Sample records for satellite applications project

  1. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  2. The Evolution of Successful Satellite Science to Air Quality Application Projects: From Inception to Realization

    NASA Astrophysics Data System (ADS)

    Soja, A. J.

    2012-12-01

    Teams of scientist have been working for almost a decade with state, local, regional and federal Air Quality regulators and scientists on several projects that have been focused on improving biomass burning emissions within our nation's National Emissions Inventory (NEI). Initially, the NEI was based strictly on ground-based information that often used data aggregated from previous years reported at the county-centroid and completely ignored the spatial domain of all fires. This methodology resulted in gross inaccuracies; however it was an ingrained system and the users and organizations were largely comfortable. Improvements were viewed as too costly. Our task was to convince regulators, managers and users of the value that could be added by using satellite data to enhance the NEI. Certainly, there were individuals that understood the value of using satellite data, but they needed support to convince the establishment of the intrinsic, cost-effective value of publically-available satellite data. It was essential to present arguments, as well as requested verification and validation statistics, in the format that most suited the objectives of application organizations. This process incorporated: knowledge of state-of-the-art satellite data, algorithms and science; a working knowledge of the users applications and requirements; interacting with individuals with a variety of skill sets and goals; and perhaps most importantly, listening to the goals and responsibilities of the user community and fully communicating. Today, the Environmental Protection Agency and several state and regional organizations are using satellite data to estimate biomass burnings emissions at daily and annual scales for a number of critical environmental management and policy activities including regulation setting and regional strategy development for attainment of the National Ambient Air Quality Standards (NAAQS). We continue to work at the local, state and federal levels to improve the

  3. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia

    NASA Astrophysics Data System (ADS)

    Gershenzon, O.

    2011-12-01

    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  4. Tethered Satellite System Project Overview

    NASA Technical Reports Server (NTRS)

    Laue, J. H.

    1985-01-01

    The Skyhook concept is reviewed and the use of a tethered satellite system (TSS) to enable scientific investigations from the shuttle using a closed loop control system is examined. The tethered satellite system has capabilities for deployment toward or away from Earth, for multiple round trip missions, and for deployment at distances up to 100 KN from the orbiter. The deployer, which consists of an entendable boom, a reel for the tether, and the tether itself, permits deployment and retrieval at a safe distance, allows alignment of the force vector of the tether through the center of gravity of the shuttle, and gives some initial gravity gradient separation to aid in deployment and ultimate retrieval of the tethered satellite. Charts show TSS activities in terms of systems studies, key guidelines, Italian and U.S. responsibilities, user activities, and major science and applications accommodation features. Scientific objectives for TSS-1 and TSS-2 verification missions and the current status of the project are also given.

  5. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  6. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Astrophysics Data System (ADS)

    McDonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  7. Ozone Satellite Data Synergy and Combination with Non-satellite Data in the AURORA project

    NASA Astrophysics Data System (ADS)

    Cortesi, U.; Tirelli, C.; Arola, A.; Dragani, R.; Keppens, A.; Loenen, E.; Masini, A.; Tsiakos, , C.; van der A, R.; Verberne, K.

    2017-12-01

    The geostationary satellite constellation composed of TEMPO (North America), SENTINEL-4 (Europe) and GEMS (Asia) missions is a major instance of space component in the fundamentally new paradigm aimed at integrating information on air quality from a wide variety of sources. Space-borne data on tropospheric composition from new generation satellites have a growing impact in this context because of their unprecedented quantity and quality, while merging with non-satellite measurements and other types of auxiliary data via state-of-the-art modelling capabilities remains essential to fit the purpose of highly accurate information made readily available at high temporal and spatial resolution, both in analysis and forecast mode. Proper and effective implementation of this paradigm poses severe challenges to science, technology and applications that must be addressed in a closely interconnected manner to pave the way to high quality products and innovative services. Novel ideas and tools built on these three pillars are currently under investigation in the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) Horizon 2020 project of the European Commission. The primary goal of the project is the proof of concept of a synergistic approach to the exploitation of Sentinel-4 and -5 Ozone measurements in the UV, Visible and Thermal Infrared based on the combination of an innovative data fusion method and assimilation models. The scientific objective shares the same level of priority with the technological effort to realize a prototype data processor capable to manage the full data processing chain and with the development of two downstream applications for demonstration purposes. The presentation offers a first insight in mid-term results of the project, which is mostly based on the use of synthetic data from the atmospheric Sentinels. Specific focus is given to the role of satellite data synergy in integrated systems for air quality monitoring, in

  8. Dynamic system simulation of small satellite projects

    NASA Astrophysics Data System (ADS)

    Raif, Matthias; Walter, Ulrich; Bouwmeester, Jasper

    2010-11-01

    A prerequisite to accomplish a system simulation is to have a system model holding all necessary project information in a centralized repository that can be accessed and edited by all parties involved. At the Institute of Astronautics of the Technische Universitaet Muenchen a modular approach for modeling and dynamic simulation of satellite systems has been developed called dynamic system simulation (DySyS). DySyS is based on the platform independent description language SysML to model a small satellite project with respect to the system composition and dynamic behavior. A library of specific building blocks and possible relations between these blocks have been developed. From this library a system model of the satellite of interest can be created. A mapping into a C++ simulation allows the creation of an executable system model with which simulations are performed to observe the dynamic behavior of the satellite. In this paper DySyS is used to model and simulate the dynamic behavior of small satellites, because small satellite projects can act as a precursor to demonstrate the feasibility of a system model since they are less complex compared to a large scale satellite project.

  9. Iowa satellite project ISAT-1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.

  10. Spacecraft design project: High latitude communications satellite

    NASA Technical Reports Server (NTRS)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  11. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    NASA Astrophysics Data System (ADS)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  12. The Cooperative Satellite Learning Project.

    ERIC Educational Resources Information Center

    Caler, Michelle

    This document describes the Cooperative Satellite Learning Project (CSLP) which is designed to educate students in the areas of space science, engineering, and technology in a business-like atmosphere. The project is a partnership between the National Aeronautics and Space Association (NASA), Allied Signal Technical Services Corporation, and…

  13. ARJIS satellite demonstration project

    NASA Astrophysics Data System (ADS)

    Severance, Steve; Williams, Carl

    2005-06-01

    In 2003, the California Space Authority (CSA) was provided funding by the U. S. Congress through the Defense Appropriations Act to develop a project that would demonstrate the U.S. space enterprise capability that would contribute to the effectiveness of those engaged in Homeland Security. The project was given broad latitude in selecting the area of Homeland Security to be addressed and the nature of the space technology to be applied. CSA became aware of a nascent law enforcement data-sharing project in the San Diego region known as the Automated Regional Justice Information System (ARJIS). First developed by the police departments in San Diego, ARJIS is an innovative system that shares criminal justice information among 50 federal, state, and local agencies. ARJIS was completing a pilot project that enabled officers to receive information on handheld computers, which was transmitted wirelessly through cellular networks. The accessed information came from several databases that collectively contained the entire region's crime and arrest reports, traffic citations, and incidents, as well as state and county wants and warrants. The fundamental limitations that plague all cellular-based devices caught CSA's attention and resulted in a cooperative effort to harden the communications link between the patrol officer and critical data. The principal goal of the SATCOM development task was to create a proof-of-concept application that would use SATCOM links to augment the current ARJIS handheld wireless (cellular) capability. The successful technical demonstration and the positive support for satellite communications from the law enforcement community showed that this project filled a need-both for improved information sharing and for highly reliable communications systems.

  14. Tailoring Systems Engineering Projects for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Belvin, Keith

    2013-01-01

    NASA maintains excellence in its spaceflight systems by utilizing rigorous engineering processes based on over 50 years of experience. The NASA systems engineering process for flight projects described in NPR 7120.5E was initially developed for major flight projects. The design and development of low-cost small satellite systems does not entail the financial and risk consequences traditionally associated with spaceflight projects. Consequently, an approach is offered to tailoring of the processes such that the small satellite missions will benefit from the engineering rigor without overly burdensome overhead. In this paper we will outline the approaches to tailoring the standard processes for these small missions and describe how it will be applied in a proposed small satellite mission.

  15. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  16. The telemedicine spacebridge project: A joint US/Russian venture in long distance medicine via satellite

    NASA Technical Reports Server (NTRS)

    Zuzek, John E.; Cauley, Michael A.; Hollansworth, James E.

    1994-01-01

    The Telemedicine Spacebridge Demonstration Project is a joint U.S./Russian program whose purpose is to further the application of telemedicine both internationally, domestically, and in space. The system has been set up to use a Russian satellite over the Atlantic Ocean and a U.S. domestic satellite to allow physicians a two-way video and audio link between various sites of medical centers in the United States and the Central Hospital in Moscow, Russia. This paper contains a description of the project background, the Spacebridge system, the individual pieces of the system, and the operational experience gained thus far in the project.

  17. Satellite Television Demonstration Project.

    ERIC Educational Resources Information Center

    Alaska Governor's Office of Telecommunications, Juneau.

    This report describes the status of this pilot satellite television project for the state of Alaska which provides for the distribution of television programming to the RCA Toll Centers in Anchorage, Fairbanks, Juneau, Sitka, and Bethel, as well as to 23 selected rural sites. The historical background is discussed, as well as the process involved…

  18. Applications systems verification and transfer project. Volume 1: Operational applications of satellite snow cover observations: Executive summary. [usefulness of satellite snow-cover data for water yield prediction

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1981-01-01

    Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.

  19. About Nano-JASMINE Satellite System and Project Status

    NASA Astrophysics Data System (ADS)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  20. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  1. The German joint research project "concepts for future gravity satellite missions"

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  2. The C3PO project: a laser communication system concept for small satellites

    NASA Astrophysics Data System (ADS)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  3. Applications based on restored satellite images

    NASA Astrophysics Data System (ADS)

    Arbel, D.; Levin, S.; Nir, M.; Bhasteker, I.

    2005-08-01

    Satellites orbit the earth and obtain imagery of the ground below. The quality of satellite images is affected by the properties of the atmospheric imaging path, which degrade the image by blurring it and reducing its contrast. Applications involving satellite images are many and varied. Imaging systems are also different technologically and in their physical and optical characteristics such as sensor types, resolution, field of view (FOV), spectral range of the acquiring channels - from the visible to the thermal IR (TIR), platforms (mobilization facilities; aircrafts and/or spacecrafts), altitude above ground surface etc. It is important to obtain good quality satellite images because of the variety of applications based on them. The more qualitative is the recorded image, the more information is yielded from the image. The restoration process is conditioned by gathering much data about the atmospheric medium and its characterization. In return, there is a contribution to the applications based on those restorations i.e., satellite communication, warfare against long distance missiles, geographical aspects, agricultural aspects, economical aspects, intelligence, security, military, etc. Several manners to use restored Landsat 7 enhanced thematic mapper plus (ETM+) satellite images are suggested and presented here. In particular, using the restoration results for few potential geographical applications such as color classification and mapping (roads and streets localization) methods.

  4. Web-Based Satellite Products Database for Meteorological and Climate Applications

    NASA Technical Reports Server (NTRS)

    Phan, Dung; Spangenberg, Douglas A.; Palikonda, Rabindra; Khaiyer, Mandana M.; Nordeen, Michele L.; Nguyen, Louis; Minnis, Patrick

    2004-01-01

    The need for ready access to satellite data and associated physical parameters such as cloud properties has been steadily growing. Air traffic management, weather forecasters, energy producers, and weather and climate researchers among others can utilize more satellite information than in the past. Thus, it is essential that such data are made available in near real-time and as archival products in an easy-access and user friendly environment. A host of Internet web sites currently provide a variety of satellite products for various applications. Each site has a unique contribution with appeal to a particular segment of the public and scientific community. This is no less true for the NASA Langley's Clouds and Radiation (NLCR) website (http://www-pm.larc.nasa.gov) that has been evolving over the past 10 years to support a variety of research projects This website was originally developed to display cloud products derived from the Geostationary Operational Environmental Satellite (GOES) over the Southern Great Plains for the Atmospheric Radiation Measurement (ARM) Program. It has evolved into a site providing a comprehensive database of near real-time and historical satellite products used for meteorological, aviation, and climate studies. To encourage the user community to take advantage of the site, this paper summarizes the various products and projects supported by the website and discusses future options for new datasets.

  5. Potential value of satellite cloud pictures in weather modification projects

    NASA Technical Reports Server (NTRS)

    Biswas, K. R.

    1972-01-01

    Satellite imagery for one project season of cloud seeding programs in the northern Great Plains has been surveyed for its probable usefulness in weather modification programs. The research projects and the meteorological information available are described. A few illustrative examples of satellite imagery analysis are cited and discussed, along with local observations of weather and the seeding decisions made in the research program. This analysis indicates a definite correlation between satellite-observed cloud patterns and the types of cloud seeding activity undertaken, and suggests a high probability of better and/or earlier decisions if the imagery is available in real time. Infrared imagery provides better estimates of cloud height which can be useful in assessing the possibility of a hail threat. The satellite imagery appears to be of more value to area-seeding projects than to single-cloud seeding experiments where the imagery is of little value except as an aid in local forecasting and analysis.

  6. Satellite Networks: Architectures, Applications, and Technologies

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Compiler)

    1998-01-01

    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled.

  7. The Delta and Thor/Agena launch vehicles for scientific and applications satellites.

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1971-01-01

    Description of the Delta Model 904 and the Thor/Agena Model 9A4 scientific and applications satellite launch vehicles, with projections of future growth and launch costs. These launch vehicles are shown to offer scientific and applications satellite mission planners a broad spectrum in performance capabilities together with unprecedented mission flexibility. Depending on the mission, these two medium class launch vehicles can be configured on the new universal boattail (UBT) Thor booster in either two or three stages with thrust augmentation of the UBT ranging from three to nine strap-on solid propellant motors. Both vehicles incorporate strapdown inertial guidance systems that allow flexible mission programming by computer so ftware changes rather than by adjustments.

  8. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  9. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  10. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  11. An overview of the Communications Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    The Communications Technology Satellite (CTS) project is reviewed. A technical description of the CTS spacecraft and its cognate hardware and operations is included. A historical treatise of the CTS project is provided. Also presented is an overview of the CTS experiments and demonstrations conducted during the course of the project.

  12. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    NASA Astrophysics Data System (ADS)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  13. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  14. TADPOLE satellite. [low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications is described. The ion thrusters provide the satellite with precise north-south and east-west stationkeeping capabilities. In addition, the thrusters are used to unload the reaction wheels used for attitude control and for other purposes described in the report. The proposed satellite is named TADPOLE. (Technology Application Demonstration Program of Low Energy).

  15. User applications unique to mobile satellites

    NASA Technical Reports Server (NTRS)

    Castiel, David

    1990-01-01

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  16. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  17. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  18. Timation 3 satellite. [artificial satellite for navigation, space radiation, and time transfer applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, C. A.

    1972-01-01

    The characteristics of the Timation 3 satellite are discussed. A diagram of the basic structure is provide to show the solar panels, navigation and telemetry antennas, gravity gradient booms, and solar cell experiments. The specific application of the satellite for time management or time transfer for navigation purposes is reported. Various measurements and experiments conducted by the satellite are described.

  19. Environmental testing philosophy for a Sandia National Laboratories small satellite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cap, J.S.; Rackley, N.G.

    1996-03-01

    Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

  20. Applications of FBG sensors on telecom satellites

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  1. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  2. NASDA'S activities and roles in promoting satellite utilization experiments

    NASA Astrophysics Data System (ADS)

    Shigeta, Tsutomu; Miyoshi, Takashi

    2004-02-01

    While NASDA has been engaged in the development of new satellite missions and the bus technologies, NASDA explores new and attractive applications by promoting the utilization of satellite missions and strengthening the relationships with external parties. Offering opportunities to external parties for conducting application experiments will bring great chances for them in challenging and experimenting new space-based applications. Consequently, it is expected that the outcomes of the space development are returned to general public, research institutes, industries, and that ideas or requirements for new satellite mission could emerge and be materialized. With these objectives in mind, NASDA is presently planning a new space project that is named "i-Space". The i-Space project aims to contribute to the progressing "IT Revolution" by providing new space communication capabilities and to develop practical applications by collaborating with external parties. This paper introduces the activities and roles of NASDA in promoting satellite utilization experiments, particularly focusing on the i-Space project.

  3. Science operations management. [with Infrared Astronomy Satellite project

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  4. Historic AVHRR Processing in the Eumetsat Climate Monitoring Satellite Application Facility (cmsaf) (Invited)

    NASA Astrophysics Data System (ADS)

    Karlsson, K.

    2010-12-01

    The EUMETSAT CMSAF project (www.cmsaf.eu) compiles climatological datasets from various satellite sources with emphasis on the use of EUMETSAT-operated satellites. However, since climate monitoring primarily has a global scope, also datasets merging data from various satellites and satellite operators are prepared. One such dataset is the CMSAF historic GAC (Global Area Coverage) dataset which is based on AVHRR data from the full historic series of NOAA-satellites and the European METOP satellite in mid-morning orbit launched in October 2006. The CMSAF GAC dataset consists of three groups of products: Macroscopical cloud products (cloud amount, cloud type and cloud top), cloud physical products (cloud phase, cloud optical thickness and cloud liquid water path) and surface radiation products (including surface albedo). Results will be presented and discussed for all product groups, including some preliminary inter-comparisons with other datasets (e.g., PATMOS-X, MODIS and CloudSat/CALIPSO datasets). A background will also be given describing the basic methodology behind the derivation of all products. This will include a short historical review of AVHRR cloud processing and resulting AVHRR applications at SMHI. Historic GAC processing is one of five pilot projects selected by the SCOPE-CM (Sustained Co-Ordinated Processing of Environmental Satellite data for Climate Monitoring) project organised by the WMO Space programme. The pilot project is carried out jointly between CMSAF and NOAA with the purpose of finding an optimal GAC processing approach. The initial activity is to inter-compare results of the CMSAF GAC dataset and the NOAA PATMOS-X dataset for the case when both datasets have been derived using the same inter-calibrated AVHRR radiance dataset. The aim is to get further knowledge of e.g. most useful multispectral methods and the impact of ancillary datasets (for example from meteorological reanalysis datasets from NCEP and ECMWF). The CMSAF project is

  5. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  6. Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.

    1974-01-01

    The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.

  7. Secure voice for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas; Berner, Jeff

    1990-01-01

    The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.

  8. Civil Applications of National Satellites

    NASA Astrophysics Data System (ADS)

    Killam, Dudley B.

    2002-01-01

    For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.

  9. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  10. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    NASA Astrophysics Data System (ADS)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  11. Japanese experiments for medical and educational broadcasts by Kiku satellite (PARTNERS Project using ETS-V)

    NASA Astrophysics Data System (ADS)

    Onishi, Yuji

    The Ministry of Posts and Telecommunications (MPT), the National Space Development Agency (NASDA), and others have proposed joint space communication experiments based on the Engineering Test Satellite ETS-V. This joint international project is registered as the Peacesat Expansion / Pan-Pacific Information Network at the United Nations Space Agency Forum for the International Space Year. To make the project more recognizable, it was renamed PARTNERS (Pan-Pacific Regional Telecommunication Network Research Satellite) Project. Under the project, researchers in Japan and developing countries will perform experiments aimed at verifying satellite use technologies. The experiments are intended to promote international cooperation by providing an opportunity for technology transfer and exchange.

  12. Cyberpark 2000: Protected Areas Management Pilot Project. Satellite time series vegetation monitoring

    NASA Astrophysics Data System (ADS)

    Monteleone, M.; Lanorte, A.; Lasaponara, R.

    2009-04-01

    Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.

  13. Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  14. Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  15. Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.

    2006-01-01

    Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.

  16. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    NASA Astrophysics Data System (ADS)

    Geeraert, Jeroen L.

    satellite state with respect to the chief. Once again the results demonstrate that the TDOA and FDOA OD results are favorable with faster dynamics over classical measurements. This dissertation not only explores the OD side, but also gaps in geolocation research. First the mapping of ephemeris uncertainty to the geolocation covariance to provide a more realistic covariance was implemented. Furthermore, the geolocation solution was improved by appending a probabilistic altitude constraint to the posterior covariance, significantly reducing the projected geolocation uncertainty ellipse. The feasibility of using the geolocation setup to passively locate a LEO satellite was also considered. Finally the simulated results were verified using a long-arc of real data. The use of FDOA for small-body navigation and gravity recovery was also examined as an extended application.

  17. Applications of Geostationary Satellite Data to Aviation

    NASA Astrophysics Data System (ADS)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  18. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  19. The Science and Applications Tethered Platform (SATP) project

    NASA Technical Reports Server (NTRS)

    Merlina, P.

    1986-01-01

    The capabilities of tether systems in orbit are going to be demonstrated by the first planned flights of the Tethered Satellite System (TSS). These test flights will investigate the properties of tether systems as low altitude atmospheric research facilities and as electric power generators. Studies are being conducted with the purpose of testing a variety of concepts and approaches. A comparative analysis of results will allow the choosing of the most promising ideas for further development. The broad range of applications presently under study include applications in electrodynamics, transportation, microgravity in addition to basic research. The SATP project definition study is now about midway through its first phase. The analyses conducted have led to an appraisal of users interest in the project and to a deeper understanding of the problems associated with large, long-lived tether systems in space. In addition, two specialized platform designs, devoted to microgravity and precise pointing applications, are being studied because of their potential usefulness and the promise of technical feasibility.

  20. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    PubMed

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  1. Application of a Topological Metric for Assessing Numerical Ocean Models with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Morey, S. L.; Dukhovskoy, D. S.; Hiester, H. R.; Garcia-Pineda, O. G.; MacDonald, I. R.

    2015-12-01

    Satellite-based sensors provide a vast amount of observational data over the world ocean. Active microwave radars measure changes in sea surface height and backscattering from surface waves. Data from passive radiometers sensing emissions in multiple spectral bands can directly measure surface temperature, be combined with other data sources to estimate salinity, or processed to derive estimates of optically significant quantities, such as concentrations of biochemical properties. Estimates of the hydrographic variables can be readily used for assimilation or assessment of hydrodynamic ocean models. Optical data, however, have been underutilized in ocean circulation modeling. Qualitative assessments of oceanic fronts and other features commonly associated with changes in optically significant quantities are often made through visual comparison. This project applies a topological approach, borrowed from the field of computer image recognition, to quantitatively evaluate ocean model simulations of features that are related to quantities inferred from satellite imagery. The Modified Hausdorff Distance (MHD) provides a measure of the similarity of two shapes. Examples of applications of the MHD to assess ocean circulation models are presented. The first application assesses several models' representation of the freshwater plume structure from the Mississippi River, which is associated with a significant expression of color, using a satellite-derived ocean color index. Even though the variables being compared (salinity and ocean color index) differ, the MHD allows contours of the fields to be compared topologically. The second application assesses simulations of surface oil transport driven by winds and ocean model currents using surface oil maps derived from synthetic aperture radar backscatter data. In this case, maps of time composited oil coverage are compared between the simulations and satellite observations.

  2. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    NASA Astrophysics Data System (ADS)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  3. The Iodine Satellite (iSat) Project Development Towards Critical Design Review

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence

    2015-01-01

    Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.

  4. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  5. The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry

    2016-01-01

    Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.

  6. Teaching practical leadership in MIT satellite development class: CASTOR and Exoplanet projects

    NASA Astrophysics Data System (ADS)

    Babuscia, Alessandra; Craig, Jennifer L.; Connor, Jane A.

    2012-08-01

    For more than a decade, the Aeronautics and Astronautics Department at MIT has offered undergraduate students the opportunity of conceiving, developing, implementing and operating new spacecraft's missions. During a three term class, junior and senior students experience all the challenges of a true engineering team project: design, analysis, testing, technical documentation development, team management, and leadership. Leadership instruction is an important part of the curricula; through the development of leadership skills, students learn to manage themselves and each other in a more effective way, increasing the overall productivity of the team. Also, a strong leadership education is a key factor in improving the abilities of future engineers to be effective team members and leaders in the companies and agencies in which they will work. However, too often leadership instruction is presented in an abstract way, which does not provide students with suggestions for immediate applicability. As a consequence, students underestimate the potential that leadership education can have on the development of their projects. To counteract that effect, a new approach for teaching "practical" leadership has been developed. This approach is composed of a set of activities developed to improve students' leadership skills in the context of a project. Specifically, this approach has been implemented in the MIT satellite development class. In that class, students experienced the challenges of building two satellites: CASTOR and Exoplanet. These two missions are real space projects which will be launched in the next two years, and which involve cooperation with different entities (MIT, NASA, and Draper). Hence, the MIT faculty was interested in developing leadership activities to improve the productivity of the teams in a short time. In fact, one of the key aspects of the approach proposed is that it can be quickly implemented in a single semester, requiring no more than 4 h of

  7. Earth resources applications of the Synchronous Earth Observatory Satellite (SEOS)

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Cook, J. J.

    1973-01-01

    The results are presented of a four month study to define earth resource applications which are uniquely suited to data collection by a geosynchronous satellite. While such a satellite could also perform many of the functions of ERTS, or its low orbiting successors, those applications were considered in those situations where requirements for timely observation limit the capability of ERTS or EOS. Thus, the application presented could be used to justify a SEOS.

  8. Data Collection Satellite Application in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Durào, O.

    2002-01-01

    's over Brazilian territory. There were 25 platforms when SCD-1 was launched. However this number is growing rapidly to 400 platforms, at first for measurements of water reservoir levels as well as other hydrology applications (The Brazilian Electricity Regulatory Agency - ANEEL is the customer), and for many other different applications such as meteorology, oceanography, environmental monitoring sciences, and people and animal tracking. The clear feeling is that users are discovering a satellite system whose benefits were not previously well understood when launched and being able to propose and come up with different and useful applications. A new field in the country that has a great potential to benefit from this system is agriculture. Per se, this is a very important sector of the Brazilian economy and its international trade. Combining it with space technology may justify the investment of new and low cost dedicated satellites. This paper describes a new proposal for use of the SCD-1,2,CBERS-1 satellite system for precision agriculture. New PCD's would be developed for measurements of chemical content of the soil, such as, for example, Nitrogen and others, beyond humidity and solar incidence. This can lead to a more efficient fertilization, harvesting and even the spray of chemical defensives, with the consequence of environment protection. The PCD's ground network so established, along with the information network already available, combined with the space segment of such a system may, as previously said, be able to justify the investment in low cost satellites with this sole purpose.

  9. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  10. Communication satellite applications

    NASA Astrophysics Data System (ADS)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  11. Operational Derivation of Surface Albedo and Down-Welling Short-Wave Radiation in the Satellite Application Facility for Land Surface Analysis

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.

    2006-08-01

    The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.

  12. Satellite on-board applications of expert systems

    NASA Astrophysics Data System (ADS)

    Ciarlo, A.; Donzelli, P.; Katzenbelsser, R.; Moller, B. A.

    The article discusses some aspects of the on-board application of expert systems (ES) in artificial satellites. The implementation of two prototypes on a dedicated AI machine are described. Consideration is given to: (1) the interrelationship between the ES and the architecture of the satellite and its impact on the mission-definition phase of the satellite life-cycle; (2) the identification of those tasks that at the current stage seem most likely to be delegated to on-board ES; and (3) the main obstacles that need to be overcome before operational use of ES on-board can take place, and particularly the matters of testing, knowledge collection, and availability of computing resources. Finally, the activities that are currently planned or that appear to be required in the near future to prepare the way for the full exploitation of this technology for satellite autonomy are briefly outlined.

  13. Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'

    NASA Technical Reports Server (NTRS)

    Maharaja, Rishabh (Principal Investigator)

    2016-01-01

    TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.

  14. The Grace Mission: The Challenges of Using Micron-Level Satellite-to-Satellite Ranging to Measure the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Watkins, M.; Bettadpur, S.

    2000-01-01

    The GRACE Mission, to be launched in mid-2001, will provide an unprecedented map of the Earth's gravity field every month. In this paper, we outline the challenges associated with this micron-level satellite-to-satellite ranging, the solutions used by the GRACE project, and the expected science applications of the data.

  15. An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)

    NASA Astrophysics Data System (ADS)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1992-11-01

    In the summer of 1983 a group of scientists working in the fields of meteorology, biology, and remote sensing met to discuss methods for modeling and observing land-surface—atmosphere interactions on regional and global scales. They concluded, first, that the existing climate models contained poor representations of the processes controlling the exchanges of energy, water, heat, and carbon between the land surface and the atmosphere and, second, that satellite remote sensing had been underutilized as a means of specifying global fields of the governing biophysical parameters. Accordingly, a multiscale, multidisciplinary experiment, FIFE, was initiated to address these two issues. The objectives of FIFE were specified as follows: (1) Upscale integration of models: The experiment was designed to test the soil-plant-atmosphere models developed by biometeorologists for small-scale applications (millimeters to meters) and to develop methods to apply them at the larger scales (kilometers) appropriate to atmospheric models and satellite remote sensing. (2) Application of satellite remote sensing: Even if the first goal were achieved to yield a "perfect" model of vegetation-atmosphere exchanges, it would have very limited applications without a global observing system for initialization and validation. As a result, the experiment was tasked with exploring methods for using satellite data to quantify important biophysical states and rates for model input. The experiment was centered on a 15 × 15 km grassland site near Manhattan, Kansas. This area became the focus for an extended monitoring program of satellite, meteorological, biophysical, and hydrological data acquisition from early 1987 through October 1989 and a series of 12- to 20-day intensive field campaigns (IFCs), four in 1987 and one in 1989. During the IFCs the fluxes of heat, moisture, carbon dioxide, and radiation were measured with surface and airborne equipment in coordination with measurements of surface

  16. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  17. Analysis of Software Development Methodologies to Build Safety Software Applications for the SATEX-II: A Mexican Experimental Satellite

    NASA Astrophysics Data System (ADS)

    Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel

    2013-09-01

    Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.

  18. Advanced Power Technology Development Activities for Small Satellite Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  19. Satellite communications application to Pacific countries above Ku band

    NASA Technical Reports Server (NTRS)

    Iida, Takashi

    1992-01-01

    An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.

  20. A generalized transmultiplexer and its application to mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ichiyoshi, Osamu

    1990-01-01

    A generalization of digital transmultiplexer technology is presented. The proposed method can realize transmultiplexer (TMUX) and transdemultiplexer (TDUX) filter banks whose element filters have bandwidths greater than the channel spacing frequency. This feature is useful in many communications applications. As an example, a satellite switched (SS) Frequency Division Multiple Access (FDMA) system is proposed for spot beam satellite communications, particularly for mobile satellite communications.

  1. A Tool and Application Programming Interface for Browsing Historical Geostationary Satellite Data

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Ayers, J.

    2013-12-01

    Providing access to information is a key concern for NASA Langley Research Center. We describe a tool and method that allows end users to easily browse and access information that is otherwise difficult to acquire and manipulate. The tool described has as its core the application-programming interface that is made available to the public. One goal of the tool is to provide a demonstration to end users so that they can use the enhanced imagery as an input into their own work flows. This project builds upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite imagery accessible and easily searchable. As we see the increasing use of virtual supply chains that provide additional value at each link there is value in making satellite imagery available through a simple access method as well as allowing users to browse and view that imagery as they need rather than in a manner most convenient for the data provider.

  2. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    NASA Astrophysics Data System (ADS)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  3. Research on the application of satellite remote sensing to local, state, regional, and national programs involved with resource management and environmental quality

    NASA Technical Reports Server (NTRS)

    Walters, R. L.; Eastmond, R. J.; Barr, B. G.

    1973-01-01

    Project summaries and project reports are presented in the area of satellite remote sensing as applied to local, regional, and national environmental programs. Projects reports include: (1) Douglas County applications program; (2) vegetation damage and heavy metal concentration in new lead belt; (3) evaluating reclamation of strip-mined land; (4) remote sensing applied to land use planning at Clinton Reservoir; and (5) detailed land use mapping in Kansas City, Kansas.

  4. A research on the application of software defined networking in satellite network architecture

    NASA Astrophysics Data System (ADS)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  5. Applications systems verification and transfer project. Volume 7: Cost/benefit analysis for the ASVT on operational applications of satellite snow-cover observations

    NASA Technical Reports Server (NTRS)

    Castruccio, P.; Loats, H.; Lloyd, D.; Newman, P.

    1981-01-01

    The results of the OASSO ASVT's were used to estimate the benefits accruing from the added information available from satellite snowcover area measurement. Estimates of the improvement in runoff prediction due to addition of SATSCAM were made by the Colorado ASVT personnel. The improvement estimate is 6-10%. Data were applied to subregions covering the Western States snow area amended by information from the ASVT and other watershed experts to exclude areas which are not impacted by snowmelt runoff. Benefit models were developed for irrigation and hydroenergy uses. The benefit/cost ratio is 72:1. Since only two major benefit contributors were used and since the forecast improvement estimate does not take into account future satellite capabilities these estimates are considered to be conservative. The large magnitude of the benefit/cost ratio supports the utility and applicability of SATSCAM.

  6. "SeismoSAT" project results in connecting seismic data centres via satellite

    NASA Astrophysics Data System (ADS)

    Pesaresi, Damiano; Lenhardt, Wolfgang; Rauch, Markus; Živčić, Mladen; Steiner, Rudolf; Bertoni, Michele; Delazer, Heimo

    2016-04-01

    Since 2002 the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) are collecting, analysing, archiving and exchanging seismic data in real time. Up to now the data exchange between the seismic data centres relied on internet: this however was not an ideal condition for civil protection purposes, since internet reliability is poor. For this reason, in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (Italy) joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria project "SeismoSAT" (Progetto SeismoSAT, 2014) aimed in connecting the seismic data centres in real time via satellite. As already presented in the past, the general technical schema of the project has been outlined, data bandwidths and monthly volumes required have been quantified, the common satellite provider has been selected and the hardware has been purchased and installed. Right before the end of its financial period, the SeismoSAT project proved to be successful guaranteeing data connection stability between the involved data centres during an internet outage.

  7. Continuation of the compendium of applications technology satellite and communications technology satellite user experiments 1967-1977, volume 2. [bibliography

    NASA Technical Reports Server (NTRS)

    Engler, N. A.; Nash, J. F.; Strange, J. D.

    1978-01-01

    Approximately 453 reports, papers, and articles catalogued into an information retrieval system, covering communications experiments and demonstrations conducted, utilizing the Communications Technology Satellite and the Applications Technology Satellites 1, 3, 5, and 6 are listed.

  8. ACTS Satellite Telemammography Network Experiments

    NASA Technical Reports Server (NTRS)

    Kachmar, Brian A.; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architectures Branch of NASA's Glenn Research Center has developed and demonstrated several advanced satellite communications technologies through the Advanced Communications Technology Satellite (ACTS) program. One of these technologies is the implementation of a Satellite Telemammography Network (STN) encompassing NASA Glenn, the Cleveland Clinic Foundation. the University of Virginia, and the Ashtabula County Medical Center. This paper will present a look at the STN from its beginnings to the impact it may have on future telemedicine applications. Results obtained using the experimental ACTS satellite demonstrate the feasibility of Satellite Telemammography. These results have improved teleradiology processes and mammography image manipulation, and enabled advances in remote screening methodologies. Future implementation of satellite telemammography using next generation commercial satellite networks will be explored. In addition, the technical aspects of the project will be discussed, in particular how the project has evolved from using NASA developed hardware and software to commercial off the shelf (COTS) products. Development of asymmetrical link technologies was an outcome of this work. Improvements in the display of digital mammographic images, better understanding of end-to-end system requirements, and advances in radiological image compression were achieved as a result of the research. Finally, rigorous clinical medical studies are required for new technologies such as digital satellite telemammography to gain acceptance in the medical establishment. These experiments produced data that were useful in two key medical studies that addressed the diagnostic accuracy of compressed satellite transmitted digital mammography images. The results of these studies will also be discussed.

  9. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  10. Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.

    2014-12-01

    Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various

  11. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  12. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    NASA Astrophysics Data System (ADS)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  13. Improving Societal Benefit Areas from Applications Enhanced by the Joint Polar Satellite System

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2016-12-01

    Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making for societal benefits. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be presented along with how the data and applications support a large number of societal benefit areas of the Global Earth Observation Systems of Systems (GEOSS).

  14. Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: The ECO-Satellite project

    NASA Astrophysics Data System (ADS)

    Tziavos, Ilias N.

    2013-04-01

    The ECO-Satellite project has been approved in the frame of the Joint Operational Program "Black Sea Basin 2007-2013" and it is co-financed by the European Union through the European Neighborhood and Partnership Instrument and the Instrument for Pre-Accession Assistance and National Funds. The overall objective of the project is to contribute to the protection and preservation of the water system of the Black Sea, with its main emphasis given to river deltas and protected coastal regions at the seaside. More specifically, it focuses on the creation of an environmental monitoring system targeting the marine, coastal and wetland ecosystems of the Black Sea, thus strengthening the development of common research among the involved partners and increasing the intraregional knowledge for the corresponding coastal zones. This integrated multi-level system is based on the technological assets provided by satellite Earth observation data and Geo-Informatics innovative tools and facilities, as well as on the development of a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. Furthermore, a Web-GIS system is under development aiming in principle to support environmental decision and policy making by monitoring the state of marine, coastal and wetland ecosystems of the Black Sea and managing all the aforementioned data sources and derived research results. The system is designed in a way that is easily expandable and adaptable for environmental management in local, regional national and trans-national level and as such it will increase the capacity of decision makers who are related to Black Sea environmental policy. Therefore, it is expected that administrative authorities, scientifically related institutes and environmental protection bodies in all eligible areas will show interest in the results and applications of the information system, since the ECO-Satellite project could serve as a support tool for the

  15. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...

  16. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...

  17. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...

  18. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...

  19. The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1988-01-01

    The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.

  20. The pan-sharpening of satellite and UAV imagery for agricultural applications

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Woroszkiewicz, Malgorzata

    2016-10-01

    Remote sensing techniques are widely used in many different areas of interest, i.e. urban studies, environmental studies, agriculture, etc., due to fact that they provide rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. Agricultural management is one of the most common application of remote sensing methods nowadays. Monitoring of agricultural sites and creating information regarding spatial distribution and characteristics of crops are important tasks to provide data for precision agriculture, crop management and registries of agricultural lands. For monitoring of cultivated areas many different types of remote sensing data can be used- most popular are multispectral satellites imagery. Such data allow for generating land use and land cover maps, based on various methods of image processing and remote sensing methods. This paper presents fusion of satellite and unnamed aerial vehicle (UAV) imagery for agricultural applications, especially for distinguishing crop types. Authors in their article presented chosen data fusion methods for satellite images and data obtained from low altitudes. Moreover the authors described pan- sharpening approaches and applied chosen pan- sharpening methods for multiresolution image fusion of satellite and UAV imagery. For such purpose, satellite images from Landsat- 8 OLI sensor and data collected within various UAV flights (with mounted RGB camera) were used. In this article, the authors not only had shown the potential of fusion of satellite and UAV images, but also presented the application of pan- sharpening in crop identification and management.

  1. Satellite Applications for K-12 Geoscience Education

    NASA Astrophysics Data System (ADS)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.

    2007-12-01

    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an

  2. A study program for geodetic satellite applications

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.

    1972-01-01

    The work is reported on support of the GEOS-C Program, National Geodetic Satellite program, and the Earth Physics Program. The statement of work, and a description of the GEOS-C are presented along with the trip reports, and the Earth and Ocean Physics Application program.

  3. Applications of satellite and marine geodesy to operations in the ocean environment

    NASA Technical Reports Server (NTRS)

    Fubara, D. M.; Mourad, A. G.

    1975-01-01

    The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports.

  4. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  5. Applications of Satellite Observations of Tropospheric Composition

    NASA Astrophysics Data System (ADS)

    Monks, Paul S.; Beirle, Steffen

    A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.

  6. NPS alternate techsat satellite, design project for AE-4871

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This project was completed as part of AE-4871, Advanced Spacecraft Design. The intent of the course is to provide experience in the design of all the major components in a spacecraft system. Team members were given responsibility for the design of one of the six primary subsystems: power, structures, propulsion, attitude control, telemetry, tracking and control (TT&C), and thermal control. In addition, a single member worked on configuration control, launch vehicle integration, and a spacecraft test plan. Given an eleven week time constraint, a preliminary design of each subsystem was completed. Where possible, possible component selections were also made. Assistance for this project came principally from the Naval Research Laboratory's Spacecraft Technology Branch. Specific information on components was solicited from representatives in industry. The design project centers on a general purpose satellite bus that is currently being sought by the Strategic Defense Initiative.

  7. Development of a funding, cost, and spending model for satellite projects

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  8. A holistic approach to SIM platform and its application to early-warning satellite system

    NASA Astrophysics Data System (ADS)

    Sun, Fuyu; Zhou, Jianping; Xu, Zheyao

    2018-01-01

    This study proposes a new simulation platform named Simulation Integrated Management (SIM) for the analysis of parallel and distributed systems. The platform eases the process of designing and testing both applications and architectures. The main characteristics of SIM are flexibility, scalability, and expandability. To improve the efficiency of project development, new models of early-warning satellite system were designed based on the SIM platform. Finally, through a series of experiments, the correctness of SIM platform and the aforementioned early-warning satellite models was validated, and the systematical analyses for the orbital determination precision of the ballistic missile during its entire flight process were presented, as well as the deviation of the launch/landing point. Furthermore, the causes of deviation and prevention methods will be fully explained. The simulation platform and the models will lay the foundations for further validations of autonomy technology in space attack-defense architecture research.

  9. Satellite-aided mobile communications, experiments, applications and prospects

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.; Milton, R. T.

    1980-01-01

    NASA's ATS-series of satellites were used in a series of communications and position fixing experiments with automotive vehicles, ships and aircraft. Applications of the communications were demonstrated and evaluated for public services including law enforcement, search and rescue, and medical emergency, and for commercial uses in the land and maritime transportation industries. The technical success of the experiments and the demonstrated potential value of the communications prompted a study that concluded an operational satellite-aided system would be a valuable augmentation of planned trunking or cellular type terrestrial mobile radio telephone systems.

  10. Vehicle Tracking System using Nanotechnology Satellites and Tags

    NASA Technical Reports Server (NTRS)

    Lorenzini, Dino A.; Tubis, Chris

    1995-01-01

    This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.

  11. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    NASA Astrophysics Data System (ADS)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  12. Advanced Deployable Structural Systems for Small Satellites

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  13. Application of adaptive antenna techniques to future commercial satellite communication

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  14. Exploring Modular Architecture for Nano Satellite and Opportunity for Developing Countries

    NASA Astrophysics Data System (ADS)

    Rhaman, M. K.; Monowar, M. I.; Shakil, S. R.; Kafi, A. H.; Antara, R. S. I.

    2015-01-01

    SPACE Technology has the potential to provide information, infrastructure and inspiration that meets national needs in developing countries like Bangladesh. Many countries recognize this; in response they are investing in new national satellite programs to harness satellite services. Technology related to space is one example of a tool that can contribute to development both by addressing societal challenges and by advancing a nation's technological capability. To cope up with the advanced world in space technology Bangladesh seems to be highly potential country for satellite, Robotics, embedded systems and renewable energy research. BRAC University, Bangladesh is planning to launch a nano satellite with the collaboration of KIT, Japan. The proposed nano satellite project mission is to experiment about social, commercial and agricultural survey needs in Bangladesh. Each of the proposed applications of the project will improve the lives of millions of people of Bangladesh and it will be a pathfinder mission for the people of this country. Another intention of this project is to create a cheap satellite based remote sensing for developing countries as the idea of large space systems is very costly for us therefore we have decided to make a Nano-satellite.

  15. An on-board processing satellite payload for European mobile communications

    NASA Astrophysics Data System (ADS)

    Evans, B. G.; Casewell, I. E.; Craig, A. D.

    1987-06-01

    An examination of the use of satellite on-board processing (OBP) for land mobile applications shows the feasibility of designing an OBP payload to satisfy the functional requirements of the land mobile system projected for the 1990s. Following a discussion of the proposed land mobile system, advantages of OBP over conventional transport payloads are considered. The use of digital signal processing techniques is shown to provide a solution for the merging of the routing and transmultiplexing functions into a single element, and such techniques are ideally suited to space applications. It is suggested that the projected power, mass, and size estimates are compatible with the payload capacity of one of the large Olympus satellites.

  16. TDF-1, The French Broadcasting Satellite (TDF-1, Satellite Francais de Radiodiffusion),

    DTIC Science & Technology

    1982-04-22

    defines the general directions of the program and gives the necessary directives to a joint project directorate in Munich, Germany ( French projects ...AD-A117 961 NAVAL ZNTELIGENC SUPPORT CENTER WASHINGTON DC TRAN-(ITC F/0 17/2 TOF-Il, THE FRENCH BROADCASTING SATELLITE (TDP-I. SATELLITE PRAN-ETC(U...8201/80A UNCLASSIFIED TITLE: TDF-1, The French Broadcasting Satellite TDF 1, satellite francais de radiodiffusion AUTHOR(S) AND/OR EDITOR(S): C

  17. Program on application of communications satellites to educational development

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.

    1971-01-01

    Interdisciplinary research in needs analysis, communications technology studies, and systems synthesis is reported. Existing and planned educational telecommunications services are studied and library utilization of telecommunications is described. Preliminary estimates are presented of ranges of utilization of educational telecommunications services for 1975 and 1985; instructional and public television, computer-aided instruction, computing resources, and information resource sharing for various educational levels and purposes. Communications technology studies include transmission schemes for still-picture television, use of Gunn effect devices, and TV receiver front ends for direct satellite reception at 12 GHz. Two major studies in the systems synthesis project concern (1) organizational and administrative aspects of a large-scale instructional satellite system to be used with schools and (2) an analysis of future development of instructional television, with emphasis on the use of video tape recorders and cable television. A communications satellite system synthesis program developed for NASA is now operational on the university IBM 360-50 computer.

  18. Dual use of distributed remote sensing satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    1992-12-02

    Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.

  19. Dual use of distributed remote sensing satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    1993-03-01

    Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.

  20. Dual use of distributed remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Canavan, G. H.

    1992-12-01

    Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.

  1. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  2. Iodine Propulsion Advantages for Low Cost Mission Applications and the Iodine Satellite (ISAT) Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Schumacher, Daniel M.

    2015-01-01

    The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.

  3. Gradio: Project proposal for satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Balmino, G.; Barilier, F.; Bernard, A.; Bouzat, C.; Riviera, G.; Runavot, J.

    1981-01-01

    A gradiometric approach, rather than the more complicated satellite to satellite tracking, is proposed for studying anomalies in the gravitational fields of the Earth and, possibly, other telluric bodies. The first analyses of a gradiometer based on four of ONERA's CACTUS or SUPERCACTUS accelerometers are summarized. it is shown that the obstacles to achieving the required accuracy are not insuperable. The device will be carried in a 1000 kg lens shaped satellite in a heliosynchronous orbit 200 to 300 km in altitude. The first launching is planned for the end of 1987.

  4. Project Organization and Management; Analysis of a Model. Satellite Technology Demonstration, Technical Report No. 0127.

    ERIC Educational Resources Information Center

    Lokey, Kenneth R.

    The Satellite Technology Demonstration (STD), a project of the Federation of Rocky Mountain States, Inc. (FRMS), employed a project management model for its organizational structure. The organization and management system utilized by the STD was designed to accomplish a predetermined set of objectives with the highest quality possible within a…

  5. An Experiment in Educational Technology: An Overview of the Appalachian Education Satellite Project. Technical Report Number 2.

    ERIC Educational Resources Information Center

    Bramble, William J., Ed.; Ausness, Claudine, Ed.

    The Appalachian Education Satellite Project was conceptualized in 1973 (1) to develop courses in reading and career-education instruction for teachers in the Appalachian region, and (2) to determine the feasibility of conducting such courses over a large geographical area via communication satellites. The courses consist of pretaped video…

  6. Educational Pico-Satellite Project CUBESAT - University of Tokyo's CUBESAT XI and its Operation Plan

    NASA Astrophysics Data System (ADS)

    Tsuda, Y.; Sako, N.; Eishima, T.; Ito, T.; Arikawa, Y.; Miyamura, N.

    2002-01-01

    University of Tokyo ISSL (Intelligent Space Systems Laboratory) has been developing a pico-satellite called "CubeSat" as an international joint program. In CubeSat project, 10cm cubic satellites have been developed by several universities and launched to the low-earth orbit altogether by Russian rocket "Dnepr". ISSL has developed "XI" series ([sai]: X-factor Investigator) satellites, and the flight model is already fabricated and ready for delivery. The mission of XI satellite is the on-orbit technology demonstration of the ultra-small satellite bus system with an extensive use of commercial-off-the-shelf components. XI transmits the Morse beacon and FM packet telemetry which provides the health data of the satellite. Additionally, XI has a CMOS camera which provides 15,000 pixels panchromatic images as an advanced mission. Ground operation is one of the key issues for CubeSats. Now we are promoting international ground station network in which several universities' ground stations connected by internet collaboratively operate university-built small satellites, which enlarges the link opportunity. Collaboration with amateur HAM engineers is also indispensable for search for the satellite or get beacon signal to estimate the satellite orbit. We are now developing operation concept based on these ideas. As the launch is scheduled in this fall, the operation plan will be fixed at the time of this conference. In this presentation the final design of ISSL's CubeSat XI and operation plan will be presented.

  7. Fast, Affordable, Science and Technology Satellite (FASTSAT) Huntsville-01 (HSV-01) Spacecraft Lessons Learned Report

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A.

    2012-01-01

    The Fast Affordable Science and Technology Satellite (FASTSAT) project is a path finding effort to produce reliable satellite busses for different applications at an unprecedented speed and low cost. The project is designed to be a generational project and the first satellite produced is the Huntsville -01 (HSV-01) spacecraft. The subject of this report is the lessons learned gained during the development, testing, and up to the delivery of the FASTSAT HSV -01 spacecraft. The purpose of this report is to capture the major findings that will greatly benefit the future FASTSAT satellites and perhaps other projects interested in pushing the boundaries for cost and schedule. The FASTSAT HSV -01 primary objectives, success criteria, and team partners are summarized to give a frame of reference to the lessons learned.

  8. Next generation satellite communications networks

    NASA Astrophysics Data System (ADS)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  9. Use of NASA Satellite Data in Aiding Mississippi Barrier Island Restoration Projects

    NASA Technical Reports Server (NTRS)

    Giardino, Marco; Spruce, Joseph; Kalcic, Maria; Fletcher, Rose

    2009-01-01

    This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing

  10. Applications systems verification and transfer project. Volume 5: Operational applications of satellite snow-cover observations, northwest United States

    NASA Technical Reports Server (NTRS)

    Dillard, J. P.

    1981-01-01

    The study objective was to develop or modify methods in an operational framework that would allow incorporation of satellite derived snow cover observations for prediction of snowmelt derived runoff. Data were reviewed and verified for five basins in the Pacific Northwest. The data were analyzed for up to a 6-year period ending July 1978, and in all cases cover a low, average, and high snow cover/runoff year. Cloud cover is a major problem in these springtime runoff analyses and have hampered data collection for periods of up to 52 days. Tree cover and terrain are sufficiently dense and rugged to have caused problems. The interpretation of snowlines from satellite data was compared with conventional ground truth data and tested in operational streamflow forecasting models. When the satellite snow-covered area (SCA) data are incorporated in the SSARR (Streamflow Synthesis and Reservoir Regulation) model, there is a definite but minor improvement.

  11. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-directional antennas. (b) Each NGSO-like satellite system application will be reviewed to determine whether it... licensee's bandwidth selection in both the uplink and downlink band shall not preclude other licensees from... to make another selection. (g)(1) In the event that an applicants' license is cancelled for any...

  12. Application of the advanced communications technology satellite for teleradiology and telemedicine

    NASA Astrophysics Data System (ADS)

    Stewart, Brent K.; Carter, Stephen J.; Rowberg, Alan H.

    1995-05-01

    The authors have an in-kind grant from NASA to investigate the application of the Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the JPL developed ACTS Mobile Terminal (AMT) uplink. This experiment involves the transmission of medical imagery (CT, MR, CR, US and digitized radiographs including mammograms), between the ACTS/AMT and the University of Washington. This is accomplished by locating the AMT experiment van in various locations throughout Washington state, Idaho, Montana, Oregon and Hawaii. The medical images are transmitted from the ACTS to the downlink at the NASA Lewis Research Center (LeRC) in Cleveland, Ohio, consisting of AMT equipment and the high burst rate-link evaluation terminal (HBR-LET). These images are then routed from LeRC to the University of Washington School of Medicine (UWSoM) through the Internet and public switched Integrated Serviced Digital Network (ISDN). Once images arrive in the UW Radiology Department, they are reviewed using both video monitor softcopy and laser-printed hardcopy. Compressed video teleconferencing and transmission of real-time ultrasound video between the AMT van and the UWSoM are also tested. Image quality comparisons are made using both subjective diagnostic criteria and quantitative engineering analysis. Evaluation is performed during various weather conditions (including rain to assess rain fade compensation algorithms). Compression techniques also are tested to evaluate their effects on image quality, allowing further evaluation of portable teleradiology/telemedicine at lower data rates and providing useful information for additional applications (e.g., smaller remote units, shipboard, emergency disaster, etc.). The medical images received at the UWSoM over the ACTS are directly evaluated against the original digital images. The project demonstrates that a portable satellite-land connection can provide subspecialty consultation and education for rural and remote

  13. Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-flight Icing, Turbulence and Volcanic Ash

    NASA Technical Reports Server (NTRS)

    Mecikalski, John R.; Feltz, Wayne F.; Murray, John J.; Johnson, David B.; Bedka, Kristopher M.; Bedka, Sarah M.; Wimmers, Anthony J.; Pavolonis, Michael; Berendes, Todd A.; Haggerty, Julie; hide

    2006-01-01

    Advanced Satellite Aviation Weather Products (ASAP) was jointly initiated by the NASA Applied Sciences Program and the NASA Aviation Safety and Security Program in 2002. The initiative provides a valuable bridge for transitioning new and existing satellite information and products into Federal Aviation Administration (FAA) Aviation Weather Research Program (AWRP) efforts to increase the safety and efficiency of the airspace system. The ASAP project addresses hazards such as convective weather, turbulence (clear-air and cloud-induced), icing and volcanic ash and is particularly applicable in extending the monitoring of weather over data-sparse areas such as the oceans and other observationally remote locations. ASAP research is conducted by scientists from NASA, the FAA AWRP's Product Development Teams (PDT), NOAA and the academic research community. In this paper we provide a summary of activities since the inception of ASAP that emphasize the use of current-generation satellite technologies toward observing and mitigating specified aviation hazards. A brief overview of future ASAP goals is also provided in light of the next generation of satellite sensors (e.g., hyperspectral; high spatial resolution) to become operational in the 2006-2013 timeframe.

  14. Recommendations on the use of satellite remote-sensing data for urban air quality.

    PubMed

    Engel-Cox, Jill A; Hoff, Raymond M; Haymet, A D J

    2004-11-01

    In the last 5 yr, the capabilities of earth-observing satellites and the technological tools to share and use satellite data have advanced sufficiently to consider using satellite imagery in conjunction with ground-based data for urban-scale air quality monitoring. Satellite data can add synoptic and geospatial information to ground-based air quality data and modeling. An assessment of the integrated use of ground-based and satellite data for air quality monitoring, including several short case studies, was conducted. Findings identified current U.S. satellites with potential for air quality applications, with others available internationally and several more to be launched within the next 5 yr; several of these sensors are described in this paper as illustrations. However, use of these data for air quality applications has been hindered by historical lack of collaboration between air quality and satellite scientists, difficulty accessing and understanding new data, limited resources and agency priorities to develop new techniques, ill-defined needs, and poor understanding of the potential and limitations of the data. Specialization in organizations and funding sources has limited the resources for cross-disciplinary projects. To successfully use these new data sets requires increased collaboration between organizations, streamlined access to data, and resources for project implementation.

  15. Application of China-Brazil Earth resources satellite in China

    NASA Astrophysics Data System (ADS)

    Qiao, Yuliang; Zhao, Shangmin; Zhen, Liu; Bei, Jia

    2009-03-01

    The launch and successful operation of Chinese-Brazil Earth resources satellite (CBERS-1) in China has accelerated the application of space technology in China. These applications include agriculture, forestry, water conservation, land resources, city planning, environment protection and natural hazards monitoring and so on. The result of these applications provides a scientific basis for government decision making and has created great economic and social benefits in Chinese national economy construction. In this paper we present examples and provide auxiliary documentation of additional applications of the data from Earth resource monitoring.

  16. Handling of subpixel structures in the application of satellite derived irradiance data for solar energy system analysis - a review

    NASA Astrophysics Data System (ADS)

    Beyer, Hans Georg

    2016-04-01

    With the increasing availability of satellite derived irradiance information, this type of data set is more and more in use for the design and operation of solar energy systems, most notably PV- and CSP-systems. By this, the need for data measured on-site is reduced. However, due to basic limitations of the satellite-derived data, several requirements put by the intended application cannot be coped with this data type directly. Traw satellite information has to be enhanced in both space and time resolution by additional information to be fully applicable for all aspects of the modelling od solar energy systems. To cope with this problem, several individual and collaborative projects had been performed in the recent years or are ongoing. Approaches are on one hand based on pasting synthesized high-resolution data into the low-resolution original sets. Pre-requite is an appropriate model, validated against real world data. For the case of irradiance data, these models can be extracted either directly from ground measured data sets or from data referring to the cloud situation as gained from the images of sky cameras or from monte -carlo initialized physical models. The current models refer to the spatial structure of the cloud fields. Dynamics are imposed by moving the cloud structures according to a large scale cloud motion vector, either extracted from the dynamics interfered from consecutive satellite images or taken from a meso-scale meteorological model. Dynamic irradiance information is then derived from the cloud field structure and the cloud motion vector. This contribution, which is linked to subtask A - Solar Resource Applications for High Penetration of Solar Technologies - of IEA SHC task 46, will present the different approaches and discuss examples in view of validation, need for auxiliary information and respective general applicability.

  17. Satellite Observations of Trace Gases and Their Application for Studying Air Quality Near Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Nichols, M.; Fasnacht, Z.; Martins, D. K.; Dickerson, R. R.

    2014-12-01

    The increase in the natural gas component of the energy sector has led many state and local municipalities to begin regulation of emissions from the oil and natural gas operators with air quality (AQ) as a concern. "Top-down" measurements of trace gases in the air above wells complement "bottom-up" inventories, used by EPA and AQ stakeholders, through a more accurate depiction of regional variability of methane and other species near and downwind of oil and gas operations. Satellite observations of methane, nitrogen dioxide, formaldehyde, ozone, and other carbon gases enhance the spatial and temporal coverage of the data needed to demonstrate any long-term impacts from shale gas development. As part of a NASA AQAST (Air Quality Applied Sciences Team) project, we are evaluating satellite measurements of trace gases in regions with oil and gas operations for their application as a "top-down" constraint. For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed with ground and aircraft measurements, including, Maryland (2011), California and Texas (2013), and Colorado (2014). We compare vertical distributions of methane and volatile organic compounds (VOCs) nearby and downwind of oil and gas wells to locate any regional differences during the campaign time periods. This allows for better characterization of the satellite observations and their limitations for application in air quality studies in similar environments. Taking advantage of current EOS-era satellites' data records, we also analyze methane anomalies and gas correlations in the free troposphere from 2005 to present to identify trends for basins with oil and gas extraction sites and their influence on background concentrations downwind of wells. In most regions with oil and gas activity, we see continually

  18. Project Echo: 961-Mc Lower - Sideband Up - Converter for Satellite-Tracking Radar

    NASA Technical Reports Server (NTRS)

    Uenohara, M.; Seidel, H.

    1961-01-01

    A 961-Mc lower-sideband up-converter was specially designed to serve as preamplifier for the satellite-tracking radar used in Project Echo. The amplifier and its power supply are separately boxed and are installed directly behind the tracking antenna. The amplifier has been functioning most satisfactorily and has been used in routine manner to track the Echo satellite from horizon to horizon. This paper describes the design considerations, and details the special steps taken to ensure that the amplifier met the particular system needs of low noise, absolute stability, insensitivity to temperature fluctuations, and high input-power level before the onset of gain compression. The satisfactory operation of this amplifier confirms the great potentiality of parametric amplifiers as stable, low-noise, high-frequency receivers.

  19. Applications of satellite image processing to the analysis of Amazonian cultural ecology

    NASA Technical Reports Server (NTRS)

    Behrens, Clifford A.

    1991-01-01

    This paper examines the application of satellite image processing towards identifying and comparing resource exploitation among indigenous Amazonian peoples. The use of statistical and heuristic procedures for developing land cover/land use classifications from Thematic Mapper satellite imagery will be discussed along with actual results from studies of relatively small (100 - 200 people) settlements. Preliminary research indicates that analysis of satellite imagery holds great potential for measuring agricultural intensification, comparing rates of tropical deforestation, and detecting changes in resource utilization patterns over time.

  20. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  1. Applications systems verification and transfer project. Volume 4: Operational applications of satellite snow cover observations. Colorado Field Test Center

    NASA Technical Reports Server (NTRS)

    Shafer, B. A.; Leaf, C. F.; Danielson, J. A.; Moravec, G. F.

    1981-01-01

    The study was conducted on six watersheds ranging in size from 277 km to 3460 km in the Rio Grande and Arkansas River basins of southwestern Colorado. Six years of satellite data in the period 1973-78 were analyzed and snowcover maps prepared for all available image dates. Seven snowmapping techniques were explored; the photointerpretative method was selected as the most accurate. Three schemes to forecast snowmelt runoff employing satellite snowcover observations were investigated. They included a conceptual hydrologic model, a statistical model, and a graphical method. A reduction of 10% in the current average forecast error is estimated when snowcover data in snowmelt runoff forecasting is shown to be extremely promising. Inability to obtain repetitive coverage due to the 18 day cycle of LANDSAT, the occurrence of cloud cover and slow image delivery are obstacles to the immediate implementation of satellite derived snowcover in operational streamflow forecasting programs.

  2. A Platform for Scalable Satellite and Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.

    2017-12-01

    At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.

  3. Review On Feasibility of Using Satellite Imaging for Risk Management of Derailment Related Turnout Component Failures

    NASA Astrophysics Data System (ADS)

    Dindar, Serdar; Kaewunruen, Sakdirat; Osman, Mohd H.

    2017-10-01

    One of the emerging significant advances in engineering, satellite imaging (SI) is becoming very common in any kind of civil engineering projects e.g., bridge, canal, dam, earthworks, power plant, water works etc., to provide an accurate, economical and expeditious means of acquiring a rapid assessment. Satellite imaging services in general utilise combinations of high quality satellite imagery, image processing and interpretation to obtain specific required information, e.g. surface movement analysis. To extract, manipulate and provide such a precise knowledge, several systems, including geographic information systems (GIS) and global positioning system (GPS), are generally used for orthorectification. Although such systems are useful for mitigating risk from projects, their productiveness is arguable and operational risk after application is open to discussion. As the applicability of any novel application to the railway industry is often measured in terms of whether or not it has gained in-depth knowledge and to what degree, as a result of errors during its operation, this novel application generates risk in ongoing projects. This study reviews what can be achievable for risk management of railway turnouts thorough satellite imaging. The methodology is established on the basis of other published articles in this area and the results of applications to understand how applicable such imagining process is on railway turnouts, and how sub-systems in turnouts can be effectively traced/operated with less risk than at present. As a result of this review study, it is aimed that the railway sector better understands risk mitigation in particular applications.

  4. Civil and military satellite communications: A systems overview and the future developments

    NASA Astrophysics Data System (ADS)

    Dezaire, J. P.

    1991-02-01

    The project A90KM616, Orientatie SATCOM, is being performed on behalf of the Royal Netherlands Navy (RNLN) to assist the Navy on the subject of satellite communications. An overview is given of the phenomenon satellite communication. The result is a general overview of satellite communications for both civil and military applications. Some examples of applications are; international telephony, television broadcasting, small private business networks, and mobile (at the moment still principally maritime) communications. In these applications satellite communication systems provide a global coverage and a high flexibility. The scientific articles have not been considered because in this stage it was the intention to study on a specialist level the broad area of techniques. Magazines, books, and a number of reports of universities and research institutes have been the main sources of information. They provided afforded an understanding of the existing systems and insight in the future developments.

  5. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  6. Some Defence Applications of Civilian Remote Sensing Satellite Images

    DTIC Science & Technology

    1993-11-01

    This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.

  7. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    NASA Astrophysics Data System (ADS)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  8. NOAASIS (NOAA Satellite Information System) Home Page - Office of Satellite

    Science.gov Websites

    and Product Operations » DOC » NOAA » NESDIS » NOAASIS NOAA Satellite Information System Organizational Links National Environmental Satellite, Data, and Information Service (NESDIS) Office of Satellite ): Information and specific ground project support data for the Direct Broadcast Community from JPSS supported

  9. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  10. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  11. Intersatellite link application to commercial communications satellites

    NASA Technical Reports Server (NTRS)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  12. Impact of multiconstellation satellite signal reception on performance of satellite-based navigation under adverse ionospheric conditions

    NASA Astrophysics Data System (ADS)

    Paul, Ashik; Paul, Krishnendu Sekhar; Das, Aditi

    2017-03-01

    Application of multiconstellation satellites to address the issue of satellite signal outages during periods of equatorial ionospheric scintillations could prove to be an effective tool for maintaining the performance of satellite-based communication and navigation without compromise in accuracy and integrity. A receiver capable of tracking GPS, Global Navigation Satellite System (GLONASS), and Galileo satellites is operational at the Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India, located near the northern crest of the equatorial ionization anomaly in the Indian longitude sector. The present paper shows increased availability of satellites combining GPS, GLONASS, and Galileo constellations from Calcutta compared to GPS-only scenario and estimates intense scintillation-free (S4 < 0.6) satellite vehicle look angles at different hours of the postsunset period 19:00-01:00 LT during March 2014. A representative case of 1 March 2014 is highlighted in the paper and overall statistics for March 2014 presented to indicate quantitative advantages in terms of scintillation-free satellite vehicle look angles that may be utilized for planning communication and navigation channel spatial distribution under adverse ionospheric conditions. The number of satellites tracked and receiver position deviations has been found to show a good correspondence with the occurrence of intense scintillations and poor user receiver-satellite link geometry. The ground projection of the 350 km subionospheric points corresponding to multiconstellation shows extended spatial coverage during periods of scintillations (0.2 < S4 < 0.6) compared to GPS.

  13. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    NASA Technical Reports Server (NTRS)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  14. Application of adaptive antenna techniques to future commercial satellite communications. Executive summary

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  15. Tools and Data Services from the NASA Earth Satellite Observations for Climate Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.

    2005-01-01

    and science products for climate applications. The intent is to inform users of the existence of this large collection of data and products; suggest starting points for cross-platform science projects and data mining activities and provide data services and tools information. More information about the GES/DISC/DAAC satellite data and products, tools, and services can be found at http://daac.gsfc.nasa.gov.

  16. Satellite tracking of threatened species

    USGS Publications Warehouse

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  17. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borg, Lori; Tobin, David; Reale, Anthony

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined withmore » other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.« less

  18. Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package

    NASA Technical Reports Server (NTRS)

    Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki

    2010-01-01

    Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be

  19. Application of communications satellites to educational development. [technology utilization/information systems - bibliographies

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.

    1975-01-01

    A summary of research is presented. The broad objectives of this interdisciplinary research effort were: (1) to assess the role of satellite communications as a means of improving education in the United States, as well as in less-developed areas of the world; (2) to generate basic knowledge which will aid in making rational decisions about satellite application in the field of education in the years ahead; (3) to devise systems and strategies for improving education; and (4) to educate individuals who will be knowledgeable about aspects of satellite communications policy which transcend any single discipline.

  20. Optical intersatellite links - Application to commercial satellite communications

    NASA Technical Reports Server (NTRS)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  1. Satellite time-transfer: recent developments and projects

    NASA Astrophysics Data System (ADS)

    Lewandowski, W.; Nawrocki, J.

    2006-10-01

    Global Navigation Satellite Systems (GNSS) keep a central role in the international timekeeping. American Global Positioning System (GPS) is a navigation system that has proven itself to be a reliable source of positioning for both the military community and the civilian community. But, little known by many, is the fact that GPS has proven itself to be an important and valuable utility to the timekeeping community (Lewandowski et al. 1999). GPS is a versatile and global tool which can be used to both distribute time to an arbitrary number of users and synchronise clocks over large distances with a high degree of precision and accuracy. Similar performance can be obtained with Russian Global Navigation Satellite System (GLONASS). It is expected in the near future satellites of a new European navigation system GALILEO might bring some important opportunities for international timekeeping. This paper after a brief introduction to international timekeeping focuses on the description of recent progress in time transfer techniques using GNSS satellites.

  2. International Satellite Cloud Climatology Project (ISCCP) Ice Snow Product in Native (NAT) Format (ISCCP_ICESNOW_NAT)

    NASA Technical Reports Server (NTRS)

    Rossow, William B. (Principal Investigator)

    Since 1983 an international group of institutions has collected and analyzed satellite radiance measurements from up to five geostationary and two polar orbiting satellites to infer the global distribution of cloud properties and their diurnal, seasonal and interannual variations. The primary focus of the first phase of the project (1983-1995) was the elucidation of the role of clouds in the radiation budget (top of the atmosphere and surface). In the second phase of the project (1995 onwards) the analysis also concerns improving understanding of clouds in the global hydrological cycle. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=112 Km; Longitude_Resolution=112 Km; Temporal_Resolution=5-day].

  3. IMS/Satellite Situation Center report. Predicted orbit plots for IMP-H-1976. [Explorer 47 satellite

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Predicted orbit plots are shown in three projections. The time period covered by each set of projections is 12 days 6 hours, corresponding approximately to the period of IMP-H satellite. The three coordinate systems used are the Geocentric Solar Ecliptic system (GSE), the Geocentric Solar Magnetospheric system (GSM), and the Solar Magnetic system (SM). For each of the three projections, time ticks and codes are given on the satellite trajectories. The codes are interpreted in the table at the base of each plot. Time is given in the table as year/day/decimal hour. The total time covered by each plot is shown at the bottom of each table. An additional variable is given in the table for each time tick. For the GSM and SM projection this variable is the geocentric distance to the satellite in earth radii, and for the GSE projection the variable is satellite ecliptic latitude in degrees.

  4. Public service communications satellite. [health, education, safety and information transfer applications

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1978-01-01

    Health, education, public safety, and information transfer applications of public service communications satellites are discussed with particular attention to the use of communications satellites to improve rural health delivery. Health-care communications requirements are summarized. The communications system concept involves small inexpensive stationary, portable, and moving ground terminals which will provide communications between any two points in the U.S. with both fixed and moving terminals on a continuous 24-hour basis. User requirements, wavebands, and privacy techniques are surveyed.

  5. Fire and Smoke Monitoring at NOAA' Satellite Service; Applications to Smoke Forecasting

    NASA Astrophysics Data System (ADS)

    Stephens, G.; Ruminski, M.

    2005-12-01

    The Hazard Mapping System (HMS), developed and run operationally by NOAA's Satellite Services Division (SSD), is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico. The system utilizes sensors on 7 different NOAA and NASA satellites. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is delineated by an image analyst. Analyses are quality control by an analyst who inspects all available imagery and automated fire detects, deleting suspected false detects and adding fires that the automated routines miss. Graphical, text, and GIS compatible analyses are posted to a web site as soon as updates are performed, and a final product for a given day is posted early the following morning. All products are archived at NOAA's National Geophysical Data Center. Areal extent of detectable smoke is outlined using animated visible imagery, for input to a dispersion and transport model, the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), developed by NOAA's Air Resources Laboratory (ARL). Resulting smoke forecasts will soon be used as input to NOAA's Air Quality forecasts. The GOES Aerosol and Smoke Product (GASP) is an experimental GOES imagery based aerosol optical depth (AOD) product developed by the NESDIS Office of Research and Applications, being implemented for evaluation by the NESDIS Satellite Analysis Branch for use in smoke and volcanic ash monitoring. Currently, research is underway in NESDIS' Office of Research and Applications to objectivize smoke delineation using GASP and MODIS AOD retrievals. NOAA's Operational Significant Event Imagery (OSEI) program processes satellite imagery of environmentally significant events, including fire, smoke and volcanic ash, visible in operational satellite data. This imagery is often referred to by fire managers and air quality agencies. Future plans include the integration of high resolution

  6. LCROSS: Lunar CRater Observation and Sensing Satellite Project

    NASA Technical Reports Server (NTRS)

    Marmie, John

    2010-01-01

    This slide presentation reviews the success of the Lunar Crater Observation and Sensing Satellite (LCROSS) project. The LCROSS mission science goals was to: (1) Confirm the presence or absence of water ice in a permanently shadowed region on the Moon (2) Identify the form/state of hydrogen observed by at the lunar poles (3) Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations (4) Characterize the lunar regolith within a permanently shadowed crater on the Moon. The mission confirmed the presence of water ice on the moon by impacting a part of the spent Centaur upper stage into the Cabeus crater.. The presentation includes pictures of the development of the spacecraft, testing, launch, impact site, impact and a section of what the author called "Lunacy" which showed joking cartoons.

  7. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  8. An ocean scatter propagation model for aeronautical satellite communication applications

    NASA Technical Reports Server (NTRS)

    Moreland, K. W.

    1990-01-01

    In this paper an ocean scattering propagation model, developed for aircraft-to-satellite (aeronautical) applications, is described. The purpose of the propagation model is to characterize the behavior of sea reflected multipath as a function of physical propagation path parameters. An accurate validation against the theoretical far field solution for a perfectly conducting sinusoidal surface is provided. Simulation results for typical L band aeronautical applications with low complexity antennas are presented.

  9. The EducEO project

    NASA Astrophysics Data System (ADS)

    Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise

    2015-04-01

    The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.

  10. Meteorological satellite product support and research for project GALE

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Smith, William L.; Achtor, Thomas H.; Menzel, W. Paul

    1988-01-01

    This participation in the Genesis of Atlantic Lows Experiment (GALE) focused on three main areas: (1) real-time support of the field phase, centered on a McIDAS workstation; (2) satellite data collection, archive, product generation, and dissemination; and (3) research into satellite rainfall estimation and data assimilation. Accomplishments include production of a videotape of animated GOES satellite imagery, production of an atlas of GOES satellite imagery, production of a set of 12-hour interval analyses; research into 4-D data assimilation, and production of a set of satellite-estimated rainfall maps.

  11. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  12. Laser beamed power - Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    Feasibility of using a ground-based laser to beam light to the solar arrays of orbiting satellites to a level sufficient to provide the operating power required is discussed. An example case of a GEO communications satellite near the end of life due to radiation damage of the solar arrays or battery failure is considered. It is concluded that the commercial satellite industry should be able to reap significant economic benefits through the use of power beaming which is capable of providing supplemental power for satellites with failing arrays, or primary power for failed batteries.

  13. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and... service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. (a... shall not exceed the geographical coverage area of the mobile satellite service network of the applicant...

  14. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and... service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. (a... shall not exceed the geographical coverage area of the mobile satellite service network of the applicant...

  15. Satellite-Friendly Protocols and Standards

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner, S.; Riedler, W.

    2002-01-01

    We are currently observing a development unprecedented with other services, the enormous growth of the Internet. Video, voice and data applications can be supported via this network in high quality. Multi-media applications require high bandwidth which may not be available in many areas. When making proper use of the broadcast feature of a communications satellite, the performance of the satellite-based system can compare favourably to terrestrial solutions. Internet applications are in many cases highly asymmetric, making them very well suited to applications using small and inexpensive terminals. Data from one source may be used simultaneously by a large number of users. The Internet protocol suite has become the de-facto standard. But this protocol family in its original form has not been designed to support guaranteed quality of service, a prerequisite for real-time, high quality traffic. The Internet Protocol has to be adapted for the satellite environment, because long roundtrip delays and the error behaviour of the channel could make it inefficient over a GEO satellite. Another requirement is to utilise the satellite bandwidth as efficiently as possible. This can be achieved by adapting the access system to the nature of IP frames, which are variable in length. In the framework of ESA's ARTES project a novel satellite multimedia system was developed which utilises Multi-Frequency TDMA in a meshed network topology. The system supports Quality of Service (QoS) by reserving capacity with different QoS requirements. The system is centrally controlled by a master station with the implementation of a demand assignment (DAMA) system. A lean internal signalling system has been adopted. Network management is based on the SNMP protocol and industry-standard network management platforms, making interfaces to standard accounting and billing systems easy. Modern communication systems will have to be compliant to different standards in a very flexible manner. The

  16. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  17. Satellite medical centers project

    NASA Astrophysics Data System (ADS)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  18. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  19. Integrating Satellite and Surface Sensor Networks for Irrigation Management Applications in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.

    2016-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by

  20. SatCam: A mobile application for coordinated ground/satellite observation of clouds and validation of satellite-derived cloud mask products.

    NASA Astrophysics Data System (ADS)

    Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.

    2011-12-01

    SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with

  1. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robutness

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rakoczy, John; Heather, Daniel; Sanders, Devon

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  2. Nineteen hundred seventy three significant accomplishments. [Landsat satellite data applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data collected by the Skylab remote sensing satellites was used to develop applications techniques and to combine automatic data classification with statistical clustering methods. Continuing research was concentrated in the correlation and registration of data products and in the definition of the atmospheric effects on remote sensing. The causes of errors encountered in the automated classification of agricultural data are identified. Other applications in forestry, geography, environmental geology, and land use are discussed.

  3. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  4. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1990-01-01

    This project was designed to acquaint county government officials and their clientele with remote sensing and geographic information systems (GIS) products that contain information about land conditions and land use. The specific project objectives are: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements, and land use evaluation; (2) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity; (3) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (4) to evaluate the market potential of products derived from the above projects.

  5. Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand

    NASA Astrophysics Data System (ADS)

    Bippus, Gabriele; Nagler, Thomas

    2013-04-01

    The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these

  6. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    NASA Astrophysics Data System (ADS)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  7. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    NASA Astrophysics Data System (ADS)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  8. Commercial applications of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1981-01-01

    It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.

  9. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  10. Project Integration Architecture: Application Architecture

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications is enabled.

  11. Applications of satellite 'hyper-sensing' in Chinese agriculture: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Onojeghuo, Alex Okiemute; Blackburn, George Alan; Huang, Jingfeng; Kindred, Daniel; Huang, Wenjiang

    2018-02-01

    Ensuring adequate food supplies to a large and increasing population continues to be the key challenge for China. Given the increasing integration of China within global markets for agricultural products, this issue is of considerable significance for global food security. Over the last 50 years, China has increased the production of its staple crops mainly by increasing yield per unit land area. However, this has largely been achieved through inappropriate agricultural practices, which have caused environmental degradation, with deleterious consequences for future agricultural productivity. Hence, there is now a pressing need to intensify agriculture in China using practices that are environmentally and economically sustainable. Given the dynamic nature of crops over space and time, the use of remote sensing technology has proven to be a valuable asset providing end-users in many countries with information to guide sustainable agricultural practices. Recently, the field has experienced considerable technological advancements reflected in the availability of 'hyper-sensing' (high spectral, spatial and temporal) satellite imagery useful for monitoring, modelling and mapping of agricultural crops. However, there still remains a significant challenge in fully exploiting such technologies for addressing agricultural problems in China. This review paper evaluates the potential contributions of satellite 'hyper-sensing' to agriculture in China and identifies the opportunities and challenges for future work. We perform a critical evaluation of current capabilities in satellite 'hyper-sensing' in agriculture with an emphasis on Chinese sensors. Our analysis draws on a series of in-depth examples based on recent and on-going projects in China that are developing 'hyper-sensing' approaches for (i) measuring crop phenology parameters and predicting yields; (ii) specifying crop fertiliser requirements; (iii) optimising management responses to abiotic and biotic stress in crops

  12. The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Otten, D. D.; Garabedian, A.; Morrison, D. D.; MALLINCKRODT; ZIPPER

    1970-01-01

    The objective was to determine on a priority basis the satellite applications to communications, navigation, and surveillance requirements for aircraft operating beyond 1975 over the contiguous United States and adjacent oceanic transition regions, and to determine if and how satellite technology can meet these requirements in a reliable, efficient, and economical manner. Major results and conclusions are as follows: (1) The satellite applications of greatest importance are surveillance and rapid collision warning communications; and (2) The necessary technology is available as demonstrated by an attractive system concept.

  13. Technical and cost advantages of silicon carbide telescopes for small-satellite imaging applications

    NASA Astrophysics Data System (ADS)

    Kasunic, Keith J.; Aikens, Dave; Szwabowski, Dean; Ragan, Chip; Tinker, Flemming

    2017-09-01

    Small satellites ("SmallSats") are a growing segment of the Earth imaging and remote sensing market. Designed to be relatively low cost and with performance tailored to specific end-use applications, they are driving changes in optical telescope assembly (OTA) requirements. OTAs implemented in silicon carbide (SiC) provide performance advantages for space applications but have been predominately limited to large programs. A new generation of lightweight and thermally-stable designs is becoming commercially available, expanding the application of SiC to small satellites. This paper reviews the cost and technical advantages of an OTA designed using SiC for small satellite platforms. Taking into account faceplate fabrication quilting and surface distortion after gravity release, an optimized open-back SiC design with a lightweighting of 70% for a 125-mm SmallSat-class primary mirror has an estimated mass area density of 2.8 kg/m2 and an aspect ratio of 40:1. In addition, the thermally-induced surface error of such optimized designs is estimated at λ/150 RMS per watt of absorbed power. Cost advantages of SiC include reductions in launch mass, thermal-management infrastructure, and manufacturing time based on allowable assembly tolerances.

  14. Survey and analysis of satellite-based telemedicine projects involving Japan and developing nations: investigation of transmission rates, channel numbers, and node numbers.

    PubMed

    Nakajima, I; Natori, M; Takizawa, M; Kaihara, S

    2001-01-01

    We surveyed interactive telemedicine projects via telecommunications satellite (AMINE-PARTNERS, Post-PARTNERS, and Shinshu University Project using Inmarsat satellites) offered by Japan as assistance to developing countries. The survey helped clarify channel occupation time and data transfer rates. Using our survey results, we proposed an optimized satellite model with VSATs simulating the number of required channels and bandwidth magnitude. For future implementation of VSATs for medical use in developing nations, design of telecommunication channels should take into consideration TCP/IP-based operations. We calculated that one hub station with 30-76 VSATs in developing nation can be operated on bandwidth 6 Mbps using with 128 Kbps videoconferencing system for teleconsultation and teleconference, and linking with Internet.

  15. Intersatellite Link (ISL) application to commercial communications satellites. Volume 2: Technical final report

    NASA Technical Reports Server (NTRS)

    Young, S. Lee

    1987-01-01

    Intersatellite Link (ISL) applications can improve and expand communication satellite services in a number of ways. As the demand for orbital slots within prime regions of the geostationary arc increases, attention is being focused on ISLs as a method to utilize this resource more efficiently and circumvent saturation. Various GEO-to-GEO applications were determined that provide potential benefits over existing communication systems. A set of criteria was developed to assess the potential applications. Intersatellite link models, network system architectures, and payload configurations were developed. For each of the chosen ISL applications, ISL versus non-ISL satellite systems architectures were derived. Both microwave and optical ISL implementation approaches were evaluated for payload sizing and cost analysis. The technological availability for ISL implementations was assessed. Critical subsystems technology areas were identified, and an estamate of the schedule and cost to advance the technology to the requiered state of readiness was made.

  16. Methods and potentials for using satellite image classification in school lessons

    NASA Astrophysics Data System (ADS)

    Voss, Kerstin; Goetzke, Roland; Hodam, Henryk

    2011-11-01

    The FIS project - FIS stands for Fernerkundung in Schulen (Remote Sensing in Schools) - aims at a better integration of the topic "satellite remote sensing" in school lessons. According to this, the overarching objective is to teach pupils basic knowledge and fields of application of remote sensing. Despite the growing significance of digital geomedia, the topic "remote sensing" is not broadly supported in schools. Often, the topic is reduced to a short reflection on satellite images and used only for additional illustration of issues relevant for the curriculum. Without addressing the issue of image data, this can hardly contribute to the improvement of the pupils' methodical competences. Because remote sensing covers more than simple, visual interpretation of satellite images, it is necessary to integrate remote sensing methods like preprocessing, classification and change detection. Dealing with these topics often fails because of confusing background information and the lack of easy-to-use software. Based on these insights, the FIS project created different simple analysis tools for remote sensing in school lessons, which enable teachers as well as pupils to be introduced to the topic in a structured way. This functionality as well as the fields of application of these analysis tools will be presented in detail with the help of three different classification tools for satellite image classification.

  17. Meteorological satellite products support for project COHMEX

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Goodman, Brian M.; Smith, William L.

    1988-01-01

    The first year effort focussed on real-time support and satellite data collection during the field phase of COHMEX. Work efforts following the field phase of COHMEX concentrated on post-processing of the real-time data sets, and generation of enhanced, research-quality satellite data sets for selected COHMEX core days. These satellite-derived data sets will augment the special COHMEX conventional data base with high horizontal and temporal resolution information. The data sets will be examined for their usefulness in delineating important elements in the meteorological environment leading to convective activity. In addition, a limited research effort was conducted using the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4-d data assimilation system in conjunction with evaluating VISSR Atmospheric Sounder (VAS) and His-resolution Interferometer Sounder (HIS) data. The need to address the characteristics of the data types, and the problems they introduce into 4-d assimilation procedures is evident. The HIS instrument was flown aboard an ER-2 aircraft on several occasions during COHMEX. One of the flights was chosen for further study. Processed VAS soundings and COHMEX radiosonde data were also collected for this day. The case study included an evaluation of the HIS and VAS data and an impact study of the data on the assimilation system analysis.

  18. The application of satellite data in monitoring strip mines

    NASA Technical Reports Server (NTRS)

    Sharber, L. A.; Shahrokhi, F.

    1977-01-01

    Strip mines in the New River Drainage Basin of Tennessee were studied through use of Landsat-1 imagery and aircraft photography. A multilevel analysis, involving conventional photo interpretation techniques, densitometric methods, multispectral analysis and statistical testing was applied to the data. The Landsat imagery proved adequate for monitoring large-scale change resulting from active mining and land-reclamation projects. However, the spatial resolution of the satellite imagery rendered it inadequate for assessment of many smaller strip mines, in the region which may be as small as a few hectares.

  19. Integrated Satellite Control in REIMEI (INDEX) Satellite

    NASA Astrophysics Data System (ADS)

    Fukuda, Seisuke; Mizuno, Takahide; Sakai, Shin-Ichiro; Fukushima, Yousuke; Saito, Hirobumi

    REIMEI/INDEX (INnovative-technology Demonstration EXperiment) is a 70kg class small satellite which the Institute of Space and Astronautical Science, Japan Exploration Agency, ISAS/JAXA, has developed for observation of auroral small-scale dynamics as well as demonstration of advanced satellite technologies. An important engineering mission of REIMEI is integrated satellite control using commercial RISC CPUs with a triple voting system in order to ensure fault-tolerance against radiation hazards. Software modules concerning every satellite function, such as attitude control, data handling, and mission applications, work cooperatively so that highly sophisticated satellite control can be performed. In this paper, after a concept of the integrated satellite control is introduced, the Integrated Controller Unit (ICU) is described in detail. Also unique topics in developing the integrated control system are shown.

  20. The International Satellite Cloud Climatology Project H-Series climate data record product

    NASA Astrophysics Data System (ADS)

    Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.

    2018-03-01

    This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.

  1. A radiation-hardened, computer for satellite applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`smore » Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.« less

  2. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  3. Satellite relay telemetry of seismic data in earthquake prediction and control

    USGS Publications Warehouse

    Jackson, Wayne H.; Eaton, Jerry P.

    1971-01-01

    The Satellite Telemetry Earthquake Monitoring Program was started in FY 1968 to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research (NCER) in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project.

  4. Compendium of Applications Technology Satellite user experiments

    NASA Technical Reports Server (NTRS)

    Engler, N. A.; Strange, J. D.; Hein, G. F.

    1976-01-01

    The achievements of the user experiments performed with ATS satellites from 1967 to 1973 are summarized. Included are fixed and mobile point to point communications experiments involving voice, teletype and facsimile transmissions. Particular emphasis is given to the Alaska and Hawaii satellite communications experiments. The use of the ATS satellites for ranging and position fixing of ships and aircraft is also covered. The structure and operating characteristics of the various ATS satellite are briefly described.

  5. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  6. Building Technological Capability within Satellite Programs in Developing Countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle Renee

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual

  7. Application of convolve-multiply-convolve SAW processor for satellite communications

    NASA Technical Reports Server (NTRS)

    Lie, Y. S.; Ching, M.

    1991-01-01

    There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement.

  8. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and

  9. Implementing Accelerated Schools in New Orleans: The Satellite Center Project as an Agent of Change.

    ERIC Educational Resources Information Center

    Miron, Louis F.; And Others

    An overview is provided of the Accelerated Schools Project (ASP) as implemented in one urban elementary school in New Orleans, emphasizing the role of the University of New Orleans Satellite Center. The present student population of the school studied is 405 students in grades pre-kindergarten through six. The ASP is a non-traditional strategy for…

  10. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    NASA Technical Reports Server (NTRS)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  11. Satellite sound broadcast propagation studies and measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1990-01-01

    Satellite Sound Broadcasting is an attractive satellite application. Before regulatory decisions can be made in 1992, the propagation effects encountered have to be characterized. The Electrical Engineering Research Laboratory has nearly completed a system which will allow amplitude measurements to be made over 10 MHz bandwidths in the 800 to 1800 MHz frequency range. The system uses transmission from a transportable tower, and reception inside buildings or in the shadow of trees or utility poles. The goal is to derive propagation models for use by systems engineers who are about to design satellite broadcast systems. The advance of fiber-optics technology has helped to focus future development of satellite services into areas where satellites are uniquely competitive. One of these preferred satellite applications is the broadcasting of high-quality sound for stationary or mobile reception by listeners using low-cost, consumer-grade receivers. Before such services can be provided, however, the political hurdles of spectrum allocation have to be surmounted and the technical questions of standardization for world-wide compatibility have to be resolved. In order to arrive at an optimal system design, efficient in the use of our scarce spectral resources, affordable both to the broadcaster and the listener, and providing predictable performance, the propagation effects to which the service is subjected have to be characterized. Consequently, the objective of the research project is to make basic propagation measurements for direct Satellite Sound Broadcasting Service (SSBS). The data obtained should allow the development of propagation models to be used by communications engineers designing the operational systems. Such models shall describe the effects of shadowing and multipath propagation on SSBS receivers operating in a specified environment, such as inside commercial or residential buildings of various construction and also in the shadow of trees or utility poles

  12. 7 CFR 634.13 - Project applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Project applications. 634.13 Section 634.13..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding § 634.13 Project applications. (a) The SRCWCC is to assure that a process exists to prepare the RCWP...

  13. 7 CFR 634.13 - Project applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Project applications. 634.13 Section 634.13..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding § 634.13 Project applications. (a) The SRCWCC is to assure that a process exists to prepare the RCWP...

  14. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  15. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  16. Analysis of the US Air Force Defense Meteorological Satellite Program Imagery for Global Lightning

    NASA Technical Reports Server (NTRS)

    Scharfen, Gregory R.

    1999-01-01

    The U. S. Air Force operates the Defense Meteorological Satellite Program (DMSP), a system of near-polar orbiting satellites designed for use in operational weather forecasting and other applications. DMSP satellites carry a suite of sensors that provide images of the earth and profiles of the atmosphere. The National Snow and Ice Data Center (NSIDC) at the University of Colorado has been involved with the archival of DMSP data and its use for several research projects since 1979. This report summarizes the portion of this involvement funded by NASA.

  17. Crop Monitoring Using European and Chinese Medium Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Defourny, Pierre

    2016-08-01

    The European medium resolution satellite data ENVISAT/MERIS were available in 2002 while the Chinese medium resolution spectrometer data with 5 bands in 250m spatial resolution and 15 bands in 1000m onboard Fengyun 3 series satellites became a new data source at the end of the year 2008. Under the framework of Dragon program 3, both teams demonstrated the utilization of medium resolution satellite data in crop monitoring. The Chinese team has made efforts to improve the processing of the Chinese Medium resolution satellite data (MERSI) in order to promote its applications in crop monitoring. The European team has checked and evaluated the processed FY3A/3B MERSI data and inspiring findings have found in terms of the imaging quality and the performance of retrieving LAI and GAI etc. The Chinese team has mapped the winter wheat area in North China Plain in the growing season from 2009 to 2014 with the finely processed FY3A MERSI 250m data. The LAI retrieval algorithm with the FY3 MERSI data was developed based on the in-situ data and other satellite products. The participation of young scientists is critical for the implementation of the project. 4 Chinese master students were involving in this project and the Chinese team hosted a European young master student to carry out research in China in the spring of 2014. Both research teams are looking forward to successful and productive achievements for this Dragon project and new deep cooperation in Dragon 4.

  18. Advanced communications satellites

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1980-01-01

    The increase in demand for satellite communications services brought about shortages in available transponder capacity, especially at C-band. Interest shifted to the Ku-band frequency and currently carriers are rapidly moving to secure orbital slots for future satellite development. Projections of communications service demands over the next decade indiate growth in voice, data, and video services such that saturation of both C-band and Ku-band will occur by 1990. Emphasis must and will shift to Ka-band (20/30 GHz) frequency for fixed-satellite service. Advanced technologies such as multibeam antennas coupled with on-board satellite switching to allow implementation in this band of very high capacity satellite systems will be applied to meet the demand. Satellite system concepts that are likely in the 1990's and are likely to bring a new dimension to satellite delivered communication service are presented. The NASA 30/20 GHz communications satellite system demonstration program is discussed with emphasis on the related technology development.

  19. CONTACT: An Air Force technical report on military satellite control technology

    NASA Astrophysics Data System (ADS)

    Weakley, Christopher K.

    1993-07-01

    This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.

  20. The application of mobile satellite services to emergency response communications

    NASA Technical Reports Server (NTRS)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  1. Atmosphere aerosol satellite project Aerosol-UA

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    channels of the MSIP are the intensity channels that serve to obtain images in eight spectral wavebands to retrieve the aerosol optical depth. The main feature of the each MSIP channel is the splitting of the image by a special prism-splitter to four images on the same CCD detector. In that way we can simultaneously measure four polarization components at 0°, 45°, 90° and 135° as images in each of three polarization channels. One of the special features of ScanPol/MSIP concept is calibration of the MSIP using ScanPol data in the same field-of-view with 1% expected polarization accuracy. The Aerosol-UA experiment is planned to be launched in 2020 at the new satellite platform YuzhSat developed in the Yuzhnoye Design Office. The GRASP algorithm (Dubovik et al. 2014, doi: 10.1117/2.1201408.005558) is planned for Aerosol-UA data processing and AERONET sun photometers observations for validation. Acknowledgements. The work was partly supported by the Special Complex Program for Space Research 2012-2016 of the National Academy of Sciences of Ukraine, by the project 16BF051-02 of the Taras Shevchenko National University of Kyiv, and by the grant of the State Fund for Fundamental Research, project F73/115-2016.

  2. Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data

    NASA Astrophysics Data System (ADS)

    Phyu, A. N.

    2016-12-01

    A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.

  3. Condensing Massive Satellite Datasets For Rapid Interactive Analysis

    NASA Astrophysics Data System (ADS)

    Grant, G.; Gallaher, D. W.; Lv, Q.; Campbell, G. G.; Fowler, C.; LIU, Q.; Chen, C.; Klucik, R.; McAllister, R. A.

    2015-12-01

    Our goal is to enable users to interactively analyze massive satellite datasets, identifying anomalous data or values that fall outside of thresholds. To achieve this, the project seeks to create a derived database containing only the most relevant information, accelerating the analysis process. The database is designed to be an ancillary tool for the researcher, not an archival database to replace the original data. This approach is aimed at improving performance by reducing the overall size by way of condensing the data. The primary challenges of the project include: - The nature of the research question(s) may not be known ahead of time. - The thresholds for determining anomalies may be uncertain. - Problems associated with processing cloudy, missing, or noisy satellite imagery. - The contents and method of creation of the condensed dataset must be easily explainable to users. The architecture of the database will reorganize spatially-oriented satellite imagery into temporally-oriented columns of data (a.k.a., "data rods") to facilitate time-series analysis. The database itself is an open-source parallel database, designed to make full use of clustered server technologies. A demonstration of the system capabilities will be shown. Applications for this technology include quick-look views of the data, as well as the potential for on-board satellite processing of essential information, with the goal of reducing data latency.

  4. Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program

    NASA Astrophysics Data System (ADS)

    Raponi, D. J.

    1981-12-01

    Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.

  5. Advanced communication satellites worldwide - Satellites of opportunity for the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Girardey, Catherine C.

    1993-01-01

    Space agencies worldwide are involved in advanced satellite communication systems. This paper presents an overview of these satellites and related technologies in the U.S., Europe, and Japan. They are geostationary satellites using high frequency bands such as K/Ka (20/30 GHz) and O-band (millimeter wave), as well as optical frequencies. The similarity of these programs demonstrate a common interest to develop large capacity satellite communication systems, and shows that closer international cooperation could be set up. The ACTS Mobile Terminal (AMT) project discussed here is such an example. The AMT's compatibility with satellites other than ACTS has been studied, and a proposed common experiment is presented here. The Japanese Engineering Test Satellite ETS-VI has been identified as the best initial 'satellite of opportunity' for AMT in this preliminary assessment.

  6. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Gaarder, N. T.; Lin, S.

    1986-01-01

    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.

  7. Broadcast Satellite: "Appropriate Technology" Available Now

    ERIC Educational Resources Information Center

    Norwood, Frank W.

    1978-01-01

    Experimental broadcasting satellites make possible a cooperative and inexpensive communications system for use in remote areas of the world. Considered are their historical background, news dissemination, the SITE Project in India, NASA's ATS satellites, satellite classroom instruction, and Caribbean interests. (LBH)

  8. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Jorasch, Ronald E.; Wiskerchen, Michael J.

    1991-01-01

    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs.

  9. Operational prediction of air quality for the United States: applications of satellite observations

    NASA Astrophysics Data System (ADS)

    Stajner, Ivanka; Lee, Pius; Tong, Daniel; Pan, Li; McQueen, Jeff; Huang, Jianping; Huang, Ho-Chun; Draxler, Roland; Kondragunta, Shobha; Upadhayay, Sikchya

    2015-04-01

    Operational predictions of ozone and wildfire smoke over United States (U.S.) and predictions of airborne dust over the contiguous 48 states are provided by NOAA at http://airquality.weather.gov/. North American Mesoscale (NAM) weather predictions with inventory based emissions estimates from the U.S. Environmental Protection Agency (EPA) and chemical processes within the Community Multiscale Air Quality (CMAQ) model are combined together to produce ozone predictions. Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to predict wildfire smoke and dust storm predictions. Routine verification of ozone predictions relies on AIRNow compilation of observations from surface monitors. Retrievals of smoke column integrals from GOES satellites and dust column integrals from MODIS satellite instruments are used for verification of smoke and dust predictions. Recent updates of NOAA's operational air quality predictions have focused on mobile emissions using the projections of mobile sources for 2012. Since emission inventories are complex and take years to assemble and evaluate causing a lag of information, we recently began combing inventory information with projections of mobile sources. In order to evaluate this emission update, these changes in projected NOx emissions from 2005-2012 were compared with observed changes in Ozone Monitoring Instrument (OMI) NO2 observations and NOx measured by surface monitors over large U.S. cities over the same period. Comparisons indicate that projected decreases in NOx emissions from 2005 to 2012 are similar, but not as strong as the decreases in the observed NOx concentrations and in OMI NO2 retrievals. Nevertheless, the use of projected mobile NOx emissions in the predictions reduced biases in predicted NOx concentrations, with the largest improvement in the urban areas. Ozone biases are reduced as well, with the largest improvement seen in rural areas. Recent testing of PM2.5 predictions is relying on

  10. Next Generation Lithium-Ion Cell For Satellite Applications

    NASA Astrophysics Data System (ADS)

    Inoue, Takefumi; Segawa, Masazumi; Yoshida, Hiroaki; Takeda, Koichi

    2011-10-01

    GS Yuasa Technology has standard line up cells for satellite applications since 1999. The design of these cells is not changed and their production will continue. GS Yuasa is now developing higher performance Next Generation Lithium-ion cells. These cells have an improved positive material, negative material, electrolyte, and separator and have demonstrated excellent capacity retention with very low DC resistance growth during life testing. The new cell has approximately 40% more EOL energy (Wh/kg), and slightly lighter weight while using the same size components as our existing products.

  11. Applications technology satellite F&G /ATS F&G/ mobile terminal.

    NASA Technical Reports Server (NTRS)

    Greenbaum, L. A.; Baker, J. L.

    1971-01-01

    The mobile terminal is a flexible, easily transportable system. The terminal design incorporates a combination of unique and proven hardware to provide maximum utility consistent with reliability. The flexibility built into the system will make it possible to satisfy the requirements of the applications technology satellite program concerned with the conduction of various spacecraft technology experiments. The terminal includes two parabolic antennas.

  12. Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai

    2018-03-01

    Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.

  13. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  14. Using satellite microwave sensors to develop climate data records

    NASA Astrophysics Data System (ADS)

    Ferraro, Ralph; Meng, Huan; Luo, Zhengzhao

    2011-08-01

    NOAA Workshop on Climate Data Records From Satellite Passive Microwave Sounders: AMSU/MHS/SSMT2; College Park, Maryland, 2-3 March 2011 ; The National Oceanic and Atmospheric Administration's (NOAA) Climate Data Record (CDR) program (http://www.ncdc.noaa.gov/cdr/index.html) is an effort to create long-term homogeneous records of satellite measurements and derived products. As part of this effort, scientists at two related projects that focus on passive microwave sensors with the goal of hydrological applications—one led by a National Environmental Satellite, Data, and Information Service/Center for Satellite Applications and Research (STAR) team and one led by the City College of New York (CCNY)—held a joint workshop with the following objectives: To allow the CDR teams to interact with satellite data and product users and other CDR developers on relevant aspects of sensor characteristics and intercalibration that will lead to mature CDRs; To provide a formal mechanism for input by subject matter experts, in particular, sensor scientists and engineers; and> To move toward a community consensus approach for NOAA microwave sounder CDRs.

  15. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  16. Intersatellite Link (ISL) application to commercial communications satellites. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Young, S. Lee

    1987-01-01

    Based on a comprehensive evaluation of the fundamental Intersatellite Link (ISL) systems characteristics, potential applications of ISLs to domestic, regional, and global commercial satellite communications were identified, and their cost-effectiveness and other systems benefits quantified wherever possible. Implementation scenarios for the cost-effective communications satellite systems employing ISLs were developed for the first launch in 1993 to 1994 and widespread use of ISLs in the early 2000's. Critical technology requirements for both the microwave (60 GHz) and optical (0.85 micron) ISL implementations were identified, and their technology development programs, including schedule and cost estimates, were derived.

  17. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  18. Formation Flying/Satellite Swarm Concept Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    NASA needs a method of not only propelling and rotating small satellites, but also to track their position and orientation. We propose a concept that will, for the first time, demonstrate both tracking and propulsion simultaneously in the same system.

  19. The Potential Uses of Commercial Satellite Imagery in the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The valuemore » of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.« less

  20. Satellite Application for Disaster Management Information Systems

    NASA Astrophysics Data System (ADS)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  1. Satellite Communications for Aeronautics Applications: Technology Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Hoder, Douglas J.; Zakrajsek, Robert J.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is performing research and development to improve the safety and increase the capacity of the National Airspace System (NAS). Improved communications, especially to and from the aircraft flight deck, has been identified as an essential enabling technology for future improvements to the air traffic management system and aviation safety. NASA's Glenn Research Center is engaged in research and development of satellite communications technologies for aeronautical applications. A mobile aero terminal has been developed for use with Ku band commercial communications satellites. This experimental terminal will be used in mobile ground and air-based tests and demonstrations during 2000-2004. This paper will describe the basic operational parameters of the Ku Band aero terminal, the communications architecture it is intended to demonstrate, and the key technology issues being addressed in the tests and demonstrations. The design of the Ku Band aero terminal and associated ground testbed, planned tests and demonstrations, and results to date will be presented.

  2. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    NASA Astrophysics Data System (ADS)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through

  3. Satellite-Delivered Learning.

    ERIC Educational Resources Information Center

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  4. Application of Satellite Frost Forecast Technology to Other Parts of the United States

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Chen, E. (Principal Investigator)

    1981-01-01

    Thermal infrared data taken from the GOES satellite over a period of several hours was color enhanced by computer according to temperature. The varying temperatures were then used to assist in frost forecasting. Input from Michigan and Pennsylvania to the cold climate mapping project is emphasized in the report of the second year's activities of a two year effort.

  5. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  6. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    The Satellite Operations Facility of the National Oceanic and Atmospheric Administration (NOAA) is seen here minutes before the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011 in Suitland, Md. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  7. Solar power satellites: The Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1978-01-01

    Certain elements of solar power satellite design and system engineering studies are reviewed analyzing solar power satellites as a potential baseload electric power source. The complete system concept concept includes not only the satellites and their ground stations, but also the space transportation for delivery of the satellites, piece by piece, into space, and the factories for their construction in space. Issues related to carrying the solar power satellite concept from the present design study phase through implementation of actual hardware are considered. The first issue category is environmental aspects of the SPS systems. The second category of issues is the technology risks associated with achieving the necessary component and subsystem performances. The third category includes the engineering issues associated with carrying out such a large scale project. The fourth issue category is financial: the funding required to bring such a project into being and the costs of the satellites and resulting cost of the power produced as compared to potential alternative energy sources.

  8. The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010-2020.

    PubMed

    Kovacs, Kent F; Mercader, Rodrigo J; Haight, Robert G; Siegert, Nathan W; McCullough, Deborah G; Liebhold, Andrew M

    2011-09-01

    The invasion spread of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is characterized by the formation of satellite populations that expand and coalesce with the continuously invading population front. As of January 2010, satellite infestations have been detected in 13 states and two Canadian provinces. Understanding how newly established satellite populations may affect economic costs can help program managers to justify and design prevention and control strategies. We estimate the economic costs caused by EAB for the 10-yr period from 2010 to 2020 for scenarios of fewer EAB satellite populations than those found from 2005 to 2010 and slower expansion of satellite populations found in 2009. We measure the projected discounted cost of treatment, removal, and replacement of ash trees (Fraxinus spp.) growing in managed landscapes in U.S. communities. Estimated costs for the base scenario with the full complement of satellites in 2005-2010 and no program to mitigate spread is $12.5 billion. Fewer EAB satellites from 2005 to 2010 delay economic costs of $1.0 to 7.4 billion. Slower expansion of 2009 satellite populations delays economic costs of $0.1 to 0.7 billion. Satellite populations that are both distant from the core EAB infestation and close to large urban areas caused more economic costs in our simulations than did other satellites. Our estimates of delayed economic costs suggest that spending on activities that prevent establishment of new satellite EAB populations or slow expansion of existing populations can be cost-effective and that continued research on the cost and effectiveness of prevention and control activities is warranted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  10. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  11. Towards an operational fault isolation expert system for French telecommunication satellite Telecom 2

    NASA Astrophysics Data System (ADS)

    Haziza, M.

    1990-10-01

    The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.

  12. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system

  13. Trans-Pacific HDR Satellite Communications Experiment Phase-2 Project Plan and Experimental Network

    NASA Technical Reports Server (NTRS)

    Hsu, Eddie; Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Bergman, Larry; Bhasin, Kul

    2000-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. ATM-based 45 Mbps trans-Pacific link was established in the first phase, and the following experiments with 155 Mbps was planned as the phase 2. This paper describes the experimental network configuration and project plan of TP-HDR experiment phase 2. Additional information is provided in the original.

  14. The eSurge-Venice project: how satellite data can improve the storm surge forecasting in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; Vignudelli, Stefano; Donlon, Craig; De Biasio, Francesco; Della Valle, Antonio; Umgiesser, Georg; Bajo, Marco

    The Data User Element (DUE) program of the European Space Agency (ESA) is funding two projects (eSurge and eSurge-Venice) aimed to demonstrate the improvement of the storm surge forecasting through the use of Earth Observation (EO) data. eSurge-Venice (http://www.esurge-venice.eu/), is specifically focused on the Gulf of Venice, northern Adriatic Sea. The project objectives are: a) Select a number of Storm Surge Events occurred in the Venice lagoon since 1999; b) Provide the available satellite EO data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts; c) Provide a demonstration Near Real Time service (eSurge-Venice live) of EO data products and services in support of operational and experimental forecasting and warning services; d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data. Present storm surge models use atmospheric model wind fields as forcing. These are know to underestimate the wind in small basins like the Adriatic Sea (~1000 km by 300 km), where the orography plays an important role in shaping the winds. Therefore there is the need to verify and tune the atmospheric model wind fields used in the storm surge modeling, an activity which can easily done using satellite scatterometer winds. The project is now in the middle of his life, and promising preliminary results have been achieved using satellite scatterometer wind data to forge the atmospheric model wind fields forcing the storm surge model. This contribution will present the methodology adopted to tune the model wind fields according to the bias with scatterometer winds and the improvements induced in the storm surge model hindcast.

  15. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  16. Study on feasibility of laser reflective tomography with satellite-accompany

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang

    2015-10-01

    Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.

  17. Analysis and Simulation of Traffic Control for Resource Management in DVB-Based Broadband Satellite Access Networks

    NASA Astrophysics Data System (ADS)

    Impemba, Ernesto; Inzerilli, Tiziano

    2003-07-01

    Integration of satellite access networks with the Internet is seen as a strategic goal to achieve in order to provide ubiquitous broadband access to Internet services in Next Generation Networks (NGNs). One of the main interworking aspects which has been most studied is an efficient management of satellite resources, i.e. bandwidth and buffer space, in order to satisfy most demanding application requirements as to delay control and bandwidth assurance. In this context, resource management in DVB-S/DVB-RCS satellite technologies, emerging technologies for broadband satellite access and transport of IP applications, is a research issue largely investigated as a means to provide efficient bi-directional communications across satellites. This is in particular one of the principal goals of the SATIP6 project, sponsored within the 5th EU Research Programme Framework, i.e. IST. In this paper we present a possible approach to efficiently exploit bandwidth, the most critical resource in a broadband satellite access network, while pursuing satisfaction of delay and bandwidth requirements for applications with guaranteed QoS through a traffic control architecture to be implemented in ground terminals. Performance of this approach is assessed in terms of efficient exploitation of the uplink bandwidth and differentiation and minimization of queuing delays for most demanding applications over a time-varying capacity. Opnet simulations is used as analysis tool.

  18. Satellite Technologies in the Classroom.

    ERIC Educational Resources Information Center

    Portz, Stephen M.

    1999-01-01

    Focuses on ways of using satellite imagery obtained from the Internet, to enhance classroom learning. Discusses satellite deployment; classroom applications, including infrared imagery, high-resolution photography, and global positioning satellites; and use of satellite data for hands-on activities, including cartography, city and community…

  19. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    NASA Technical Reports Server (NTRS)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  20. 23 CFR 627.5 - Applicable projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Applicable projects. 627.5 Section 627.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.5 Applicable projects. (a) A VE analysis shall be conducted prior to the completion of final...

  1. 23 CFR 627.5 - Applicable projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Applicable projects. 627.5 Section 627.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.5 Applicable projects. (a) A VE analysis shall be conducted prior to the completion of final...

  2. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  3. NASA Ice, Cloud and land Elevation Satellite-2 Applications - Advancing Dialogue for More Effective Decisions and Societal benefits

    NASA Astrophysics Data System (ADS)

    Delgado Arias, S.; Brown, M. E.; Escobar, V. M.; Jasinski, M. F.; Neumann, T.

    2016-12-01

    Since 2012, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Applications Program has worked to understand how future mission observations can be effectively used to inform operational sea ice forecasting for Arctic shipping, global flood risk monitoring, fire fuel mapping, and other applications. The ICESat-2 Applications Program has implemented various engagement and outreach activities, as well as an Early Adopter program, to facilitate dialogue between potential users, project scientists, science definition team members, NASA Headquarters and the mission's data distribution center. This dialogue clarifies how ICESat-2's science data can be integrated, improved or leveraged to advance science objectives aligned with or beyond those of the mission, and in support of a range of decisions and actions of benefit to communities across the globe. In this presentation, we will present an overview of the Program initiatives and highlight the research-to-applications chains that mission Early Adopters are helping build for ICESat-2. With a total of 19 Early Adopters and more than 400 people engaged as part of the applications community, ICESat-2 has positioned itself to ensure applications where its observations are used to meet the needs of decision makers, policy makers and managers at different scales. For more information visit: http://icesat-2.gsfc.nasa.gov/applications

  4. Echo 30" Sub Satellite

    NASA Image and Video Library

    2012-09-07

    James Hansen describes the work on Project Echo s air density experiment known as the Sub-Satellite. Before launch engineers subjected the sub-satellite to many tests. Here, the sub-satellite is shown prior to tests to determine the capacity of the 30-inch Sub-Satellite to withstand the high temperature of direct sunlight in space, Langley researchers subjected it to 450 F heat test. Results indicated that the aluminum-covered Mylar plastic would effectively reflect the dangerous heat. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 168.

  5. Relative tracking control of constellation satellites considering inter-satellite link

    NASA Astrophysics Data System (ADS)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  6. Satellite Interconnection and Distance Delivery in Alaska: Toward the 21st Century. Summary and Recommendations of the Satellite Interconnection Project under the Direction of the Telecommunications Information Council.

    ERIC Educational Resources Information Center

    Alaska Public Broadcasting Commission, Juneau.

    The Satellite Interconnection Project was created for the purpose of investigating the interest and need for improved interconnection, faster and of greater capacity than the capability of present systems, especially among Alaska state-supported users of video and audio transmissions. The intent was to explore the cost-benefit and the potential…

  7. Expert system application education project

    NASA Technical Reports Server (NTRS)

    Gonzelez, Avelino J.; Ragusa, James M.

    1988-01-01

    Artificial intelligence (AI) technology, and in particular expert systems, has shown potential applicability in many areas of operation at the Kennedy Space Center (KSC). In an era of limited resources, the early identification of good expert system applications, and their segregation from inappropriate ones can result in a more efficient use of available NASA resources. On the other hand, the education of students in a highly technical area such as AI requires an extensive hands-on effort. The nature of expert systems is such that proper sample applications for the educational process are difficult to find. A pilot project between NASA-KSC and the University of Central Florida which was designed to simultaneously address the needs of both institutions at a minimum cost. This project, referred to as Expert Systems Prototype Training Project (ESPTP), provided NASA with relatively inexpensive development of initial prototype versions of certain applications. University students likewise benefit by having expertise on a non-trivial problem accessible to them at no cost. Such expertise is indispensible in a hands-on training approach to developing expert systems.

  8. Initiation of small-satellite formations via satellite ejector

    NASA Astrophysics Data System (ADS)

    McMullen, Matthew G

    Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.

  9. Satellite-tracking and earth-dynamics research programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The activities and progress in the satellite tracking and earth dynamics research during the first half of calendar year 1975 are described. Satellite tracking network operations, satellite geodesy and geophysics programs, GEOS 3 project support, and atmospheric research are covered.

  10. Computer programs for plotting spot-beam coverages from an earth synchronous satellite and earth-station antenna elevation angle contours

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Singh, J. P.

    1972-01-01

    A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.

  11. 30 CFR 402.10 - Research-project applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...

  12. 30 CFR 402.10 - Research-project applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...

  13. 30 CFR 402.10 - Research-project applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...

  14. 30 CFR 402.10 - Research-project applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...

  15. 30 CFR 402.10 - Research-project applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...

  16. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    NASA Technical Reports Server (NTRS)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  17. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    NASA Astrophysics Data System (ADS)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  18. Astrometry and Geostationary Satellites in Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  19. Low-Earth orbit satellite servicing economics

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Cepollina, F. J.

    1982-01-01

    Servicing economics of low Earth orbit satellites were studied. The following topics are examined: the economic importance of the repair missions; comparison of mission cost as opposed to satellite modulation transfer functions over a 10 year period; the effect of satellite flight rate change due to changes in satellite failure rate; estimated satellite cost reduction with shuttle operation projects from the 1960's to the 1970's; design objectives of the multimission modular spacecraft; and the economic importance of the repair mission.

  20. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  1. A study of Minnesota forests and lakes using data from earth resources technology satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This project is to foster and develop new applications of remote sensing under an interdisciplinary effort. Seven reports make up the specific projects presently being conducted throughout the State of Minnesota in cooperation with several agencies and municipalities. These are included under the general headings of: (1) applications of aerial photography and ERTS-1 data to agricultural, forest, and water resources management; (2) classification and dynamics of water and wetland resources of Minnesota; (3) studies of Lake Superior Bay; and (4) feasibility of detecting major air pollutants by earth-oriented satellite-borne sensors.

  2. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    NASA Deputy Administrator Lori Garver, left, watches the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) at the National Oceanic and Atmospheric Administration (NOAA) Satellite Operations Center on Friday, Oct. 28, 2011 in Suitland, Md. U.S Congresswoman Donna Edwards, D-Md., is seen next to Garver. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  3. Applications systems verification and transfer project. Volume 2: Operational applications of satellite snow-cover observations and data-collection systems in the Arizona test site

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1981-01-01

    Ground surveys and aerial observations were used to monitor rapidly changing moisture conditions in the Salt-Verde watershed. Repetitive satellite snow cover observations greatly reduce the necessity for routine aerial snow reconnaissance flights over the mountains. High resolution, multispectral imagery provided by LANDSAT satellite series enabled rapid and accurate mapping of snow-cover distributions for small- to medium-sized subwatersheds; however, the imagery provided only one observation every 9 days of about a third of the watershed. Low resolution imagery acquired by the ITOSa dn SMS/GOES meteorological satellite series provides the daily synoptic observation necessary to monitor the rapid changes in snow-covered area in the entire watershed. Short term runoff volumes can be predicted from daily sequential snow cover observations.

  4. Architectures of small satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2014-04-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.

  5. Evolution from education to practical use in University of Tokyo's nano-satellite activities

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Sako, Nobutada; Sahara, Hironori; Nakamura, Yuya; Eishima, Takashi; Komatsu, Mitsuhito

    2010-04-01

    The paper overviews recent nano-satellite development activities of University of Tokyo, Intelligent Space Systems Laboratory (ISSL). Development of real satellites and actually launching them provides excellent materials for space engineering education as well as project management, which is rather difficult to teach in usual class lectures. In addition, it may lead to a new way of space development with its cheap and quick access to space. Two educational CubeSats were launched successfully in 2003 and 2005, and they have been surviving in space more than 5 years, which showed that the COTS (commercial off the shelf) can be reliably used in space if the system is designed appropriately. Based on the experiences and technologies obtained in CubeSat projects, ISSL initiated practical applications of nano-satellite, starting with PRISM, 8 kg remote sensing satellite aiming for 30 m ground resolution and Nano-JASMINE, 20 kg astrometry satellite, which will be launched in 2009 and 2010, respectively. In order to support these kinds of student-oriented activities in Japan, University Space Engineering Consortium (UNISEC) was founded in 2002 by the author's group, which has had large effect of further facilitating students' space-related activities in Japan. Significance and history of such activities are reviewed briefly, followed by the objectives and future vision of such nano-satellite activities.

  6. Use of Satellite Remote Sensing of Cloud and Rainfall for Selected Operational Applications in the Fields of Applied Hydrology and Food Production.

    NASA Astrophysics Data System (ADS)

    Power, Clare

    Available from UMI in association with The British Library. The material presented in this thesis takes the form of a series of discrete, but inter-related projects on subjects related to the use of satellite remote sensing techniques for selected applications in the fields of cloud, rainfall, vegetation and food production monitoring and assessment. Detailed literature reviews have been carried out on remote sensing techniques in these fields, in particular, for rainfall monitoring and the development of systems for food crop prediction from various rainfall, vegetation and crop monitoring algorithms. The second part of the thesis is devoted to a series of practical projects using five different and contrasting satellite rainfall monitoring techniques using visible and/or infrared imagery, three applied over the Sultanate of Oman and two over West Africa. The case studies applied over the Sultanate of Oman show a range of techniques from manual nephanalyses of Potential Rain Clouds and the derivation of a 20 year record of Tropical Cyclone tracks over the Arabian Sea, to the manual Bristol rainfall monitoring technique and its human-machine interactive successor BIAS, which are applicable to the analysis of short term extreme rainfall events. The remaining two techniques were developed simultaneously over West Africa. The first, namely, PERMIT (the Polar-orbiter Effective Rainfall Monitoring Technique), was developed by the Author, and the second, ADMIT (Agricultural Drought Monitoring Integrated Technique), by a colleague, Giles D'Souza. The development, testing on data from July and August 1985 and July 1986, and subsequent modification of the PERMIT technique is described. The 1986 Case Study results have been compared with the ADMIT results from the same data set, as part of a project funded by FAO to compare the performance of four Meteosat rainfall monitoring techniques (Snijders 1988). PERMIT was designed to be an economic, (in terms of satellite data and

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  8. Applications of satellite remote sensing to forested ecosystems

    Treesearch

    Louis R. Iverson; Robin Lambert Graham; Elizabeth A. Cook; Elizabeth A. Cook

    1989-01-01

    Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided increasingly sophisticated information on the structure and function of forested ecosystems. Forest classification and mapping, common uses of satellite data, have improved over the years as a result of more discriminating sensors, better classification...

  9. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    NASA Technical Reports Server (NTRS)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  10. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  11. First Observations of GNSS Ionospheric Scintillations From DemoGRAPE Project

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Cilliers, P. J.; Romano, V.; Hunstad, I.; Correia, E.; Linty, N.; Dovis, F.; Terzo, O.; Ruiu, P.; Ward, J.; Riley, P.

    2016-10-01

    The Istituto Nazionale di Geofisica e Vulcanologia leads an international project funded by the Italian National Program for Antarctic Research, called Demonstrator of Global Navigation Satellite System (GNSS) Research and Application for Polar Environment (DemoGRAPE), in partnership with Politecnico di Torino, Istituto Superiore Mario Boella, and with South African National Space Agency and the Brazilian National Institute of Space Physics, as key collaborators. DemoGRAPE is a new prototype of support for the satellite navigation in Antarctica. Besides the scientific interest, the accuracy of satellite navigation in Antarctica is of paramount importance since there is always the danger that people and vehicles can fall into a crevasse during a snowstorm, when visibility is limited and travel is restricted to following specified routes using satellite navigation systems. The variability of ionospheric delay and ionospheric scintillation are two of the primary factors which affect the accuracy of satellite navigation. The project will provide a demonstrator of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions. The scope of the project includes new equipment for the recording and dissemination of GNSS data and products installed at the South African and Brazilian bases in Antarctica. The new equipment will facilitate the exchange of software and derived products via the Cloud computing technology infrastructure. The project portal is accessible at www.demogrape.net. We report the first Global Navigation Satellite System (GNSS) signal scintillations observed in Antarctica.

  12. Space station automation study-satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A plan for advancing the state of automation and robotics technology as an integral part of the U.S. space station development effort was studied. This study was undertaken: (1) to determine the benefits that will accrue from using automated systems onboard the space station in support of satellite servicing; (2) to define methods for increasing the capacity for, and effectiveness of satellite servicing while reducing demands on crew time and effort and on ground support; (3) to find optimum combinations of men/machine activities in the performance of servicing functions; and (4) project the evolution of automation technology needed to enhance or enable satellite servicing capabilities to match the evolutionary growth of the space station. A secondary intent is to accelerate growth and utilization of robotics in terrestrial applications as a spin-off from the space station program.

  13. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  14. Application of Satellite Based Augmentation Systems to Altitude Separation

    NASA Astrophysics Data System (ADS)

    Magny, Jean Pierre

    This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.

  15. Flood and Landslide Applications of Near Real-time Satellite Rainfall Products

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Negri, Andrew; Huffman, George J.

    2007-01-01

    Floods and associated landslides are one of the most widespread natural hazards on Earth, responsible for tens of thousands of deaths and billions of dollars in property damage every year. During 1993-2002, over 1000 of the more than 2,900 natural disasters reported were due to floods. These floods and associated landslides claimed over 90,000 lives, affected over 1.4 billion people and cost about $210 billion. The impact of these disasters is often felt most acutely in less developed regions. In many countries around the world, satellite-based precipitation estimation may be the best source of rainfall data due to lack of surface observing networks. Satellite observations can be of essential value in improving our understanding of the occurrence of hazardous events and possibly in lessening their impact on local economies and in reducing injuries, if they can be used to create reliable warning systems in cost-effective ways. This article addressed these opportunities and challenges by describing a combination of satellite-based real-time precipitation estimation with land surface characteristics as input, with empirical and numerical models to map potential of landslides and floods. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg. By careful integration of remote sensing and in-situ observations, and assimilation of these observations into hydrological and landslide/debris flow models with surface topographic information, prediction of useful

  16. Flight and ground tests of a GOES satellite time receiver for satellite communications applications

    NASA Technical Reports Server (NTRS)

    Swanson, R. L.; Nichols, S. A.

    1981-01-01

    A satellite time receiver was tested in various environmental conditions during the past year. The commercial receiver designed to work with the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES). The test program included operation at low elevation during flight in a military cargo aircraft and long term comparison with laboratory standards. The GOES satellite time receiver offers an opportunity to provide easy wide area coverage synchronization at low cost.

  17. Operational monitoring of turbidity in rivers: how satellites can contribute

    NASA Astrophysics Data System (ADS)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  18. Project Integration Architecture: Inter-Application Propagation of Information

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    A principal goal of the Project Integration Architecture (PIA) is to facilitate the meaningful inter-application transfer of application-value-added information. Such exchanging applications may be largely unrelated to each other except through their applicability to an overall project; however, the PIA effort recognizes as fundamental the need to make such applications cooperate despite wide disparaties either in the fidelity of the analyses carried out, or even the disciplines of the analysis. This paper discusses the approach and techniques applied and anticipated by the PIA project in treating this need.

  19. An ANSERLIN array for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.

    1990-01-01

    Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.

  20. Satellite Television and (Distance) Education in Australia.

    ERIC Educational Resources Information Center

    Millar, Alex C.

    The Australian national communications satellite AUSSAT, launched in August 1985, is used by government, business, and education. At this stage, the most comprehensive educational project using the satellite involves the state of Queensland, where the government has leased one of the satellite's transponders to provide services throughout the…

  1. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    Dr. Kathy Sullivan, center, Deputy Administrator of the National Oceanic and Atmospheric Administration (NOAA) and former NASA astronaut is interviewed by a local television network at NOAA's Satellite Operations Facility in Suitland, Md. after the successful launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  2. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  3. Artificial satellite break-ups. I - Soviet ocean surveillance satellites

    NASA Astrophysics Data System (ADS)

    Johnson, N. L.

    1983-02-01

    An analysis of the breakup patterns of eight Soviet Kosmos series ocean surveillance satellites is presented. It is noted that half of the 4700 objects presently detected in earth orbit are shards from destroyed objects. The locations and heading of each Soviet satellite breakup were tracked by the Naval Space Survelliance System. All events in the eastern hemisphere occurred in the ascending phase, while western hemisphere breakups happened in the descending phase. Gabbard (1971) diagrams of altitude vs. period are plotted as a function of a fragment's orbital period. The diagrams have been incorporated into a NASA computer program to backtrack along the fragments' paths to determine the pattern of the breakup. Although objects have been projected to have separated from some of the satellites before breakup, a discussion of the evidence leads to the conclusion that even though the satellites may have exploded no purpose can yet be discerned for the actions.

  4. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  5. Photovoltaic tests and applications project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities and accomplishments of the Photovoltaic Tests and Applications Project during the period April 1976 through June 1977 are summarized. Results of efforts to identify potential near-term photovoltaic applications and users are discussed, including the outcome of an extensive survey of Federal government agencies. The status of application experiments is presented. Various general engineering efforts are reported, including the design and construction of a photovoltaic Systems Test Facility. Efforts to develop a high efficiency 10 kVA self-commutated inverter and controller specifically designed for photovoltaic systems are also discussed. The results of a wide variety of activities in the area of photovoltaic measurements and standards are related. Documents generated by the Project during the reporting period are listed in an Appendix.

  6. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  7. Aquarius iPhone Application

    NASA Technical Reports Server (NTRS)

    Estes, Joseph C., Jr.; Arca. Jeremy M.; Ko, Michael A.; Oks, Boris

    2012-01-01

    The Office of the CIO at JPL has developed an iPhone application for the Aquarius/SAC-D mission. The application includes specific information about the science and purpose of the Aquarius satellite and also features daily mission news updates pulled from sources at Goddard Space Flight Center as well as Twitter. The application includes a media and data tab section. The media section displays images from the observatory, viewing construction up to the launch and also includes various videos and recorded diaries from the Aquarius Project Manager. The data tab highlights many of the factors that affect the Earth s ocean and the water cycle. The application leverages the iPhone s accelerometer to move the Aquarius Satellite over the Earth, revealing these factors. Lastly, this application features a countdown timer to the satellite s launch, which is currently counting the days since launch. This application was highly successful in promoting the Aquarius Mission and educating the public about how ocean salinity is paramount to understanding the Earth.

  8. Gossamer sails for satellite de-orbiting: Mission analysis and applications

    NASA Astrophysics Data System (ADS)

    Visagie, Lourens

    The requirement for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Studies have been used to formulate space debris mitigation guidelines, and adherence to these guidelines would theoretically lead to a sustainable environment for future satellite launches and operations. Deployable sail designs that have traditionally been studied and used for solar sails are increasingly being considered for de-orbit applications. Such sail designs benefit from a low mass and large surface area to achieve efficient thrust. A sail has the potential to be used for drag augmentation, to reduce the time until re-entry, or as an actual solar sail - to deorbit from higher orbits. A number of concerns for sail-based deorbiting are addressed in this thesis. One of these concerns is the ability of a sail to mitigate the risk of a collision. By investigating both the area-time-product (ATP) and collision probability it is shown that a gossamer sail used for deorbiting will lead to a reduction in overall collision risk. The extent to which the risk is reduced is investigated and the contributing factors assessed. Another concern is that of attitude stability of a host satellite and deorbit sail. One of the biggest benefits of drag augmentation is the fact that it can achieve the deorbiting goal with an inactive host satellite. There is thus no need for active control, communications or power after deployment. But a simple 2D sail will lose efficiency as a deorbiting device if it is not optimally oriented. It was found in this research that it is possible for a host satellite with attached sail to maintain a stable attitude under passive conditions in a drag deorbiting mode. Finally, in order to fully prove the benefit of sail-based deorbiting it is shown that in certain scenarios this alternative might be more efficient at reducing collision risk, weighs less, and has less operational requirements than

  9. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  10. Forestry applications project/timber resource. Sam Houston National forest inventory and development of a survey planning model

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1976-01-01

    The Forestry Applications Project has been directed towards solving the problem of meeting informational needs of the resource managers utilizing remote sensing data sources including satellite data, conventional aerial photography, and direct measurement on the ground in such combinations as needed to best achieve these goals. It is recognized that sampling plays an important role in generating relevant information for managing large geographic populations. The central problem, therefore, is to define the kind and amount of sampling and the place of remote sensing data sources in that sampling system to do the best possible job of meeting the manager's informational needs.

  11. Potential markets for advanced satellite communications

    NASA Astrophysics Data System (ADS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  12. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  13. Application of Geostatistical Simulation to Enhance Satellite Image Products

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David

    2004-01-01

    With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.

  14. Broadband Satellite Technologies and Markets Assessed

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.

    1999-01-01

    The current usage of broadband (data rate greater than 64 kilobits per second (kbs)) for multimedia network computer applications is increasing, and the need for network communications technologies and systems to support this use is also growing. Satellite technology will likely be an important part of the National Information Infrastructure (NII) and the Global Information Infrastructure (GII) in the next decade. Several candidate communications technologies that may be used to carry a portion of the increased data traffic have been reviewed, and estimates of the future demand for satellite capacity have been made. A study was conducted by the NASA Lewis Research Center to assess the satellite addressable markets for broadband applications. This study effort included four specific milestones: (1) assess the changing nature of broadband applications and their usage, (2) assess broadband satellite and terrestrial technologies, (3) estimate the size of the global satellite addressable market from 2000 to 2010, and (4) identify how the impact of future technology developments could increase the utility of satellite-based transport to serve this market.

  15. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  16. Xatcobeo: Small Mechanisms for CubeSat Satellites - Antenna and Solar Array Deployment

    NASA Technical Reports Server (NTRS)

    EncinasPlaza, Jose Miguel; VilanVilan, Jose Antonio; AquadoAgelet, Fernando; BrandiaranMancheno, Javier; LopezEstevez, Miguel; MartinezFernandez, Cesar; SarmientoAres, Fany

    2010-01-01

    The Xatcobeo project, which includes the mechanisms dealt with here, is principally a university project to design and construct a CubeSat 1U-type satellite. This work describes the design and operational features of the system for antenna storage and deployment, and the design and simulations of the solar array deployment system. It explains the various problems faced and solutions adopted, with a view to providing valid data for any other applications that could find them useful, be they of a similar nature or not.

  17. Spatial Data Exploring by Satellite Image Distributed Processing

    NASA Astrophysics Data System (ADS)

    Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.

    2012-04-01

    . Also this Web application does not require any kind of install for what the house-hold user is concerned. It is a remote application which may be accessed over the Internet. Currently the GreenLand application is available through the BSC-OS Portal provided by the enviroGRIDS FP7 project [3]. This presentation aims to highlight the challenges and issues of flexible description of the Grid based processing of satellite images, interoperability with other software platforms available in the portal, as well as the particular requirements of the Black Sea related use cases.

  18. Advances in satellite remote sensing of environmental variables for epidemiological applications.

    PubMed

    Goetz, S J; Prince, S D; Small, J

    2000-01-01

    Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.

  19. Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows.

    NASA Astrophysics Data System (ADS)

    Bedka, Kristopher M.; Mecikalski, John R.

    2005-11-01

    This study demonstrates methods to obtain high-density, satellite-derived atmospheric motion vectors (AMV) that contain both synoptic-scale and mesoscale flow components associated with and induced by cumuliform clouds through adjustments made to the University of Wisconsin—Madison Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) AMV processing algorithm. Operational AMV processing is geared toward the identification of synoptic-scale motions in geostrophic balance, which are useful in data assimilation applications. AMVs identified in the vicinity of deep convection are often rejected by quality-control checks used in the production of operational AMV datasets. Few users of these data have considered the use of AMVs with ageostrophic flow components, which often fail checks that assure both spatial coherence between neighboring AMVs and a strong correlation to an NWP-model first-guess wind field. The UW-CIMSS algorithm identifies coherent cloud and water vapor features (i.e., targets) that can be tracked within a sequence of geostationary visible (VIS) and infrared (IR) imagery. AMVs are derived through the combined use of satellite feature tracking and an NWP-model first guess. Reducing the impact of the NWP-model first guess on the final AMV field, in addition to adjusting the target selection and vector-editing schemes, is found to result in greater than a 20-fold increase in the number of AMVs obtained from the UW-CIMSS algorithm for one convective storm case examined here. Over a three-image sequence of Geostationary Operational Environmental Satellite (GOES)-12 VIS and IR data, 3516 AMVs are obtained, most of which contain flow components that deviate considerably from geostrophy. In comparison, 152 AMVs are derived when a tighter NWP-model constraint and no targeting adjustments were imposed, similar to settings used with operational AMV production algorithms. A detailed analysis reveals that many of these 3516 vectors contain low

  20. TOPEX satellite concept. TOPEX option study report

    NASA Technical Reports Server (NTRS)

    Meyer, D. P.; Case, C. M.

    1982-01-01

    Candidate bus equipment from the Viking, Applications Explorer Mission, and Small Scientific Satellite programs for application to the TOPEX mission options is assessed. Propulsion module equipment and subsystem candidates from the Applications Explorer Mission satellites and the Small Scientific Satellite spacecraft are evaluated for those TOPEX options. Several subsystem concepts appropriate to the TOPEX options are described. These descriptions consider performance characteristics of the subsystems. Cost and availability information on the candidate equipment and subsystems are also provided.

  1. The IOSMOS (IOnian Sea water quality MOnitoring by Satellite data) project: integration of satellite data and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Lacava, Teodosio; Bernini, Guido; Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Madonia, Alice; Marcelli, Marco; Pascucci, Simone; Paciello, Rossana; Palombo, Angelo; Pergola, Nicola; Piermattei, Viviana; Pignatti, Stefano; Santini, Federico; Satriano, Valeria; Tournaviti, Paraskevi; Tramutoli, Valerio; Vallianatos, Filippos

    2014-05-01

    Coastal zones are complex and dynamic ecosystems representing one of the most productive areas of the marine environment. These areas deserve the development and the implementation of a monitoring system able to guarantee their continuous and reliable control for a timely and accurate identification of any possible sign of degradation. Remote sensing data can give a relevant contribution in this framework, offering the capability to provide the information about the spatial distribution of water constituents over large areas with high temporal rates and at relatively low costs. In this context, the main objective of the IOSMOS (IOnian Sea water quality MOnitoring by Satellite data) Project - a European Transnational Cooperation action co-funded by the ERDF Operational Programme Basilicata 2007-2013 is the development of advanced satellite products and techniques for the study and the monitoring of the Ionian sea water quality along Basilicata (Italy) and Crete Island (Greece) coasts. In particular, the RST (Robust Satellite Technique) approach has been applied to more than 10 years of MODIS-Ocean Colour products in order to identify the areas at highest level of degradation and/or at greatest potential risk. Following RST approach anomalous space-time variations of optical variables (e.g. upwelling normalized water-leaving radiances) and bio-optical parameters such as chlorophyll-a concentration, Cromophormic Dissolved Organic Matter (CDOM), diffuse attenuation coefficient at 490 nm (Kd490), etc. have been identified taking into account the site history (in terms of expected values and normal variability of each selected parameter) as obtained from long-term, multi-temporal time series analysis. Such an approach allowed to generate similar products both for shallow and deep water. Specific measurements campaigns have been carried out with the collection of in-situ (radiometric and chemical/physical measurements) and airborne (radiometric measurements) data, in

  2. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-user Resources, Answers to Faqs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan Neal; Prados, Ana; Lamsal, Lok N.; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  3. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan; Prados, Ana I.; Lamsal, Lok; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  4. A service for the application of data quality information to NASA earth science satellite records

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.

    2016-12-01

    A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.

  5. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  6. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  7. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  8. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  9. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  10. Applications systems verification and transfer project. Volume 3: Operational applications of satellite snow cover observations in California

    NASA Technical Reports Server (NTRS)

    Brown, A. J.; Hannaford, J. F.

    1981-01-01

    Five southern Sierra snowmelt basins and two northern Sierra-Southern Cascade snowmelt basins were used to evaluate the effect on operational water supply forecasting from satellite imagery. Manual photointerpretation techniques were used to obtain SCA and equivalent snow line for the years 1973 to 1979 for the seven test basins using LANDSAT imagery and GOES imagery. The use of SCA was tested operationally in 1977-79. Results indicate the addition of SCA improve the water supply forecasts during the snowmelt phase for these basins where there may be an unusual distribution of snowpack throughout the basin, or where there is a limited amount of real time data available. A high correlation to runoff was obtained when SCA was combined with snow water content data obtained from reporting snow sensors.

  11. Promoting space research and applications in developing countries through small satellite missions

    NASA Astrophysics Data System (ADS)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  12. Mathematical formulation of the Applications Technology Satellite-F (ATS-F) orbital maneuver control program (CNTRLF)

    NASA Technical Reports Server (NTRS)

    Goorevich, C. E.

    1975-01-01

    The mathematical formulation is presented of CNTRLF, the maneuver control program for the Applications Technology Satellite-F (ATS-F). The purpose is to specify the mathematical models that are included in the design of CNTRLF.

  13. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  14. Future satellite systems - Market demand assessment

    NASA Technical Reports Server (NTRS)

    Reiner, P. S.

    1981-01-01

    During 1979-80, a market study was performed regarding the future total demand for communications services, and satellite transmission service at the 4/6 GHz, 12/14 GHz, and 20/30 GHz frequencies. Included in the study were a variety of communications traffic characteristics as well as projections of the cost of C and Ku band satellite systems through the year 2000. In connection with the considered study, a total of 15 major study tasks and subtasks were undertaken and were all interrelated in various ways. The telecommunications service forecasts were concerned with a total of 21 data services, 5 voice services, and 5 video services. The traffic volumes within the U.S. for the three basic services were projected for three time periods. It is found that the fixed frequency allocation for domestic satellites combined with potential interference from adjacent satellites means a near term lack of orbital positions above the U.S.

  15. Prototype Rail Crossing Violation Warning Application Project Report.

    DOT National Transportation Integrated Search

    2017-09-05

    This report is the Project Report for the Rail Crossing Violation Warning (RCVW) safety application developed for the project on Rail Crossing Violation Warning Application and Infrastructure Connection, providing a means for equipped connected vehic...

  16. Irreducible projective representations and their physical applications

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Liu, Zheng-Xin

    2018-01-01

    An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.

  17. Applications of satellite technology to broadband ISDN networks

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Kwan, Robert K.; Chitre, D. M.; Henderson, T. R.; White, L. W.; Morgan, W. L.

    1992-01-01

    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about $190M whereas the second architecture would be about $250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization.

  18. Monitoring Cyanobacteria with Satellites Webinar

    EPA Pesticide Factsheets

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  19. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  20. Application of Project Portfolio Management

    NASA Astrophysics Data System (ADS)

    Pankowska, Malgorzata

    The main goal of the chapter is the presentation of the application project portfolio management approach to support development of e-Municipality and public administration information systems. The models of how people publish and utilize information on the web have been transformed continually. Instead of simply viewing on static web pages, users publish their own content through blogs and photo- and video-sharing slides. Analysed in this chapter, ICT (Information Communication Technology) projects for municipalities cover the mixture of the static web pages, e-Government information systems, and Wikis. So, for the management of the ICT projects' mixtures the portfolio project management approach is proposed.

  1. The Case Against Satellites. The Network Project. Notebook Number Seven.

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY. Network Project.

    An analysis is presented of the dangers generated by the corporate ownership of a satellite communications technology powerful enough to centralize and control the flow of information. The first part of the report reprints the transcript of a radio documentary on satellite communications, one of a series of five MATRIX radio programs produced by…

  2. Performance assessment of fire-sat monitoring system based on satellite time series for fire danger estimation : the experience of the pre-operative application in the Basilicata Region (Italy)

    NASA Astrophysics Data System (ADS)

    Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa

    2013-04-01

    This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.

  3. Highlights from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Satellite Validation Project

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Fortuin, P.; Einsudi, Franco (Technical Monitor)

    2001-01-01

    There are three years of data (more than 1000 individual ozone profiles) available from a network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project. Since late 1999, a tropical station in the northern hemisphere (Paramaribo, Surinam; lat/long) joined SHADOZ, providing coordinated weekly ozone and radiosonde data from the surface to approx. 7 hPa for satellite validation, process studies, and model evaluation. Profiles are also collected at: Ascension Island; Nairobi, Kenya; Irene, South Africa; R (union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The archive, station characteristics and photos are available at http://code9l6.gsfc.nasa.gov/Data_ services/shadoz>. SHADOZ ozone time-series and profiles in 1998-2000 display highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Integrated total ozone column amounts from the sondes are lower than independent measurements from a ground-based network and from the TOMS (Total Ozone Mapping Spectrometer) satellite (version 7 data).

  4. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  5. IMPROVING BIOGENIC EMISSION ESTIMATES WITH SATELLITE IMAGERY

    EPA Science Inventory

    This presentation will review how existing and future applications of satellite imagery can improve the accuracy of biogenic emission estimates. Existing applications of satellite imagery to biogenic emission estimates have focused on characterizing land cover. Vegetation dat...

  6. Comparison of Satellite Surveying to Traditional Surveying Methods for the Resources Industry

    NASA Astrophysics Data System (ADS)

    Osborne, B. P.; Osborne, V. J.; Kruger, M. L.

    Modern ground-based survey methods involve detailed survey, which provides three-space co-ordinates for surveyed points, to a high level of accuracy. The instruments are operated by surveyors, who process the raw results to create survey location maps for the subject of the survey. Such surveys are conducted for a location or region and referenced to the earth global co- ordinate system with global positioning system (GPS) positioning. Due to this referencing the survey is only as accurate as the GPS reference system. Satellite survey remote sensing utilise satellite imagery which have been processed using commercial geographic information system software. Three-space co-ordinate maps are generated, with an accuracy determined by the datum position accuracy and optical resolution of the satellite platform.This paper presents a case study, which compares topographic surveying undertaken by traditional survey methods with satellite surveying, for the same location. The purpose of this study is to assess the viability of satellite remote sensing for surveying in the resources industry. The case study involves a topographic survey of a dune field for a prospective mining project area in Pakistan. This site has been surveyed using modern surveying techniques and the results are compared to a satellite survey performed on the same area.Analysis of the results from traditional survey and from the satellite survey involved a comparison of the derived spatial co- ordinates from each method. In addition, comparisons have been made of costs and turnaround time for both methods.The results of this application of remote sensing is of particular interest for survey in areas with remote and extreme environments, weather extremes, political unrest, poor travel links, which are commonly associated with mining projects. Such areas frequently suffer language barriers, poor onsite technical support and resources.

  7. Satellite Power System (SPS) military applications

    NASA Technical Reports Server (NTRS)

    Ozeroff, M. J.

    1978-01-01

    The potential military role, both offensive and defensive, of a Satellite Power System (SPS) is examined. A number of potential military support possibilities are described. An SPS with military capabilities may have a strong negative impact on international relations if it is not internationalized. The SPS satellite would be vulnerable to military action of an enemy with good space capability, but would experience little or no threat from saboteurs or terrorists, except via the ground controls. The paper concludes with an outline of some of the key issues involved, and a number of recommendations for future study, including some areas for long term efforts.

  8. Baltimore applications project

    NASA Technical Reports Server (NTRS)

    Golden, T. S.; Yaffee, P.

    1978-01-01

    The Baltimore Applications Project (BAP) was originally designed as an experimental effort to assist the government of the City of Baltimore in applying technology to the solution of municipal problems. Recent modifications in the structuring and operation of the program are discussed. A tabular update on the individual tasks undertaken and their treatment is provided. Details of energy and nonenergy related tasks are presented in appendices.

  9. Satellite Relay Telemetry of Seismic Data in Earthquake Prediction and Control

    NASA Technical Reports Server (NTRS)

    Jackson, W. H.; Eaton, J. P.

    1971-01-01

    The Satellite Telemetry Earthquake Monitoring Program was started to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project. The principal advantages of the satellite relay system over commercial telephone or microwave systems were: (1) it could be made less prone to massive failure during a major earthquake; (2) it could be extended readily into undeveloped regions; and (3) it could provide flexible, uniform communications over large sections of major global tectonic zones. Fundamental characteristics of a communications system to cope with the large volume of raw data collected by a short-period seismograph network are discussed.

  10. ETS-5, ETS-6, and COMETS projects in Japan

    NASA Technical Reports Server (NTRS)

    Iida, Takashi; Wakana, Hiromitsu; Obara, Noriaki

    1992-01-01

    Three satellite communication projects now in progress in Japan are described. The first is a project to establish a telecommunication network for tele-education, TV conference, and tele-medicine in the Asia-Pacific region by using the Japan's Engineering Test Satellite-5 (ETS-5). The second is a project of the ETS-6 satellite, to be launched in 1993, for inter-satellite communication, mobile and fixed communication, and millimeter wave personal communication experiments. The third is a project of the Communications and Broadcasting Engineering Test Satellite (COMETS), to be launched in 1997, for advanced mobile satellite communication, inter-satellite link, and advanced broadcasting experiments at higher frequencies.

  11. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  12. IP voice over ATM satellite: experimental results over satellite channels

    NASA Astrophysics Data System (ADS)

    Saraf, Koroush A.; Butts, Norman P.

    1999-01-01

    IP telephony, a new technology to provide voice communication over traditional data networks, has the potential to revolutionize telephone communication within the modern enterprise. This innovation uses packetization techniques to carry voice conversations over IP networks. This packet switched technology promises new integrated services, and lower cost long-distance communication compared to traditional circuit switched telephone networks. Future satellites will need to carry IP traffic efficiently in order to stay competitive in servicing the global data- networking and global telephony infrastructure. However, the effects of Voice over IP over switched satellite channels have not been investigated in detail. To fully understand the effects of satellite channels on Voice over IP quality; several experiments were conducted at Lockheed Martin Telecommunications' Satellite Integration Lab. The result of those experiments along with suggested improvements for voice communication over satellite are presented in this document. First, a detailed introduction of IP telephony as a suitable technology for voice communication over future satellites is presented. This is followed by procedures for the experiments, along with results and strategies. In conclusion we hope that these capability demonstrations will alleviate any uncertainty regarding the applicability of this technology to satellite networks.

  13. A TT&C Performance Simulator for Space Exploration and Scientific Satellites - Architecture and Applications

    NASA Astrophysics Data System (ADS)

    Donà, G.; Faletra, M.

    2015-09-01

    This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.

  14. Satellite networks for education.

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Consideration of satellite-based educational networking. The characteristics and structure of networks are reviewed, and pressures within the educational establishment that are providing motivation for various types of networks are discussed. A number of studies are cited in which networking needs for educational sectors and services are defined. The current status of educational networking for educational radio and television, instructional television fixed services, inter- and intrastate educational communication networks, computer networks, cable television for education, and continuing and proposed educational experiments using NASA's Applications Technology Satellites is reviewed. Possible satellite-based educational telecommunication services and three alternatives for implementing educational satellite systems are described. Some remarks are made concerning public policy aspects of future educational satellite system development.

  15. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-01

    The Prediction Of Worldwide Energy Resource (POWER) Project facilitates access to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A   new ...

  16. Applications of Satellite Geodesy in Environmental and Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, Qian

    Satellite geodesy plays an important role in earth observation. This dissertation presents three applications of satellite geodesy in environmental and climate change. Three satellite geodesy techniques are used: high-precision Global Positioning System (GPS), the Gravity Recovery and Climate Experiment (GRACE) and Interferometric Synthetic Aperture Radar (InSAR). In the first study, I use coastal uplift observed by GPS to study the annual changes in mass loss of the Greenland ice sheet. The data show both spatial and temporal variations of coastal ice mass loss and suggest that a combination of warm atmospheric and oceanic condition drove these variations. In the second study, I use GRACE monthly gravity change estimates to constrain recent freshwater flux from Greenland. The data show that Arctic freshwater flux started to increase rapidly in the mid-late 1990s, coincident with a decrease in the formation of dense Labrador Sea Water, a key component of the deep southward return flow od the Atlantic Meridional Overturning Circulation (AMOC). Recent freshening of the polar oceans may be reducing formation of Labrador Sea Water and hence may be weakening the AMOC. In the third study, I use InSAR to monitor ground deformation caused by CO2 injection at an enhanced oil recovery site in west Texas. Carbon capture and storage can reduce CO 2 emitted from power plants, and is a promising way to mitigate anthropogenic warming. From 2007 to 2011, ~24 million tons of CO2 were sequestered in this field, causing up to 10 MPa pressure buildup in a reservoir at depth, and surface uplift up to 10 cm. This study suggests that surface displacement observed by InSAR is a cost-effective way to estimate reservoir pressure change and monitor the fate of injected fluids at waste disposal and CO2 injection sites.

  17. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    NASA Astrophysics Data System (ADS)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  18. Scientific and technical applications of a tethered satellite system

    NASA Technical Reports Server (NTRS)

    Snoddy, W. C.

    1979-01-01

    A Shuttle-borne tether system capable of deploying a tether to radial distances as great as 100 km was described by Rupp and Laue (1978). The system as discussed by Rupp and Laue would have a total mass of 700 kg and would be mounted on one Shuttle pallet. It would consist of a tether reel mechanism complete with a servo drive motor and control sensors, a boom with docking probe used for initial deployment and subsequent retrieval, some type of satellite weighing 175 kg, up to 100 km of synthetic or metallic tether approximately 1 mm in diameter, a digital control computer, and a control and display panel on the Orbiter aft flight deck for crew operation. The primary use of a tether system for geological applications would be in the measurement of those magnetic and gravitational fields associated with geological structures. The major appeal in connection with atmospheric applications is the system's ability to extend instrumentation down into the lower thermosphere and possibly the mesosphere.

  19. Remote Observing with the Keck Telescope Using the ACTS Satellite

    NASA Technical Reports Server (NTRS)

    Cohen, Judy; Shopbell, Patrick; Bergman, Larry

    1998-01-01

    As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.

  20. Geolocation applications of the Gonets LEO messaging satellites

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir N.; Ashjaee, Javad M.

    Geostationary satellites carry a majority of the international telecommunications traffic not carried by transoceanic cable. However, because the radio path links to and from geostationary satellites total at least 70,000 km and because of inherent on-board spacecraft power limitations, earth stations used in conjunction with geostationary satellites are usually large and expensive. This limits their installation to areas with a well-developed industrial and economic infrastructure. This reality helps perpetuate a chicken egg dilemma for the developing countries and isolated regions. Economic integration with the developed world requires being 'networked'. But for many developing entities, even the initial price of entry exceeds their modest resources. Exclusion from the global information highways virtually assures retardation of economic growth for developing nations, remote and isolated areas. Very Small Aperture Terminal (VSAT) earth stations are often thought of as a solution for networking developing regions. But economic considerations often forecloses this option. If VSAT size and cost is to be minimized, powerful spot beams from the satellite need to be focused on relatively small regions. This is not often feasible because of the high cost of the satellite itself. To dedicate a high power spot beam to a small region is usually not economically feasible.

  1. Geolocation applications of the Gonets LEO messaging satellites

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Ashjaee, Javad M.

    1993-01-01

    Geostationary satellites carry a majority of the international telecommunications traffic not carried by transoceanic cable. However, because the radio path links to and from geostationary satellites total at least 70,000 km and because of inherent on-board spacecraft power limitations, earth stations used in conjunction with geostationary satellites are usually large and expensive. This limits their installation to areas with a well-developed industrial and economic infrastructure. This reality helps perpetuate a chicken egg dilemma for the developing countries and isolated regions. Economic integration with the developed world requires being 'networked'. But for many developing entities, even the initial price of entry exceeds their modest resources. Exclusion from the global information highways virtually assures retardation of economic growth for developing nations, remote and isolated areas. Very Small Aperture Terminal (VSAT) earth stations are often thought of as a solution for networking developing regions. But economic considerations often forecloses this option. If VSAT size and cost is to be minimized, powerful spot beams from the satellite need to be focused on relatively small regions. This is not often feasible because of the high cost of the satellite itself. To dedicate a high power spot beam to a small region is usually not economically feasible.

  2. The Baselines Project: Establishing Reference Environmental Conditions for Marine Habitats in the Gulf of Mexico using Forecast Models and Satellite Data

    NASA Astrophysics Data System (ADS)

    Jolliff, J. K.; Gould, R. W.; deRada, S.; Teague, W. J.; Wijesekera, H. W.

    2012-12-01

    We provide an overview of the NASA-funded project, "High-Resolution Subsurface Physical and Optical Property Fields in the Gulf of Mexico: Establishing Baselines and Assessment Tools for Resource Managers." Data assimilative models, analysis fields, and multiple satellite data streams were used to construct temperature and photon flux climatologies for the Flower Garden Banks National Marine Sanctuary (FGBNMS) and similar habitats in the northwestern Gulf of Mexico where geologic features provide a platform for unique coral reef ecosystems. Comparison metrics of the products to in situ data collected during complimentary projects are also examined. Similarly, high-resolution satellite-data streams and advanced processing techniques were used to establish baseline suspended sediment load and turbidity conditions in selected northern Gulf of Mexico estuaries. The results demonstrate the feasibility of blending models and data into accessible web-based analysis products for resource managers, policy makers, and the public.

  3. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  4. Methods of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  5. Satellite observations of temporal terrestrial features

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1972-01-01

    The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.

  6. Kagawa Satellite “STARS” in Shikoku

    NASA Astrophysics Data System (ADS)

    Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke

    The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.

  7. Application of a space station to communications satellites

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.

    1983-01-01

    The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.

  8. Project JOVE. [microgravity experiments and applications

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1994-01-01

    The goal of this project is to investigate new areas of research pertaining to free surface-interface fluids mechanics and/or microgravity which have potential commercial applications. This paper presents an introduction to ferrohydrodynamics (FHD), and discusses some applications. Also, computational methods for solving free surface flow problems are presented in detail. Both have diverse applications in industry and in microgravity fluids applications. Three different modeling schemes for FHD flows are addressed and the governing equations, including Maxwell's equations, are introduced. In the area of computational modeling of free surface flows, both Eulerian and Lagrangian schemes are discussed. The state of the art in computational methods applied to free surface flows is elucidated. In particular, adaptive grids and re-zoning methods are discussed. Additional research results are addressed and copies of the publications produced under the JOVE Project are included.

  9. Applications technology satellites battery and power system design

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Bemis, B.

    1977-01-01

    A summary of the ATS battery design which is onboard the Applications Technology Satellite (ATS) is provided. The 15 ampere hour nickel cadmium cells were manufactured by Gulton, 19 series connected cells per battery, and there are two batteries in each spacecraft. The operating design life was two years in a synchronous orbit, and a maximum depth of discharge of 50 percent. The design temperature for the batteries in the spacecraft was 0 to 25 C, and the charge control consisted of 1 volt versus temperature on a constant percentage voltage. Also, C/10 current limit, and a commandable trickle charge rate, using C/20 or C/60. The undervoltage was sent across a 9 cell and a 10 cell group, and it was set at one volt average per group on either group.

  10. Use of meteorological satellite observations in weather modification programs

    NASA Technical Reports Server (NTRS)

    Dennis, A. S.; Smith, P. L., Jr.; Biswas, K. R.

    1973-01-01

    The potential value of weather satellite data in field operations of weather modification is appraised. It was found that satellites could play a useful role in operational weather modification projects, particularly in the recognition of treatment opportunities. Satellite cloud photographs and infrared observations appear promising in the identification of treatment opportunities in seeding orographic cloud systems for increased snowpack, in seeding convective clouds for increased rainfall, in identifying hail threats, and in tracking and observing hurricanes as an aid to timing and location of seeding treatments. It was concluded that the potential value of satellite data in the treatment and evaluation phases of operational projects is not as great as in the recognition of treatment opportunity.

  11. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  12. Emerging technologies for communication satellite payloads

    NASA Astrophysics Data System (ADS)

    Yüceer, Mehmet

    2012-04-01

    Recent developments in payload designs will allow more flexible and efficient use of telecommunication satellites. Important modifications in repeater designs, antenna structures and spectrum policies open up exciting opportunities for GEO satellites to support a variety of emerging applications, ranging from telemedicine to real-time data transfer between LEO satellite and ground station. This study gives information about the emerging technologies in the design of communication satellites' transceiver subsystem and demonstrates the feasibility of using fiber optic links for the local oscillator distribution in future satellite payloads together with the optical inter-satellite link.

  13. Small Satellites and the Nigerian National Space Programme

    NASA Astrophysics Data System (ADS)

    Borroffice, Robert; Chizea, Francis; Sun, Wei; Sweeting, Martin, , Sir

    2002-01-01

    of natural and man-made disasters but will also be used for monitoring rapidly changing and dynamic aspect of agriculture, the environment, pipeline oil spillages and other national remote sensing requirements. Commercial exploitation of this unique 24hr revisit EO data is planned to offset the government investment. The second national project is NigeriaSAT-2, which is a geostationary communications minisatellite that has been selected specifically to address the lack of communications infrastructure in Nigeria. Both NigeriaSAT-1 and NigeriaSAT-2 projects are being carried out in co-operation with the Surrey Space Centre (UK), combined with a detailed space know-how transfer and training to build up an indigenous Nigeria capability in space technology, EO and communications. While the acquisition and development space technology is the prime focus of the national space programme, an application center, education center and various space research centers are being formed to draw the maximum benefit of space activities for Nigeria. The paper will present the experience of Nigeria in examining the cost/benefit of an affordable space programme based upon small satellites with real applications that will benefit the people of the country. The Nigerian space policy and programme and its first two small satellite projects (NigeriaSAT-1/DMC and NigeriaSAT-2/GEMINI) will also be presented. This paper focuses on how a developing country can take advantage of a cheap and efficient means of gaining access to space and using space technology in achieving its socio-economic development plans.

  14. Use of Satellite SAR Data for Seismic Risk Management: Results from the Pre-Operational ASI-SIGRIS Project

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Vignoli, Stefano; Zoffoli, Simona; Bosi, Vittorio

    2010-12-01

    The scope of the SIGRIS pilot project is the development of an infrastructure to provide value-added information services for the seismic risk management, assuring a close integration between ground-based and satellite Earth Observation data. The project is presently in the demonstration phase, and various information products are constantly generated and disseminated to the main user, the Italian Civil Protection Department. We show some examples of the products generated during the Crisis management of the 2009 L'Aquila earthquake in Central Italy. We also show an example of products generated for the Knowledge and Prevention service in support of the seismic hazard assessment in the area of the Straits of Messina.

  15. Predicting the Orbits of Satellites with a TI-85 Calculator.

    ERIC Educational Resources Information Center

    Papay, Kate; And Others

    1996-01-01

    Describes a project that predicts the orbits of satellites using a TI-85 calculator. Enables students to achieve a richer understanding of longitude, latitude, time zones, orbital mechanics of satellites, and the terms associated with satellite tracking. (JRH)

  16. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  17. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    ,

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  18. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  19. Satellite Communications Using Commercial Protocols

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  20. Satellite battery testing status

    NASA Astrophysics Data System (ADS)

    Haag, R.; Hall, S.

    1986-09-01

    Because of the large numbers of satellite cells currently being tested and anticipated at the Naval Weapons Support Center (NAVWPNSUPPCEN) Crane, Indiana, satellite cell testing is being integrated into the Battery Test Automation Project (BTAP). The BTAP, designed to meet the growing needs for battery testing at the NAVWPNSUPPCEN Crane, will consist of several Automated Test Stations (ATSs) which monitor batteries under test. Each ATS will interface with an Automation Network Controller (ANC) which will collect test data for reduction.

  1. Satellite battery testing status

    NASA Technical Reports Server (NTRS)

    Haag, R.; Hall, S.

    1986-01-01

    Because of the large numbers of satellite cells currently being tested and anticipated at the Naval Weapons Support Center (NAVWPNSUPPCEN) Crane, Indiana, satellite cell testing is being integrated into the Battery Test Automation Project (BTAP). The BTAP, designed to meet the growing needs for battery testing at the NAVWPNSUPPCEN Crane, will consist of several Automated Test Stations (ATSs) which monitor batteries under test. Each ATS will interface with an Automation Network Controller (ANC) which will collect test data for reduction.

  2. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  3. Application of Satellite Frost Forecast Technology to Other Parts of the United States Phase II: Introduction

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The history and status of University of Michigan and University of Pennsylvania involvement in determining if P-model for front prediction used in Florida is applicable to those geographic locations is reviewed. The possibility of using the S-model to develop a satellite front forecast system that can recall the distribution of temperatures during previous freezes from a particular area and bring that cold climate climatology to bear on present forecasts is discussed as well as a proposed GOES satellite downlink system to sectionalize the data used in Florida.

  4. Toward lean satellites reliability improvement using HORYU-IV project as case study

    NASA Astrophysics Data System (ADS)

    Faure, Pauline; Tanaka, Atomu; Cho, Mengu

    2017-04-01

    Lean satellite programs are programs in which the satellite development philosophy is driven by fast delivery and low cost. Though this concept offers the possibility to develop and fly risky missions without jeopardizing a space program, most of these satellites suffer infant mortality and fail to achieve their mission minimum success. Lean satellites with high infant mortality rate indicate that testing prior to launch is insufficient. In this study, the authors monitored failures occurring during the development of the lean satellite HORYU-IV to identify the evolution of the cumulative number of failures against cumulative testing time. Moreover, the sub-systems driving the failures depending on the different development phases were identified. The results showed that half to 2/3 of the failures are discovered during the early stage of testing. Moreover, when the mean time before failure was calculated, it appeared that for any development phase considered, a new failure appears on average every 20 h of testing. Simulations were also performed and it showed that for an initial testing time of 50 h, reliability after 1 month launch can be improved by nearly 6 times as compared to an initial testing time of 20 h. Through this work, the authors aim at providing a qualitative reference for lean satellites developers to better help them manage resources to develop lean satellites following a fast delivery and low cost philosophy while ensuring sufficient reliability to achieve mission minimum success.

  5. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1975-01-01

    LANDSAT and NOAA satellites data were used to study snow depth. These snow measurements were used to help forecast runoff and flooding. Many areas of California, Arizona, Colorado, and Wyoming were emphasized.

  6. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  7. Meteorological satellites: Past, present, and future

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Past developments, accomplishments and future potential of meteorological satellites are discussed. Meteorological satellite design is described in detail. Space platforms and their meteorological applications are discussed. User needs are also discussed.

  8. Connecting Satellite-Based Precipitation Estimates to Users

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  9. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  10. Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

    2006-01-01

    Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

  11. Cultures in orbit: Satellite technologies, global media and local practice

    NASA Astrophysics Data System (ADS)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  12. Satellite power system operations

    NASA Technical Reports Server (NTRS)

    Pugh, F. L.; Gordon, A. I.

    1980-01-01

    A projection of the electrical energy demands over the next 30 to 50 years, coupled with reasonable assessments of known or developable energy sources, indicates that a shortage of electrical energy will occur about the turn of the century. Recognizing the criticality of such a shortage, the Department of Energy is currently evaluating alternative power generation concepts. One of these candidate concepts is the Satellite Power System. The power levels considered during the evaluation of the various satellite systems have ranged from 5 to 10 GW. It is apparent that, with this power level, both the satellite and the rectenna must be very large and encompass a large number of complex operational system activities. Major elements of the Satellite Power System (SPS) consist of a power satellite placed in a geosynchronous equatorial orbit, and a dedicated ground receiving station (GRS) located at a selected site within the continental United States. The nominal power output of the SPS is established at 5 gigawatts (5 million kilowatts) although, because of various system constraints or losses, it may actually produce between 4 and 5 gigawatts.

  13. Ocean surveillance satellites

    NASA Astrophysics Data System (ADS)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  14. Sea ice-atmosphere interaction. Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck

    1992-01-01

    Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin.

  15. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  16. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  17. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry in developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, 'bent pipe' transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km.

  18. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths

  19. Development of a surface isolation estimation technique suitable for application of polar orbiting satellite data

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Penn, L. M. (Principal Investigator)

    1981-01-01

    A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.

  20. MIT/Draper Technology Development Partnership Project: Systems Analysis and On-Station Propulsion Subsystem Design.

    DTIC Science & Technology

    1998-08-04

    manufacturing Military and commercial applications Large market developing for multiple- satellite constellations Will have a high demand if...identified, and market assessments for five different possible projects are discussed. Lessons learned during the first semester of project work are...24 1.2.6 Market Assessments of Five Concepts 26 1.2.7 Project Selection 28 Chapter 2 Requirements Analysis and Top-Level System Architecture 30

  1. 47 CFR 25.158 - Consideration of GSO-like satellite applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...

  2. 47 CFR 25.158 - Consideration of GSO-like satellite applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...

  3. 47 CFR 25.158 - Consideration of GSO-like satellite applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...

  4. 47 CFR 25.158 - Consideration of GSO-like satellite applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...

  5. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  6. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  7. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  8. Proceedings of a Workshop on the Applications of Tethers in Space, Volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Project overview; tether deployment; satellite system description; tether fundamentals; science applications; electrodynamic interactions; transportation; artificial gravity; and constellations; were described.

  9. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.; hide

    2014-01-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-­-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-­-real time globally from both geostationary (GEO) and low-­-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  10. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Smith, W., Jr.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B. R.; Spangenberg, D.; Sun-Mack, S.; Fleeger, C.; Ayers, J. K.; Chang, F. L.; Heck, P. W.

    2014-12-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-real time globally from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  11. Satellite networks in the ISDN era

    NASA Astrophysics Data System (ADS)

    Amadesi, P.; Haines, P.; Patacchini, A.

    1986-12-01

    The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.

  12. Small Satellite Propulsion Options

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Oleson, Steven R.; Curran, Francis M.; Schneider, Steven J.

    1994-01-01

    Advanced chemical and low power electric propulsion offer attractive options for small satellite propulsion. Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space and planetary spacecraft. Potential propulsion technologies for these functions include high pressure Ir/Re bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown to operate in manners consistent with currently planned small satellites. Mission analyses show that insertion of advanced propulsion technologies enables and/or greatly enhances many planned small satellite missions. Examples of commercial, DoD, and NASA missions are provided to illustrate the potential benefits of using advanced propulsion options on small satellites.

  13. TUBSAT-1, satellite technology for educational purposes

    NASA Technical Reports Server (NTRS)

    Ginati, A.

    1988-01-01

    TUBSAT-1 (Technical University of Berlin Satellite) is an experimental low-cost satellite within the NASA Get Away Special (GAS) program. This project is being financed by the German BMFT (Federal Ministry for Research and Technology), mainly for student education. The dimensions and weight are determined by GAS requirements and the satellite will be ejected from the space shuttle into an approximately 300-km circular orbit. It is a sun/star oriented satellite with an additional spin stabilization mode. The first planned payload is to be used for observing flight paths of migratory birds from northern Europe to southern Africa and back.

  14. Application of the aeronautical mobile satellite service (AMSS) and the providers of the service

    NASA Astrophysics Data System (ADS)

    Brangier, Francis

    1991-07-01

    The paper describes the different potential users of the AMSS, their requirements, and foreseen applications. The AMSS will be provided by several satellite-communication organizations, including INMARSAT, ARINC, SITA, and various national companies. Consideration is given to air-traffic-control services, aircraft operations communication, administrative communication, passenger communication services, and the problem of compatibility among these components.

  15. Communication Technology Satellite Portable Terminal

    NASA Image and Video Library

    1977-03-21

    This vehicle served as a mobile terminal for the Communications Technology Satellite. The Communications Technology Satellite was an experimental communications satellite launched in January 1976 by the National Aeronautics and Space Administration (NASA) and the Canadian Department of Communications. The satellite operated in a new frequency band reserved for broadcast satellites with transmitting power levels that were 10 to 20 times higher than those of contemporary satellites. Throughout 1977 and 1978 NASA allowed qualified groups to utilize the satellite from one of the three ground-based transmission centers. NASA’s Lewis Research Center in Cleveland, Ohio was NASA’s lead center on the project. Lewis was responsible for the control and coordination of all US experiments on the satellite. The center housed the satellite’s main control center which included eight parabolic reflector antennae ranging from 2 to 15 feet in diameter. Many of the satellite’s components had been tested in simulated space conditions at Lewis. The Lewis-designed vehicle seen here served as a field unit for transmitting and receiving wideband signals and narrowband voice. The vehicle permitted live television interviews, recording equipment, and cameras. An 8-foot diameter parabolic reflector was mounted on the roof. The interior of the vehicle had workstations, monitors, transmitting equipment, and a lounge area.

  16. A satellite based telemetry link for a UAV application

    NASA Technical Reports Server (NTRS)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  17. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  18. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites. [68 FR 12771, Mar. 17, 2003] ...

  19. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites. [68 FR 12771, Mar. 17, 2003] ...

  20. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites. [68 FR 12771, Mar. 17, 2003] ...

  1. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites. [68 FR 12771, Mar. 17, 2003] ...

  2. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites. [68 FR 12771, Mar. 17, 2003] ...

  3. Implications of GRACE Satellite Gravity Measurements for Diverse Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yirdaw-Zeleke, Sitotaw

    Soil moisture plays a major role in the hydrologic water balance and is the basis for most hydrological models. It influences the partitioning of energy and moisture inputs at the land surface. Because of its importance, it has been used as a key variable for many hydrological studies such as flood forecasting, drought studies and the determination of groundwater recharge. Therefore, spatially distributed soil moisture with reasonable temporal resolution is considered a valuable source of information for hydrological model parameterization and validation. Unfortunately, soil moisture is difficult to measure and remains essentially unmeasured over spatial and temporal scales needed for a number of hydrological model applications. In 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite platform was launched to measure, among other things, the gravitational field of the earth. Over its life span, these orbiting satellites have produced time series of mass changes of the earth-atmosphere system. The subsequent outcome of this, after integration over a number of years, is a time series of highly refined images of the earth's mass distribution. In addition to quantifying the static distribution of mass, the month-to-month variation in the earth's gravitational field are indicative of the integrated value of the subsurface total water storage for specific catchments. Utilization of these natural changes in the earth's gravitational field entails the transformation of the derived GRACE geopotential spherical harmonic coefficients into spatially varying time series estimates of total water storage. These remotely sensed basin total water storage estimates can be routinely validated against independent estimates of total water storage from an atmospheric-based water balance approach or from well calibrated macroscale hydrologic models. The hydrological relevance and implications of remotely estimated GRACE total water storage over poorly gauged, wetland

  4. Medium Spatial Resolution Satellite Characterization

    NASA Technical Reports Server (NTRS)

    Stensaas, Greg

    2007-01-01

    This project provides characterization and calibration of aerial and satellite systems in support of quality acquisition and understanding of remote sensing data, and verifies and validates the associated data products with respect to ground and and atmospheric truth so that accurate value-added science can be performed. The project also provides assessment of new remote sensing technologies.

  5. Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology

    NASA Astrophysics Data System (ADS)

    Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes

    2013-08-01

    The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).

  6. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  7. The status of environmental satellites and availability of their data products

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.; Campbell, C. E.

    1977-01-01

    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems.

  8. Hexavalent Chromium Free Coatings Projects for Aerospace Applications

    DTIC Science & Technology

    2012-08-01

    1-Evaluate trivalent chromium pretreatment (TCP) for use on aluminum  2-Evaluate three hexavalent chrome free alternatives to DoD-P-15328 wash...UNCLASSIFIED UNCLASSIFIED Hexavalent Chromium Free Coatings Projects for Aerospace Applications Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Hexavalent Chromium Free Coatings Projects for Aerospace Applications 5a. CONTRACT NUMBER

  9. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  10. Orbit-spectrum sharing between the fixed-satellite and broadcasting-satellite services with applications to 12 GHz domestic systems

    NASA Technical Reports Server (NTRS)

    Reinhart, E. E.

    1974-01-01

    A systematic, tutorial analysis of the general problem of orbit-spectrum sharing among inhomogeneous satellite system is presented. Emphasis is placed on extrapolating and applying the available data on rain attenuation and on reconciling differences in the results of various measurements of the subjective effects of interference on television picture quality. An analytic method is presented for determining the approximate values of the intersatellite spacings required to keep mutual interference levels within prescribed limits when many dissimilar satellites share the orbit. A computer model was developed for assessing the interference compatibility of arbitrary configurations of large numbers of geostationary satellite systems. It is concluded that the band from 11.7 c GHz can be shared effectively by broadcasting-satellite and fixed-satellite systems. Recommendations for future study are included.

  11. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    1982-01-01

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  12. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  13. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  14. Solar satellites

    NASA Astrophysics Data System (ADS)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  15. Data collection operational support system, part 1. [collected from satellite terminals operating as part of the ATS 6 project

    NASA Technical Reports Server (NTRS)

    Woughter, W. R., Jr.

    1975-01-01

    The Data Collection Operational Support system has been shown to be a usable means of transmitting numerical data over a 2-way VHF satellite link. It is also capable of supporting educational applications. The design, operation, use, results, and recommendations of the system are discussed.

  16. Application of CCD drift-scan photoelectric technique on monitoring GEO satellites

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Zhao, Xiao-Fen; Luo, Hao; Mao, Yin-Dun; Tang, Zheng-Hong

    2018-05-01

    Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.

  17. Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite

    NASA Astrophysics Data System (ADS)

    Rockberger, D.; Abramovich, H.

    2014-03-01

    The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.

  18. The data distribution satellite system

    NASA Technical Reports Server (NTRS)

    Bruno, Ronald C.; Weinberg, Aaron

    1991-01-01

    The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.

  19. CONSTELL: NASA's Satellite Constellation Model

    NASA Technical Reports Server (NTRS)

    Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.

  20. A Low Earth Orbit satellite marine communication system demonstration

    NASA Technical Reports Server (NTRS)

    Elms, T. Keith; Butt, Kenneth A.; Asmus, Ken W.

    1995-01-01

    An application of Low Earth Orbit (LEO) satellite communications technology was investigated during a joint Canadian/American scientific expedition to the north pole in the summer of 1994. The Canadian ice breaker involved, was equipped with a store-and-forward LEO satellite terminal which was linked to a ground station in St. John's, Newfoundland, via the near-polar-orbiting satellite, HealthSat-l. The objective was to evaluate the performance of such a system while providing an alternate means of communications in the far north. The system performed well, given its inherent limitations. All 151 attempts to send data files to the ship were successful. Only two (2) of the 35 attempts to send files from the ship were unsuccessful. The files ranged in size from 0.1 to 60 Kbytes. In the high arctic, above 80 deg north, this system often provided the only practical means of data communications. This experiment demonstrated the potential of such a system for not-real-time communications with remote and/or mobile stations, and highlighted the many issues involved. This paper describes the project objectives, system configuration and experimental procedure used, related technical issues, trial results, future work, and conclusions.

  1. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Acosta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.

    1999-01-01

    Savannah State University (SSU) and the Florida Solar Energy Center (FSEC) have been participating in the NASA Advanced Communications Technology Satellite (ACTS) program for the last five years. This program was designed by NASA to help maintain U.S. leadership in commercial space communications by funding high-risk research, and to flight-test next-generation digital satellite components. Launched in 1993, ACTS is an U.S. government funded technology test-bed that incorporates high power Ka-band transponders, small spot beams, and on-board digital storage and switching technology. Associated with the spacecraft, is a prototype satellite control center that supports various application experiments. The SSU/FSEC application experiment is to developing a Photovoltaic-Diesel Hybrid Power system complete with satellite Supervisory Control and Data Acquisition (SCADA). The hybrid system was design to demonstrate the feasibility of using SCADA to maintain and operate remote village power systems. This configuration would enable experts at a central location to provide technical assistance to local technicians while they acquire a measure of proficiency with the hybrid system operation and maintenance. Upon full mastery of the technology, similar SCADA arrangement are planned to remotely monitor and control constellation of hybrid systems scattered overlarge rural areas. Two Orion Energy APEX-1000 hybrid systems were delivered in 1998, one was installed at SSU in eastern Georgia and the other was installed at FSEC in Central Florida. The project was designed to: (1) evaluate the performance of ACTS in a SCADA arrangement, (2) monitor the health and performance of all major hybrid subsystems, (3) investigate load control and battery charging strategies to maximize battery capacity and lifetime, and (4) develop satellite communication protocol. Preliminary results indicate that the hybrid design is suitable for satellite Supervisory Control and Data Acquisition. A

  2. Intra-seasonal NDVI change projections in semi-arid Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Brown, Molly E.

    2006-01-01

    Early warning systems (EWS) tend to focus on the identification of slow onset disasters such famine and epidemic disease. Since hazardous environmental conditions often precede disastrous outcomes by many months, effective monitoring via satellite and in situ observations can successfully guide mitigation activities. Accurate short term forecasts of NDVI could increase lead times, making early warning earlier. This paper presents a simple empirical model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A quasi-global, 1 month ahead, 1° study demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1° cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.

  3. The Olympus satellite and satellite direct broadcasting in Italy

    NASA Astrophysics Data System (ADS)

    Castelli, E.; Tirro, S.

    Plans for the development of DBS-TV technology in Italy are discussed from the perspective of the Italian electronics industry, with an emphasis on experimental broadcasts using the Olympus satellite channel assigned to Italy by ESA. Consideration is given to the operating characteristics of PAL, MAC-C, MAC-D2, extended-MAC, and MUSE color-TV systems and their compatibility with DBS; the planned availability of TV channels on Olympus-type and Italsat-type satellites; individual, community, and CATV reception of DBS signals; the projected growth of the DBS audience in Italy, the UK, and the FRG by 1999; and the potential Italian market for satellite receivers and antennas. The need for prompt completion and evaluation of the Olympus experiments and antennas. The need for prompt completion and evaluation of the Olympus experiments (beginning in 1987) and selection of the systems to be implemented, so that the industry can supply the home equipment required on time, is stressed. Tables of numerical data and maps of the Olympus coverage areas are provided.

  4. Aeronautical and Maritime Satellite Technology Bibliography

    DOT National Transportation Integrated Search

    1976-03-01

    Material used and generated over the past five years on the aeronautical and maritime satellite programs has been reviewed and organized in this report. Emphasis has been placed on advanced electronic technology and its application to the satellite s...

  5. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  6. Coastal and Inland Water Applications of High Resolution Optical Satellite Data from Landsat-8 and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Q.

    2016-02-01

    Since the launch of Landsat-8 (L8) in 2013, a joint NASA/USGS programme, new applications of high resolution imagery for coastal and inland waters have become apparent. The optical imaging instrument on L8, the Operational Land Imager (OLI), is much improved compared to its predecessors on L5 and L7, especially with regards to SNR and digitization, and is therefore well suited for retrieving water reflectances and derived parameters such as turbidity and suspended sediment concentration. In June 2015, the European Space Agency (ESA) successfully launched a similar instrument, the MultiSpectral Imager (MSI), on board of Sentinel-2A (S2A). Imagery from both L8 and S2A are free of charge and publicly available (S2A starting at the end of 2015). Atmospheric correction schemes and processing software is under development in the EC-FP7 HIGHROC project. The spatial resolution of these instruments (10-60 m) is a great improvement over typical moderate resolution ocean colour sensors such as MODIS and MERIS (0.25 - 1 km). At higher resolution, many more lakes, rivers, ports and estuaries are spatially resolved, and can thus now be studied using satellite data, unlocking potential for mandatory monitoring e.g. under European Directives such as the Marine Strategy Framework Directive and the Water Framework Directive. We present new applications of these high resolution data, such as monitoring of offshore constructions, wind farms, sediment transport, dredging and dumping, shipping and fishing activities. The spatial variability at sub moderate resolution (0.25 - 1 km) scales can be assessed, as well as the impact of sub grid scale variability (including ships and platforms used for validation) on the moderate pixel retrieval. While the daily revisit time of the moderate resolution sensors is vastly superior to those of the high resolution satellites, at the equator respectively 16 and 10 days for L8 and S2A, the low revisit times can be partially mitigated by combining data

  7. Space satellite to aid arctic oil development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project which utilizes the Nimbus-6 weather satellite and air-dropable data collection platforms for observation of Arctic ice movement is described. The information gained from the project could be valuable for planning oil recovery operations in the area.

  8. Applying Satellite Data Sources in the Documentation and Landscape Modelling for Graeco-Roman Fortified Sites in the TŪR Abdin Area, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Silver, K.; Silver, M.; Törmä, M.; Okkonen, J.; Okkonen, T.

    2017-08-01

    In 2015-2016 the Finnish-Swedish Archaeological Project in Mesopotamia (FSAPM) initiated a pilot study of an unexplored area in the Tūr Abdin region in Northern Mesopotamia (present-day Mardin Province in southeastern Turkey). FSAPM is reliant on satellite image data sources for prospecting, identifying, recording, and mapping largely unknown archaeological sites as well as studying their landscapes in the region. The purpose is to record and document sites in this endangered area for saving its cultural heritage. The sites in question consist of fortified architectural remains in an ancient border zone between the Graeco-Roman/Byzantine world and Parthia/Persia. The location of the archaeological sites in the terrain and the visible archaeological remains, as well as their dimensions and sizes were determined from the ortorectified satellite images, which also provided coordinates. In addition, field documentation was carried out in situ with photographs and notes. The applicability of various satellite data sources for the archaeological documentation of the project was evaluated. Satellite photographs from three 1968 CORONA missions, i.e. the declassified US government satellite photograph archives were acquired. Furthermore, satellite images included a recent GeoEye-1 Satellite Sensor Image from 2010 with a resolution of 0.5 m. Its applicability for prospecting archaeological sites, studying the terrain and producing landscape models in 3D was confirmed. The GeoEye-1 revealed the ruins of a fortified town and a fortress for their documentation and study. Landscape models for the area of these sites were constructed fusing GeoEye-1 with EU-DEM (European Digital Elevation Model data using SRTM and ASTER GDEM data) in order to understand their locations in the terrain.

  9. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  10. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  11. Proceedings of the Fourth International Mobile Satellite Conference (IMSC 1995)

    NASA Technical Reports Server (NTRS)

    Rigley, Jack R. (Compiler); Estabrook, Polly (Compiler); Reekie, D. Hugh M. (Editor)

    1995-01-01

    The theme to the 1995 International Mobile Satellite Conference was 'Mobile Satcom Comes of Age'. The sessions included Modulation, Coding, and Multiple Access; Hybrid Networks - 1; Spacecraft Technology; propagation; Applications and Experiments - 1; Advanced System Concepts and Analysis; Aeronautical Mobile Satellite Communications; Mobile Terminal Antennas; Mobile Terminal Technology; Current and Planned Systems; Direct Broadcast Satellite; The Use of CDMA for LEO and ICO Mobile Satellite Systems; Hybrid Networks - 2; and Applications and Experiments - 2.

  12. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    NASA Technical Reports Server (NTRS)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  13. Digitization and reduction of old astronomical plates of natural satellites

    NASA Astrophysics Data System (ADS)

    Yan, D.; Qiao, R. C.; Dourneau, G.; Yu, Y.; Zhang, H. Y.; Cheng, X.; Xi, X. J.

    2016-04-01

    Old astrophotographic plates are precious sources of historical data for astronomical studies, especially regarding the improvement of natural satellite orbits. Today, with the advent of new, accurate techniques, these old data can be re-processed so as to give positions that are much more accurate than those initially obtained. Various recent projects, including our Chinese project, have involved measuring and reducing these old plates again. Here we present a method for measurement and reduction that involves the digitization of plates using an advanced commercial scanner, namely the EPSON 10000 XL. We selected a set of 27 plates of the satellites of Jupiter, Saturn and Uranus taken from 1987 to 1990. A total of 125 satellite positions were derived from the new measurement and reduction of these plates using the UCAC4 catalogue. A comparison of the new observed positions with recent ephemerides has shown a general consistency with satellite theory of about 100 mas. The new positions present an accuracy equivalent to the most recent CCD observations, and better than the original positions. Moreover, nearly 30 per cent of the 125 positions obtained in this work are published for the first time here. This paper is a preliminary contribution to the larger project of new measurements and reductions of all the old Chinese plates of natural satellites, which should allow further improvements in the knowledge of the orbits of these satellites.

  14. Satellite To Satellite Doppler Tracking (SSDT) for mapping of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Gaposchkin, E. M.; Grossi, M.

    1981-01-01

    Two SSDT schemes were evaluated: a standard, low-low, SSDT configuration, which both satellites are in basically the same low altitude nearly circular orbit and the pair is characterized by small angular separation; and a more general configuration in which the two satellites are in arbitrary orbits, so that different configurations can be comparatively analyed. The standard low-low SSDT configuration is capable of recovering 1 deg X 1 deg surface anomalies with a strength as low as 1 milligal, located on the projected satellite path, when observing from a height as large as 300 km. The Colombo scheme provides an important complement of SSDT observations, inasmuch as it is sensitive to radial velocity components, while keeping at the same performance level both measuring sensitivity and measurement resolution.

  15. Applications of Satellite Observations to Aerosol Analyses and Forecasting using the NAAPS Model and the DataFed Distributed Data System

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Scheffe, R.; Keating, T.; Frank, N.; Poirot, R.; DuBois, D. W.; Bleiweiss, M. P.; Eberhard, W. L.; Menon, R.; Sethi, V.; Deshpande, A.

    2012-12-01

    Near-real-time (NRT) aerosol characterization, forecasting and decision support is now possible through the availability of (1) surface-based monitoring of regional PM concentrations, (2) global-scale columnar aerosol observations through satellites; (3) an aerosol model (NAAPS) that is capable of assimilating NRT satellite observations; and (4) an emerging cyber infrastructure for processing and distribution of data and model results (DataFed) for a wide range of users. This report describes the evolving NRT aerosol analysis and forecasting system and its applications at Federal and State and other AQ Agencies and groups. Through use cases and persistent real-world applications in the US and abroad, the report will show how satellite observations along with surface data and models are combined to aid decision support for AQ management, science and informing the public. NAAPS is the U.S. Navy's global aerosol and visibility forecast model that generates operational six-day global-scale forecasts for sulfate, dust, sea salt, and smoke aerosol. Through NAVDAS-AOD, NAAPS operationally assimilates filtered and corrected MODIS MOD04 aerosol optical depths and uses satellite-derived FLAMBÉ smoke emissions. Washington University's federated data system, DataFed, consist of a (1) data server which mediates the access to AQ datasets from distributed providers (NASA, NOAA, EPA, etc.,); (2) an AQ Data Catalog for finding and accessing data; and (3) a set of application programs/tools for browsing, exploring, comparing, aggregating, fusing data, evaluating models and delivering outputs through interactive visualization. NAAPS and DataFed are components of the Global Earth Observation System of Systems (GEOSS). Satellite data support the detection of long-range transported wind-blown dust and biomass smoke aerosols on hemispheric scales. The AQ management and analyst communities use the satellite/model data through DataFed and other channels as evidence for Exceptional Events

  16. Satellite remote sensing of the ocean

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Liu, W. T.; Abbott, Mark R.

    1990-01-01

    A concise description of the principles and applications of several selected instruments that have been utilized most frequently in remote sensing of the ocean from satellites is presented. Emphasis is placed on the current progress in oceanographic applications and the outlook of the instruments in future oceanographic satellite missions is discussed. The instruments under discussion are placed into three groups: active microwave sensors, passive ocean color and infrared sensors, and passive microwave sensors.

  17. The Orbits and Masses of Pluto's Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.; Brozovic, M.

    2012-10-01

    We have fit numerically integrated orbits of Pluto's satellites, Charon, Nix, Hydra, and S/2011 (134340) 1, to an extensive set of astrometric, mutual event, and stellar occultation observations over the time interval April 1965 to July 2011. We did not include the newly discovered satellite S/2012 (134340) 1 because its observation set is insufficient to constrain a numerically integrated orbit. The data set contains all of the HST observations of Charon relative to Pluto which have been corrected for the Pluto center-of-figure center-of-light (COF) offset due to the Pluto albedo variations (Buie et al. 2012 AJ submitted). Buie et al. (2010 AJ 139, 1117 and 1128) discuss the development of the albedo model and the COF offset. We applied COF offset corrections to the remainder of the Pluto relative observations where applicable. The dual stellar occultations in 2008 and 2011 provided precise Pluto_Charon relative positions. We obtain a well determined value for the Pluto system mass, however, the lack of orbital resonances in the system makes it difficult to determine the satellite masses. The primary source of information for the Charon mass is a small quantity of absolute position measurements which are sensitive to the independent motions of Pluto and Charon about the system barycenter. The long term dynamical interaction among the satellites yields a weak determination of Hydra's mass; the masses of the other two satellites are found to be small but indeterminate. We have delivered ephemerides based on our integrated orbits to the New Horizons project along with their expected uncertainties at the time of the New Horizons encounter with the Pluto system. Acknowledgments: The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. 47 CFR 25.140 - Qualifications of Fixed-Satellite space station licensees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Qualifications of Fixed-Satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of Fixed-Satellite space station licensees. (a) [Reserved] (b) Each applicant for a space station...

  19. Are satellite products good proxies for gauge precipitation over Singapore?

    NASA Astrophysics Data System (ADS)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  20. Internetworking satellite and local exchange networks for personal communications applications

    NASA Technical Reports Server (NTRS)

    Wolff, Richard S.; Pinck, Deborah

    1993-01-01

    The demand for personal communications services has shown unprecedented growth, and the next decade and beyond promise an era in which the needs for ubiquitous, transparent and personalized access to information will continue to expand in both scale and scope. The exchange of personalized information is growing from two-way voice to include data communications, electronic messaging and information services, image transfer, video, and interactive multimedia. The emergence of new land-based and satellite-based wireless networks illustrates the expanding scale and trend toward globalization and the need to establish new local exchange and exchange access services to meet the communications needs of people on the move. An important issue is to identify the roles that satellite networking can play in meeting these new communications needs. The unique capabilities of satellites, in providing coverage to large geographic areas, reaching widely dispersed users, for position location determination, and in offering broadcast and multicast services, can complement and extend the capabilities of terrestrial networks. As an initial step in exploring the opportunities afforded by the merger of satellite-based and land-based networks, several experiments utilizing the NASA ACTS satellite and the public switched local exchange network were undertaken to demonstrate the use of satellites in the delivery of personal communications services.

  1. Project MEDSAT

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During the winter term of 1991, two design courses at the University of Michigan worked on a joint project, MEDSAT. The two design teams consisted of the Atmospheric, Oceanic, and Spacite System Design and Aerospace Engineering 483 (Aero 483) Aerospace System Design. In collaboration, they worked to produce MEDSAT, a satellite and scientific payload whose purpose was to monitor environmental conditions over Chiapas, Mexico. Information gained from the sensing, combined with regional data, would be used to determine the potential for malaria occurrence in that area. The responsibilities of AOSS 605 consisted of determining the remote sensing techniques, the data processing, and the method to translate the information into a usable output. Aero 483 developed the satellite configuration and the subsystems required for the satellite to accomplish its task. The MEDSAT project is an outgrowth of work already being accomplished by NASA's Biospheric and Disease Monitoring Program and Ames Research Center. NASA's work has been to develop remote sensing techniques to determine the abundance of disease carriers and now this project will place the techniques aboard a satellite. MEDSAT will be unique in its use of both a Synthetic Aperture Radar and visual/IR sensor to obtain comprehensive monitoring of the site. In order to create a highly feasible system, low cost was a high priority. To obtain this goal, a light satellite configuration launched by the Pegasus launch vehicle was used.

  2. Microwave intersatellite links for communications satellites

    NASA Technical Reports Server (NTRS)

    Welti, G. R.

    1982-01-01

    Applications and interface requirements for intersatellite links (ISLs) between commercial communications satellites are reviewed, ranging from ISLs between widely separated satellites to ISLs between clustered satellites. On-board processing architectures for ISLs employing a variety of modulation schemes are described. These schemes include FM remodulation and QPSK regeneration in combination with switching and buffering. The various architectures are compared in terms of complexity, required performance, antenna size, mass, and power.

  3. 36 CFR 1010.14 - Review of proposals by project applicants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated with review under other applicable laws. Such fee shall be paid to the Trust in full prior to... project applicants. 1010.14 Section 1010.14 Parks, Forests, and Public Property PRESIDIO TRUST... restoration of real property submitted by a project applicant to the Trust for its review, and which the...

  4. Satellite Studies of Cirrus Clouds for Project Fire

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Examine global cloud climatologies for evidence of human caused changes in cloud cover and their effect on the Earth's heat budget through radiative processes. Quantify climatological changes in global cloud cover and estimate their effect on the Earth's heat budget. Improve our knowledge of global cloud cover and its changes through the merging of several satellite data sets.

  5. Integrated Stewardship of NASA Satellite and Field Campaign Data

    NASA Astrophysics Data System (ADS)

    Hausman, J.; Tsontos, V. M.; Hardman, S. H.

    2016-02-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.

  6. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    NASA Astrophysics Data System (ADS)

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  7. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  8. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    NASA Astrophysics Data System (ADS)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  9. Direct Broadcast Satellite: Radio Program

    NASA Astrophysics Data System (ADS)

    Hollansworth, James E.

    1992-10-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  10. A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Sader, Steven; Smoot, James

    2012-01-01

    Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change

  11. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  12. Low cost satellite land mobile service for nationwide applications

    NASA Technical Reports Server (NTRS)

    Weiss, J. A.

    1978-01-01

    A satellite land mobile system using mobile radios in the UHF band, and Ku-band Communications Routing Terminals (earth stations) for a nationwide connection from any mobile location to any fixed or mobile location, and from any fixed location to any mobile location is proposed. The proposed nationwide satellite land mobile service provides: telephone network quality (1 out of 100 blockage) service, complete privacy for all the users, operation similar to the telephone network, alternatives for data services up to 32 Kbps data rates, and a cost effective and practical mobile radio compatible with system sizes ranging from 10,000 to 1,000,000 users. Seven satellite alternatives (ranging from 30 ft diameter dual beam antenna to 210 ft diameter 77 beam antenna) along with mobile radios having a sensitivity figure of merit (G/T) of -15 dB/deg K are considered. Optimized mobile radio user costs are presented as a function of the number of users with the satellite and mobile radio alternatives as system parameters.

  13. 75 FR 15392 - Satellite License Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... earth station applications must be filed electronically through the International Bureau Filing System... space radio- communication service other than the Fixed Satellite Service. Fixed earth station. An earth... revisions to its satellite and earth station licensing rules. The intended purpose of this proceeding is to...

  14. Cyberinfrastructure Initiatives of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS)

    NASA Astrophysics Data System (ADS)

    McDonald, K. R.; Faundeen, J. L.; Petiteville, I.

    2005-12-01

    The Committee on Earth Observation Satellites (CEOS) was established in 1984 in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. CEOS participants are Members, who are national or international governmental organizations who operate civil spaceborne Earth observation satellites, and Associates who are governmental organizations with civil space programs in development or international scientific or governmental bodies who have an interest in and support CEOS objectives. The primary objective of CEOS is to optimize benefits of satellite Earth observations through cooperation of its participants in mission planning and in development of compatible data products, formats, services, applications and policies. To pursue its objectives, CEOS establishes working groups and associated subgroups that focus on relevant areas of interest. While the structure of CEOS has evolved over its lifetime, today there are three permanent working groups. One is the Working Group on Calibration and Validation that addresses sensor-specific calibration and validation and geophysical parameter validation. A second is the Working Group on Education, Training, and Capacity Building that facilitates activities that enhance international education and training in Earth observation techniques, data analysis, interpretation and applications, with a particular focus on developing countries. The third permanent working group is the Working Group on Information Systems and Services (WGISS). The purpose of WGISS is to promote collaboration in the development of the systems and services based on international standards that manage and supply the Earth observation data and information from participating agencies' missions. WGISS places great emphasis on the use of demonstration projects involving user groups to solve the critical interoperability issues associated with the

  15. NASA/NOAA implementation of the USAID-sponsored satellite ground station and data processing facility for Bangladesh

    NASA Technical Reports Server (NTRS)

    Dodge, J. C.; Vermillion, C. H.

    1983-01-01

    A description is given of a project to transfer multiple environmental satellite data reception, processing, and interpretation capabilities from the U.S. to Bangladesh. The goal of the project is to improve the management of resources related primarily to agriculture, water development, forestry, and fisheries. It is also hoped to improve the existing cyclone/storm surge warning system. An account is given of the interagency and international cooperation underlying the project. The remote-sensing installation in Dhaka, Bangladesh, is described, and the most likely system applications are summarized. Attention is also given to the special requirements concerning this type of technology transfer, and an assessment is made of the project's practical value to Bangladesh.

  16. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    Climate Data Records as they become available. To obtain SatelliteDL, please visit the project website at http://www.txcorp.com/SatelliteDL

  17. Solar power satellite status report

    NASA Technical Reports Server (NTRS)

    Davis, H. P.

    1977-01-01

    The development of a solar power satellite program is considered. It is suggested that the solar power satellite is an engineering rather than a science program - that is, that no scientific breakthroughs are required before initiating the project. Available technology is examined, and several key questions are discussed: how efficient is microwave transfer of energy; how feasible is construction in space; and will the advantages of continuous insolation compensate for the costs of building a solar power plant in synchronous orbit 23,000 miles above the earth.

  18. New tools: potential medical applications of data from new and old environmental satellites.

    PubMed

    Huh, O K; Malone, J B

    2001-04-27

    The last 40 years, beginning with the first TIROS (television infrared observational satellite) launched on 1 April 1960, has seen an explosion of earth environmental satellite systems and their capabilities. They can provide measurements in globe encircling arrays or small select areas, with increasing resolutions, and new capabilities. Concurrently there are expanding numbers of existing and emerging infectious diseases, many distributed according to areal patterns of physical conditions at the earth's surface. For these reasons, the medical and remote sensing communities can beneficially collaborate with the objective of making needed progress in public health activities by exploiting the advances of the national and international space programs. Major improvements in applicability of remotely sensed data are becoming possible with increases in the four kinds of resolution: spatial, temporal, radiometric and spectral, scheduled over the next few years. Much collaborative research will be necessary before data from these systems are fully exploited by the medical community.

  19. Applications of the Atmosphere-Land Exchange Inverse (ALEXI) Model and Highlights of Current Projects

    NASA Astrophysics Data System (ADS)

    Hain, C.; Mecikalski, J. R.; Schultz, L. A.

    2009-12-01

    The Atmosphere-Land Exchange Inverse (ALEXI) model was developed as an auxiliary means for estimating surface fluxes over large regions primarily using remote-sensing data. The model is unique in that no information regarding antecedent precipitation or moisture storage capacity is required - the surface moisture status is deduced from a radiometric temperature change signal. ALEXI uses the available water fraction (fAW) as a proxy for soil moisture conditions. Combining fAW with ALEXI’s ability to provide valuable information about the partitioning of the surface energy budget, which can dictated largely by soil moisture conditions, accommodates the retrieval of an average fAW from the surface to the rooting depth of the active vegetation. Using this approach has many advantages over traditional energy flux and soil moisture measurements (towers with limited range and large monetary/personnel costs) or approximation methods (parametrization of the relationship between available water and soil moisture) in that data is available both spatially and temporal over a large, non-homogeneous, sometimes densely vegetated area. Being satellite based, the model can be run anywhere thermal infrared satellite information is available. The current ALEXI climatology dates back to March 2000 and covers the continental U.S. Examples of projects underway using the ALEXI soil moisture retrieval tools include the Southern Florida Water Management Project; NASA’s Project Nile, which proposes to acquire hydrological information for the water management in the Nile River basin; and a USDA pro ject to expand the ALEXI framework to include Europe and parts of northern Africa using data from the European geostationary satellites, specifically the Meteosat Second Generation (MSG) Series.

  20. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  1. Formation Flying for Satellites and Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.

  2. A New Era Begins: Satellite Communications and Development.

    ERIC Educational Resources Information Center

    Pelton, Joseph N.

    This overview of changes in the field of telecommunications development produced by satellite communications over the last 15 years focuses on applications of satellite systems for educational and health purposes in developing countries. Satellite communications development from 1974 to 1986 is identified as the first stage of telecommunications…

  3. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  4. Security Concepts for Satellite Links

    NASA Astrophysics Data System (ADS)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  5. Tracking and data relay satellite system (TDRSS) capabilities

    NASA Astrophysics Data System (ADS)

    Spearing, R. E.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.

  6. Tracking and data relay satellite system (TDRSS) capabilities

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.

  7. Technology development of the Space Transportation System mission and terrestrial applications of satellite technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.

  8. Innovative Approaches for the Dissemination of Near Real-time Geostationary Satellite Data for Terrestrial and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.

    2017-12-01

    A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they

  9. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  10. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  11. Optimum satellite relay positions with application to a TDRS-1 Indian Ocean relay

    NASA Technical Reports Server (NTRS)

    Jackson, A. H.; Christopher, P.

    1994-01-01

    An Indian Ocean satellite relay is examined. The relay satellite position is optimized by minimizing the sum of downlink and satellite to satellite link losses. Osculating orbital elements are used for fast intensive orbital computation. Integrated Van Vleck gaseous attenuation and a Crane rain model are used for downlink attenuation. Circular polarization losses on the satellite to satellite link are found dynamically. Space to ground link antenna pointing losses are included as a function of yaw ans spacecraft limits. Relay satellite positions between 90 to 100 degrees East are found attractive for further study.

  12. A satellite constellation optimization for a regional GNSS remote sensing mission

    NASA Astrophysics Data System (ADS)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  13. Geospace exploration project: Arase (ERG)

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group

    2017-06-01

    The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.

  14. Satellite Communication and Development: A Reassessment.

    ERIC Educational Resources Information Center

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the…

  15. A Mobile Satellite Experiment (MSAT-X) network definition

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Yan, Tsun-Yee

    1990-01-01

    The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented.

  16. Satellite Models for Global Environmental Change in the NASA Health and Air Quality Programs

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2015-12-01

    Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. Health and Air Quality providers and researchers are effective by the global environmental changes that are occurring and they need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. This presentation maintains a diverse constellation of Earth observing research satellites and sponsors research in developing satellite data applications across a wide spectrum of areas including environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality. Successfully providing predictions with the accuracy and specificity required by decision makers will require advancements over current capabilities in a number of interrelated areas. These areas include observations, modeling systems, forecast development, application integration, and the research to operations transition process. This presentation will highlight many projects on which NASA satellites have been a primary partner with local, state, Federal, and international operational agencies over the past twelve years in these areas. Domestic and International officials have increasingly recognized links between environment and health. Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental

  17. A Compilation of Global Bio-Optical in Situ Data for Ocean-Colour Satellite Applications

    NASA Technical Reports Server (NTRS)

    Valente, Andre; Sathyendranath, Shubha; Brotus, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn; hide

    2016-01-01

    A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GePCO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594PANGAEA.854832 (Valente et al., 2015).

  18. A WebGIS system on the base of satellite data processing system for marine application

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  19. Meteorological Satellite Education Resources: Web-based Learning Modules, Initiatives, and the Environmental Satellite Resource Center (ESRC)

    NASA Astrophysics Data System (ADS)

    Schreiber-Abshire, W.; Dills, P.

    2008-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS and the NPOESS Integrated Program Office (IPO), with additional contributions from the GOES-R Program Office and EUMETSAT, to directly support education and training efforts in the area of satellite meteorology. This partnership enables COMET to create educational materials of global interest on geostationary and polar- orbiting remote sensing platforms and their instruments, data, products, and operational applications. Over the last several years, COMET's satellite education programs have focused on the capabilities and applications of the upcoming next generation operational polar-orbiting NPP/NPOESS system and its relevance to operational forecasters and other user communities. COMET's activities have recently expanded to include education on the future Geostationary Operational Environmental Satellites (GOES-R). By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and various user communities, COMET stimulates greater utilization of both current and future satellite observations and products. In addition, COMET has broadened the scope of its online training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System (IJPS) between NOAA and EUMETSAT, while Meteosat imaging capabilities provide an early look for the next generation GOES-R satellites. Also in collaboration with EUMETSAT, COMET is developing future modules on the joint NASA-CNES Jason altimetry mission and on satellite capabilities for monitoring the global climate. COMET also provides Spanish translations of relevant GOES materials in order to support the GEOSS (Global Earth Observation System of Systems) Americas effort, which is associated with the move of GOES-10 to provide routine satellite coverage over South America. This poster presentation provides an overview of COMET

  20. Applications of cluster analysis to satellite soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.; Kalnay, E.; Piraino, P.

    1984-01-01

    The advantages of the use of cluster analysis in the improvement of satellite temperature retrievals were evaluated since the use of natural clusters, which are associated with atmospheric temperature soundings characteristic of different types of air masses, has the potential for improving stratified regression schemes in comparison with currently used methods which stratify soundings based on latitude, season, and land/ocean. The method of discriminatory analysis was used. The correct cluster of temperature profiles from satellite measurements was located in 85% of the cases. Considerable improvement was observed at all mandatory levels using regression retrievals derived in the clusters of temperature (weighted and nonweighted) in comparison with the control experiment and with the regression retrievals derived in the clusters of brightness temperatures of 3 MSU and 5 IR channels.