAR

    NASA Technical Reports Server (NTRS)

    Raney, R. K.

    1984-01-01

    The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.

  20. Ambiguities in spaceborne synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Li, F. K.; Johnson, W. T. K.

    1983-01-01

    An examination of aspects of spaceborne SAR time delay and Doppler ambiguities has led to the formulation of an accurate method for the evaluation of the ratio of ambiguity intensities to that of the signal, which has been applied to the nominal SAR system on Seasat. After discussing the variation of this ratio as a function of orbital latitude and attitude control error, it is shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal, so that the images of ambiguities are dispersed. Seasat SAR dispersed images are presented, and their dispersions are eliminated through an adjustment of the processing parameters. A method is also presented which uses a set of multiple pulse repetition sequences to determine the Doppler centroid frequency absolute values for SARs with high carrier frequencies and poor attitude measurements.

  1. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  2. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  3. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  4. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  5. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology

    USGS Publications Warehouse

    Galloway, D.L.; Hoffmann, J.

    2007-01-01

    The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.

  6. Characterization and Mitigation of Radio Frequency Interference in PolSAR Data

    NASA Astrophysics Data System (ADS)

    Tao, Mingliang; Zhou, Feng; Zhang, Zijing

    2017-11-01

    Polarimetric synthetic aperture radar (PolSAR) is a very important instrument for active remote sensing. However, it is common to find that PolSAR echoes are often contaminated by incoherent electromagnetic interference, which is referred to as radio frequency interference (RFI). The analysis of RFI signatures and its influence on PolSAR data seems to be lacking in existing literatures, especially for PolSAR post products, such as the polarimetric decomposition parameters and clustering result. The goal of this paper is to reveal the link between RFI and polarization, as well as to analyze the impact of interference on PolSAR image and its post products. Qualitative and quantitative analyses of the adverse impact of RFI on the real measured NASA/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar data set are illustrated from two perspectives, that is, evaluation of imaging quality and interpretation of scattering mechanisms. The point target response and effective number of looks are evaluated for assessing the distortion to focusing quality. Further, we discussed the characteristics of ultra wideband RFI and proposed a mitigation method using nonnegative matrix factorization along azimuth direction. The experimental results indicate the effectiveness of the proposed method.

  7. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR

    PubMed Central

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  8. Evaluation of crop development stages with TerraSAR-X backscatter signatures (2010-12) by using Growing Degree Days

    NASA Astrophysics Data System (ADS)

    Ishaq, Atif; Pasternak, René; Wessollek, Christine

    2017-10-01

    TerraSAR-X images have been tested for agricultural fields of corn and wheat. The main purpose was to evaluate the impact of daily temperatures in crop development to optimize climate induced factors on the plant growth anomalies. The results are completed by utilizing Geographic Information Science, e.g. tools of ArcMap 10.3.1 and databases of ground truth and meteorological information. Synthetic Aperture Radar (SAR) images from German Aerospace Center (DLR) are acquired and the field survey datasets are sampled, each per month for three years (2010-2012) but only for the crop seasons (April-October). Correlation between SAR images and farmland anomalies is investigated in accordance with daily heat accumulations and a comparison of the three years' SAR backscatter signatures is explained for corn and wheat. Finding the influence of daily temperatures on crops and hence on the TerraSAR-X backscatter is developed by Growing Degree Days (GDD) which appears to be the most suitable parameter for this purpose. Observation of GDD permits that the coolest year was 2010, either rest of the years were warmer and GDD accumulated in 2011 was higher as compared to that of 2012 in the first half of the year, however 2012 had rather more heat accumulation in the second half of the year. SAR backscatter from farmland depicts the crop development stages which depend upon the time when satellite captures data during the crop season. It varies with different development stages of crop plants. Backscatter of each development stage changes as the roughness and the moisture content (dielectric property) of the plants changes and local temperature directly impacts crop growth and hence the development stages.

  9. Titan Topography: A Comparison Between Cassini Altimeter and SAR Imaging from Two Titan Flybys

    NASA Astrophysics Data System (ADS)

    Gim, Y.; Stiles, B.; Callahan, P. S.; Johnson, W. T.; Hensley, S.; Hamilton, G.; West, R.; Alberti, G.; Flamini, E.; Lorenz, R. D.; Zebker, H. A.; Cassini RADAR Team

    2007-12-01

    The Cassini RADAR has collected twelve altimeter data sets of Titan since the beginning of the Saturn Tour in 2004. Most of the altimeter measurements were made at high altitudes, from 4,000 km to 15,000 km, resulting in low spatial resolutions due to beam footprint sizes larger than 20 km, as well as short ground tracks less than 600 km. One flyby (T30) was dedicated to altimeter data collection from 15,000 km to the closest approach altitude of 950 km. This produced a beam footprint size of 6 km at the lowest altitude and an altimeter ground track of about 3,500 km covering Titan's surface from near the equator to high latitude areas near Titan's north pole. More importantly, the ground track is located inside the SAR swath viewed from an earlier Titan flyby (T28). This provides a rare opportunity to investigate Titan topography with a relatively high spatial resolution and compare nadir-looking altimeter data with side-looking SAR imaging. From altimeter data, we have measured the mean Titan radius of 2575.1 km +/- 0.1 km and observed rather complex topographical variations over a short distance. By comparing altimeter data and SAR images at altitudes below 2,000 km, we have found that there is a strong correlation between SAR brightness and altimeter waveform; SAR dark areas correspond to strong and sharp altimeter waveforms while SAR bright areas correspond to weak and diffused altimeter waveforms. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically, and studied extensively in the field. High resolution TerraSAR-X (TSX) images covering the entire research area were acquired for the period of 2011 to 2012. Analysis was performed in imaging processing and GIS software. The coherence results display minor changes on the dune crest (0.42-0.49), compared to bigger changes in windward slope (0.31-0.37). The level of change depends on the dune location relative to its distance from the sea. Furthermore, the coherence results show decreasing over time. Field results indicate erosion/deposition of sand ranging from -99 to 137 mm/year. The results of this study confirm that it is possible to monitor subtle changes in sand dunes and to identify dune stability or instability, only by the use of SAR images, even in areas characterized by low coherence.

  11. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  12. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.

  13. Radar Image of Galapagos Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image showing part of Isla Isabella in the western Galapagos Islands. It was taken by the L-band radar in HH polarization from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar on the 40th orbit of the space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees.

    The western Galapagos Islands, which lie about 1,200 kilometers (750 miles) west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii. Since the time of Charles Darwin's visit to the area in 1835, there have been over 60 recorded eruptions of these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. A small portion of Isla Fernandina is visible in the extreme upper left corner of the image.

    The Galapagos Islands are one of the SIR-C/X-SAR supersites and data of this area will be taken several times during the flight to allow scientists to conduct topographic change studies and to search for different lava flow types, ash deposits and fault lines.

    Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  14. Displaying radiologic images on personal computers: image storage and compression--Part 2.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.

  15. ERS-1 SAR monitoring of ice growth on shallow lakes to determine water depth and availability in north west Alaska

    NASA Technical Reports Server (NTRS)

    Jeffries, Martin; Morris, Kim; Liston, Glen

    1996-01-01

    Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.

  16. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then, A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  17. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then , A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  18. A computerized scheme of SARS detection in early stage based on chest image of digital radiograph

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Lan, Rihui; Lv, Guozheng

    2004-05-01

    A computerized scheme for early severe acute respiratory syndrome(SARS) lesion detection in digital chest radiographs is presented in this paper. The total scheme consists of two main parts: the first part is to determine suspect lesions by the theory of locally orderless images(LOI) and their spatial features; the second part is to select real lesions among these suspect ones by their frequent features. The method we used in the second part is firstly developed by Katsuragawa et al with necessary modification. Preliminary results indicate that these features are good criterions to tell early SARS lesions apart from other normal lung structures.

  19. Preliminary analysis of the sensitivity of AIRSAR images to soil moisture variations

    NASA Technical Reports Server (NTRS)

    Pardipuram, Rajan; Teng, William L.; Wang, James R.; Engman, Edwin T.

    1993-01-01

    Synthetic Aperture Radar (SAR) images acquired from various sources such as Shuttle Imaging Radar B (SIR-B) and airborne SAR (AIRSAR) have been analyzed for signatures of soil moisture. The SIR-B measurements have shown a strong correlation between measurements of surface soil moisture (0-5 cm) and the radar backscattering coefficient sigma(sup o). The AIRSAR measurements, however, indicated a lower sensitivity. In this study, an attempt has been made to investigate the causes for this reduced sensitivity.

  20. Mining Land Subsidence Monitoring Using SENTINEL-1 SAR Data

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Wang, Q.; Fan, J.; Li, H.

    2017-09-01

    In this paper, DInSAR technique was used to monitor land subsidence in mining area. The study area was selected in the coal mine area located in Yuanbaoshan District, Chifeng City, and Sentinel-1 data were used to carry out DInSAR techniqu. We analyzed the interferometric results by Sentinel-1 data from December 2015 to May 2016. Through the comparison of the results of DInSAR technique and the location of the mine on the optical images, it is shown that DInSAR technique can be used to effectively monitor the land subsidence caused by underground mining, and it is an effective tool for law enforcement of over-mining.

  1. InSAR datum connection using GNSS-augmented radar transponders

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2018-01-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  2. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  3. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochen; Shao, Yun; Tian, Wei; Li, Kun

    2018-06-01

    This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China's Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.

  4. Burnt area mapping from ERS-SAR time series using the principal components transformation

    NASA Astrophysics Data System (ADS)

    Gimeno, Meritxell; San-Miguel Ayanz, Jesus; Barbosa, Paulo M.; Schmuck, Guido

    2003-03-01

    Each year thousands of hectares of forest burnt across Southern Europe. To date, remote sensing assessments of this phenomenon have focused on the use of optical satellite imagery. However, the presence of clouds and smoke prevents the acquisition of this type of data in some areas. It is possible to overcome this problem by using synthetic aperture radar (SAR) data. Principal component analysis (PCA) was performed to quantify differences between pre- and post- fire images and to investigate the separability over a European Remote Sensing (ERS) SAR time series. Moreover, the transformation was carried out to determine the best conditions to acquire optimal SAR imagery according to meteorological parameters and the procedures to enhance burnt area discrimination for the identification of fire damage assessment. A comparative neural network classification was performed in order to map and to assess the burnts using a complete ERS time series or just an image before and an image after the fire according to the PCA. The results suggest that ERS is suitable to highlight areas of localized changes associated with forest fire damage in Mediterranean landcover.

  5. Wavelet Analysis of SAR Images for Coastal Monitoring

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.

    1998-01-01

    The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.

  6. Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters

    NASA Astrophysics Data System (ADS)

    James, S. F.

    2017-11-01

    Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.

  7. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  8. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    NASA Astrophysics Data System (ADS)

    Bahr, Thomas

    2014-05-01

    The use of SAR data has become increasingly popular in recent years and in a wide array of industries. Having access to SAR can be highly important and critical especially for public safety. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. SAR imaging offers the great advantage, over its optical counterparts, of not being affected by darkness, meteorological conditions such as clouds, fog, etc., or smoke and dust, frequently associated with disaster zones. In this paper we present the operational processing of SAR data within a GIS environment for rapid disaster mapping. For this technique we integrated the SARscape modules for ENVI with ArcGIS®, eliminating the need to switch between software packages. Thereby the premier algorithms for SAR image analysis can be directly accessed from ArcGIS desktop and server environments. They allow processing and analyzing SAR data in almost real time and with minimum user interaction. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. The Bacchiglione River burst its banks on Nov. 2nd after two days of heavy rainfall throughout the northern Italian region. The community of Bovolenta, 22 km SSE of Padova, was covered by several meters of water. People were requested to stay in their homes; several roads, highways sections and railroads had to be closed. The extent of this flooding is documented by a series of Cosmo-SkyMed acquisitions with a GSD of 2.5 m (StripMap mode). Cosmo-SkyMed is a constellation of four Earth observation satellites, allowing a very frequent coverage, which enables monitoring using a very high temporal resolution. This data is processed in ArcGIS using a single-sensor, multi-mode, multi-temporal approach consisting of 3 steps: (1) The single images are filtered with a Gamma DE-MAP filter. (2) The filtered images are geocoded using a reference DEM without the need of ground control points. This step includes radiometric calibration. (3) A subsequent change detection analysis generates the final map showing the extent of the flash flood on Nov. 5th 2010. The underlying algorithms are provided by three different sources: Geocoding & radiometric calibration (2) is a standard functionality from the commercial SARscape Toolbox for ArcGIS. This toolbox is extended by the filter tool (1), which is called from the SARscape modules in ENVI. The change detection analysis (3) is based on ENVI processing routines and scripted with IDL. (2) and (3) are integrated with ArcGIS using a predefined Python interface. These 3 processing steps are combined using the ArcGIS ModelBuilder to create a new model for rapid disaster mapping in ArcGIS, based on SAR data. Moreover, this model can be dissolved from its desktop environment and published to users across the ArcGIS Server enterprise. Thus disaster zones, e.g. after severe flooding, can be automatically identified and mapped to support local task forces - using an operational workflow for SAR image analysis, which can be executed by the responsible operators without SAR expert knowledge.

  9. Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco

    2013-04-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may present other critical aspects. Searching for low SAR backscatter areas only may cause inaccuracies because flooded soils do not always act as smooth open water bodies. The presence of wind or of vegetation emerging above the water surface may give rise to an increase of the radar backscatter. In particular, mapping flooded vegetation using SAR data may represent a difficult task since backscattering phenomena in the volume between canopy, trunks and floodwater are quite complex in the presence of vegetation. A typical phenomenon is the double-bounce effect involving soil and stems or trunks, which is generally enhanced by the floodwater, so that flooded vegetation may appear very bright in a SAR image. Even in the absence of dense vegetation or wind, some regions may appear dark because of artefacts due to topography (shadowing), absorption caused by wet snow, and attenuation caused by heavy precipitating clouds (X-band SARs). Examples of the aforementioned effects that may limit the reliability of flood maps will be presented at the conference and some indications to deal with these effects (e.g. presence of vegetation and of artefacts) will be provided.

  10. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  11. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  12. Mapping and monitoring renewable resources with space SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  13. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  14. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  15. Comparisons between wave directional spectra from SAR and pressure sensor arrays

    NASA Technical Reports Server (NTRS)

    Pawka, S. S.; Inman, D. L.; Hsiao, S. V.; Shemdin, O. H.

    1980-01-01

    Simultaneous directional wave measurements were made at Torrey Pines Beach, California, by a synthetic aperture radar (SAR) and a linear array of pressure sensors. The measurements were conducted during the West Coast Experiment in March 1977. Quantitative comparisons of the normalized directional spectra from the two systems were made for wave periods of 6.9-17.0 s. The comparison results were variable but generally showed good agreement of the primary mode of the normalized directional energy. An attempt was made to quantify the physical criteria for good wave imaging in the SAR. A frequency band analysis of wave parameters such as band energy, slope, and orbital velocity did not show good correlation with the directional comparisons. It is noted that absolute values of the wave height spectrum cannot be derived from the SAR images yet and, consequently, no comparisons of absolute energy levels with corresponding array measurements were intended.

  16. InSAR Maps of Deformation Covering Raft River, Idaho from 2007 to 2010

    DOE Data Explorer

    Reinisch, Elena C. (ORCID:0000000252211921)

    2007-03-11

    This dataset contains maps of deformation covering Raft River, Idaho from 2007 to 2010 calculated from interferometric synthetic aperture radar data. This dataset is used in the study entitled "Inferring geothermal reservoir processes at the Raft River Geothermal Field, Idaho, USA through modeling InSAR-measured surface deformation" by F. Liu, et al. This dataset was derived from raw SAR data from the Envisat satellite missions operated by the European Space Agency (ESA) that are copyrighted by ESA and were provided through the WInSAR consortium at the UNAVCO facility. All pair directories use the image acquired on 3/11/2007 as a reference image. To view specific information for each grd file, please use the GMT command "grdinfo" - e.g., for grd file In20070311_20071111/drho_utm.grd, use terminal command: grdinfo In20070311_20071111/drho_utm.grd

  17. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  18. Characterization of steel rebar spacing using synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang

    2018-03-01

    Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.

  19. Integrated Shoreline Extraction Approach with Use of Rasat MS and SENTINEL-1A SAR Images

    NASA Astrophysics Data System (ADS)

    Demir, N.; Oy, S.; Erdem, F.; Şeker, D. Z.; Bayram, B.

    2017-09-01

    Shorelines are complex ecosystems and highly important socio-economic environments. They may change rapidly due to both natural and human-induced effects. Determination of movements along the shoreline and monitoring of the changes are essential for coastline management, modeling of sediment transportation and decision support systems. Remote sensing provides an opportunity to obtain rapid, up-to-date and reliable information for monitoring of shoreline. In this study, approximately 120 km of Antalya-Kemer shoreline which is under the threat of erosion, deposition, increasing of inhabitants and urbanization and touristic hotels, has been selected as the study area. In the study, RASAT pansharpened and SENTINEL-1A SAR images have been used to implement proposed shoreline extraction methods. The main motivation of this study is to combine the land/water body segmentation results of both RASAT MS and SENTINEL-1A SAR images to improve the quality of the results. The initial land/water body segmentation has been obtained using RASAT image by means of Random Forest classification method. This result has been used as training data set to define fuzzy parameters for shoreline extraction from SENTINEL-1A SAR image. Obtained results have been compared with the manually digitized shoreline. The accuracy assessment has been performed by calculating perpendicular distances between reference data and extracted shoreline by proposed method. As a result, the mean difference has been calculated around 1 pixel.

  20. Deep learning model-based algorithm for SAR ATR

    NASA Astrophysics Data System (ADS)

    Friedlander, Robert D.; Levy, Michael; Sudkamp, Elizabeth; Zelnio, Edmund

    2018-05-01

    Many computer-vision-related problems have successfully applied deep learning to improve the error rates with respect to classifying images. As opposed to optically based images, we have applied deep learning via a Siamese Neural Network (SNN) to classify synthetic aperture radar (SAR) images. This application of Automatic Target Recognition (ATR) utilizes an SNN made up of twin AlexNet-based Convolutional Neural Networks (CNNs). Using the processing power of GPUs, we trained the SNN with combinations of synthetic images on one twin and Moving and Stationary Target Automatic Recognition (MSTAR) measured images on a second twin. We trained the SNN with three target types (T-72, BMP2, and BTR-70) and have used a representative, synthetic model from each target to classify new SAR images. Even with a relatively small quantity of data (with respect to machine learning), we found that the SNN performed comparably to a CNN and had faster convergence. The results of processing showed the T-72s to be the easiest to identify, whereas the network sometimes mixed up the BMP2s and the BTR-70s. In addition we also incorporated two additional targets (M1 and M35) into the validation set. Without as much training (for example, one additional epoch) the SNN did not produce the same results as if all five targets had been trained over all the epochs. Nevertheless, an SNN represents a novel and beneficial approach to SAR ATR.

  1. Improved interior wall detection using designated dictionaries in compressive urban sensing problems

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-05-01

    In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.

  2. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  3. Sparse 4D TomoSAR imaging in the presence of non-linear deformation

    NASA Astrophysics Data System (ADS)

    Khwaja, Ahmed Shaharyar; ćetin, Müjdat

    2018-04-01

    In this paper, we present a sparse four-dimensional tomographic synthetic aperture radar (4D TomoSAR) imaging scheme that can estimate elevation and linear as well as non-linear seasonal deformation rates of scatterers using the interferometric phase. Unlike existing sparse processing techniques that use fixed dictionaries based on a linear deformation model, we use a variable dictionary for the non-linear deformation in the form of seasonal sinusoidal deformation, in addition to the fixed dictionary for the linear deformation. We estimate the amplitude of the sinusoidal deformation using an optimization method and create the variable dictionary using the estimated amplitude. We show preliminary results using simulated data that demonstrate the soundness of our proposed technique for sparse 4D TomoSAR imaging in the presence of non-linear deformation.

  4. Three dimensional perspective view of portion of western Galapagos Islands

    NASA Image and Video Library

    1994-04-18

    STS059-S-085 (18 April 1994) --- This is a three-dimensional perspective view of part of Isla Isabela in the western Galapagos Islands. It was taken by the L-Band radar in HH polarization from the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) on the 40th orbit of the Space Shuttle Endeavour. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The image is centered at about .5 degrees south latitude and 91 degrees west longitude, and covers an area of 75 by 60 kilometers. The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1200 kilometers west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii. Since the time of Charles Darwin's visit to the area in 1835, there have been over 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. The Galapagos Islands are one of the SIR-C/X-SAR supersites and data of this area will be taken several times during the flight to allow scientists to conduct topographic change studies and to search for different lava flow types, ash deposits and fault lines. SIR-C/X-SAR is part of NASA's Mission to Planet Earth (MTPE). SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies for the German Space Agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL Photo ID: P-43938

  5. Monitoring of land subsidence in Ravenna Municipality using two different DInSAR techniques: comparison and discussion of the results.

    NASA Astrophysics Data System (ADS)

    Fiaschi, Simone; Di Martire, Diego; Tessitore, Serena; Achilli, Vladimiro; Ahmed, Ahmed; Borgstrom, Sven; Calcaterra, Domenico; Fabris, Massimo; Ramondini, Massimo; Serpelloni, Enrico; Siniscalchi, Valeria; Floris, Mario

    2015-04-01

    Land subsidence affecting the Ravenna Municipality (Emilia Romagna Region, NE Italy) is one of the best example on how the exploitation of natural resources can affect the environment and the territory. In fact, the pumping of groundwater and the extraction of gas from both on and off-shore reservoirs, started in the 1950s, have caused a strong land subsidence affecting most of the Emilia Romagna territory but in particular the Adriatic Sea coastline near Ravenna. In such area the current subsidence rate, even if lower than in the past, can reach the -2cm/y. Local Authorities have monitored this phenomenon over the years with different techniques: spirit levelling, GPS surveys and, more recently, Interferometric Synthetic Aperture Radar (InSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with two different DInSAR techniques applied to the study of the land subsidence in the Ravenna territory: the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques. The SBAS works on SARscape software and is based on the Berardino et al., 2002 algorithm. This technique relies on the combination of differential interferograms created from stacks of SAR image pairs that have small temporal and perpendicular baselines. Thanks to the application of several interferograms for every single image, it is possible to obtain high spatial coherence, high data density and more effective error reduction. This allows us to obtain mean velocity maps with good data density even over non-urbanized territories. For the CPT we used the SUBsoft processor based on the algorithm implemented by Mora et al., 2003. CPT is able to extract from a stack of differential interferograms the deformation evolution over wide areas during large time spans. The processing scheme is composed of three main steps: a) the generation of the best interferogram set among all the available images of the zone under study; b) the selection of the pixels with reliable phase within the employed interferograms and, c) their phase analysis to calculate, as the main result, their deformation time series within the observation period. For this study, different SAR images have been used: 25 meters ground resolution ERS 1/2 (1992-2000) and ENVISAT (2003-2010), and 3 meters ground resolution TerraSAR-X (2012-2014). The results obtained for each stack of images with the two techniques are validated and compared with the C-GPS time series of more than three benchmarks stations. The aim is to test the two InSAR techniques in the monitoring of ground settlements in low urbanized territories. Furthermore, we have investigated the advantages (data accuracy and density) of using SAR images with higher ground resolution.

  6. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  7. Foldbelt exploration with synthetic aperture radar (SAR) in Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.M.; Pruett, F.D.

    1987-05-01

    Synthetic aperture radar (SAR) is being successfully used within the southern fold and thrust belt of Papua New Guinea to map surface structure and stratigraphy and to help plan a hydrocarbon exploration program. The airborne SAR imagery, along with other surface data, is used as a primary exploration tool because acquisition of acceptable seismic data is extremely costly due to extensive outcrops of Tertiary Darai Limestone which develops rugged karst topography. Most anticlines in the licenses are capped with this deeply karstified limestone. The region is ideally suited to geologic analysis using remote sensing technology. The area is seldom cloudmore » free and is covered with tropical rain forest, and geologic field studies are limited. The widespread karst terrain is exceedingly dangerous, if not impossible, to traverse on the ground. SAR is used to guide ongoing field work, modeling of subsurface structure, and selection of well locations. SAR provides their explorationists with an excellent data base because (1) structure is enhanced with low illumination, (2) resolution is 6 x 12 m, (3) digital reprocessing is possible, (4) clouds are penetrated by the SAR, and (5) the survey was designed for stereoscopic photogeology. Landsat images and vertical aerial photographs complement SAR but provide subdued structural information because of minimal shadowing (due to high sun angles) and the jungle cover. SAR imagery reveals large-scale mass wasting that has led to a reevaluation of previously acquired field data. Lithologies can be recognized by textural and tonal changes on the SAR images despite near-continuous canopy of jungle. Reprocessing and contrast stretching of the digital radar imagery provide additional geologic information.« less

  8. Processing techniques for software based SAR processors

    NASA Technical Reports Server (NTRS)

    Leung, K.; Wu, C.

    1983-01-01

    Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.

  9. Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran

    NASA Astrophysics Data System (ADS)

    Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter

    2016-08-01

    This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.

  10. Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin

    2014-05-01

    Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination of multi-frequency SAR datasets allows a long record (~20 years) of historic deformation to be measured over a large region. Ultimately this should help inform land managers in assessing land subsidence and planning appropriate remedial measures.

  11. Ice/water Classification of Sentinel-1 Images

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan

    2015-04-01

    Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification were revealed; * the best set of parameters including the window size, number of levels of quantization of sigma0 values and co-occurence distance was found; * a support vector machine (SVM) was trained on results of visual classification of 30 Sentinel-1 images. Despite the general high accuracy of the neural network (95% of true positive classification) problems with classification of young newly formed ice and rough water arise due to the similar average backscatter and texture. Other methods of smoothing and computation of texture characteristics (e.g. computation of GLCM from a variable size window) is assessed. The developed scheme will be utilized in NRT processing of Sentinel-1 data at NERSC within the MyOcean2 project.

  12. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  13. Research on vehicle detection based on background feature analysis in SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Bochuan; Tang, Bo; Zhang, Cong; Hu, Ruiguang; Yun, Hongquan; Xiao, Liping

    2017-10-01

    Aiming at vehicle detection on the ground through low resolution SAR images, a method is proposed for determining the region of the vehicles first and then detecting the target in the specific region. The experimental results show that this method not only reduces the target detection area, but also reduces the influence of terrain clutter on the detection, which greatly improves the reliability of the target detection.

  14. Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA

  15. A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance

    PubMed Central

    Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng

    2016-01-01

    The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385

  16. What InSAR time-series methods are best suited for the Ecuadorian volcanoes

    NASA Astrophysics Data System (ADS)

    Mirzaee, S.; Amelung, F.

    2017-12-01

    Ground displacement measurements from stacks of SAR images obtained using interferometric time-series approaches play an increasingly important role for volcanic hazard assessment. The inflation of the ground surface can indicate that magma ascends to shallower levels and that a volcano gets ready for an eruption. Commonly used InSAR time-series approaches include Small Baseline (SB), Persistent Scatter InSAR (PSI) and SqueeSAR methods but it remains unclear which approach is best suited for volcanic environments. On this poster we present InSAR deformation measurements for the active volcanoes of Ecuador (Cotopaxi, Tungurahua and Pichincha) using a variety of INSAR time-series methods. We discuss the pros and cons of each method given the available data stacks (TerraSAR-X, Cosmo-Skymed and Sentinel-1) in an effort to design a comprehensive observation strategy for the Ecuadorian volcanoes. SAR data are provided in the framework of the Group on Earth Observation's Ecuadorian Volcano Geohazard Supersite.

  17. The Alaska SAR processor - Operations and control

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1989-01-01

    The Alaska SAR (synthetic-aperture radar) Facility (ASF) will be capable of receiving, processing, archiving, and producing a variety of SAR image products from three satellite-borne SARs: E-ERS-1 (ESA), J-ERS-1 (NASDA) and Radarsat (Canada). Crucial to the success of the ASF is the Alaska SAR processor (ASP), which will be capable of processing over 200 100-km x 100-km (Seasat-like) frames per day from the raw SAR data, at a ground resolution of about 30 m x 30 m. The processed imagery is of high geometric and radiometric accuracy, and is geolocated to within 500 m. Special-purpose hardware has been designed to execute a SAR processing algorithm to achieve this performance. This hardware is currently undergoing acceptance testing for delivery to the University of Alaska. Particular attention has been devoted to making the operations semi-automated and to providing a friendly operator interface via a computer workstation. The operations and control of the Alaska SAR processor are described.

  18. Understanding the Future Market for NovaSAR-S Flood Mapping Products Using Data Mining and Simulation

    NASA Astrophysics Data System (ADS)

    Lavender, Samantha; Haria, Kajal; Cooksley, Geraint; Farman, Alex; Beaton, Thomas

    2016-08-01

    The aim was to understand a future market for NovaSAR-S, with a particular focus on flood mapping, through developing a simple Synthetic Aperture Radar (SAR) simulator that can be used in advance of NovaSAR-S data becoming available.The return signal was determined from a combination of a terrain or elevation model, Envisat S-Band Radar Altimeter (RA)-2, Landsat and CORINE land cover information; allowing for a simulation of a SAR image that's influenced by both the geometry and surface type. The test sites correspond to data from the 2014 AirSAR campaign, and validation is performed by using AirSAR together with Envisat Advanced (ASAR) and Advanced Land Observing Satellite "Daichi" (ALOS) Phased Array type L-Band Synthetic Aperture Radar (PALSAR) data.It's envisaged that the resulting simulated data, and the simulator, will not only aid early understanding of NovaSAR-S, but will also aid the development of flood mapping applications.

  19. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  20. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  1. VIP tour of NASA DFRC's DC-8 during the AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-03

    VIP tour of NASA DFRC's DC-8 airborne laboratory during the AirSAR 2004 Mesoamerica campaign given by Craig Dobson, NASA Program Manager for AirSAR, L-R: Dr. Sonia Marta Mora, President of the Costa Rican National Rector’s Council; NASA Administrator Sean O'Keefe; Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); Mr. John Danilovich, US Ambassador to Costa Rica; and Dobson. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  2. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  3. High-quality JPEG compression history detection for fake uncompressed images

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan

    2017-05-01

    Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.

  4. Custom large scale integrated circuits for spaceborne SAR processors

    NASA Technical Reports Server (NTRS)

    Tyree, V. C.

    1978-01-01

    The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for missions such as SEASAT-A, Venus orbital imaging radar (VOIR), and shuttle imaging radar (SIR) are summarized. Several azimuth correlator architectures that are suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft applications are reported in the context of expected space mission launch dates. The preliminary design of a custom LSI time-domain azimuth correlator device (ACD) being developed for use in future SAR processors is detailed.

  5. SEASAT synthetic-aperture radar data user's manual

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Huneycutt, B.; Holt, B. M.; Held, D. N.

    1983-01-01

    The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data.

  6. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  7. SAR processing in the cloud for oil detection in the Arctic

    NASA Astrophysics Data System (ADS)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  8. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR

    PubMed Central

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-01-01

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447

  9. Monitoring of landslide deformation based on the coherent targets of high resolution InSAR data

    NASA Astrophysics Data System (ADS)

    Fan, Jinghui; Xia, Ye; Zhao, Hongli; Li, Man; Wang, Yi; Guo, Xiaofang; Tu, Pengfei; Liu, Guang; Lin, Hao

    2014-05-01

    Landslides are a kind of typical natural disaster in China, which pose serious threats to civil lives, property and living environment. Therefore, the identification, monitoring and prevention of landslides have been considered as a long-term geological work for the public welfare. In this article, 8 TerraSAR-X high resolution strip-map mode images, acquired in the period from January to March 2012 and covering Fanjinping landslide in Zigui county, Hubei province, were used to test the usability in monitoring the deformation of single landslide. The results of two-pass DInSAR sketched the region and the shape of the deformation field of Fanjiaping landslide. Corner reflectors' linear deformation rate using CRInSAR method could be approximately validated by the in-situ GPS measurements. From the coherent pixels' linear deformation rate map, it was inferred that the deformation could be more obvious in the tail of the Muyubao landslide while the lowest frontier of this landslide might prevent the slide. Due to its shorter revisiting period and high bandwidth,,the high resolution TerraSAR-X images can keep better coherence than previous satellite SAR data in the test area and provide basic guarantee to monitor the deformation of single landslides.

  10. Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery

    USGS Publications Warehouse

    Yang, L.; Jiang, L.; Lin, H.; Liao, M.

    2009-01-01

    In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas.

  11. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Jr.

    1996-02-01

    In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation ofmore » maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.« less

  12. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.

    PubMed

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-02-11

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.

  13. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen

    2014-01-01

    Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259

  14. The Advanced Rapid Imaging and Analysis (ARIA) Project: Providing Standard and On-Demand SAR products for Hazard Science and Hazard Response

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.

    2017-12-01

    A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.

  15. Analysing surface deformation in Surabaya from sentinel-1A data using DInSAR method

    NASA Astrophysics Data System (ADS)

    Anjasmara, Ira Mutiara; Yusfania, Meiriska; Kurniawan, Akbar; Resmi, Awalina L. C.; Kurniawan, Roni

    2017-07-01

    The rapid population growth and increasing industrial space in the urban area of Surabaya have caused an excessive ground water use and load of infrastructures. This condition triggers surface deformation, especially the vertical deformation (subsidence or uplift), in Surabaya and its surroundings. The presence of dynamic processes of the Earth and geological form of Surabaya area can also fasten the rate of the surface deformation. In this research, Differential Interferometry Synthetic Aperture Radar (DInSAR) method is chosen to infer the surface deformation over Surabaya area. The DInSAR processing utilized Sentinel 1A satellite images from May 2015 to September 2016 using two-pass interferometric. Two-pass interferometric method is a method that uses two SAR imageries and Digital Elevation Model (DEM). The results from four pairs of DInSAR processing indicate the occurrence of surface deformation in the form of land subsidence and uplift based on the displacement Line of Sight (LOS) in Surabaya. The average rate of surface deformation from May 2015 to September 2016 varies from -3.52 mm/4months to +2.35 mm/4months. The subsidence mostly occurs along the coastal area. However, the result still contains errors from the processing of displacement, due to the value of coherence between the image, noise, geometric distortion of a radar signal and large baseline on image pair.

  16. Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Le, Charles

    2008-01-01

    Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.

  17. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA

    USGS Publications Warehouse

    Zhao, Chaoying; Lu, Zhong; Zhang, Qin; de la Fuente, Juan

    2012-01-01

    Multi-temporal ALOS/PALSAR images are used to automatically investigate landslide activity over an area of ~ 200 km by ~ 350 km in northern California and southern Oregon. Interferometric synthetic aperture radar (InSAR) deformation images, InSAR coherence maps, SAR backscattering intensity images, and a DEM gradient map are combined to detect active landslides by setting individual thresholds. More than 50 active landslides covering a total of about 40 km2 area are detected. Then the short baseline subsets (SBAS) InSAR method is applied to retrieve time-series deformation patterns of individual detected landslides. Down-slope landslide motions observed from adjacent satellite tracks with slightly different radar look angles are used to verify InSAR results and measurement accuracy. Comparison of the landslide motion with the precipitation record suggests that the landslide deformation correlates with the rainfall rate, with a lag time of around 1–2 months between the precipitation peak and the maximum landslide displacement. The results will provide new insights into landslide mechanisms in the Pacific Northwest, and facilitate development of early warning systems for landslides under abnormal rainfall conditions. Additionally, this method will allow identification of active landslides in broad areas of the Pacific Northwest in an efficient and systematic manner, including remote and heavily vegetated areas difficult to inventory by traditional methods.

  18. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  19. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  20. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    NASA Astrophysics Data System (ADS)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

Top