Science.gov

Sample records for satellite communications service

  1. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  2. A public service communications satellite user brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The capabilities of a proposed communications satellite that would be devoted to experiments and demonstrations of various public services is described. A Public Service Communications Satellite study was undertaken at the NASA Goddard Space Flight Center (GSFC) to define the problems and opportunities of a renewed NASA role and the form such NASA involvement should take. The concept that has evolved has resulted from careful consideration of experiments that were already undertaken on existing satellites.

  3. Communication Satellites: Experimental & Operational, Commercial & Public Service.

    ERIC Educational Resources Information Center

    Development Communication Report, 1979

    1979-01-01

    The title reflects the first and major article in an issue of this newsletter devoted entirely to communication satellites. This series of articles on the potential and applications of communication satellites in development projects is concerned with their development for commercial and public service, development in the Pacific region, SPACECOM…

  4. Public Service Communications Satellite User Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1977-01-01

    Information on user requirements for public service communications was acquired to provide the basis of a study to determine the optimum satellite system to satisfy user requirements. The concept for such a system is described: Topics discussed included requirements for data and message services, elementary and secondary education, extension and continuing education, environmental communications, library services, medical education, medical services, public broadcasting, public safety, religious applications, state and local communications, and voluntary services. Information was also obtained on procedures to follow to make the transfer to commercial services.

  5. Servicing communication satellites in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  6. USDA Forest Service mobile satellite communications applications

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1990-01-01

    The airborne IR signal processing system being developed will require the use of mobile satellite communications to achieve its full capability and improvement in delivery timeliness of processed IR data to the Fire Staff. There are numerous other beneficial uses, both during wildland fire management operations or in daily routine tasks, which will also benefit from the availability of reliable communications from remote areas.

  7. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  8. Satellite communications for the next generation telecommunication services and networks

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  9. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  10. Planning satellite communication services and spectrum-orbit utilization

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1982-01-01

    The relationship between approaches to planning satellite communication services and spectrum-orbit utilization is considered, with emphasis on the fixed-satellite and the broadcasting-satellite services. It is noted that there are several possible approaches to planning space services, differing principally in the rigidity with which technical parameters are prescribed, in the time for which a plan remains in force, and in the procedures adopted for implementation and modifications. With some planning approaches, spectrum-orbit utilization is fixed at the time the plan is made. Others provide for greater flexibility by making it possible to postpone some decisions on technical parameters. In addition, the two political questions of what is equitable access and how it can be guaranteed in practice play an important role.

  11. Emerging markets for satellite data communications in the public service

    NASA Technical Reports Server (NTRS)

    Potter, J. G.

    1978-01-01

    The paper discusses some of the current and potential markets for satellite data communications as projected by the Public Service Satellite Consortium (PSSC). Organizations in the public service sector are divided into three categories, depending on their expected benefits and organizational changes due to increased satellite telecommunications use: A - modest institutional adjustments are necessary and significant productivity gains are likely; B - institutional requirements picture is promising, but more information is needed to assess benefits and risk; and C - major institutional adjustments are needed, risks are high but possible benefits are high. These criteria are applied to the U.S. health care system, continuing education, equipment maintenance, libraries, environmental monitoring, and other potential markets. The potential revenues are seen to be significant, but what is needed is a cooperative effort by common carriers and major public service institutions to aggregate the market.

  12. Repeater in the sky. [public service communications satellite program

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Brown, J. P.

    1977-01-01

    The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.

  13. Developing satellite communications for public service: Prospects in four service areas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Public Service Satellite Consortium evaluated prospects for satellite telecommunications in four areas of the public service: the U.S. health care system, elementary and secondary education, American libraries, and that sector of the public service which is concerned with the provision of continuing education to health professionals. Three important conclusions were reached. First, throughout the public service there are three recurring needs: improved access, cost containment, and maintenance of quality. Appropriate application of communication satellite systems could ameliorate each of these concerns. Second, there appears to be an enormous latent demand for data communication services throughout the public service. The potential demand in 1982 to support requirements in hospital administration, library services and other information-retrieval activities, equipment maintenance, and environmental monitoring may be in excess of $300 million a year. Third, administrative applications of data communication networks show particular promise, especially in rural areas.

  14. Satellite communications experiment for the Ontario air ambulance service

    NASA Technical Reports Server (NTRS)

    Butterworth, John S.

    1988-01-01

    A satellite communications experiment was conducted to develop a reliable voice communications system between paramedics and doctors at certain larger medical centers. The experiment used INMARSAT's Atlantic Ocean Region satellite which provides coverage to the western border of Ontario. Forward downlink power from the satellite is in great demand, so two highly power-efficient modulation schemes were chosen for evaluation during the experiment. These were amplitude-companded single-sideband (ACSSB) and linear predictive coding in conjunction with DMSK modulation. Good performance with a signal to noise ratio of about 10 dB was demonstrated from many parts of the province with the evevation angle to the satellite ranging from five to twenty degrees and with the aircraft both in-flight and on the runway.

  15. Satellite communications experiment for the Ontario air ambulance service

    NASA Astrophysics Data System (ADS)

    Butterworth, John S.

    1988-05-01

    A satellite communications experiment was conducted to develop a reliable voice communications system between paramedics and doctors at certain larger medical centers. The experiment used INMARSAT's Atlantic Ocean Region satellite which provides coverage to the western border of Ontario. Forward downlink power from the satellite is in great demand, so two highly power-efficient modulation schemes were chosen for evaluation during the experiment. These were amplitude-companded single-sideband (ACSSB) and linear predictive coding in conjunction with DMSK modulation. Good performance with a signal to noise ratio of about 10 dB was demonstrated from many parts of the province with the evevation angle to the satellite ranging from five to twenty degrees and with the aircraft both in-flight and on the runway.

  16. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  17. The application of mobile satellite services to emergency response communications

    NASA Technical Reports Server (NTRS)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  18. Public service communications satellite. [health, education, safety and information transfer applications

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1978-01-01

    Health, education, public safety, and information transfer applications of public service communications satellites are discussed with particular attention to the use of communications satellites to improve rural health delivery. Health-care communications requirements are summarized. The communications system concept involves small inexpensive stationary, portable, and moving ground terminals which will provide communications between any two points in the U.S. with both fixed and moving terminals on a continuous 24-hour basis. User requirements, wavebands, and privacy techniques are surveyed.

  19. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  20. Satellite provided fixed communications services: A forecast of potential domestic demand through the year 2000: Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered.

  1. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service.... FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division, International Bureau, FCC,...

  2. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... Stations Aboard Aircraft. FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division,...

  3. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  4. Preliminary benefits study for a public service communications satellite system: Task order 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The economic and social benefits to accrue from an operational public service communications satellite system are estimated for the following applications: teleradiology, emergency medical services, teleconferencing for both civilian and defense agencies, data transfer, remote cardiac monitoring, teleconsultation, continuing education for professionals, and severe storm warning. The potential impact of improved communication on the cost and quality of services are assessed for various agencies, professions, and industries.

  5. Remarks by Dr. James C. Fletcher at Conference on Satellite Communication and Public Service

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    The present status of communications satellites, together with the future goals and technology developments in use of public service, is assessed. Improvements in design during the last decade considerably cut the cost of their development and launching, and the systems carry information to millions of people on earth. The space shuttles will change the rules in design and make it possible for communications satellites to have multiple frequencies operating at high power.

  6. Optimization of orbital assignment and specification of service areas in satellite communications

    NASA Technical Reports Server (NTRS)

    Wang, Cou-Way; Levis, Curt A.; Buyukdura, O. Merih

    1987-01-01

    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply.

  7. Satellite/Terrestrial Networks: End-to-End Communication Interoperability Quality of Service Experiments

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1998-01-01

    Various issues associated with satellite/terrestrial end-to-end communication interoperability are presented in viewgraph form. Specific topics include: 1) Quality of service; 2) ATM performance characteristics; 3) MPEG-2 transport stream mapping to AAL-5; 4) Observation and discussion of compressed video tests over ATM; 5) Digital video over satellites status; 6) Satellite link configurations; 7) MPEG-2 over ATM with binomial errors; 8) MPEG-2 over ATM channel characteristics; 8) MPEG-2 over ATM over emulated satellites; 9) MPEG-2 transport stream with errors; and a 10) Dual decoder test.

  8. The European Communications Satellite

    NASA Astrophysics Data System (ADS)

    Stone, T. A.

    1985-09-01

    Two European Communication Satellites (ECSs) are now in operation for Eutelsat, forming the orbital portion of a communications system that will operate until 1993, carrying telephony and TV for the European Broadcasting Union. A total of five ECSs are to be constructed in order to ensure continuity of service over the systems lifetime. ECSs will also serve as the bases for the European Regional Communication System, which furnishes small receiver dish specialized services and preemptive TV distribution channels within Europe.

  9. Satellite Communications for ATM

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  10. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    NASA Technical Reports Server (NTRS)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  11. Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    NASA Technical Reports Server (NTRS)

    Ha, Tri T.; Pratt, Timothy

    1989-01-01

    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.

  12. Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    NASA Astrophysics Data System (ADS)

    Ha, Tri T.; Pratt, Timothy

    1989-05-01

    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.

  13. The plan for the economic evaluation of the public service communication satellite system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A plan for the economic evaluation of the Public Service Communications Satellite (PSCS) within domestic markets is presented. It extends through the planning, performance and evaluation of economic experiments following the launch of the PSCS in 1982, and includes the consideration of how the results of these experiments impact the transfer from demonstration to operations. The implementation of this plan will provide information needed to understand and manage the economic and social impacts of the PSCS program.

  14. The plan for the economic evaluation of the Public Service Communication Satellite system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A total plan for the economic evaluation of the PSCS public service communication satellite program within domestic markets is presented. It extends from the present through the planning, performance and evaluation of economic experiments following the launch of the PSCS, and includes the consideration of how the results of these experiments impact the transfer from demonstration to operations. The implementation of this plan will provide NASA with information needed to understand and manage the economic and social impacts of the PSCS program.

  15. Navy satellite communications

    NASA Astrophysics Data System (ADS)

    Clair, William C.

    1992-03-01

    The history, current status, and future plans of Navy satellite communications are reviewed. Particular attention is given to Fleet Satellites; the Defense Satellite Communications System; the International Maritime Satellite; Core Command and Control (Core C2), General Purpose Communications, and Navy EHF SATCOM program; and the Copernicus architecture.

  16. Wide-area technologies and services in the Trans-Pacific High Data Rate (HDR) satellite communications experiments

    NASA Technical Reports Server (NTRS)

    Hsu, E.; Hung, C.; Kadowaki, N.; Yoshimura, N.; Takahashi, T.; Shopbell, P.; Walker, G.; Wellnitz, D.; Gary, P.; Clark, G.; Yoshikawa, M.; desJardins, R.; Gill, M.; Tatsumi, H.

    2000-01-01

    This paper describes the technologies and services used in the experiments and demonstrations using the Trans-Pacific high data rate satellite communications infrastructure, and how the environment tasked protocol adaptability, scalability, efficiency, interoperability, and robustness.

  17. Communications satellites - The experimental years

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1983-01-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  18. Communications satellites - The experimental years

    NASA Astrophysics Data System (ADS)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  19. Satellite Communications for U.S. Schools; A Proposed Public Service Offering by Private Business.

    ERIC Educational Resources Information Center

    Krause, Lloyd I.

    The Federal Communications Commission has asked that companies seeking authorization to construct and operate communications satellite facilities for multi-purpose commercial uses in the United States give consideration to the communications needs of schools. In response to this request, MCI Lockheed Satellite Corporation proposes a low-cost…

  20. Communications satellite systems capacity analysis

    NASA Technical Reports Server (NTRS)

    Browne, L.; Hines, T.; Tunstall, B.

    1982-01-01

    Analog and digital modulation techniques are compared with regard to efficient use of the geostationary orbit by communications satellites. Included is the definition of the baseline systems (both space and ground segments), determination of interference susceptibility, calculation of orbit spacing, and evaluation of relative costs. It is assumed that voice or TV is communicated at 14/11 GHz using either FM or QPSK modulation. Both the Fixed-Satellite Service and the Broadcasting-Satellite Service are considered. For most of the cases examined the digital approach requires a satellite spacing less than or equal to that required by the analog approach.

  1. Communications technology satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A description of the Communications Technology Satellite (CTS), its planned orbit, its experiments, and associated ground facilities was given. The communication experiments, to be carried out by a variety of groups in both the United States and Canada, include tele-education, tele-medicine, community interaction, data communications and broadcasting. A historical summary of communications satellite development was also included.

  2. Telelibrary: Library Services via Satellite.

    ERIC Educational Resources Information Center

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  3. Advanced data and ISDN services in the DFS satellite communications system

    NASA Astrophysics Data System (ADS)

    Slabon, Ruediger W.; Schmeller, Otto; Knoben, Wolf U.

    The DFS-Kopernikus satellite system is designed as a most flexible multiservice system. It is used for nation-wide TV-signal distribution, for point-to-point connections (speech and data communications), high quality TV studio lines, etc. However, the most complex application is the provision of a nation-wide network for digital business services. This network contains besides the antenna and radiofrequency equipments a demand assigned time division multiple access system (TDMA/DA), a digital switching system, digital multiplexes and digital subscriber access lines using X.21 signalling system in every traffic station. It will also provide subscriber access by using Integrated Services Digital Network (ISDN) access facilities according to CCITT Recommendations and gateway interfaces to the terrestrial ISDN and supports by these means the introduction and penetration of ISDN to the whole country.

  4. Tethered Communication Satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1986-01-01

    Report describes concept for placing several communication satellites in geostationary orbit without taking up more space than assigned to single satellite. Proposed scheme eases orbital crowding more economically than space platforms. Concept requires minimal redesign of existing satellites and accommodates many satellites in just one orbital slot. System much lighter in weight than geostationary platform and easier and more economical to transport.

  5. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  6. Trends In Satellite Communication

    NASA Technical Reports Server (NTRS)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  7. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  8. Results of thin-route satellite communication system analyses including estimated service costs

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1979-01-01

    A variety of cost and performance tradeoffs are addressed and the preliminary design of a communications satellite system capable of meeting isolated rural users' needs is presented. Small inexpensive rural earth stations are linked via the satellite to a nation wide network of large earth stations which are, in turn, interconnected to the switching exchanges of the conventional telephone network. Optimum earth station EIRP and G/T and satellite transponder power are defined as a function of a wide variety of system options.

  9. Domestic Communications Satellites.

    ERIC Educational Resources Information Center

    Network Project Notebook, 1972

    1972-01-01

    The June, 1972 Federal Communications Commission's (FCC) decision allowed an "open skies" policy in regard to domestic communication satellites and raised Liberal opposition to a situation where exclusive and unchecked communications power is now in the hands of private entrepreneurs, primarily the big Defense Department oriented aerospace…

  10. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  11. Mobile satellite communications for consumers

    NASA Astrophysics Data System (ADS)

    Noreen, Gary K.

    1991-11-01

    The RadioSat system based on MSAT satellites and scheduled for launch in 1994 is described. The RadioSat system will provide integrated communications and navigation services to consumers, including nationwide digital audio broadcasts, data broadcasts, precision navigation, and two-way voice and data communications. Particular attention is given to the MSAT satellite system capabilities and economics. It is concluded that the RadioSat system will be capable of providing a low-cost, highly flexible two-way communications for consumers that can be adapted to various applications.

  12. Domestic Communication Satellites

    ERIC Educational Resources Information Center

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  13. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  14. Communication satellite technology trends

    NASA Technical Reports Server (NTRS)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  15. Signals from Communications Satellites.

    ERIC Educational Resources Information Center

    Thomsen, Volker

    1996-01-01

    Discusses the Doppler effect for relative motion between a source of waves and an observer and the orbital dynamics of communications satellites. Presents preliminary calculations of the satellite's altitude and linear velocity using only the concepts of the Doppler shift and the mechanics of motion in a circular path. (JRH)

  16. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  17. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Plecity, Mark S.; Nall, Mark E.

    1991-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) provides high risk technologies having the potential to dramatically enhance the capabilities of the satellite communications industry. This experimental satellite, which will be launched by NASA in 1993, will furnish the technology necessary for providing a range of services. Utilizing the ACTS very-high-gain-hopping spot-beam antennas with on-board routing and processing, Very Small Aperture Terminal (VSAT) digital networks which provide on-demand, full-mesh-convectivity 1.544-MBPS services with only a single hop can be established. The high-gain spot-beam antenna at Ka-band permits wide area, flexible networks providing high data rate services between modest-size earth terminals.

  18. Satellite communications system 'Tyulpan'

    NASA Astrophysics Data System (ADS)

    Tchuyan, R. K.; Tarasov, E. V.; Belousov, A. P.; Balyk, V. M.; Kovtunenko, V. M.; Morozov, V. A.; Andreev, V. A.; v'yunenko, K. A.

    1993-10-01

    A concept of the satellite communication system called 'Tyulpan' (because or its tulip-resembling shape) is considered. This conception envisages the use of six satellites-retranslators installed on high-latitude elliptic orbits. Such a system can provide the communication for mean- and high-latitude region of Europe, Asia, and America. For the communication, super small ground stations of 0.4 m in diameter can be used. In the development of system conception, the already existing technical solutions and possibility of conversion or existing installations of military destination were taken into account. Therefore, the system considered can be realized at the earliest possible date.

  19. Remote Psychiatric and Psychological Services via the Communications Technology Satellite (CTS).

    ERIC Educational Resources Information Center

    Covvey, H. Dominic; And Others

    To provide remote psychiatric services to a population in Moose Factory, Ontario, via satellite, digital data links will be used to provide 24-hour access to the psychiatric medical file system and the psychiatric patient register at University Hospital, London, Ontario, and to permit scoring and interpretation of standard psychological tests. The…

  20. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Astrophysics Data System (ADS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-11-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  1. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-01-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  2. The 18 and 30 GHz fixed service communications satellite system study. [to determine the cost and performance characteristics

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. The cost and performance expected of 18 and 30 GHz hardware is assessed, selected trunking and direct to user concepts are optimized, and the cost of these systems are estimated. The effect of rain attenuation on the technical and economic viability of the system and methods circumventing the problem are discussed. Technology developments are investigated and cost estimates of these developments are presented.

  3. 30/20-GHz earth station components for satellite digital communication service

    NASA Astrophysics Data System (ADS)

    Inoue, Takeo; Yamada, Yoshihide; Kawashima, Fujio

    1987-03-01

    This paper describes the design method, configurations and performance of two recently developed components for satellite digital communications application. The 30-GHz band high-power transmitters featuring a 300-watt output power are of two types: a small-size klystron tube unit and wide-bandwidth traveling wave tube unit. The 30/20-GHz band earth station antennas are a small size, lightweight axisymmetrical Gregorian and an offset Cassegrain having good wide angle directivity.

  4. International communications via satellite

    NASA Astrophysics Data System (ADS)

    McLucas, J. L.

    The evolution of communications satellite systems is traced in terms of technical capabilities and technological advances. The Communications Act of 1962 led to the establishment of INTELSAT on an international basis in 1964. The original 19 signatory nations has grown to over 100, and over 800 ground relay stations have been built. The INTELSAT system comprises spacecraft over the Atlantic, Pacific, and Indian Oceans and handles 2/3 of the world's international electronic communications and all transoceanic television. The 1965 Early Bird satellite had a 240 two-way telephone link capacity and weighed 38 kg, while the Intelsat V satellites, of which there will be nine, have increased the capacity to 20,000 voice circuits and Intelsat VI will double the number by 1993. Increasing demand for satellite communications links is driving the design and development of space platforms for multiple missions of communications, meteorological studies, and on-board switching and data processing in excess of current multiple satellite systems.

  5. Satellite-Based Educational Services. Technical Memorandum.

    ERIC Educational Resources Information Center

    Operations Research, Inc., Silver Spring, MD.

    This memorandum contains engineering information relevant to the use of communication satellites for educational purposes. Information is provided for ground terminals as well as satellites. Satellite related issues addressed include: (1) expected life of service of various satellites, (2) constraints on the availability of the satellites, (3)…

  6. Satellite Communications Using Commercial Protocols

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  7. Overview of commercial satellite communications

    NASA Astrophysics Data System (ADS)

    Beakley, G. W.

    1984-07-01

    A brief history of communications satellites is presented, taking into account the launching of Sputnik 1 in October 1957, the Explorer 1 in January of 1958, the launch of the Score as the world's first active communications satellite in December 1958, the Communications Satellite Act in 1962, and the launch of 'Early Bird' in 1964. The Intelsat satellites are considered along with maritime satellite communications, the U.S. domestic satellite systems, Alaskan satellite communications, cable television, broadcast TV stations, print media, the hotel/motel industry as a large market for satellite communications terminals, the opening of a minicable and satellite master antenna TV market for TV receive-only systems, and business telecommunications earth terminals. Attention is also given to future directions regarding satellite positions, the concept of 'video-plus', and direct broadcast satellites.

  8. A new wave of communication satellites

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Cuccia, C. L.

    1984-01-01

    Satellites provide at present telephone, television, data, and business services on a national, regional, and international scale, and the geostationary arc has become crowded at C-band (6/4 GHz) and Ku-band (14/11 GHz) frequencies. The evolution and the present state of satellite communications are discussed along with details regarding the development of direct broadcast satellites, the position of Canada with respect to satellite communications, Japanese developments, ESA and Eutelsat, aspects of collaboration between France and Germany regarding communications satellites, the United Kingdom, and the Nordic countries.

  9. ESA's satellite communications programme

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  10. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  11. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  12. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  13. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  14. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  15. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  16. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  17. Cost Consideration for Future Communications Satellite

    NASA Astrophysics Data System (ADS)

    Iida, Takashi

    2002-01-01

    This paper discusses the cost driving factors of the future communications satellite rather than discussing its cost itself directly, in terms of development period of time, services, and R&D by government. In the first, a period of time for development of a communications system is discussed in comparison of satellite communications system with a terrestrial communications system. Generally speaking, the terrestrial communications system is developed in a short period. Especially, the recent network related IT technology changes very rapidly, like so-called as "Dog Year". On the other hand, it takes a long time, more than several years, to develop a satellite communications system. This paper will discuss this time period of development is how to influence the system realization in various cases. In the second, the service related cost is discussed. First, a mobile communications satellite system is considered as an example. The tremendous penetration speed of the terrestrial cellular phones prevents from the success of the mobile satellite communications system. The success of the mobile satellite communications system depends on how early and user friendly to develop its user terminals. Second, the broadcasting service is described as a successful example. It is described that the satellite broadcasting has a very competitive advantage to the terrestrial broadcasting service from the cost point of view. Finally, the cost of the technology R&D for the future communication satellite by the government is discussed. A model of the future communications satellite for next 30 years has been proposed(1)(2). As an example, this paper estimates the satellite cost of the 60 Gbps range of capacity which is called as 1.5G satellite, where the capacity of the second generation Internet satellite (2G) is 50-500 Gbps per satellite. In the paper, the R&D plan of the future communications satellite will be discussed as a next R&D project to the first generation Internet

  18. Business Use of Satellite Communications.

    ERIC Educational Resources Information Center

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  19. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  20. Satellite Services Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.

  1. Land-mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee (Inventor); Rafferty, William (Inventor); Dessouky, Khaled I. (Inventor); Wang, Charles C. (Inventor); Cheng, Unjeng (Inventor)

    1993-01-01

    A satellite communications system includes an orbiting communications satellite for relaying communications to and from a plurality of ground stations, and a network management center for making connections via the satellite between the ground stations in response to connection requests received via the satellite from the ground stations, the network management center being configured to provide both open-end service and closed-end service. The network management center of one embodiment is configured to provides both types of service according to a predefined channel access protocol that enables the ground stations to request the type of service desired. The channel access protocol may be configured to adaptively allocate channels to open-end service and closed-end service according to changes in the traffic pattern and include a free-access tree algorithm that coordinates collision resolution among the ground stations.

  2. Experimental Satellite Quantum Communications.

    PubMed

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers. PMID:26252672

  3. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  4. Experimental Satellite Quantum Communications.

    PubMed

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  5. Activities of Canadian Satellite Communications, Inc.

    NASA Astrophysics Data System (ADS)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  6. A potential 21st century satellite communications application - Personal communications

    NASA Astrophysics Data System (ADS)

    Tsang, E. K.; Douville, R.

    1990-03-01

    It has been forecast that not only will the future needs for satellite communications grow, especially in the area of broadcasting and mobile services, but also that the requirements will be diversified. For voice and data traffic, satellite communications started with the requirements of the telephone companies. Over the past few years, with the availability of Ku-band and VSAT systems, private business networks have emerged. Heading into the 21st century, satellite communications will expand into the personal services domain. This paper describes a concept for a satellite-based personal radio system. To realize the personal communications system, the portable terminals have to be inexpensive and small, similar to the present portable or handheld cellular radio-phones in size. The system aspects, such as selection of frequency band, multiple access and payload configuration will be addressed. The advanced technology required for the portable personal satellite communications system will be discussed.

  7. Digital, Satellite-Based Aeronautical Communication

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  8. AUSSAT mobile satellite services

    NASA Technical Reports Server (NTRS)

    Nowland, Wayne L.; Wagg, Michael; Simpson, Daniel

    1988-01-01

    An overview of AUSSAT's planned mobile satellite system is given. The development program which is being undertaken to achieve the 1992 service date is described. Both business and technical aspects of the development program are addressed.

  9. A forecast of broadcast satellite communications

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.

    1977-01-01

    This paper presents forecasts of likely changes in broadcast satellite technology, the technology of ground terminals, and the technology of terrestrial communications competitive with satellites. The impacts of these changes in technology are then assessed, using a cross-impact model of U.S. domestic telecommunications, to determine the consequences of various possible changes in communications satellite technology. These consequences are discussed in terms of various possible services, for households, businesses, and specialized customers, which might become economically viable as a result of improvements in satellite technology.

  10. Satellite communications for disaster relief operations

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1979-01-01

    The use of existing and planned communication satellite systems to provide assistance in the implementation of disaster relief operations on a global basis was discussed along with satellite communications system implications and their potential impact on field operations in disaster situations. Consideration are given to the utilization of both INTELSAT and MARISAT systems operating at frequencies ranging from 1.5 to 4 GHz and to the size and type of ground terminals necessary for satellite access. Estimates of communication requirements for a global system are given. Some discussion of cost estimates for satellite services to support operations are included. Studies of communication satellites for both pre and post disaster applications conducted for NOAA are included as well as recent experiments conducted in conjunction with the Office of Foreign Disaster Assistance of the Agency for International Development.

  11. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  12. DCS/FTS Commercial Satellite Communications System

    NASA Astrophysics Data System (ADS)

    Shimabukuro, T.; Rosner, R.; Pearsall, C.

    In order to control the rising costs of telephonic services and meeting the increasing demand for wideband video and data services within U.S. Federal Government agencies, the Defense Communications Agency and the General Services Administration have begun the implementation of a leased Commercial Satellite Communications System. Service volume demand, commonality of service requirements, and common geographic communities of interest facilitate economies of scale in the course of meeting DOD and other Federal agencies' objectives. The service, which incorporates the Federal Telecommunications Service and is therefore designated DCS/FTS, is presently studied with respect to military and national objectives.

  13. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  14. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  15. Potential Use of the Australian Satellite Communications System for School of the Air and Enhanced Educational Services. Report Prepared for the Commonwealth/State Advisory Committee on the Educational Use of Communications Technology.

    ERIC Educational Resources Information Center

    Davies, N. G.; Gillam, J. A.

    This report considers the potential for the use of the Australian Communications Satellite System (ACSS) for the Australian Schools of the Air (SOTAs) and the delivery of enhanced educational services, and develops the concept of all SOTAs operating through one transponder in a national beam. An evolutionary introduction of satellite transmission…

  16. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  17. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  18. Domestic satellite communications systems - Background and projections

    NASA Astrophysics Data System (ADS)

    Bargellini, P. L.

    Planned and existing national and international communications satellites are reviewed, along with comparative costs for leasing or owning a satellite and the basic capabilities of communications spacecraft. Eleven different satellite communications systems existed in 1982, including Intelsat, Marisat/Inmarsat, and Intersputnik as the international segments, and the Molniya, Telesat, Palapa, Westar, Satcom, Comstar, Amersat, and the SBS national systems. Seven of the twenty countries leasing Intelsat services are planning their own satellites. Leasing permits full capabilities withno development costs and ensures the lessor of full use of the satellite capacities. Developing countries can then gain hands-on experience with space technologies. Future demands are discussed, noting the broadening of the available bandwidths, better orbit utilization, and increases in transponder numbers to handle increased loads in future spacecraft.

  19. TDRSS Augmentation Service for Satellites (TASS)

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  20. Trends in mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  1. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    NASA Astrophysics Data System (ADS)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  2. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Threfore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  3. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Therefore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  4. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry in developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, 'bent pipe' transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km.

  5. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  6. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  7. Mobile satellite service in the United States

    NASA Technical Reports Server (NTRS)

    Agnew, Carson E.; Bhagat, Jai; Hopper, Edwin A.; Kiesling, John D.; Exner, Michael L.; Melillo, Lawrence; Noreen, Gary K.; Parrott, Billy J.

    1988-01-01

    Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations.

  8. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  9. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  10. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  11. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  12. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  13. Operating Frequencies for Educational Satellite Services.

    ERIC Educational Resources Information Center

    Singh, Jai P.

    Part of a continuing study of application of communication satellites for helping to meet educational needs, this memorandum discusses operating frequencies for educational satellite services. Each of the factors affecting choice of transmission frequencies is identified and discussed in a separate section. Included among these factors are…

  14. Delivery of Instructional Materials Using a Communications Satellite.

    ERIC Educational Resources Information Center

    Bransford, Louis A.; Diebler, Mary

    During the past decade, satellite technology has grown increasingly more sophisticated. Satellites are being used in public interest activities, especially through the Public Service Satellite Consortium. But what about the field of education? How can education, especially vocational education, make use of satellite communications technology? In…

  15. A design of 30/20 GHz flight communications experiment for NASA. [satellite and earth segments for high data rate commercial service

    NASA Technical Reports Server (NTRS)

    Kawamoto, Y.

    1982-01-01

    The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.

  16. Modulation and coding used by a major satellite communications company

    NASA Technical Reports Server (NTRS)

    Renshaw, K. H.

    1992-01-01

    Hughes Communications Inc., is a major satellite communications company providing or planning to provide the full spectrum of services available on satellites. All of the current services use conventional modulation and coding techniques that were well known a decade or longer ago. However, the future mobile satellite service will use significantly more advanced techniques. JPL, under NASA sponsorship, has pioneered many of the techniques that will be used.

  17. Baseband Processor for Communication Satellites

    NASA Technical Reports Server (NTRS)

    Jirberg, Russell J.; Armstrong, Patrick C.

    1987-01-01

    Baseband processing (BBP) system for advanced satellite communications successfully demonstrated. Provides increased data capacity through frequency-reusing multibeam antenna systems, using time-division multiple access (TDMA) and onboard satellite switching. Large numbers of thin-route trunking stations and user-based Earth terminals handled efficiently by satellite baseband switching. With BBP system, satellite routes data messages individually among locations anywhere in continental United States. Processes, controls, and routes message traffic among users. Time-division multiple access and baseband switching used.

  18. Global trade in satellites and launch services

    NASA Astrophysics Data System (ADS)

    Hearing before the Subcommittee on Space of the Committee on Science, Space, and Technology of the House of Representatives is presented. Written testimony, submittals for the record, and responses to written questions are included. Topics concerning the global trade in satellites and launch services include foreign competition, the China and Russia trade agreements, Commerce licensing on international sales and export, trade control, technology transfer, satellite communications and the economy, satellites and the global information infrastructure, commercial space revenues, and enforcement of trade policies.

  19. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  20. Potential markets for advanced satellite communications

    NASA Astrophysics Data System (ADS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  1. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive review of worldwide satellite communication programs is reported that ranges in time from the inception of satellite communications to mid-1971. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed.

  2. New TDRSS communications options for small satellites

    NASA Technical Reports Server (NTRS)

    Zillig, David J.; Perko, Kenneth L.; Nelson, Kathryn G.

    1996-01-01

    The NASA uses a space network which includes the tracking and data relay satellite system (TDRSS) for the provision of reliable low data rate and high data rate relay services between user spacecraft in earth orbit and the ground. In relation to future small satellite designs, new communication options for the TDRSS support of small spacecraft missions are reported on. The technologies considered include new transponder technologies, evolution to Ka band frequencies and a TDRSS demand access service capability. Multiple access aspects are considered.

  3. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  4. A series on optimizing satellite systems. I - Restoring interruptions of communications sattelite service: Logistical and cost comparisons of mature and newly operational systems

    NASA Astrophysics Data System (ADS)

    Snow, Marcellus S.

    1989-09-01

    A mathematical model is presented of costs and operational factors involved in provision for service interruptions of both a mature and typically large incumbent satellite system and of a smaller, more recently operational system. The equation expresses the required launch frequency for the new system as a function of the launch spacing of the mature system; the time disparity between the inauguration of the two systems; and the rate of capacity depreciation. In addition, a technique is presented to compare the relative extent to which the discounted costs of the new system exceed those of the mature system in furnishing the same effective capacity in orbit, and thus the same service liability, at a given point in time. It is determined that a mature incumbent communications satellite system, having more capacity in orbit, will on balance have a lower probability of service interruption than a newer, smaller system.

  5. Delivery of satellite based broadband services

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  6. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  7. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  8. Telemammography Using Satellite Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Telemammography, the electronic transmission of digitized mammograms, can connect patients with timely, critical medical expertise; howev er, an adequate terrestrial communications infrastructure does not exist in these areas. NASA Lewis Research Center's Advanced Space Commu nications Laboratory is now working with leading breast cancer resear ch hospitals, including the Cleveland Clinic and the University of Virginia, to perform the critical research necessary to allow new satell ite networks to support telemammography.

  9. Mobile satellite service for Canada

    NASA Technical Reports Server (NTRS)

    Sward, David

    1988-01-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  10. Customer concerns regarding satellite servicing

    NASA Technical Reports Server (NTRS)

    Rysavy, Gordon

    1987-01-01

    The organization of orbital servicing of satellites is discussed. Provision of servicing equipment; design interfaces between the satellite and the servicing equipment; and the economic viability of the concept are discussed. The proposed solution for satisfying customer concerns is for the servicing organizations to baseline an adequate inventory of servicing equipment with standard interfaces and established servicing costs. With this knowledge, the customer can conduct tradeoff studies and make programmatic decisions regarding servicing options. A dialog procedure between customers and servicing specialists is outlined.

  11. Research Supporting Satellite Communications Technology

    NASA Technical Reports Server (NTRS)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  12. Federal research and development for satellite communications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Committee on Satellite Communication (COSC) was formed under the auspices of the Space Applications Board (SAB) in order to study Federal research and development on satellite communications (SC). Discussion on whether to continue the research and development and the proper role of the Federal Government are addressed. Discussion focussed on six possible options for a Federal role in SC research and development: (1) the current NASA SC program; (2) an expanded NASA SC technology program; (3) a SC technology flight test support program; (4) an experimental SC technology flight program; (5) an experimental public service SC system program; and (6) an operational public service SC system program. Decision criteria and recommendations are presented.

  13. Launch vehicles for communications satellites

    NASA Technical Reports Server (NTRS)

    Mahon, J. B.

    1982-01-01

    After giving brief development histories of the Delta and the Atlas Centaur launch vehicles, attention is given to the operational characteristics of the ascent, parking orbit, transfer orbit, and orbital insertion phases of the delivery of a communications satellite to a geostationary orbit by means of a Delta launch vehicle. NASA plans to employ Delta vehicles for as long as they are needed during the transition period to the Space Shuttle. NASA planning for Atlas Centaur includes launches through 1985 for INTELSAT-VA, and through 1986 for FLTSATCOM satellites.

  14. Trends in NASA communication satellites

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Satellite telecommunications can help to satisfy several national needs such as education, health care, cultural opportunities, and data transfer. There are current experiments being conducted with NASA spacecraft ATS 1, 3, and 5 in an attempt to satisfy these national needs. Future experiments are planned for the ATS F/G and CTS spacecrafts. The next generation of communications satellites must provide multiple region coverage, multichannel capability, high quality TV pictures, and must allow low cost ground receivers to be used. The proposed NASA spacecrafts, ATS H/I, will satisfy these requirements. Other countries of the world can benefit from ATS H/I technology.

  15. Communications and media services

    NASA Technical Reports Server (NTRS)

    Mcculla, James W.; Kukowski, James F.

    1990-01-01

    NASA's internal and external communication methods are reviewed. NASA information services for the media, for the public, and for employees are discussed. Consideration is given to electron information distribution, the NASA TV-audio system, the NASA broadcast news service, astronaut appearances, technology and information exhibits, speaker services, and NASA news reports for internal communications. Also, the NASA worldwide electronic mail network is described and trends for future NASA communications and media services are outlined.

  16. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  17. Satellite communications for the Pacific islands. Second year report

    NASA Technical Reports Server (NTRS)

    Young, E.; Hurd, J. N.

    1982-01-01

    Requirements, options and costs for use of communications satellites in underserved areas of the Pacific Basin are described with emphasis on extended utilization of INTELSAT. The economic structures within and among Pacific Basin entities are examined, particularly the relationship between the growth of regional trade and telecommunications potential for the region. Suitable satellite services are recommended and the financial implications for extended utilization of communications satellites in the Pacific Basin are considered.

  18. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  19. Trends in NASA communication satellites.

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Discussion of the potential applications of satellite communications technology in meeting the national needs in education, health care, culture, and data transfer techniques. Experiments with the NASA ATS 1, 3 and 5 spacecraft, which are conducted in an attempt to satisfy such needs, are reviewed. The future needs are also considered, covering the requirements of multiple region coverage, communications between regions, large numbers of ground terminals, multichannel capability and high quality TV pictures. The ATS F and CTS spacecraft are expected to be available in the near future to expand experiments in this field.

  20. Satellite-Based Quantum Communications

    SciTech Connect

    Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P; Newell, Raymond T; Peterson, Charles G

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  1. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary satellite orbit Fixed-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5 GHz bands. 25.146 Section... SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.146 Licensing and operating rules for the non-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5...

  2. Satellite communications systems and technology. Volume 1: Analytical chapters

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I. (Editor); Pelton, Joseph N. (Editor); Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.

    1993-01-01

    This is Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. Focus was on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960's and 1970's. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  3. Satellite communications systems and technology. Volume 1; Analytic Chapters

    NASA Technical Reports Server (NTRS)

    Jennings, Raymond D.; Mahle, Christoph E.; Miller, Edward F.; Riley, Lance; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Edelson, Burton I.; Kwan, Robert K.; Helm, Neil R.

    1993-01-01

    Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology is presented. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus of the study was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. The report focuses on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960s and 1970s. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  4. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  5. Modular approach for satellite communication ground terminals

    NASA Technical Reports Server (NTRS)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  6. Satellite communications systems and technology. Executive Summary

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert; Mahle, Christoph E.

    1993-01-01

    NASA and the National Science Foundation (NSF) commissioned a panel of US experts to study the international status of satellite communications systems and technology. The study covers emerging systems concepts, applications, services, and the attendant technologies. The panel members travelled to Europe, Japan, and Russia to gather information first-hand. They visited 17 sites in Europe, 20 sites in Japan, and four in Russia. These included major manufacturers, government organizations, service providers, and associated R&D facilities. The panel's report was reviewed by the sites visited, by the panel, and by representatives of US industry. The report details the information collected and compares it to US activities.

  7. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  8. Multipurpose Communication Satellite solar array

    NASA Astrophysics Data System (ADS)

    Bastard, J. L.; Guyot, Ph.

    Through research and development studies, Aerospatiale has developed with the French National Space Agency (CNES) a new concept of a rigid Solar Array (GSR) which covers a range of power between 1 kW and 10 kW EOL 7 yr. This technology is used by Aerospatiale on the currently running programs:—TELECOM 1, Telecommunication satellite, spinned in transfer; —ARABSAT, Telecommunication satellite, 3-axis stabilized in transfer; —TELE-X and TV-SAT/TDF1, Direct Broadcasting satellites, 3-axis stabilized in transfer. This paper deals with the description and the electrical and mechanical performance of the Multipurpose Communication Satellite Solar Array (M.C.S.). For this satellite, which is expected to be launched in 1984, Aerospatiale has selected the following concept: primary power (1.4 kW EOL 7 yr) will be provided by two separate sun-oriented solar array wings equipped with AEG Telefunken BSR (Back Surface Reflector) solar cells. This solar generator is directly derived from the GSR technology. Owing to the three-axis stabilization of the satellite and the partial deployment of the solar array during the transfer phase it has been necessary to use a primary and a secondary hold-down devices. In the same way the position of the shunt on the solar generator induced an increase of the mass, because of the supplementary hold-down point and of the support structure. Now scribing Laser System leads to the optimization of the solar cells dimensions and allows a better fill factor of the panels and so an increase of the power performance. Beside the M.C.S concept which is fully adapted as regards its mission specifications, it was interesting to present different concepts of solar generators optimized not only as regards mass budget but also power budget. These concepts covering a large range of powers are fully adapted to telecommunication missions.

  9. Satellite communications and broadcasting; Proceedings of the International Conference, London, England, Dec. 2-4, 1986

    NASA Astrophysics Data System (ADS)

    Papers are presented on private satellite networks in the U.S.; the competitive market for international satellite services; private satellite networks in Europe; and various applications for satellites, in particular data broadcasting and business communications. Topics discussed include the worldwide regulation of satellite broadcasting and communications; the capabilities of Eutelsat II; trends in satellite technology; and the role of insurance in space industries. Consideration is given to the use of the ASTRA satellite for TV broadcasting; the services provided by Intelsat; the evolution of American television due to satellites; consumer satellite Television Receive Only marketing in Europe; and satellite programming.

  10. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  11. The role of technology in influencing future civil communications satellites

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.; Mahle, Christoph E.

    1990-01-01

    Technology, both as an enabler and as a driver of new and improved communication satellites, is discussed. A brief look at the beginnings and evolution of satellite communications is given to reveal the continuing influence of technology over the past 25 years. An assessment of the current state of the art which serves as a benchmark representing how far technology has come and as a basis for comparison for future possibilities is presented. A short tutorial on communications satellite basics is presented, followed by an assessment of technologies used for satellite antennas and signal amplification and routing. A discussion of future service requirements follows, and emerging technologies are identified along with possible improved communications capabilities that can result from them. The outlook for the role of technology for future communication satellites is summarized.

  12. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Satellite Service and 2 GHz Mobile-Satellite Service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2...

  13. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  14. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  15. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Satellite Service and 2 GHz Mobile-Satellite Service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2...

  16. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  17. China's future domestic satellite communications systems

    NASA Astrophysics Data System (ADS)

    Liang, G.; Yaokun, Y.

    1985-01-01

    Some ideas about China's future domestic satellite communications system are discussed. The following objectives are considered in the design of the new domestic satellite communications system: (1) the satellite communications system should link the entire country and form a unified national network with the existing ground communications system, (2) based on the geographic situation, the satellite communications system should be primarily small and scattered in the west, and large and concentrated in the east, (3) the Telephone business should be the primary business of the satellite communications system. It should also be capable of transmitting television, telegram, data, facsimile, and broadcasting, (4) the communications system should be primarily designed as a single jump system. It should not exceed two jumps, and (5) the parameters of the communications system should be in agreement with CCIR and CCITT recommendations.

  18. Domestic satellite communications - The Canadian experience

    NASA Astrophysics Data System (ADS)

    Golden, D. A.

    1980-09-01

    The history of commercial satellite communications in Canada is surveyed. The benefits provided by the existing system are illustrated by focusing on the experience of a particular Arctic hamlet (Pangnirtung). Attention is given to the factors that have differentiated the Canadian system from the American one (smaller, less homogenous, and more widely dispersed population). The problem posed by 'pirate' earth stations in Canada is discussed. An account is given of the origin of the dual-band Anik B (6/4 GHz and 14/12 GHz channels) satellite series, and the experiments (telemedicine, tele-education, communication with remote communities) carried out with the Anik B are discussed. Attention is also given to the promising results obtained in the direct-to-home TV service delivered by Anik B. Plans for the Anik C (16 channels 14/12 GHz frequency band) and Anik D (24 channels 6/4 GHz frequency band) series are discussed. Canada's communications needs are such that the continued development of satellite systems seems assured.

  19. Design trade-offs in antijam military satellite communications

    NASA Astrophysics Data System (ADS)

    Brandon, W. T.

    1982-07-01

    Military satellite communications system technical parameters, boundary values and anti-jamming trade-offs among parameters are described and discussed. These systems, which have become essential elements of command, control and communication structures for the U.S., NATO and the Soviet Union, are characterized by such features as global connectivity of commanders and forces, and instant reconfiguration which allows a single system to support services as varied as broadcasting, point-to-point voice communication, and teletype data, for tactical, strategic or logistic users. Attention is given to the anti-jamming concept of satellite position uncertainty, in which a group of satellites functions as uplink receiver, and a single, larger satellite is used as a downlink transmitter. It is shown that, by constraining design to a finite number of satellite orbits, frequency bands and satellite and terminal designs, a practical number of about 5000 different system designs can be stipulated for further study.

  20. Internetworking satellite and local exchange networks for personal communications applications

    NASA Technical Reports Server (NTRS)

    Wolff, Richard S.; Pinck, Deborah

    1993-01-01

    The demand for personal communications services has shown unprecedented growth, and the next decade and beyond promise an era in which the needs for ubiquitous, transparent and personalized access to information will continue to expand in both scale and scope. The exchange of personalized information is growing from two-way voice to include data communications, electronic messaging and information services, image transfer, video, and interactive multimedia. The emergence of new land-based and satellite-based wireless networks illustrates the expanding scale and trend toward globalization and the need to establish new local exchange and exchange access services to meet the communications needs of people on the move. An important issue is to identify the roles that satellite networking can play in meeting these new communications needs. The unique capabilities of satellites, in providing coverage to large geographic areas, reaching widely dispersed users, for position location determination, and in offering broadcast and multicast services, can complement and extend the capabilities of terrestrial networks. As an initial step in exploring the opportunities afforded by the merger of satellite-based and land-based networks, several experiments utilizing the NASA ACTS satellite and the public switched local exchange network were undertaken to demonstrate the use of satellites in the delivery of personal communications services.

  1. A new antenna concept for satellite communications

    NASA Technical Reports Server (NTRS)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  2. Technology requirements for communication satellites in the 1980's

    NASA Technical Reports Server (NTRS)

    Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.

    1973-01-01

    The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.

  3. Twenty years of international satellite communication

    NASA Astrophysics Data System (ADS)

    Evans, J. V.

    1986-08-01

    The development of satellite communications networks since 1957 is reviewed, and future trends are discussed. The emphasis is on commercial networks such as Comsat and Intelsat, and consideration is given to the early experimental satellites; the advantages of GEO satellites; the steady growth of the capabilities of satellite systems; advances in orbital injection and stationkeeping, stability and attitude control, and payload design; and communication-capacity improvements (increased bandwidths, shaped beams, TDMA, satellite-switched TDMA, and circuit multiplication). It is predicted that competition from undersea fiber-optic cables in the telephony market will shift the emphasis in satellite communications toward DBS-TV (especially in Europe), thin-route telephone and data communication using smaller earth stations, and mobile-station communication. Graphs, maps, photographs, and diagrams are provided.

  4. Low-noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Whelehan, J.

    1984-02-01

    It is pointed out that over the past several years significant advances have been made in the overall capability of both microwave and mm-wave receivers. This is particularly apparent in the telecom market. Integral parts of advanced receiver technology are low-noise receivers. The advances currently being achieved in low-noise technology are partly based on developments in GaAs semiconductor technology. The development of high-cutoff-frequency beam lead mixer diodes has led to the development of mm-wave low-noise mixers with excellent low-noise capability. The advanced techniques are now being employed in field-deployable systems. Low noise is an important factor in satellite communications applications. Attention is given to C-band fixed satellite service, C-band parametric amplifiers, C-band FET, and X band, the Ku band, and the 30/20 GHz band.

  5. Satellite communications systems and technology. Volume 2: Site reports

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I. (Editor); Pelton, Joseph N. (Editor); Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.

    1993-01-01

    This is volume 2 of the final report of the NASA/NSF Panel on Satellite Communications Systems and Technology. It consists of the site reports from the panel's visits to satellite communications facilities and laboratories in Europe, Japan, and Russia. The Executive Summary of the panel's final report is published separately. Volume 1, also published separately, consists of the panel's analytical chapters. Information on ordering the Executive Summary and Volume 1 from the National Technical Information Service is included.

  6. Educational Applications of Communications Satellites in Canada. New Technologies in Canadian Education Series. Paper 12.

    ERIC Educational Resources Information Center

    Richmond, J. Murray

    Canada has explored the use of satellites as a means to provide information and communications services to geographically isolated populations since 1962. Between 1972 and 1984, five series of satellites known as Anik A, B, C, and D and Hermes were launched. Each satellite provided expanded communications services, and each led to research and…

  7. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  8. The Impact of Satellites on Cable Communications.

    ERIC Educational Resources Information Center

    Chayes, Abram

    Two recent developments in communications satellite technology may speed the coming of cable TV (CATV) networks. First, increases in satellite power are reducing the cost of ground stations. Second, a connection between one ground station, the satellite, and any other ground station is no longer necessarily fixed. Now one station can communicate…

  9. A practical system for regional mobile satellite services

    NASA Technical Reports Server (NTRS)

    Glein, Randall; Leverson, Denis; Olmstead, Dean

    1993-01-01

    The Regional Mobile Satellite (MSAT) concept proposes a worldwide, interconnected mobile satellite service (MSS) network in which MSAT-type satellites provide the space segment services to separate regions (i.e., one or a few countries). Using this concept, mobile communications users across entire continents can now be served by a handful of regionally controlled satellites in geostationary earth orbit (GEO). All requirements, including hand-held telephone capabilities, can be cost-effectively provided using proven technologies. While other concepts of regional or global mobile communications continue to be explored, the Hughes Regional MSAT system demonstrates the near-term viability of the GEO approach.

  10. Federal Research and Development for Satellite Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report of the Committee on Satellite Communications (COSC) reviews a number of future communication needs which could be satisfied by satellite systems, including needs in fields such as education, health care delivery, hazard warning, navigation aids, search and rescue, electronic mail delivery, time and frequency dissemination, and…

  11. NASA Compendium of Satellite Communications Programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive review is presented of worldwide communication programs that range in time from the inception of satellite communications to August 1971. The programs included are: Echo, Courier, West Ford, Telstar, Relay, Syncom, Lincoln experimental satellites, Intelsat, Tacsat, Skynet, Nato system, and Telesat.

  12. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  13. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  14. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  15. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  16. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  17. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  18. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  19. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  20. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  1. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in Mobile-Satellite Service...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... terrestrial components in Mobile-Satellite Service networks operating in the 1.5./1.6 GHz and 1.6/2.4 GHz Mobile-Satellite Service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations §...

  2. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  3. 47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Fixed-Satellite Service. 25.210 Section 25.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.210 Technical requirements for space stations in the Fixed-Satellite Service. (a) All space stations in the...

  4. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  5. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  6. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  7. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  8. European small geostationary communications satellites

    NASA Astrophysics Data System (ADS)

    Sun, Wei, , Dr.; Ellmers, Frank; Winkler, Andreas; Schuff, Herbert; Sansegundo Chamarro, Manuel Julián

    2011-04-01

    Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.

  9. Dust collection on serviceable satellites

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III

    1986-01-01

    One rationale for the Space Shuttle program which was dramatically realized during the repair of the Solar Maximum Mission (SMM) is the efficiency of in-orbit satellite servicing. An unexpected benefit of this repair mission was the return of parts of the Solar Max satellite which had been exposed for four years to the space environment. Studies conducted on these parts have yielded valuable data on the micrometeorite flux and composition at shuttle altitudes during this time period. The scientific results from studies of the cosmic dust component of the observed particle impacts are not yet complete but it is clear from the preliminary data available that such studies will be a valuable adjunct to the studies of cosmic dust particles collected in the atmosphere. The success of the initial studies of particles collected during repairs of the SMM spacecraft on a surface not specifically designed as a particle collector nor retrieved in a manner intended to minimize or eliminate local contamination raises the possibility that even more interesting results might be obtained if serviceable satellites were initially designed with these objectives in mind. All designs for modern satellites utilize some form of thermal blanket material in order to minimize thermal stresses inside the spacecraft. It is proposed that all future satellites be designed with standardized removeable sections of thermal blanket material which could be replaced during on-orbit servicing and returned to earth for detailed study.

  10. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily.

  11. Communications satellite system for Africa

    NASA Astrophysics Data System (ADS)

    Kriegl, W.; Laufenberg, W.

    1980-09-01

    Earlier established requirement estimations were improved upon by contacting African administrations and organizations. An enormous demand is shown to exist for telephony and teletype services in rural areas. It is shown that educational television broadcasting should be realized in the current African transport and communications decade (1978-1987). Radio broadcasting is proposed in order to overcome illiteracy and to improve educational levels. The technical and commercial feasibility of the system is provided by computer simulations which demonstrate how the required objectives can be fulfilled in conjunction with ground networks.

  12. Commercialization of Advanced Communications Technology Satellite (ACTS) technology

    NASA Astrophysics Data System (ADS)

    Plecity, Mark S.; Strickler, Walter M.; Bauer, Robert A.

    1996-03-01

    In an on-going effort to maintain United States leadership in communication satellite technology, the National Aeronautics and Space Administration (NASA), led the development of the Advanced Communications Technology Satellite (ACTS). NASA's ACTS program provides industry, academia, and government agencies the opportunity to perform both technology and telecommunication service experiments with a leading-edge communication satellite system. Over 80 organizations are using ACTS as a multi server test bed to establish communication technologies and services of the future. ACTS was designed to provide demand assigned multiple access (DAMA) digital communications with a minimum switchable circuit bandwidth of 64 Kbps, and a maximum channel bandwidth of 900 MHZ. It can, therefore, provide service to thin routes as well as connect fiber backbones in supercomputer networks, across oceans, or restore full communications in the event of national or manmade disaster. Service can also be provided to terrestrial and airborne mobile users. Commercial applications of ACTS technologies include: telemedicine; distance education; Department of Defense operations; mobile communications, aeronautical applications, terrestrial applications, and disaster recovery. This paper briefly describes the ACTS system and the enabling technologies employed by ACTS including Ka-band hopping spot beams, on-board routing and switching, and rain fade compensation. When used in conjunction with a time division multiple access (TDMA) architecture, these technologies provide a higher capacity, lower cost satellite system. Furthermore, examples of completed user experiments, future experiments, and plans of organizations to commercialize ACTS technology in their own future offerings will be discussed.

  13. Satellite services handbook. Interface guidelines

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  14. Space industrialization - Education. [via communication satellites

    NASA Technical Reports Server (NTRS)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  15. The Mobile Satellite Services Market.

    ERIC Educational Resources Information Center

    Anderson, Samuel

    Mobile satellite (MSAT) technology is the basis for a new component of the telecommunications industry capable of providing services to small inexpensive subscriber terminals located almost any place in the world. The market for MSAT space segment capacity (bandwidth and power) is a natural monopoly that can be logically and technically…

  16. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  17. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  18. Satellite Communication Hardware Emulation System (SCHES)

    NASA Technical Reports Server (NTRS)

    Kaplan, Ted

    1993-01-01

    Satellite Communication Hardware Emulator System (SCHES) is a powerful simulator that emulates the hardware used in TDRSS links. SCHES is a true bit-by-bit simulator that models communications hardware accurately enough to be used as a verification mechanism for actual hardware tests on user spacecraft. As a credit to its modular design, SCHES is easily configurable to model any user satellite communication link, though some development may be required to tailor existing software to user specific hardware.

  19. Economics of satellite communications systems

    NASA Astrophysics Data System (ADS)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  20. Advanced high capacity domestic satellite communications system

    NASA Astrophysics Data System (ADS)

    Iso, Akio; Kohiyama, Kenji; Odate, Hitoshi; Ishida, Noriaki

    This paper describes a concept of multibeam high capacity transmission possible with a 30/20 GHz and 50/40 GHz domestic satellite communication system. The relationship between satellite antenna pointing accuracy and multi-beam antenna interference, as well as the relationship between satellite antenna pointing accuracy and multi-satellite interference are looked at. The ultra high capacity domestic satellite communication system will have multi-beam antennas with a 76.0 dB at both 20 GHz and 40 GHz. These antennas will provide 4950 beams that approximately correspond to the number of end office of the Japanese telephone network, and have a pointing accuracy of 0.005 degrees. This system will be equipped with 9900 30/20 GHz and 50/40 GHz transponder channels with bit rates of 800 Mbps. Its capacity will be 119 Tbps through use of 15 large communication satellite platforms.

  1. The international maritime satellite communications system INMARSAT (Handbook)

    NASA Astrophysics Data System (ADS)

    Zhilin, Viktor A.

    The organization and services provided by the INMARSAT satellite communications system are summarized. The structure and operation of the system are described with reference to transmission line parameters, frequency assignment, signals, telex communications, electrical parameters of communication channels, modulation, synchronization, and methods of protection against errors in the transmission of discrete messages. The discussion also covers the principal components of the INMARSAT system and the operation of ship-based stations.

  2. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  3. An overview of the OmniTRACS: The first operational mobile Ku-band satellite communications

    NASA Technical Reports Server (NTRS)

    Salmasi, Allen

    1988-01-01

    The service features of the OmniTRACS system developed by Omninet Communications Services of Los Angeles, California are described. This system is the first operational mobile Ku-band satellite communications system that provides two-way messaging and position determination and reporting services to mobile users on a nationwide basis. The system uses existing Ku-band satellites under a secondary international allocation for mobile satellite services.

  4. Communications satellites - Orbiting into the '90s

    NASA Astrophysics Data System (ADS)

    Campanella, S. Joseph

    1990-08-01

    Engineering advances in satellite communications are discussed, including sophisticated switchboards, narrow beams, source coding for higher-capacity networks, and the use of higher- and lower-frequency bands and lower orbits. One of the most popular new 14/11-14/12-GHz commercial services has been time-division multiplexing of multiple carriers operating at low to medium bit rates. Multiple-carrier, low-burst-rate TDMA is widely used with VSATs on the customer's premises. NASA's ACTS and Italy's Italsat both plan to use signal regeneration at 30/20 GHz. Onboard switching and multiplexing minimize noise, boost power, but also trim the cost of the entire satellite network. Phone calls and voiceband data are now often carried over satellite circuits and by cable beneath the ocean by adaptive differential pulse-coded modulation (ADPCM). When this technique at 32 kb/s is combined with digital speech interpolation, circuits can carry 4-5 times as many channels as with conventional 64-kb/s pulse-coded transmission.

  5. Broadcast satellite service: The international dimension

    NASA Technical Reports Server (NTRS)

    Samara, Noah

    1991-01-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  6. FD/DAMA Scheme For Mobile/Satellite Communications

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Wang, Charles C.; Cheng, Unjeng; Rafferty, William; Dessouky, Khaled I.

    1992-01-01

    Integrated-Adaptive Mobile Access Protocol (I-AMAP) proposed to allocate communication channels to subscribers in first-generation MSAT-X mobile/satellite communication network. Based on concept of frequency-division/demand-assigned multiple access (FD/DAMA) where partition of available spectrum adapted to subscribers' demands for service. Requests processed, and competing requests resolved according to channel-access protocol, or free-access tree algorithm described in "Connection Protocol for Mobile/Satellite Communications" (NPO-17735). Assigned spectrum utilized efficiently.

  7. Land Mobile Satellite Service (LMSS) channel simulator: An end-to-end hardware simulation and study of the LMSS communications links

    NASA Technical Reports Server (NTRS)

    Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.

    1984-01-01

    The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.

  8. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  9. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  10. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Martin, C. H.; Reilly, C. H.; Gonsalvez, D. J.; Yamaura, Y.

    1985-01-01

    An extended gradient search code for broadcasting satellite service (BSS) spectrum/orbit assignment synthesis is discussed. Progress is also reported on both single-entry and full synthesis computational aids for fixed satellite service (FSS) spectrum/orbit assignment purposes.

  11. Mobile satellite communications in the 1990's

    NASA Astrophysics Data System (ADS)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  12. Spacecraft design project: High latitude communications satellite

    NASA Technical Reports Server (NTRS)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  13. STS-5 deployment of communications satellites

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Telesat Canada ANIK C-3 communications satellite rises from its protective 'cradle' (obscured by another such device in the foreground) in the cargo bay of the Space Shuttle Columbia. The empty, closed shield in the cargo bay (foreground) earlier had protected Satellite Business Systems (SBS-3) satellite. Both orbital maneuvering system (OMS) pods, part of the vertical tail and part of the wing stand out in this photo.

  14. Recent Korean R&D in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  15. Satellite servicing: A business opportunity?

    NASA Technical Reports Server (NTRS)

    Wong, R. E.; Medler, E. H.

    1984-01-01

    The possibilities of satellite servicing as a business opportunity are examined. The service rate which a user must be charged to yield a reasonable return is derived and then compared against the market's willingness to pay that rate. Steps taken to provide the basis from which the service rate could be derived include: (1) constructing a hypothetical on orbit servicing business offering both on orbit and associated ground services; (2) estimating the total on orbit service business potential by analyzing mission models to the year 2000; and (3) setting up ground rules to bound the conduct of the business. Using this basic information service demand (business volume) cost to set up the business, costs for operation and maintenance tax rates and desired rate of return are estimated to determine the user charge. Sensitivity of the service rate to various parameters are also assessed. The time span for the business venture runs from 1986 through 2000 with service to 1991 provided via the orbiter and by a space station beyond 1991. This point analysis shows about five years of negative cash flow, with steady profits thereafter.

  16. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  17. Satellite Communication and Development: A Reassessment.

    ERIC Educational Resources Information Center

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the application of…

  18. The Arctic Regional Communications Small SATellite (ARCSAT)

    NASA Technical Reports Server (NTRS)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  19. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  20. Introduction to Satellite Communications Technology for NREN

    NASA Technical Reports Server (NTRS)

    Stone, Thom

    2004-01-01

    NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.

  1. Program on application of communications satellites to educational development

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.

    1971-01-01

    Interdisciplinary research in needs analysis, communications technology studies, and systems synthesis is reported. Existing and planned educational telecommunications services are studied and library utilization of telecommunications is described. Preliminary estimates are presented of ranges of utilization of educational telecommunications services for 1975 and 1985; instructional and public television, computer-aided instruction, computing resources, and information resource sharing for various educational levels and purposes. Communications technology studies include transmission schemes for still-picture television, use of Gunn effect devices, and TV receiver front ends for direct satellite reception at 12 GHz. Two major studies in the systems synthesis project concern (1) organizational and administrative aspects of a large-scale instructional satellite system to be used with schools and (2) an analysis of future development of instructional television, with emphasis on the use of video tape recorders and cable television. A communications satellite system synthesis program developed for NASA is now operational on the university IBM 360-50 computer.

  2. Communication satellites: Guidelines for a strategic plan

    NASA Technical Reports Server (NTRS)

    1987-01-01

    To maintain and augment the leadership that the United States has enjoyed and to ensure that the nation is investing sufficiently and wisely to this purpose, a strategic plan for satellite communications research and development was prepared by NASA. Guidelines and recommendations for a NASA plan to support this objective and for the conduct of communication satellite research and development program over the next 25 years were generated. The guidelines are briefly summarized.

  3. Inmarsat and personal mobile satellite services

    NASA Astrophysics Data System (ADS)

    McDougal, Patrick; Barendse, Victor

    Personal communications - mobile satellite services (PC-MSS) hold much promise as a profitable business opportunity for a number of interested operators and manufacturers. What will be their impact on the overall mobile communications landscape, and what role will they play in the drive towards the universal personal communicator? It is the thesis of this paper that PC-MSS can provide one of the critical enabling technologies to allow a more rapid, global assimilation of personal mobile communications. Terrestrial mobile communications are local by definition, both in terms of service reach and regulatory oversight. It is estimated that cellular, and other forms of terrestrial mobile communications, will cover over 50% of the world's population, but only 15% of the land mass area by the year 2000. PC-MSS will allow 'cellular extension' to interested users in the uncovered parts of the world. The market opportunity is established and technical solutions are available. However 'user cooperation' will be required and cross mapping of market needs to the technology solutions is the key to financially viable solutions. The potential political and regulatory hurdles are daunting. Inmarsat, as the existing global MSS partnership, is already introducing PC-MSS products and services in the 1990s. The widespread use of briefcase satphones (Inm-M), laptop-sized data terminals (Inm-C), and pocket satpagers (Inm-paging) will break new ground in reshaping the international regulatory context of mobile communications, and in initiating the optimal public switched network integration necessary for global interconnect. It is suggested that this evolutionary approach, by means of international consensus-building within a global partnership of operators, is an effective and proven method to ensure both a sufficient financial return for investors, and fair and equitable access of these services for all countries and users.

  4. Polarization tracking for quantum satellite communications

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2014-06-01

    Satellite networks and quantum communications offer complementary opportunities for enhanced operations. Quantum communications provide security for the transmissions between satellites and ground stations; while the free-space link of satellite networks provide the potential of long distance transmission of quantum bits (qubit) for space communications. However, with the promising advantages of the two approaches, challenges remain to fully develop quantum-based satellite communications such as robust and reliable information detection which is difficult to achieve due to the movement of satellites. In this paper, a tracking algorithm is proposed for polarization-encoded quantum satellite communications where polarization states are used to determine the bit transfer between the transmitter and receiver. The polarization tracking is essential for the decoding of a qubit and the quantum key distribution (QKD). A practical channel model for free-space quantum communications is adopted in this paper. With the estimated polarization, a novel dynamic polarization compensation scheme is also proposed. The results show that our methods can accurately estimate the polarization, providing much lower quantum bit error rate (QBER) by compensation, as compared with the direct qubit detection without polarization tracking and compensation scheme.

  5. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  6. A figure of merit for competing communications satellite designs

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Fordyce, S. W.

    1983-01-01

    Trends in launch schedules, weights, power, and space segment costs per transponder year for Intelsats and North American domsats (domestic communications satellites) are discussed. The Intelsat system currently services 25,000 point to point telephone links at any one moment, and a $3 billion order has been placed for Intelsat VIs, which feature 36,000 telephone circuits each. The Intelsat VI spacecraft will weigh 1670 kg in orbit, a continuance of the trend to heavier satellites, while the domsats will stay at 650 kg due to launch vehicle limitations. Direct television broadcast satellites are being designed for receive only (R/O) earth stations, with each satellite capable of servicing 50,000 individual ground stations. Competition is growing for C and Ku band satellite transponders for DBS, with costs $350,000 each. No standardized design has yet emerged.

  7. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  8. Soviet satellite communications science and technology

    SciTech Connect

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  9. Satellite multiple access systems for mobile communication

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    This paper considers multiple access techniques for a mobile radio system which incorporates a geosynchronous orbiting satellite repeater through which mobile terminals communicate. The communication capacities of FDMA, TDMA and CDMA systems are examined for a 4 MHz bandwidth system to serve up to 10,000 users. An FDMA system with multibeam coverage is analyzed in detail. The system includes an order-wire network for demand-access control and reassignment of satellite channels. Satellite and terminal configurations are developed to a block diagram level and system costs and implementation requirements are discussed.

  10. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  11. Communications satellites in non-geostationary orbits

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Doong, Wen; Nguyen, Tuan Q.; Turner, Andrew E.; Weyandt, Charles

    1988-01-01

    The design of a satellite communications system in an orbit lower than GEO is described. Two sun-synchronous orbits which lie in the equatorial plane have been selected: (1) the apogee at constant time-of-day equatorial orbit, a highly eccentric orbit with five revolutions per day, which allows 77-135 percent more satellite mass to be placed in orbit than for GEO; and (2) the sun-synchronous 12-hour equatorial orbit, a circular orbit with two revolutions per day, which allows 23-29 percent more mass. The results of a life cycle economic analysis illustrate that nongeostationary satellite systems could be competitive with geostationary satellite systems.

  12. Satellite Communications in the 1980's.

    ERIC Educational Resources Information Center

    Usunier, Pierre

    Space communications have developed tremendously since 1963 when the National Aeronautics and Space Administration (NASA) launched the synchronous communication satellite, Syncom II, into geostationary orbit. The capacity of that spacecraft was one two-circuit voice channel. Intelsat V, launched in 1980, has a capacity of 12,000 circuits plus two…

  13. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  14. Cultural Effects and Uses of Communication Satellites.

    ERIC Educational Resources Information Center

    Schramm, Wilbur

    The communication satellite already has developed a mature technology. It carries a substantial part of the world's long range communication, and is now useable for special cultural and educational purposes. Major cultural effects come from its contribution to increasing enormously the flow of information in the world. It will increase human…

  15. An Educator's Guide to Communication Satellite Technology.

    ERIC Educational Resources Information Center

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  16. Geostationary payload concepts for personal satellite communications

    NASA Technical Reports Server (NTRS)

    Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.

    1993-01-01

    This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.

  17. The Advanced Communication Technology Satellite and ISDN

    NASA Technical Reports Server (NTRS)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  18. 47 CFR 25.213 - Inter-Service coordination requirements for the 1.6/2.4 GHz Mobile-Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 1.6/2.4 GHz Mobile-Satellite Service. 25.213 Section 25.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.213 Inter-Service coordination requirements for the 1.6/2.4 GHz Mobile-Satellite Service. (a) Protection of...

  19. 47 CFR 25.213 - Inter-Service coordination requirements for the 1.6/2.4 GHz mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 1.6/2.4 GHz mobile-satellite service. 25.213 Section 25.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.213 Inter-Service coordination requirements for the 1.6/2.4 GHz mobile-satellite service. (a) Protection of...

  20. 47 CFR 25.213 - Inter-Service coordination requirements for the 1.6/2.4 GHz Mobile-Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 1.6/2.4 GHz Mobile-Satellite Service. 25.213 Section 25.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.213 Inter-Service coordination requirements for the 1.6/2.4 GHz Mobile-Satellite Service. (a) Protection of...

  1. High-Latitude Communications Satellite (HILACS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Naval Postgraduate School in the AE 4871 Advanced Spacecraft Design course designed a communications satellite (HILACS) that will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specific coverage. The satellite orbit is elliptic with perigee at 1204 km in the Southern Hemisphere and an apogee at 14,930 km with 63.4 degrees inclination. Analysis and design of each of the subsystems was done to the extent possible within the constraints of an eleven week quarter and the design and analysis tools available. Work was completed in orbital analysis, the reaction control system, attitude control subsystem, electric power subsystem, telemetry, tracking, and control, thermal control subsystem, and the structures subsystem. The design team consisted of 12 students. Additional support was provided by the Jet Propulsion Laboratory and the Naval Research Laboratory.

  2. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-05-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  3. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  4. Use of low orbital satellite communications systems for humanitarian programs

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Gorkovoy, Vladimir

    1991-01-01

    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.

  5. The future for domestic communications satellites - Lease or buy

    NASA Astrophysics Data System (ADS)

    Rooney, K. J.

    1982-04-01

    The demand for leased satellite communications services is growing at such a rate that a dedicated leasing satellite system is envisioned to deal with the demand. The most economical solution would be three similarly designed 24-channel capacity satellites with on-orbit antenna beam reconfiguration offering regional C-band coverage and situated over America, Africa, and Asia. Spatial frequency reuse is not considered necessary until at least the next generation. A two-meter antenna projecting a three dB beamwidth nearly three degrees in diameter at 4 GHz can achieve global coverage with only 19 adjacent beams at the aforementioned locations. Circular polarization will be continued in leasing. It is proposed to operate dual orthogonal polarization frequency reuse for uplink and downlink to increase the available capacity. The communications repeater is discussed in detail together with a glossary of terms and an economic analysis of the competition from dedicated domestic satellites.

  6. The Globalstar mobile satellite system for worldwide personal communications

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Viterbi, Andrew J.

    1993-01-01

    Loral Aerospace Corporation along with Qualcomm Inc. have developed a satellite system which offers global mobile voice and data services to and from handheld and mobile user terminals with omni-directional antennas. By combining the use of low-earth orbit (LEO) satellites with existing terrestrial communications systems and innovative, highly efficient spread spectrum techniques, the Globalstar system provides users with low-cost, reliable communications throughout the world. The Globalstar space segment consists of a constellation of 48 LEO satellites in circular orbits with 750 NM (1389 km) altitude. Each satellite communicates with the mobile users via the satellite-user links and with gateway stations. The gateway stations handle the interface between the Globalstar network and the OSTN/PLMN systems. Globalstar transceivers are similar to currently proposed digital cellular telephones in size and have a serial number that will allow the end user to make and receive calls from or to that device anywhere in the world. The Globalstar system is designed to operate as a complement to existing local, long-distance, public, private and specialized telecommunications networks. Service is primarily designed to serve the rural and thin route communications needs of consumers, government users, and private networks.

  7. Satellite services system analysis study. Volume 3: Service equipment requirements

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service equipment mission requirements are discussed. On-orbit operations, satellite classes, and reference missions are included. Service equipment usage and requirements are considered. Equipment identification methodology is discussed. Service equipment usage is analyzed, including initial launch, revisit, Earth return, and orbital storage. A summary of service requirements and equipment is presented, including service equipment status, even interaction, satellite features, and observations.

  8. A Frequency Study for Public Services Users of Satellite Telecommunications.

    ERIC Educational Resources Information Center

    Federation of Rocky Mountain States, Inc., Denver, CO.

    This analysis attempts to consolidate frequency studies done by public broadcasting, to compile some important characteristics of potentially available bands, and to prioritize the frequency options of public service users of satellite communications. Those bands are emphasized which facilitate the transfer of public service activities to…

  9. Communications Satellites: Countdown for INTELSAT VI.

    PubMed

    Pollack, L; Weiss, H

    1984-02-10

    Since the formation of COMSAT 20 years ago, the number of international telephone circuits made through satellites has grown 400 times and the cost of a telephone call has decreased by 12,000 percent. Worldwide communications linking 109 nations are achieved with 14 satellites in earth-synchronous orbit. Advances in microwave technology have expanded the transmission bandwidth per satellite from 50 to more than 3000 megahertz. Improvements in solar cell, battery, stationkeeping, and microwave amplification technology have increased satellite lifetime from 1.5 years to 10. The sixth generation of INTELSAT satellites, now being manufactured, will be introduced into the system in 1986, and each satellite will carry more than 40,000 telephone channels plus two television programs. The next generation of satellites, now under design for expanded capacity, will be needed by the middle 1990's to meet the traffic demand. These satellites are likely to add new frequencies (20 and 30 gigahertz), onboard signal processing and switching, and more bandwidth-efficient modulation, to achieve larger communication capacity at each orbital location.

  10. Domestic satellite services for rural areas

    NASA Astrophysics Data System (ADS)

    Briskman, R. D.

    1984-03-01

    It is pointed out that rural areas can be served by a domestic satellite communications system in an efficient and economical manner. To accomplish such efficiency and economy, the engineering parameters of the satellite communications system must be analyzed and selected with a view toward achieving the desired performance at minimum total cost. The equipment for an entire rural satellite communication system serving 1200 communities can be acquired for approximately $200 million (1983 dollars). An identical system, however, could also be implemented at much lower capital costs by leasing space segment capacity from existing satellite systems (Briskman and Savage, 1983).

  11. Engineers checkout Early Bird-Communication Satellite

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Engineers Stanley R. Peterson (left) and Ray Bowerman (right), checkout the Early Bird, the world's first communication satellite. NASA launched the satellite built by Hughes Aircraft Corporation on April 6, 1955 at 6:48pm E.S.T. from Complex 17a at Cape Kennedy, Florida. Early Bird was built for the Communications Satellite Corporation and weighed about 85 pounds after being placed in a synchronous orbit of 22,300 miles above the earth. It was positioned over the Atlantic to provide 240 two-way telephone channels or 2-way television between Europe and North America. The outer surface of Early Bird was covered with 6,000 silicon-coated solar cells, which absorbed the sun's rays to provide power to the satellite for its intricate transmitting and receiving equipment.

  12. Silicon-Germanium Fast Packet Switch Developed for Communications Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.

    1999-01-01

    Emerging multimedia applications and future satellite systems will require high-speed switching networks to accommodate high data-rate traffic among thousands of potential users. This will require advanced switching devices to enable communication between satellites. The NASA Lewis Research Center has been working closely with industry to develop a state-of-the-art fast packet switch (FPS) to fulfill this requirement. Recently, the Satellite Industry Task Force identified the need for high-capacity onboard processing switching components as one of the "grand challenges" for the satellite industry in the 21st century. In response to this challenge, future generations of onboard processing satellites will require low power and low mass components to enable transmission of services in the 100 gigabit (1011 bits) per second (Gbps) range.

  13. The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard J.; Ignaczak, Louis R.

    2000-01-01

    The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.

  14. Satellite systems for land mobile communications

    NASA Astrophysics Data System (ADS)

    Iida, T.

    1980-03-01

    Two satellite systems for land mobile communications are proposed: an independent system accommodating 400,000 mobile radios in the 8 GHz band, and a system designed to complement an existing terrestrial mobile radio network using the 900 MHz band and accommodating 50,000 mobile radios. The independent system makes use of a 2000 kg satellite and a multibeam 8.7 m dish antenna. The complementary system has a smaller satellite (800 kg) and a 14.5 m dish antenna. The costs of the two systems are analyzed and compared.

  15. Handbook on satellite communications and broadcasting

    NASA Astrophysics Data System (ADS)

    Askinazi, G. B.; Bykov, V. L.; Vodopianov, G. V.; D'Iachkova, M. N.; Kantor, L. Ia.; Model, A. M.; Pokras, A. M.; Timofeev, V. V.; Tsirlin, V. M.; Tsirlin, I. S.

    Principles underlying the design and operation of satellite communications systems (SCSs) are reviewed with emphasis on multiple-access techniques. Particular consideration is given to the quality characteristics of CSCs, the frequency ranges assigned to SCSs, an energy analysis of satellite lines, EMC aspects, and the effective utilization of the geostationary orbit. Also examined are the design of earth-station equipment, waveguides and multiplexing equipment, satellite antennas, reliability issues, the Ekran receiving installation, and Gradient-N and Gruppa multiple-access equipment.

  16. Satellite broadcasting - Capabilities for public service

    NASA Technical Reports Server (NTRS)

    Marsten, R. B.

    1975-01-01

    Satellite broadcast services to support health-care and educational transmissions must work with small, low-cost terminals in allocated radio-frequency bands. The ATS-6 spacecraft has successfully demonstrated such capability in the bands of non-technical users. It supports interactive television broadcasting to simple, low-cost terminals in a nationwide series of experiments in the delivery of health-care and educational services. ATS-6 achieves this capability with a very large antenna and moderate transmitter power. The coverage limitations inherent in this approach will be overcome by the joint U.S.-Canadian Communications Technology Satellite to be launched in December 1975. The CTS will demonstrate broadcast capability with new, high-power technology in a newly-allocated radio-frequency band. This will make it possible to use smaller antennas, greatly enlarging the area coverage available to the many nontechnical experimenters using CTS for their own needs. A practical application of these technologies is now in development for operational broadcasting services in Japan.

  17. Viewpoints on control of military satellite communications

    NASA Astrophysics Data System (ADS)

    Heppe, S. B.

    1983-07-01

    The three main factors are system management, communication protocols, and the control system architecture. Each of these is analyzed here in terms of a model. The model for system management is the definition of system control of the Defense Communications System, referred to as DCS syscon. The model for communication protocols is referred to as the ISO model of OSI, ISO denoting the International Standards Organization and OSI denoting open systems interconnection. The model of the control system architecture is an elemental model. The interplay between the models is highlighted. Examples are presented from the Defense Satellite Communications System and from MILSTAR. Prospects for the future are considered in view of the integration expected as systems become more capable and sophisticated. It is expected that many of the real-time control functions performed at the worldwide and theater levels will be automated on the satellite.

  18. ETS-VI multibeam satellite communications systems

    NASA Astrophysics Data System (ADS)

    Kawai, Makoto; Tanaka, Masayoshi; Ohtomo, Isao

    1989-10-01

    The fixed and mobile satellite communications systems of the Japanese Engineering Test Satellite-VI (ETS-VI) are described. The system requirements are outlined along with the system configuration. The ETS-VI multibeam system employs three frequency bands. When used for Ka-band fixed communications, it covers the Japanese main islands with thirteen 0.3-degree-wide spot beam. Four of the beams are active for ETS-VI. When used for S-band mobile communications, five beams cover the area within 200 nautical miles from the Japanese coast. The C-band beam for fixed communications covers the central area of the Japanese main islands with a single beam. The onboard antenna system is described along with the transponders and their associated onboard systems. A discussion of the system technology follows, covering the TDMA transmisssion system, the relay function, rainfall compensation, and the antenna and propagation performance.

  19. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    ionosphere using IRI-Plas-G software. One of the outstanding features of IONOLAB-RAY is the opportunity of Global Ionospheric Map-Total Electron Content (GIM-TEC) assimilation. This feature enables more realistic representation of ionosphere, especially for the times when ionosphere deviates from the generalized models, such as during geomagnetic storms. This feature is critical to examine the effect of ionosphere on satellite signals under ionospheric storm conditions. In this study TURKSAT satellite data is used to compare the results of IONOLAB-RAY and evaluate the effect of ionosphere. TURKSAT is one of the world's leading companies providing all sorts of satellite communications through the satellites of TURKSAT as well as the other satellites. Providing services for voice, data, internet, TV, and radio broadcasting through the satellites across a wide area extending from Europe to Asia. The latest satellite of TURKSAT, namely Turksat 4B was launched on October 2015, before that various versions of TURKSAT satellites are launched since 1994. In the future enlargement of broadcasting area towards equatorial region is aimed, where the ionospheric anomalies and storms are highly expected. In the future this study can be applied to the satellite signals in equatorial regions and effects of ionosphere especially under storm conditions can be discussed. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  20. Satellite Servicing Capabilities Office Testing

    NASA Technical Reports Server (NTRS)

    Sanders, Sean

    2015-01-01

    While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.

  1. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  2. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.142 Licensing provisions for the non-voice, non-geostationary mobile-satellite service....

  3. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary Mobile-Satellite Service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.142 Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service....

  4. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  5. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.142 Licensing provisions for the non-voice, non-geostationary mobile-satellite service....

  6. 47 CFR 25.212 - Narrowband analog transmissions and digital transmissions in the GSO Fixed Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmissions in the GSO Fixed Satellite Service. 25.212 Section 25.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.212 Narrowband analog transmissions and digital transmissions in the GSO Fixed Satellite Service. (a) Except...

  7. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  8. 47 CFR 25.212 - Narrowband analog transmissions and digital transmissions in the GSO Fixed Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transmissions in the GSO Fixed Satellite Service. 25.212 Section 25.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.212 Narrowband analog transmissions and digital transmissions in the GSO Fixed Satellite Service. (a) Except...

  9. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.142 Licensing provisions for the non-voice, non-geostationary mobile-satellite service....

  10. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the Mobile-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... terrestrial components in the Mobile-Satellite Service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz Mobile-Satellite Service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  11. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary Mobile-Satellite Service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.142 Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service....

  12. Global disaster satellite communications system for disaster assessment and relief coordination

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1979-01-01

    The global communication requirements for disaster assistance and examines operationally feasible satellite system concepts and the associated system parameters are analyzed. Some potential problems associated with the current method of providing disaster assistance and a scenario for disaster assistance relying on satellite communications are described. Historical statistics are used with the scenario to assess service requirements. Both present and planned commercially available systems are considered. The associated global disaster communication yearly service costs are estimated.

  13. Architectural trends in military satellite communications systems

    NASA Astrophysics Data System (ADS)

    Jain, Pravin C.

    1990-07-01

    A historical overview of military communications by satellites and a detailed description of current systems are provided. The capabilities of present systems are reviewed in relation to user requirements and threats. It is concluded that use of satellite communications by a large number of small-terminal users (aircraft, ships, submarines, and land mobiles) still requires major technological innovations to meet needs for a substantial increase in system capacity and performance improvements in a jamming environment. The next-generation systems of the 1990s are reviewed with emphasis placed on the discussion of extremely-high-frequency (EHF) systems. Architectural trends are investigated for the post-2000 era. Alternative directions for future systems development, such as the use of highly proliferated satellite constellations, are explored.

  14. A personal communications network using a Ka-band satellite

    NASA Technical Reports Server (NTRS)

    Palmer, Larry C.; Laborde, Enrique; Stern, Alan; Sohn, Philip Y.

    1992-01-01

    The feasibility of a personal communications network using portable terminals that can provide 4.8-kb/s voice communications to a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system that uses a spacecraft with approximately 140 spot beams to cover the contiguous US (CONUS) and 5-W power amplifiers in each beam is described. Satellite access in both the forward and return directions uses frequency-division multiple-access/code-division multiple-access (FDMA/CDMA) with a chip rate of 2.5 Mchip/s.

  15. An Orbiting Standards Platform for communication satellite system RF measurements

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  16. Method for scrambling satellite communications

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A secure communications system multiplexes segments of the information signal for keyed encoding and modulation onto a plurality of different carrier frequencies and/or polarizations, and transmits the encoded carriers to multi-channel signal summing receivers that decode the segments from all channels, to reassemble the information signal for use by authorized stations with a key. The use of the multi-channel link and the summing receiver allows the greatest number of different coding algorithms for accommodating the greatest number of discrete secure channels.

  17. A baseline maritime satellite communication system

    NASA Technical Reports Server (NTRS)

    Durrani, S. H.; Mcgregor, D. N.

    1974-01-01

    This paper describes a baseline system for maritime communications via satellite during the 1980s. The system model employs three geostationary satellites with global coverage antennas. Access to the system is controlled by a master station; user access is based on time-ordered polling or random access. Each Thor-Delta launched satellite has an RF power of 100 W (spinner) or 250 W (three-axis stabilized), and provides 10 equivalent duplex voice channels for up to 1500 ships with average waiting times of approximately 2.5 minutes. The satellite capacity is bounded by the available bandwidth to 50 such channels, which can serve up to 10,000 ships with an average waiting time of 5 minutes. The ships must have peak antenna gains of approximately 15.5 dB or 22.5 dB for the two cases (10 or 50 voice channels) when a spinner satellite is used; the required gains are 4 dB lower if a three-axis stabilized satellite is used. The ship antenna requirements can be reduced by 8 to 10 dB by employing a high-gain multi-beam phased array antenna on the satellite.

  18. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes multibeam antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  19. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes Multibeam Antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  20. System issues related to satellite communications in a nuclear environment

    SciTech Connect

    Kullstam, P.A.

    1990-05-03

    Nuclear induced signal scintillation effects are of great importance in design and deployment of military satellite systems that must provide survivable and enduring communications service. The induced scintillation will result in Rayleigh signal fading with limited signal decorrelation time and coherent bandwidth of the transmission channel as well as reduced signal power due to terminal antenna scattering loss. In this environment the coherent bandwidth and signal decorrelation time are most important design parameters for modulation subsystem design. The antenna scattering loss is important for link power budgets and satellite network loading.

  1. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  2. Plan of advanced satellite communication experiments using ETS-6

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi

    1989-01-01

    In 1992, an Engineering Test Satellite 6 is scheduled to be launched by an H-2 rocket. The missions of ETS-6 are to establish basic technologies of inter-satellite communications using S-band, millimeter waves and optical beams and of fixed and mobile satellite communications using multibeam antenna on board the satellite. A plan of the experiments is introduced.

  3. Satellite mobile data service for Canada

    NASA Technical Reports Server (NTRS)

    Egan, Glenn R.; Sward, David J.

    1990-01-01

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  4. Technical developments in international satellite business services

    NASA Astrophysics Data System (ADS)

    Tan, P. P.

    At the conception of International Satellite Business Services (ISBS), it was a primary objective to provide flexibility for accommodating a variety of service requirements which might be established by mutual agreement between users. The design guidelines are to ensure that the space segment is efficiently utilized, while other satellite services are protected from interference. Other considerations are related to an acceptable earth segment cost, maximum connectivity in worldwide services, the capability of growth and a reasonably smooth transition into future systems, and the maintenance of high performance objectives. Attention is given to a system overview, the characteristics of satellites for ISBS, and technological developments with some application possibilities for ISBS.

  5. Adaptive antenna arrays for satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1989-01-01

    The feasibility of using adaptive antenna arrays to provide interference protection in satellite communications was studied. The feedback loops as well as the sample matric inversion (SMI) algorithm for weight control were studied. Appropriate modifications in the two were made to achieve the required interference suppression. An experimental system was built to test the modified feedback loops and the modified SMI algorithm. The performance of the experimental system was evaluated using bench generated signals and signals received from TVRO geosynchronous satellites. A summary of results is given. Some suggestions for future work are also presented.

  6. Propulsion requirements for communications satellites.

    NASA Technical Reports Server (NTRS)

    Isley, W. C.; Duck, K. I.

    1972-01-01

    The concept of characteristics thrust is introduced herein as a means of classifying propulsion system tasks related particularly to geosynchronous communications spacecraft. Approximate analytical models are developed to permit estimation of characteristic thrust for injection error corrections, orbit angle re-location, north-south station keeping, east-west station keeping, spin axis precession control, attitude rate damping, and orbit raising applications. Performance assessment factors are then outlined in terms of characteristic power, characteristic weight, and characteristic volume envelope, which are related to the characteristic thrust. Finally, selected performance curves are shown for power as a function of spacecraft weight, including the influence of duty cycle on north-south station keeping, a 90 degree orbit angle re-location in 14 days, and finally comparison of orbit raising tasks from low and intermediate orbits to a final geosynchronous station. Power requirements range from less than 75 watts for north-south station keeping on small payloads up to greater than 15 KW for a 180 day orbit raising mission including a 28.5 degree plane change.

  7. Satellite systems requirements for land mobile communications

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1983-01-01

    The system design objective is to provide a satellite link through a gateway station, connecting mobile users in areas not served by a terrestrial cellular system to the switched telephone network (STN). The proposed frequency allocation comprises a pair of 10-MHz bands in the 806-890 MHz range specified by the 1979 World Administrative Radio Conference (WARC) for land-mobile satellite service (LMSS). The satellite design is constrained by projected STS capability with an upper stage of the wide-body Centaur or Integral Propulsion System (IPS) type. For the latter (a TRW design), the payload is limited to approximately 10,400 lb. The design is to be based on 1990's technology, with initial operating capability scheduled for 1995. The satellite should be designed for a 7-year life. Mobile-unit compatibility with cellular system specifications is desirable, if consistent with other system requirements.

  8. A generalized transmultiplexer and its application to mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ichiyoshi, Osamu

    1990-01-01

    A generalization of digital transmultiplexer technology is presented. The proposed method can realize transmultiplexer (TMUX) and transdemultiplexer (TDUX) filter banks whose element filters have bandwidths greater than the channel spacing frequency. This feature is useful in many communications applications. As an example, a satellite switched (SS) Frequency Division Multiple Access (FDMA) system is proposed for spot beam satellite communications, particularly for mobile satellite communications.

  9. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  10. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  11. Hall Thruster Satellite Communication Impact Analysis

    NASA Astrophysics Data System (ADS)

    Hallock, G. A.; Wiley, J. C.; Khanna, A.; Spencer, E. A.

    1999-11-01

    A critical issue which arises in the integration of Hall thruster technology for communication satellite stationkeeping is refraction of the microwave signals caused by the highly ionized plasma plume. This can cause pointing error, sidelobe degradation, and other changes to the antenna pattern. We have developed vector ray tracing codes, which track the trajectory, amplitude, phase, and polarization of a bundle of rays from the antenna reflector or feed. Shaped reflectors are used in modern satellites to tailor the antenna pattern to the desired receiving area. We are investigating the distortion to these patterns caused by thrusters located at various orientations. Hall thrusters exhibit several plasma instabilities, such as drift waves and transit time oscillations. This can introduce phase noise in the communication signals, which is highly undesirable, especially for digital signals. We are modeling these instabilities, which will be added to our simulations. Our codes make use of client/server software, allowing easy configuration setup and web access.

  12. Voice intelligibility in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1973-01-01

    An amplitude control technique is reported that equalizes low level phonemes in a satellite narrow band FM voice communication system over channels having low carrier to noise ratios. This method presents at the transmitter equal amplitude phonemes so that the low level phonemes, when they are transmitted over the noisey channel, are above the noise and contribute to output intelligibility. The amplitude control technique provides also for squelching of noise when speech is not being transmitted.

  13. Intersatellite link application to commercial communications satellites

    NASA Technical Reports Server (NTRS)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  14. Space Power for Communication Satellites Beyond 1995

    NASA Technical Reports Server (NTRS)

    Pierce, P. R.

    1984-01-01

    The space power trends for communication satellites beginning in the mid-70's are reviewed. Predictions of technology advancements and requirements were compared with actual growth patterns. The conclusions derived suggest that the spacecraft power system technology base and present rate of advancement will not be able to meet the power demands of the early to mid-90's. It is recommended that an emphasis on accelerating the technology development be made to minimize the technology gap.

  15. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    1982-01-01

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  16. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  17. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  18. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Satellite Digital Audio Radio Service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the Satellite Digital Audio...

  19. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  20. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Satellite Digital Audio Radio Service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.214 Technical requirements for space stations in the Satellite Digital Audio...

  1. United States societal experiments via the Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.

    1976-01-01

    After a brief description of the Communication Technology Satellite and its U.S. coverage, the U.S. societal experiments via the CTS are discussed. These include education (college curriculum sharing, and project interchange), health care (biomedical communications, health communications, and communication support for decentralized education), and community and special experiments (satellite library information network, and transportable earth terminal).

  2. Data communications service by VSAT network in the Philippines

    NASA Astrophysics Data System (ADS)

    Duque, Roberto L.

    Satellite communications is of particular importance to an archipelago like the Philippines. With over 7,100 islands, rugged forests, and mountainous terrain, satellite communications technology offers the opportunity to leapfrog over the existing difficulties associated with terrestrial-based microwave networks. If harnessed correctly, it has the potential to significantly contribute to the provisions of a wide array of services ranging from voice to facsimile and data to video. The continuous evolution of satellite and earth station technology, since its inception more than 30 years ago, has placed within reach technologies which are reliable as well as easily deployed, used, and maintained. The Philippine government's recognition of the vital role of wireless communications was never more evident than during and after the series of natural calamities that hit the country and disrupted existing microwave infrastructure. Aside from obvious technological advantages over conventional communications technologies, satellite communications provides cost-effective solutions and fortifies the country's unstable communications infrastructure.

  3. Channel simulation to facilitate mobile-satellite communications research

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1987-01-01

    The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.

  4. Program on Application of Communications Satellites to Educational Development. Progress Report.

    ERIC Educational Resources Information Center

    Morgan, R. P.; Singh, J. P.

    An interdisciplinary program is exploring the educational services which communications satellites may help provide and the synthesis of systems for delivering these services in the United States. From November 1970 to November 1971 substantial progress was made in three primary program categories: needs analysis, communications technology…

  5. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  6. CTS United States experiments - A progress report. [Communications Technology Satellite for high power broadcasting

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a high-power broadcast satellite launched by NASA on January 17, 1976. CTS is the first satellite to operate at a frequency of 12 gigahertz and incorporates technology making possible new satellite telecommunications services. CTS is a cooperative program of the United States and Canada. This paper presents the results of the United States experimental activity to date. Wide segments of the population are involved in the Experiments Program, including the scientific community, other government agencies, industry, and the education and health entities. The experiments are associated with both technological objectives and the demonstration of new community and social services via satellite.

  7. Transmitter microdischarges in communications and broadcast Satellites

    NASA Astrophysics Data System (ADS)

    Briskman, Robert D.; Kaliski, Michael A. R.

    2016-09-01

    Most commercial communications and broadcast satellites operating at microwave radio frequencies use traveling wave tube amplifiers (TWTAs) as high power transmitters. Since TWTAs work at high voltages, it is not uncommon to experience micro-discharges, especially early in life. This observation led to the introduction of an autonomous restart function in the companion high voltage power supply (the electronic power conditioner or EPC) of the TWTA as a safety feature. A microdischarge with enough energy above a threshold would lead to a momentary removal of high voltages, followed by an automatic restart, which is usually sufficient to allow the microdischarge event to clear with minimal loss of RF transmission. In most cases the energy involved in the microdischarge is low enough that the removal of high voltages is not required and the event may go undetected. However, an unusual signature was first noted in early 1997 on a Ku-band satellite transmitter, where the characteristics of the microdischarge event were such that the control anode voltage dropped below nominal and typically recovered over a 20 min period. Such microdischarge events became known as the "20 min Effect" which has since been observed over subsequent years on other Ku-band TWTAs, as well as on Ka-band and S-band satellite TWTA transmitters in numerous satellites. This paper summarizes the in-orbit data on such microdischarges as well as the believed cause. In addition, the paper includes results from three S-band TWTAs which have operated on life test for many years. Due to ease of their monitoring instrumentation as contrast to monitoring microdischarges on orbiting operational satellites via telemetry, new data have been accumulated on this effect. The data substantiate the previous findings that microdischarges do not significantly affect satellite operation or their transmissions nor diminish the TWTAs performance, including long lifetime.

  8. Network design consideration of a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  9. Discussion on the progress and future of satellite communication (Japan)

    NASA Technical Reports Server (NTRS)

    Ogata, M.; Mizusawa, H.; Irie, K.

    1985-01-01

    The current status of communications satellite development in Japan is presented. It is shown that beginning with research on satellite communucations in the late 1950's, progress was made in the areas of communications, remote sensing, and technology experimentation. The current status of communication satellites is presented, stressing development in the areas of CFRP construction elements, the use of LSI and MIC circuits, advanced multibeam antenna systems, Ku and Ka band transmission systems, and the shift to small-scale earth stations. Methods for reducing costs and increasing transmission efficiency are shown. The technical specifications of all satellite projects currently under development are given. Users of Japanese communications satellite are presented.

  10. Polarization Tracking Study of Earth Station in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Hu, Chao; Pei, Jun

    2016-01-01

    Satellite communications, in telecommunications, the use of satellite can provide communications links between various points on the earth. Typical satellite communication is composed of a communication satellite, a signal transmitter and a signal receiver. As the signal transmitter or the signal receiver, an earth station plays a vital role in the satellite communications. Accurately adjustment of antenna azimuth, elevation and polarization angles on the earth station is the key to satellite communications. In the present paper, a study of polarization tracking of earth station is presented, and a detailed adjustment procession of the polarization angle is given. Combing with observation series of MEASAT-2 satellite in geostationary orbit, the polarization tracking accuracy is verified. The method can be embeded into computer program of antenna polarization adjustment in earth station.

  11. A New Era Begins: Satellite Communications and Development.

    ERIC Educational Resources Information Center

    Pelton, Joseph N.

    This overview of changes in the field of telecommunications development produced by satellite communications over the last 15 years focuses on applications of satellite systems for educational and health purposes in developing countries. Satellite communications development from 1974 to 1986 is identified as the first stage of telecommunications…

  12. The future of European Communications Satellites

    NASA Astrophysics Data System (ADS)

    Morris, R.

    1984-02-01

    The paper, which is based on the work of a Eurospace Study Group on future prospects, reviews the problems arising from the introduction of new technologies in the industrial process of developing and manufacturing communications satellites, covering the topics of engineering, manufacturing, integration and test, and in-space management. It continues by considering the commerical and industrial problems encountered by European manufacturers, and the contractual and legal problems arising from the change of customer base, from ESA to user organizations, and from the political problems which stem from cross-border transmission of TV broadcasting and data transfer. It then considers the marketing problems of the spacecraft manufacturer - his remoteness from the end-user of telecommunications circuits, the competition from new technology in conventional communications, and the intense competition from U.S. competitors, who have the advantage of both military and domestic and international civil programs on which to develop technology. It concludes with a brief review of current and future spacecraft developments by British Aerospace, and some possible communications satellite configurations for the 1990's.

  13. Delta capability for launch of communications satellites

    NASA Technical Reports Server (NTRS)

    Grimes, D. W.; Russell, W. A., Jr.; Kraft, J. D.

    1982-01-01

    The evolution of capabilities and the current performance levels of the Delta launch vehicle are outlined. The first payload was the Echo I passive communications satellite, weighing 179 lb, and placed in GEO in 1960. Emphasis since then has been to use off-the-shelf hardware where feasible. The latest version in the 3924 first stage, 3920 second stage, and Pam D apogee kick motor third stage. The Delta is presently equipped to place 2800 lb in GEO, as was proven with the 2717 lb Anik-D1 satellite. The GEO payload placement performance matches the Shuttle's, and work is therefore under way to enhance the Delta performance to handle more massive payloads. Installation of the Castor-IV solid motor separation system, thereby saving mass by utilizing compressed nitrogen, rather than mechanical thrusters to remove the strap-on boosters, is indicated, together with use of a higher performance propellant and a wider nose fairing.

  14. High accuracy deployable antenna for communications satellite

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Misawa, M.; Minomo, M.; Yasaka, T.

    High frequency multi-beam satellite antennas have been studied to realize increased communication capacity, simplified earth stations, and multiple frequency reuse. The satellite antenna needs a highly accurate and large reflector. To overcome the launching vehicle's constraints in size and weight, a solid deployable antenna is under development. A petal antenna (PETAL), composed of solid shell elements, has been studied as a high frequency use deployable antenna. It is an axi-symmetric antenna composed of a fixed central shell and deployable triangular and square shells. During the launch phase, a restraining cable is bound around the periphery of deployable elements stowed in a hexagonal configuration. Deployment is initiated by pyrotechnic cable cutters, and the shells are deployed by spring action.

  15. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  16. Feasibility of NASA TT&C via Commercial Satellite Services

    NASA Technical Reports Server (NTRS)

    Mitchell, Carl W.; Weiss, Roland

    1997-01-01

    This report presents the results of a study to identify impact and driving requirements by implementing commercial satellite communications service into traditional National Aeronautics and Space Administration (NASA) space-ground communications. The NASA communication system is used to relay spacecraft and instrument commands, telemetry and science data. NASA's goal is to lower the cost of operation and increase the flexibility of spacecraft operations. Use of a commercial network offers the opportunity to contact a spacecraft on a nearly "on-demand" basis with ordinary phone calls to enable real time interaction with science events.

  17. Plan of advanced satellite communications experiment using ETS-VI

    NASA Technical Reports Server (NTRS)

    Shiomi, Tadashi

    1988-01-01

    Communications Research Laboratory (CRL, Ministry of Posts and Telecommunications, Japan) has been engaged in development of three advanced satellite communication payloads aiming at experiments by Japan's 2-ton class Engineering Test Satellite VI (ETS-VI) which is to be launched in H-II rocket by NASDA in August 1992. CRL's three experimental systems are: (1) S-band inter-satellite communications; (2) millimeter-wave inter-satellite and personal-satellite communications; and (3) optical inter-satellite communications. CRL develops experimental optical communication system with telescope of 75 mm diameter which has gimbal mirror beam pointing/tracking mechanism. The onboard system has fundamental optical communication functions with laser diode transmitter of wavelength 0.83 micron, laser beam point-ahead mechanism, receiver of wavelength 0.51 micron, modulation/demodulation subsystem, and so on.

  18. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  19. A 32 KBPS codec for satellite communication

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Aikoh, S.; Maruta, R.; Sawai, A.; Shimoyama, H.; Tomozawa, A.

    A 32 kbps ADPCM codec has been developed by combining a robust predictor with a predictor-driven locking quantizer. The algorithm has been chosen through careful studies on combinations of several prediction algorithms and a dynamic locking quantization scheme. By introducing a new speech and data discrimination function in the prediction algorithm, high performance encoding capability very close to that for 64 kbps PCM on both speech and modem signals has been realized without losing robustness in its ability to operate properly in spite of transmission bit errors. This codec enables channel capacity doubling in any digital network, including satellite communications.

  20. Satellite Communications with NRAO Green Bank Antennas

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Ford, H. Alyson; Watts, Galen

    2014-11-01

    The National Radio Astronomy Observatory's Green Bank facility has several medium and large antennas that are available for satellite communications. The 100 meter Robert C. Byrd Green Bank Telescope (GBT), the largest and most sensitive antenna on site, is capable of receiving signals at frequencies as high as 86 GHz. In addition to the GBT are the fully operational 43 meter, 20 meter, and 13.7 meter antennas, and three mothballed 26 meter antennas. A transmitter could be fitted to any of these antennas for spacecraft uplinks. We discuss the characteristics of these antennas and possible operational models for future planetary science mission support.

  1. Command and Service Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.

  2. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented.

  3. Apple - Indian experimental geostationary communication satellite

    NASA Astrophysics Data System (ADS)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  4. Comparison of INMARSAT and ATS3 satellite communication

    SciTech Connect

    Not Available

    1993-03-29

    There exists a need to provide communication through a satellite- based network which allows a user to communicate from a remote site to a fixed site. This discussion provides a comparison, both technical and financial, between the existing ATS3 satellite system and the commercial INMARSAT system. This comparison identified the limitations of each system to provide various types of communication.

  5. Satellite and terrestrial integrated services digital networks in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Heiichi; Kato, Shuzo

    1991-10-01

    Satellite and terrestrial Integrated Services Digital Networks (ISDN) to provide cost effective ISDN services and to enhance installation of ISDN services all over the nation are proposed. The proposed networks are based on the traffic sharing between satellite and terrestrial networks for traffic transmission among telephone offices and provide satellite subscriber lines for ISDN customers in rural areas. The former DYANET (dynamic channel assigning routing satellite aided digital networks) (1) takes the advantage of high transmission efficiency of terrestrial networks for steady traffic and the advantage of high transmission efficiency of satellite communications for light and dynamically varying traffic. By employing demand assignment and transponder hopping (for both transmission and reception) techniques, effective satellite transmission capacity is encreased to five to six times higher than that of preassignment systems. Moreover, earth station cost was significantly reduced by Large Scale Integrated Circuits (LSIC) and Monolithic Integrated Circuit (MIC) implementation and by the development of dual beam antennas. DYANET 1 has been in perfect operation employing 64 Time Division Multiple Access (TDMA) earth stations since 1988 and the latter (DYANET 2) will be put into commercial use from mid 1991.

  6. A digitally implemented communications experiment utilizing the communications technology satellite, Hermes

    NASA Technical Reports Server (NTRS)

    Jackson, H. D.; Fiala, J.

    1980-01-01

    Developments which will reduce the costs associated with the distribution of satellite services are considered with emphasis on digital communication link implementation. A digitally implemented communications experiment (DICE) which demonstrates the flexibility and efficiency of digital transmission of television video and audio, telephone voice, and high-bit-rate data is described. The utilization of the DICE system in a full duplex teleconferencing mode is addressed. Demonstration teleconferencing results obtained during the conduct of two sessions of the 7th AIAA Communication Satellite Systems Conference are discussed. Finally, the results of link characterization tests conducted to determine (1) relationships between the Hermes channel 1 EIRP and DICE model performance and (2) channel spacing criteria for acceptable multichannel operation, are presented.

  7. Project SCS (Special Communication Services).

    ERIC Educational Resources Information Center

    Curtis, John A.

    This extensive report describes and provides documentation on Special Communications Services for the Sensory Impaired (SCS), a Virginia-based telecommunications delivery system developed by the Center for Excellence, Inc. (CenTex), to provide information and entertainment broadcasting services to the visually handicapped, the hearing impaired,…

  8. Domestic satellite communication system to be established in China

    NASA Astrophysics Data System (ADS)

    Ruhou, Z.; Yucheng, B.

    1984-01-01

    The establishment of a domestic satellite communication system for China is discussed. To experiment, China built miniaturized ground stations and used the idle transponders of two INTELSAT satellites. The experiment was divided into three phases: verification and test of ground facilities; test of channel operations; and functional test of the Chinese built ground facilities. From a technical and economic point of view, developing China's domestic satellite communication system by leasing foreign satellites and building China's own ground stations is both efficient and effective.

  9. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  10. Global services systems - Space communication

    NASA Technical Reports Server (NTRS)

    Shepphird, F. H.; Wolbers, H. L.

    1979-01-01

    The requirements projected to the year 2000 for space-based global service systems, including both personal communications and innovative services, are developed based on historic trends and anticipated worldwide demographic and economic growth patterns. The growing demands appear to be best satisfied by developing larger, more sophisticated space systems in order to reduce the size, complexity, and expense of ground terminals. The availability of low-cost ground terminals will, in turn, further stimulate the generation of new services and new customers.

  11. Prospects of satellite communications for mobiles: Towards a global mobile space segment

    NASA Astrophysics Data System (ADS)

    Rosetti, C.

    1981-11-01

    Terrestrial, maritime, and air transportation applications of communications satellites are considered. Communicating with long distance trucks can be achieved by text transmission which is cheaper than voice links, avoids access problems, and uses the frequency spectrum more efficiently. The need to accept fast and slow air traffic in the same air space, especially near airports, creates safety problems that can be overcome by equipping aircraft with a satellite controlled display device, showing traffic in the vicinity. The maritime satellite service is characterized by low market penetration that can be improved by cutting equipment costs, e.g., by decreasing ship antenna performance and using high gain satellite antennas, producing narrow beams.

  12. Satellite switching concepts for European business services in the nineties

    NASA Astrophysics Data System (ADS)

    Lombard, D.; Rouffet, D.

    A first generation of business communication satellites are now operational or to be launched. Increased demands for communication satellite facilities will develop, if special services, such as videoconferencing, can be provided at a reasonable cost. For such developments, it will be necessary to define a second generation of business communication satellites. The present investigation evaluates briefly the size of the expected European market for 1995. A study is conducted of the payload structure for the required satellite system, and aspects related to link budgets and power consumption are explored. It is found that system dimensioning is determined by the up-link and by technology. Critical factors are related to the output and input multiplexors for the link budget, the switching matrix, and implications for the mass budget. The best trade-off between technological, mass, and link budget limitations is achieved in connection with the employment of a hinged antennas satellite, using an intermediate number of spot beams and associated earth stations of reasonable size.

  13. Communications technology satellite: United States experiments and disaster communications applications

    NASA Technical Reports Server (NTRS)

    Donoughe, P.; Hunczak, H. R.; Gurski, G. S.

    1978-01-01

    Ground antennas from 0.6 to 5.0 meters in diameter were used as remote earth terminals by the United States for both wideband (television) and narrowband (voice, data) communication in conjunction with the Canadian Hermes satellite's high power transmitter. Experiments summarized cover teleconferencing and duplex videoconferencing for medical, educational, and civic purposes, as well as the remote interpretation of multilingual broadcasts from the United Nations. The capabilities of the system during real and simulated disasters at airports are assessed. Particular attention is given to miniexperiments for flood control in the Mississippi River basin and in Johnstown, Pennsylvania during the 1977 flood.

  14. Faster than fiber: Advantages and challenges of LEO communications satellite systems

    NASA Astrophysics Data System (ADS)

    Campanella, S. Joseph; Kirkwood, Timothy J.

    1995-01-01

    Low Earth Orbit (LEO) communications satellite systems are emerging as attractive alternatives to the Geostationary Earth Orbit (GEO) systems. GEO satellites have largely dominated the commercial and government communications satellite systems for telecommunications services since the early 1960's. A principal driver behind the move to LEO satellites is the competition to long propagation delay geostationary orbit satellite systems created by rapid expansion of short propagation delay terrestrial land and undersea fiber optic cable links for national and global connectivity. Communication paths over LEO satellites can have shorter propagation delay than terrestrial fiber. This is because the speed of electromagnetic wave propagation via LEO satellites is 50% greater than that of light in fiber optic cable. This fact eliminates the long propagation delay property that has become synonymous with GEO communications satellite systems. Other drivers are the use of small portable and hand-held earth terminals and the promise of lower launch cost of small satellites to low earth orbits. The paper expands on the properties that promise to make LEO communications satellite systems the choice of the future.

  15. Presentations of the Ninth Advanced Communications Technology Satellite Propagation Studies Workshop (APSW IX)

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The Advanced Communications Technology Satellite Propagation Studies Workshop (APSW) is convened each year to present the results of the ACTS Propagation Campaign. Representatives from the satellite communications (satcom) industry, academia, and government are invited to APSW for discussions and exchange of information. The ACTS Propagation campaign is completing three years of Ka-Band data collection at seven sites in North America. Through this effort, NASA is making a major contribution to growth of satcom services by providing timely propagation data and models for predicting the performance of Ka-Band satellite communications systems.

  16. NASA to launch second business communications satellite

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  17. Payload system tradeoffs for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  18. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Buyukdura, O. M.; Mount-Campbell, C. A.

    1986-01-01

    Observed solution times were analyzed for the extended gradient and cyclic coordinate search procedures. The times used in the analysis come from computer runs made during a previously-reported experiment conducted to assess the quality of the solutions to a BSS synthesis problem found by the two search methods. The results of a second experiment with a Fixed Satellite Service (FSS) test problem are also presented. Computational results are summarized for mixed integer programming approaches for solving FSS synthesis problems. A promising heuristic algorithm is described. A synthesis model is discussed for orbital arc allotment optimization. Research plans for the near future are also presented.

  19. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Astrophysics Data System (ADS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  20. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Technical Reports Server (NTRS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  1. Communications satellite systems operations with the space station. Volume 3: Supplementary technical report

    NASA Technical Reports Server (NTRS)

    Price, K. M.; Russell, P.; Weyandt, C.

    1988-01-01

    The NASA space station has the potential to provide significant economic benefits to commercial communications satellite operators. The initial reports qunatified the benefits of space-based activities and assessed the impacts on the satellite design and the space station. Results are given for the following additional tasks: quantify the value of satellite retrievability operations and define its operational aspects; evaluate the use of expendable launch vehicles for transportation of satellites from the Earth to the space station; and quantify the economic value of modular satellites that are assembled and serviced in space.

  2. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary orbit Fixed-Satellite Service in the 10.7...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary orbit Fixed-Satellite Service in the 10.7 GHz-14.5 GHz bands. 25.146 Section 25.146 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... Fixed-Satellite Service in the 10.7 GHz-14.5 GHz bands. (a) A comprehensive technical showing shall...

  3. Satellite Communications Technology Database. Part 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Satellite Communications Technology Database is a compilation of data on state-of-the-art Ka-band technologies current as of January 2000. Most U.S. organizations have not published much of their Ka-band technology data, and so the great majority of this data is drawn largely from Japanese, European, and Canadian publications and Web sites. The data covers antennas, high power amplifiers, low noise amplifiers, MMIC devices, microwave/IF switch matrices, SAW devices, ASIC devices, power and data storage. The data herein is raw, and is often presented simply as the download of a table or figure from a site, showing specified technical characteristics, with no further explanation.

  4. SAW based systems for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  5. Mass and power modeling of communication satellites

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  6. Advanced high capacity domestic satellite communications system

    NASA Astrophysics Data System (ADS)

    Iso, A.; Kohiyama, K.; Odate, H.; Ishida, N.

    1981-09-01

    The high capacity transmission of a 30/20 GHz and 50/40 GHz domestic satellite communication system is presented with an investigation of the relationship between satellite antenna pointing accuracy, multibeam antenna interference, and multisatellite interference. Antenna pointing is found to affect an antenna's gain and pattern and multibeam interference; thus the antenna beam width is defined to include antenna pointing accuracy. Results include a 6 m antenna gain of 69.5 dB at 20 GHz for 114 beams with a pointing accuracy of 0.05 deg, and a 17.6 m gain of 69.0 dB at 20 GHz for 630 beams with an accuracy of 0.01 deg. The frequency reuse number is given as a function of total beam number and pointing accuracy, and a bandwidth of 7 GHz allocated at 30/20 and 50/40 GHz is made possible by multispot beam antennas and linearly polarized waves.

  7. Man-Made Moons: Satellite Communications for Schools.

    ERIC Educational Resources Information Center

    Grayson, Lawrence P.; And Others

    In an effort to prepare teachers for the coming changes in education caused by the rapidly developing communication satellite technology, this monograph offers a non-technical background to this new development. It begins by explaining the importance of such satellites and offers a layman's guide to the technology of satellite systems. It reviews…

  8. Beyond ATS-6: Social Uses of Communications Satellites.

    ERIC Educational Resources Information Center

    Cater, Douglass

    A panel discussion was held to examine the efficacy of the Applications Technology Satellites, powerful communication satellites designed to send quality signals to low-cost ground terminals. The satellites have been used on an experimental basis in rural America, Canada, and India. While the panel generally agreed on the great potential of the…

  9. A digital simulation of message traffic for natural disaster warning communications satellite

    NASA Technical Reports Server (NTRS)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  10. 47 CFR 25.145 - Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Licensing provisions for the Fixed-Satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.145 Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands. (a) Except...

  11. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Licensing provisions for the 2.3 GHz satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a)...

  12. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Licensing provisions for the 2.3 GHz satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a)...

  13. 47 CFR 25.145 - Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Licensing provisions for the Fixed-Satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.145 Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands. (a) (b)...

  14. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Licensing conditions for the Fixed-Satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.145 Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands. (a) Except...

  15. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Licensing conditions for the Fixed-Satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.145 Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands. (a) Except...

  16. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Licensing provisions for the 2.3 GHz satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a)...

  17. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Licensing provisions for the 2.3 GHz satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a)...

  18. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing conditions for the Fixed-Satellite... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.145 Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands. (a) Except...

  19. Satellite communications systems and technology. Volume 2; Site Reports

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Carles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.; Miller, Edward F.; Riley, Lance

    1993-01-01

    Volume 2 of the final report of the NASA/NSF Panel on Satellite Communications Systems and Technology is presented. It consists of the site reports from the panel's visits to satellite communications facilities and laboratories in Europe, Japan, and Russia.

  20. Improving MILSATCOM (Military Satellite Communication) acquisition outcomes: Lease versus buy

    NASA Astrophysics Data System (ADS)

    Dinneen, P. M.; Quinn, T. H.

    1985-01-01

    This study was requested by the Director of Space Systems and Command, Control, and Communications, Office of the Deputy Chief of Staff (Research, Development, and Acquisition), Headquarters United States Air Force, to assist in improving the outcomes of military satellite communication (MILSATCOM) programs. In view of rapidly rising costs of military space systems, leasing has been suggested as one way of controlling these costs. The purpose of this study, therefore, was to identify and analyze the central considerations relevant to determining whether to lease or by MILSATCOM services. The results of this report should be of interest to members of MILSATCOM acquisition community and others concerned with making lease versus buy decisions in the public sector. The work was conducted under the MILSATCOM Acquisition Policy project of the Project Air Force Resource Management Program.

  1. Personal communications via ACTS satellite HBR transponders

    NASA Technical Reports Server (NTRS)

    Fang, Russell J. F.

    1991-01-01

    The concept of a fully meshed network of briefcase-sized terminals is presented for personal communications over Ka-band satellite transponders. In this concept, undesirable double-hop delays are avoided for voice communications. The bandwidth and power resources of the transponder are efficiently shared by users in a simple demand-assigned manner via code-division multiple access (CDMA). Voice, data, and facsimile are statistically multiplexed at each terminal. In order to minimize terminal costs, frequency-precorrected, and level-preadjusted continuous-wave tones are sent from the central network control station in each beam so that the terminals in each down-link beam can use these pilots as references for antenna acquisition and tracking, as reliable frequency sources, and as indicators of signal fade for up-link power control (ULPC). The potential CDMA 'near-far' problem due to up-link fades is mitigated by using ULPC. Quasi-burst mode transmission is employed to minimize the potential clock and pseudorandom number code synchronization.

  2. Japanese first optical interorbit communications engineering satellite (OICETS)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Hori, Toshihiro; Shimizu, Takafumi; Nakagawa, Keizo

    1994-09-01

    The National Space Development Agency of Japan (NASDA) plans to conduct an optical inter-orbit ling experiment in cooperation with the European Space Agency (ESA). ESA will launch the ARTEMIS geostationary satellite equipped with the SILEX optical terminal. NASDA will launch the Optical Inter-orbit Communications Engineering Test Satellite (OICETS) equipped with the LUCE optical inter-orbit communications equipment into low earth orbit. The link experiment will be conducted between these satellites with associated ground equipment in Europe and Japan.

  3. Laser crosslink configurations for RF satellite communications systems

    NASA Astrophysics Data System (ADS)

    Sebacher, K. S.; Lambert, S. G.; Pautler, J. A.; Carter, J. P.

    Predictions of future satellite communications traffic indicate that an increased capacity for satellite communications systems is required. Crosslinks between satellites provide improvements in communications throughput for these systems. Crosslinks also increase system flexibility and remove the dependence of world-wide information flow on relay ground stations located outside the continental United States. Laser crosslinks provide the additional advantage of eliminating susceptibility to space-based or ground-based jammers. Laser terminals are also smaller and require smaller antennas than an RF terminal. This paper describes the advantages of adding laser crosslinks to RF satellite communications systems. Characteristics of the required RF/optical interfaces on-board the satellites are addessed. Terminal configurations that provide reliable, accurate laser communications at high data rates are described.

  4. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center...

  5. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center...

  6. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center...

  7. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center...

  8. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center...

  9. [Communication in the health service].

    PubMed

    Panini, Roberta; Fiorini, Fulvio

    2014-01-01

    In the last twenty years, the hospitals have become firms, therefore they have had the necessity to differentiate from each other.Thus, as it is done in the commercial firms, in the health service different formality of communication are studied and introduced in order to attract new consumers and to maintain their trust. Furthermore, due to the introduction of the digitization in the Public Administrations, the communication has become more transparent.A systematic application of communication tools is more and more spread among the Sanitary Firms, whether they are Local Firm or Hospital Firm.Regarding the reference population, communication tools are used with different purposes such as educational and informative. In addition, they are applied as institutional marketing tool, in order to show the offered potentialities and also to increase the level of satisfaction in the patients/consumers who perceive the typology of reception and treatment during the sanitary performance. PMID:25098464

  10. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  11. Suitability of ANSI standards for quantifying communication satellite system performance

    NASA Technical Reports Server (NTRS)

    Cass, Robert D.

    1988-01-01

    A study on the application of American National Standards X3.102 and X3.141 to various classes of communication satellite systems from the simple analog bent-pipe to NASA's Advanced Communications Technology Satellite (ACTS) is discussed. These standards are proposed as means for quantifying the end-to-end communication system performance of communication satellite systems. An introductory overview of the two standards are given followed by a review of the characteristics, applications, and advantages of using X3.102 and X3.141 to quantify with a description of the application of these standards to ACTS.

  12. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    , developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily

  13. A robust signalling system for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Irish, Dale; Shmith, Gary; Hart, Nick; Wines, Marie

    1989-01-01

    Presented here is a signalling system optimized to ensure expedient call set-up for satellite telephony services in a land mobile environment. In a land mobile environment, the satellite to mobile link is subject to impairments from multipath and shadowing phenomena, which result in signal amplitude and phase variations. Multipath, caused by signal scattering and reflections, results in sufficient link margin to compensate for these variations. Direct signal attenuation caused by shadowing due to buildings and vegetation may result in attenuation values in excess of 10 dB and commonly up to 20 dB. It is not practical to provide a link with sufficient margin to enable communication when the signal is blocked. When a moving vehicle passes these obstacles, the link will experience rapid changes in signal strength due to shadowing. Using statistical models of attenuation as a function of distance travelled, a communication strategy has been defined for the land mobile environment.

  14. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  15. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  16. On-board processing for future satellite communications systems: Satellite-Routed FDMA

    NASA Technical Reports Server (NTRS)

    Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.

    1981-01-01

    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.

  17. On-board processing for future satellite communications systems: Satellite-Routed FDMA

    NASA Astrophysics Data System (ADS)

    Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.

    1981-05-01

    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.

  18. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Walton, Eric K.; Kohnhorst, Paul

    1987-01-01

    A procedure is described that was used to calculate minimum required satellite separations based on total link carrier to interference requirements. Also summarized are recent results with a switching algorithm for satellite synthesis problems. Analytic solution value bounds for two of the satellite synthesis models studied are described. Preliminary results from an empirical study of alternate mixed integer programming models for satellite synthesis are presented. Research plans for the near future are discussed.

  19. Design and analysis of the satellite laser communications network

    NASA Astrophysics Data System (ADS)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-δ) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  20. An electro-optical communications satellite transponder

    NASA Astrophysics Data System (ADS)

    Goldman, A. M., Jr.

    The design concept of an electrooptical transponder for communications satellites operating in C-band or Ku-band is presented. A system comprising 12 single-polarization transponders 36-MHz wide is illustrated with a block diagram. The RF carrier uplink signal passes through a low-noise GaAs FET amplifier and is translated to the downlink RF frequency by a mixer and local oscillator; this signal then serves as a subcarrier to intensity modulate an 850-nm GaAlAs semiconductor laser, and the optical signal is optically switched via fiber, demodulated by pin diode or avalanche photodiode, and passed through a GaAs FET preamplifier and amplifier for downlink transmission. Both prefiber and postfiber component groups can be integrated onto monolithic electrooptical chips operating at very low power. Additional features and design options are discussed; the frequency variation involved (12 decades) is illustrated; and the optical switching speed is shown to be noncritical in present TDMA, SS/TDMA, or FDMA configurations.

  1. Cockpit weather graphics using mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Seth, Shashi

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  2. Cockpit weather graphics using mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  3. Satellite communications application to Pacific countries above Ku band

    NASA Astrophysics Data System (ADS)

    Iida, Takashi

    1992-08-01

    An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.

  4. Satellite communications application to Pacific countries above Ku band

    NASA Technical Reports Server (NTRS)

    Iida, Takashi

    1992-01-01

    An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.

  5. Ultra high frequency follow-on communications satellite system

    NASA Astrophysics Data System (ADS)

    Hassien, Michael J.

    1992-03-01

    The existing constellation of UHF communications satellites (LEASAT and FLTSAT) provide key command and control links for mobile forces of the DoD and other government agencies. The UHF Follow-On satellite program will provide for a new generation of communications satellites to replace the existing ones as they reach the end of their life cycle beginning in 1992. Continued coverage is required for both peacetime and crisis environments, and must be maintained indefinitely. An eight-satellite UFO constellation (two per coverage area) will replenish the existing FLTSATCOM constellation.

  6. Computer communications through telecommunications satellite systems - The NADIR project

    NASA Astrophysics Data System (ADS)

    Grange, J.-L.

    Current developments in satellite digital communication in Europe are surveyed, and the status of the French NADIR project begun in 1980 is reported. The geographic coverage, transmission rates, propagation delays, broadcasting and multidestination channels, and error rates characteristic of present satellite systems are discussed, and the specific performance parameters of the Telecom-1 system, comprising three geosynchronous satellites (one operational and two backup) with six 25-Mbit/sec, 12-14-GHz digital transponders and one 4-6 GHz analog port (for telephone and TV services) each, are examined. Telecom-1 will operate in a TDMA-AD mode with coverage of up to 320 earth stations in Central and Western Europe, transmission rates of 2.4-2000 kbit/sec, and error rates less than 10 to the -6th during 99 percent of the time. New applications foreseen include remote processing, distributed databases, computer teleconferencing, and electronic mail systems; new basic tools such as bulk-transfer and transaction-transfer protocols and database-management systems will be required. These tools are under development and testing (using the ANIS Telecom-1 simulator) by NADIR.

  7. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  8. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  9. Spacecraft IF switch matrix for wideband service applications in 30/20 GHz communications satellite systems: Proof-of-concept model, executive summary

    NASA Technical Reports Server (NTRS)

    Ho, P. T.; Coban, E.; Pelose, J.

    1983-01-01

    The design and development of a unique coupler crossbar 20 x 20 microwave switch matrix are described. The test results of the proof of concept model that meets the requirements for a high speed satellite switched, time division multiple access (SS-TDMA) system are presented.

  10. Beyond the Ionosphere: Fifty Years of Satellite Communication

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J. (Editor)

    1997-01-01

    The three overlapping stages of satellite communications development outlined provide the three-part framework for the organization of the papers contained in this book. Part 1, 'Passive Origins,' treats the first stage of satellite communications development, extending from the 1940s into the early 1960s, when passive artificial and natural satellites funded by the military and private enterprise established the field. Part 2, 'Creating the Global, Regional, and National Systems,' addresses events that constituted the second stage of development. Early in this stage, which stretched from the 1960s into the 1970s, satellite systems began to make their appearance in the United States, while domestic and international efforts sought to bring order to this new but chaotic, field in the form of Comsat and Intelsat. Part 3, 'The Unfolding of the World System,' explores the development of satellite communications in the remainder of the world, with a strong emphasis on Asia.

  11. Advanced communication satellites worldwide - Satellites of opportunity for the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Girardey, Catherine C.

    1993-01-01

    Space agencies worldwide are involved in advanced satellite communication systems. This paper presents an overview of these satellites and related technologies in the U.S., Europe, and Japan. They are geostationary satellites using high frequency bands such as K/Ka (20/30 GHz) and O-band (millimeter wave), as well as optical frequencies. The similarity of these programs demonstrate a common interest to develop large capacity satellite communication systems, and shows that closer international cooperation could be set up. The ACTS Mobile Terminal (AMT) project discussed here is such an example. The AMT's compatibility with satellites other than ACTS has been studied, and a proposed common experiment is presented here. The Japanese Engineering Test Satellite ETS-VI has been identified as the best initial 'satellite of opportunity' for AMT in this preliminary assessment.

  12. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  13. Future outlook on international satellite communications in Asia Pacific region

    NASA Astrophysics Data System (ADS)

    Itou, Yasuhiko

    1993-03-01

    An overview of the present status and a future trend of the international satellite communication in the Asia Pacific region is presented. The measures to solve the problems of the low penetration of the VSAT (Very Small Aperture Terminal) for international communication; the lack of standardization between different countries; regulatory difficulties and the lack of suitable satellite systems, including CCIR (Comite Consultatif International des Radio-communications) recommendations; and possibility of digital video transmission for SNG (Satellite News Gathering) are discussed. The present status and new technologies of, and satellite orbits (LEO (Low Earth Orbit)), ICO (Intermediate Circular Orbit), and GEO (Geostationary Earth Orbit)) for marine, mobile, and personal communication by hand-carried equipment are outlined.

  14. Estimation Of Interference In Satellite/Ground Communications

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    Relative strengths of desired and interfering signals computed for known orbits. Satellite Interference Analysis and Simulation Using Personal Computers (AKSATINT) computer program calculates interference experienced by generic satellite communications receiving station from interfering satellite. Also computes interference-to-signal-power ratio, taking into account losses suffered by links. Of general use to designers of systems and managers of frequencies in selecting proper frequencies under interference scenarios. Written in BASIC.

  15. Second INTELSAT IV-A communications satellite set for launch

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The scheduled launching of INTELSAT 4-A is announced. It is a commercial communications satellite to be launched aboard an Atlas/Centaur Launch Vehicle from the Kennedy Space Center, Fla. The satellite has the capability of carrying approximately 6250 two-way telephone conversations.

  16. Communication satellites for STS-5 being readied for loading

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two commercial communication satellites scheduled for flight on STS-5 are pictured as they are being readied for loading into a special canister that will transport them to the launch pad. Telsat Canada's Anik C-3 (at bottom) is seen in its blanket covered cradle assemble. Satellite Business System's SBS-3 is at top. This photo was taken inside the vertical processing facility (VPF).

  17. Computer-Aided Communication Satellite System Analysis and Optimization.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  18. Technology programs and related policies - Impacts on communications satellite business ventures

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  19. A satellite system for multimedia personal communications at Ka-band and beyond

    NASA Technical Reports Server (NTRS)

    Vatalaro, F.; Losquadro, G.

    1995-01-01

    The main characteristics of the satellite extremely high frequency (EHF) communication of multimedia mobile services (SECOMS) system are given and the results of the preliminary analysis are included. The SECOMS provides a first generation Ka band system with coverage over Western Europe, in order to satisfy business user needs of very large bandwidths and terminal mobility. The satellite system also provides a second generation EHF enhanced system with increased capacity and enlarged coverage, to serve all of Europe and the nearby countries.

  20. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  1. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  2. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes.

    PubMed

    Tavi, Pasi; Korhonen, Topi; Hänninen, Sandra L; Bruton, Joseph D; Lööf, Sara; Simon, Andras; Westerblad, Håkan

    2010-05-01

    Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.

  3. Applications of Communications Satellites in Higher Education.

    ERIC Educational Resources Information Center

    Morgan, Robert P.

    Early experiments with the ATS-1 and ATS-3 satellites utilized one way and two way audio for a variety of university purposes, and several different television modes were employed in the ATS-6 satellite. Among the higher education activities on ATS-6 were inservice teacher education and the facilitation of regionalized medical education. A college…

  4. Hard ACTS to follow. [NASA Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Moy, L.

    1986-01-01

    The Advanced Communications Technology Satellite (ACTS), the third phase of NASA's 30/20 GHz satellite communications program, is praised for its frugal usage of both the geosynchronous orbital arch and the frequency spectrum resources necessary for communications satellites. Its objective is to verify Ka-band satellite communications concepts and to develop a flight and ground system for validation of the multibeam communications proof-of-concept technologies. The ACTS ground segment (comprised of four types of terminals) is designed to compliment the spacecraft for the SS launch in 1989. Precise coordination between the ground and spacecraft segments is performed by the baseband processor (BBP), which is an in-orbit switchboard, and the tracking error word, which enables the ground terminals to remain synchronized with onboard timing. Fixed spot beams and scan beams, comprising the two types of spot beams used, both operate at the same frequency and hence, conserve frequency resources. In addition, the time division multiple access serves to enhance system efficiency. It is concluded that Ka-band satellites are a practical approach to the better usage of those resources potentially threatened by communications satellites. Comprehensive graphs and block diagrams of the system are included.

  5. Design and Implementation of a Lunar Communications Satellite and Server for the 2012 SISO Smackdown

    NASA Technical Reports Server (NTRS)

    Bulgatz, Dennis; Heater, Daniel; O'Neal, Daniel A.; Norris, Bryan; Schricker, Bradley C.

    2012-01-01

    Last year, the Simulation Interoperability Standards Organization (SISO) inaugurated the now annual High Level Architecture (HLA) Smackdown at the Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in the High Level Architecture (HLA). The University of Alabama in Huntsville (UAHuntsville) fielded teams in 2011 and 2012. Both the 2011 and 2012 smackdown scenarios were a lunar resupply mission. The 2012 UAHuntsville fielded four federates: a communications network Federate called Lunar Communications and Navigation Satellite Service (LCANServ) for sending and receiving messages, a Lunar Satellite Constellation (LCANSat) to put in place radios needed by the communications network for Line-Of-Sight communication calculations, and 3D graphical displays of the orbiting satellites and a 3D visualization of the lunar surface activities. This paper concentrates on the first two federates by describing the functions, algorithms, the modular FOM, experiences, lessons learned and recommendations for future Smackdown events.

  6. Personal communications services: Improving theater deployable communications for the 21st century

    NASA Astrophysics Data System (ADS)

    Cournoyer, Ronald C., Jr.

    1994-06-01

    Personal Communications Services (PCS) may be the key ingredient for vastly improved military communications capabilities at the turn of the century. The Federal Communications Commission (FCC) defines PCS as a family of mobile or portable radio communications services which could provide services to individuals and businesses and be integrated with a variety of competing networks ... the primary focus of PCS will be to meet communications requirements of people on the move. Today's generation of Theater Deployable Communications, which provides joint tactical communications to deployed forces, is the Tri-Service Tactical Communications (TRI-TAC) system. A description of TRITAC's family of equipment, network topology, typical employment, and critical limitations is presented in this thesis. Five commercial Mobile Satellite Services (MSS) are described as viable candidates for augmenting existing communications systems. Cellular design principles such as frequency reuse, cell splitting, channel access methods, and propagation factors are also addressed. Finally, a framework for comparison of the candidate MSS systems is proposed as a baseline for further studies into the most beneficial implementation of PCS into theater deployable communications systems for the future.

  7. A Guide to Satellite Communication. Reports and Papers on Mass Communication Number 66.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Basic information about the characteristics, uses, and implications of communication satellites is presented. Characteristics covered include the various types of systems--such as point-to-point, distribution, and broadcasting satellites--and the flexibility, capacity, geographical coverage, cost and disadvantages of satellites. The section on…

  8. COMMUNICATION SATELLITES FOR EDUCATION, SCIENCE AND CULTURE. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 53.

    ERIC Educational Resources Information Center

    SCHRAMM, WILBUR

    THE TECHNOLOGY OF COMMUNICATION SATELLITES IS SUFFICIENTLY ADVANCED THAT CONCERNED AGENCIES, SUCH AS UNESCO, SHOULD BEGIN TO PLAN FOR THEIR USE IN EXCHANGE OF DATA, NEWS TRANSMISSION, CULTURAL EXCHANGE, AND EDUCATION. GROUNDWORK IN TECHNOLOGY, IN THE DESIGN OF A SATELLITE COMMUNICATION SYSTEM, IN VALUE JUDGMENTS, IN AGREEMENTS OF COOPERATION AND…

  9. President's Task Force on Communications Policy. Domestic Applications of Communication Satellite Technology. Staff Paper Four.

    ERIC Educational Resources Information Center

    President's Task Force on Communications Policy, Washington, DC.

    A staff paper to the President's Task Force on Communications Policy examines the feasibility of a domestic communications satellite system. Although, with expected technological advancement, satellites may play a significant role in domestic transmission and are economically feasible right now, a number of remaining questions make the…

  10. Continuation of the compendium of applications technology satellite and communications technology satellite user experiments 1967-1977, volume 2. [bibliography

    NASA Technical Reports Server (NTRS)

    Engler, N. A.; Nash, J. F.; Strange, J. D.

    1978-01-01

    Approximately 453 reports, papers, and articles catalogued into an information retrieval system, covering communications experiments and demonstrations conducted, utilizing the Communications Technology Satellite and the Applications Technology Satellites 1, 3, 5, and 6 are listed.

  11. Communication satellite technology: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Woodford, J. B. (Compiler)

    1978-01-01

    Opportunities in communication satellite technology are identified and defined. Factors that tend to limit the ready availability of satellite communication to an increasingly wide group of users are evaluated. Current primary limitations on this wide utilization are the availability of frequency and/or synchronous equatorial satellite positions and the cost of individual user Earth terminals. The former could be ameliorated through the reuse of frequencies, the use of higher frequency bands, and the reduction of antenna side lobes. The latter limitation requires innovative hardware, design, careful system design, and large scale production.

  12. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  13. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  14. Global maritime mobile service via satellite - The INMARSAT system now and in the future

    NASA Astrophysics Data System (ADS)

    Snowball, A. E.

    1986-06-01

    The business and technical aspects of the INMARSAT (International Maritime Satellite Organization) system are reviewed along with its present capabilities and services and future developments now being considered. The initial phase of maritime mobile satellite communications began with the introduction by the U.S. of the Marisat system in 1976, satisfying a commitment made by COMSAT (Communications Satellite Corp.) in 1973 to provide a maritime satellite service. The Marisat Consortium, spun off by COMSAT, launched three satellites in 1973 - one to serve shipping in the Atlantic, one for the Pacific, and the third as a spare; the spare was subsequently positioned over the Indian Ocean so that the three provided almost global coverage. Each satellite was served by a coast earth station with a 13-m antenna; satellite-earth station links operated in the 6 and 4-GHz bands and the ship-satellite links were at 1.5 and 1.6 GHz. Superceding the limited Marisat system, the INMARSAT Organization, established in July 1979 and first in service on Feb. 1, 1982, now provides communications through a system of Marecs, Intelsat-V, and Marisat satellites. With 41 Signatories by mid-1985, the organization consists of an Assembly, a Council, and a Directorate. Services provided include: telephone; facsimile; low-speed data; high-speed data; telex; telegram; distress, urgency and safety communications; shore-to-ship group calls; various information and assistance services. Coast earth stations, ship earth stations, network coordination stations, and the London headquarters and operations control center are described. Future developments will include an expanded capacity network, digital services, and a role in the Future Global Maritime Distress and Safety System that will use radio beacons that will automatically transmit distress messages to land-based emergency centers in the event of a disaster at sea.

  15. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    NASA Astrophysics Data System (ADS)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  16. Availability of a communications satellite - Requirement and feasibility

    NASA Technical Reports Server (NTRS)

    Gordon, G. D.

    1975-01-01

    An estimated 45 communications satellites will be in geostationary orbit in the 1980s. Based on past history, half of the subsystem failures will be due to design failures. Methods now used to achieve present availabilities are summarized in this paper. To increase the availability of a single satellite to 99.99%, new techniques are needed; several possibilities are suggested herein. New developments, including nickel-hydrogen batteries, magnetic bearings, and solid-state amplifiers, are possible solutions to long standing problem areas in communications satellites. Launching a satellite two or three years before the system is needed is one way to reduce design failures in subsequent satellites. Diversity of manufacture can be used to obtain the maximum advantage from redundant elements. Finally, unmanned module exchange at geostationary orbit has been shown to be technically feasible.

  17. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  18. Future large broadband switched satellite communications networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  19. An overview of the communications technology satellite project: Executive summary

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    An overview of the Communications Technology Satellite (CTS) project, a joint venture between NASA and the Canadian Department of Communications is given. A brief technical description of the CTS spacecraft and its cognate hardware and operations, a history of the CTS project, and a list of the CTS experiments and demonstrations conducted during the course of the project are given.

  20. An overview of the communications technology satellite project: Executive summary

    NASA Astrophysics Data System (ADS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-12-01

    An overview of the Communications Technology Satellite (CTS) project, a joint venture between NASA and the Canadian Department of Communications is given. A brief technical description of the CTS spacecraft and its cognate hardware and operations, a history of the CTS project, and a list of the CTS experiments and demonstrations conducted during the course of the project are given.

  1. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    , developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily

  2. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  3. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  4. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  5. EHF (28/19 GHz) personal communications satellite terminal development

    NASA Technical Reports Server (NTRS)

    Pike, Corey

    1991-01-01

    The concept of communicating on a personal basis using a small terminal has been investigated globally from many different applications and technology perspectives. Applications range from terrestrial handheld communicators for paging, cellular, zone voice/data networks, etc., to satellite terminals of pocket dimensions for voice/low speed data or similar terminals using larger antennas for VSAT, news gathering (30 cm), and video (1.2 m). A brief status of some developments in the satellite personal communications at CRC will be presented.

  6. Analysis of satellite servicing cost benefits

    NASA Technical Reports Server (NTRS)

    Builteman, H. O.

    1982-01-01

    Under the auspices of NASA/JSC a methodology was developed to estimate the value of satellite servicing to the user community. Time and funding precluded the development of an exhaustive computer model; instead, the concept of Design Reference Missions was involved. In this approach, three space programs were analyzed for various levels of servicing. The programs selected fall into broad categories which include 80 to 90% of the missions planned between now and the end of the century. Of necessity, the extrapolation of the three program analyses to the user community as a whole depends on an average mission model and equivalency projections. The value of the estimated cost benefits based on this approach depends largely on how well the equivalency assumptions and the mission model match the real world. A careful definition of all assumptions permits the analysis to be extended to conditions beyond the scope of this study.

  7. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  8. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-01-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  9. 76 FR 50425 - Service Rules and Policies for the Broadcasting Satellite Service (BSS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION 47 CFR Part 25 Service Rules and Policies for the Broadcasting Satellite Service (BSS) AGENCY...-Satellite Service (BSS) space-to-Earth transmissions and the feeder link receiving antennas of Direct Broadcast Satellite Service (DBS) space stations that operate in the same frequency band. We adopt an...

  10. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  11. Communications Satellite Receiver Systems for Public Schools: A Technical Primer.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Designed to aid school districts contemplating use of some of the telecommunications services now available by satellite, this document contains information on home satellite receiving dishes (Television Receive-Only--TVROs), which can receive radio signals carrying television, sound, and data. This information includes: some factors involved in…

  12. Communications Satellites: A Rural Response to the Tyranny of Distance.

    ERIC Educational Resources Information Center

    Jordahl, Gregory

    1989-01-01

    Provides an overview of several current satellites-based instructional systems and assesses their potential role in rural education. Highlights include the Oklahoma Arts and Sciences Teleconferencing Service (ASTS); the Texas Interactive Instructional Network (TI-IN); Washington's Satellite Telecommunications Educational Programming (STEP);…

  13. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  14. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  15. A satellite-based personal communication system for the 21st century

    NASA Technical Reports Server (NTRS)

    Sue, Miles K.; Dessouky, Khaled; Levitt, Barry; Rafferty, William

    1990-01-01

    Interest in personal communications (PCOMM) has been stimulated by recent developments in satellite and terrestrial mobile communications. A personal access satellite system (PASS) concept was developed at the Jet Propulsion Laboratory (JPL) which has many attractive user features, including service diversity and a handheld terminal. Significant technical challenges addressed in formulating the PASS space and ground segments are discussed. PASS system concept and basic design features, high risk enabling technologies, an optimized multiple access scheme, alternative antenna coverage concepts, the use of non-geostationary orbits, user terminal radiation constraints, and user terminal frequency reference are covered.

  16. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Technical Reports Server (NTRS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  17. Determination of the key parameters affecting historic communications satellite trends

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1984-01-01

    Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.

  18. Advances in MMIC technology for communications satellites

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  19. Teleradiology and telemedicine using the advanced communications technology satellite and international maritime satellite at varying bandwidths

    NASA Astrophysics Data System (ADS)

    de Treville, Robert E.; Scotti, Stephen D.; Williamson, Morgan P.; Olson, Eric J.; Brink, Linda; Isle, Ken; Kafaro, Peter

    1995-05-01

    The United States military gained experience with a deployed telemedicine team and unit during the deployment of United States military troops to Haiti as part of `Operation Uphold Democracy.' Consults were conducted primarily between the 28th combat support hospital in Haiti and Walter Reed Army Medical Center in Washington, D.C. The Advanced Communications Technology Satellite and International Maritime Satellite services were used for telecommunications during the deployment. A total of 30 telemedicine consultations were performed during the deployment. All consultations were conducted prospectively, and data was entered in a database for later review. Treatment plans and plans for patient disposition were recorded prior to consultation. Following completion of the telemedicine consultations, each case was reviewed to determine the impact of the telemedicine consult upon the treatment plan or disposition. Fifty percent of the consultations resulted in a significant modification in the patient's treatment plan. Seventeen percent resulted in a significant or possible change in evacuation planning. The most frequently used consultants were the dermatologists, radiologists, and hand surgeons. This experience demonstrates that telemedicine can be used effectively in a deployed military environment. In addition, the ability to obtain remote consultations does impact upon medical treatment and upon medical evacuation. Having support personnel in the field was found to be an important factor in utilization of the system.

  20. RF switch positioner for communications satellite network

    NASA Technical Reports Server (NTRS)

    Storaasli, A. G.; Griesser, H. P.; Grant, R. W.

    1986-01-01

    The RF switch positioner is a simple, lightweight, redundant positioning mechanism used to reconfigure the antenna beam on the INTELSAT VI satellite. It simultaneously rotates approximately 100 squareax waveguide switches through a full 360 deg. The RF switch positioner has been space qualified and has performed to expectations in conjunction with the feed networks in range testing.

  1. Satellite quantum communication towards GEO distances

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Dequal, Daniele; Tomasin, M.; Schiavon, M.; Vedovato, F.; Bacco, Davide; Gaiarin, Simone; Bianco, Giuseppe; Luceri, Vincenza; Villoresi, Paolo

    2016-04-01

    We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.

  2. Satellite quantum communication towards GEO distances

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Dequal, Daniele; Tomasin, M.; Schiavon, M.; Vedovato, F.; Bacco, Davide; Gaiarin, Simone; Bianco, Giuseppe; Luceri, Vincenza; Villoresi, Paolo

    2016-04-01

    We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.

  3. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  4. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  5. An adaptive array antenna for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Milne, Robert

    1990-01-01

    The design of an adaptive array antenna for land vehicle operation and its performance in an operational satellite system is described. Linear and circularly polarized antenna designs are presented. The acquisition and tracking operation of a satellite is described and the effect on the communications signal is discussed. A number of system requirements are examined that have a major impact on the antenna design. The results of environmental, power handling, and RFI testing are presented and potential problems are identified.

  6. Computer-aided communication satellite system analysis and optimization

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Morgan, N. H.; Morley, R. E.; Singh, J. P.

    1973-01-01

    The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment.

  7. Personal communications: An extension to the mobile satellite

    NASA Technical Reports Server (NTRS)

    Epstein, Murray; Draper, Francois

    1990-01-01

    As time progresses, customer demands become far more universal, involving integrated, simple to operate, cost effective services, with technology virtually transparent to the operator. Industry will be in a position of providing the necessary services to meet the subscribers' needs. Our resource based industries, transportation services, and utilities in the more rural and unserviced areas will require quality and affordable services that can only be supplied via satellite. One answer to these needs will be one- and two-way interoperable data messaging.

  8. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  9. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    NASA Technical Reports Server (NTRS)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  10. Interference susceptibility measurements for an MSK satellite communication link

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  11. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  12. Experimental millimeter-wave personal satellite communications system

    NASA Technical Reports Server (NTRS)

    Suzuki, Yoshiaki; Kimura, Shigeru; Shimada, Masaaki; Tanaka, Masato; Takahashi, Yasuhiro

    1991-01-01

    Communications Research Laboratory (CRL) has investigated an advanced millimeter (mm)-wave satellite communications system for personal use. Experiments in mm-wave personal satellite communication are to be conducted for 3 years using Japan's Engineering Test Satellite VI (ETS-VI). This paper describes an experimental mm-wave (43/38 GHz) personal satellite communication system, including an onboard transponder and an earth terminal. The on-board transponder is almost completed, and the ground experiment system is still in the design stage. The transponder employs advanced mm-wave solid state technology. It uses 38 GHz high power solid state amplifiers to accelerate the development of mm-wave solid state devices which are indispensable to personal earth terminals. The transponder consists of a 43 GHz receiver with a built-in low noise amplifier, an IF filter section with very narrow bandwidth to improve the carrier-to-noise power ratio of the weak personal communication signal, and two high power amplifiers using newly developed high power Gallium Arsenide (GaAs) metal-semiconductor field effect transistors (MESFETs).

  13. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  14. Some proposed experiments with the Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Porter, A.

    1975-01-01

    The satellite (CTS) is tentatively scheduled to be launched in January 1976. It will be available for educational and societal experimentation early in 1977. This paper will outline some of the educational experiments involving the CTS. The major object of the experiments is to assess the communications and educational implications of the CTS in northern Ontario; the existing communications facilities for this region of approximately 725,000 sq km (inhabited largely by native people) are extremely limited. It is expected to assess the extent to which: (1) a satellite communications system might resolve the communications deficiency, (2) the native people will use the experimental facility, and (3) health and general educational programs, especially utilizing the interactive mode, will be viable.

  15. Communication Access to Health and Social Services

    ERIC Educational Resources Information Center

    Parr, Susie; Pound, Carole; Hewitt, Alan

    2006-01-01

    This article describes the efforts of a group of people in the United Kingdom at Connect-the communication disability network-to make health and social services more communicatively accessible to people with aphasia. The project involved listening to people with aphasia talk about their experiences with health and social care services and working…

  16. Service Learning's Foothold in Communication Scholarship.

    ERIC Educational Resources Information Center

    Panici, Daniel; Lasky, Kathryn

    2002-01-01

    Considers how much of an impact service learning pedagogies have had among those who teach journalism and mass communication. Attempts to fill the research void by assessing the current state of this pedagogical movement within the journalism/mass communication discipline, and suggests that a formal process for incorporating service learning into…

  17. Teaching Intercultural Communication through Service-Learning

    ERIC Educational Resources Information Center

    Blithe, Sarah Jane

    2016-01-01

    Course: Intercultural Communication. Objectives: After completing this intercultural service-learning activity, students should be able to (1) apply effective intercultural communication skills in culturally different sites; (2) analyze cultures different from their own through service-learning; (3) compare and evaluate course readings with…

  18. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  19. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    NASA Technical Reports Server (NTRS)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  20. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  1. Caribbean Regional Communications Service Study. Report.

    ERIC Educational Resources Information Center

    Lalor, Gerald C.

    A follow-up to a limited experiment with the use of satellites in education and public service conducted by the University of the West Indies (UWI) in 1978, this study explores the feasibility of providing a number of services, which would include an extension system based on the use of the UWI telecommunications network. The study was designed to…

  2. The use of digital signal processing in satellite communication

    NASA Astrophysics Data System (ADS)

    Bramwell, Jonathan Richard

    1988-06-01

    The recent emphasis on information technology has increased the need for methods of data communications with a greater interest in the areas of satellite communications. Data communications over a satellite can be easily achieved by the use of excessive power and bandwidth but efficient management of the satellite resource requires more elegant means of transmission. The optimum modulator and demodulator can be described by mathematical expressions to represent the physical processes that are required to transmit and receive a signal. Digital signal processing circuits can be used to implement these mathematical functions and once correctly designed are not susceptible to variations in accuracy and hence can maintain an accurate representation of the mathematical model. This thesis documents an investigation into the algorithms and techniques that can be used in the digital implementation of a satellite data modem. The technique used for carrier phase recovery and data decoding is a major variation on a method proposed by Viterbi and Viterbi and relies on phase estimation instead of the more common carrier regeneration techniques. A computer simulation of this algorithm and its performance is described and the overall performance of the simulation is compared to theoretical analysis and experimental performance of a multi-data rate satellite modem covering data rates in the range of 16 Ksymbol/sec to 256 Ksymbol/sec in both the BPSK and QPSK data formats.

  3. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  4. Satellite services - An added benefit of the space transportation system

    NASA Technical Reports Server (NTRS)

    Herardian, M. M.

    1981-01-01

    It is argued that the greatest economic benefit can be achieved by the Space Shuttle Orbiter's use as a satellite servicing platform if the following conditions are fulfilled: (1) the international user community must build serviceability features into its satellite and orbital platform designs, based on a common set of guidelines; (2) the various tools required for satellite servicing must be developed in a timely manner; and (3) servicing costs must be kept as low as possible, in order to appeal to the greatest number and variety of satellite operators. A three-part program development schedule is proposed, beginning with near-Orbiter servicing in low earth orbit, continuing with servicing at orbital heights between the low and geosynchronous at greater distances from the Orbiter, and culminating in the early 1990's with the use of the Space Operations Center (SOC) platform for servicing at all orbital heights.

  5. Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) to left, Gate House (Building 5764) to right of center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  6. Uplink Power Control For Earth/Satellite/Earth Communication

    NASA Technical Reports Server (NTRS)

    Chakraborty, Dayamoy

    1994-01-01

    Proposed control subsystem adjusts power radiated by uplink transmitter in Earth station/satellite relay station/ Earth station communication system. Adjustments made to compensate for anticipated changes in attenuation by rain. Raw input is a received downlink beacon singal, amplitude of which affected not only by rain fade but also by scintillation, attenuation in atmospheric gases, and diurnal effects.

  7. Communications technology satellite output-tube design and development

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.

    1977-01-01

    The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.

  8. An overview of the Communications Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    The Communications Technology Satellite (CTS) project is reviewed. A technical description of the CTS spacecraft and its cognate hardware and operations is included. A historical treatise of the CTS project is provided. Also presented is an overview of the CTS experiments and demonstrations conducted during the course of the project.

  9. Toward a Communications Satellite Network for Humanitarian Relief

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Birrane, Edward J.

    2011-01-01

    Since the introduction in 2008 of the "Ring Road" concept, proposing a communications satellite network designed to support disadvantaged populations, there have been a number of advances in the underlying technologies, CubeSat picosatellites and Delay-Tolerant Networking. We review the original Ring Road proposal, discuss relevant recent technological progress, and offer some tentative notes on projected cost and performance.

  10. New Opportunities with the Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Bauer, Robert

    1998-01-01

    Various issues associated with the Advanced Communications Technology Satellite (ACTS) are presented in viewgraph form. Specific topics include: 1) ACTS program review; 2) Spot beam locations; 3) Key ACTS technologies; 4) ACTS accomplishments; 5) Experiments operations; 6) Inclined orbit opportunity, mission and impact; 7) Modifications summary; 8) Experiment opportunity, categories, processes; and 9) Recent and ongoing activity.

  11. Applications of Multi Port Amplifier to personal satellite communications

    NASA Technical Reports Server (NTRS)

    Egami, Shunichiro

    1995-01-01

    In personal satellite communications, satellite antenna beam becomes narrow, and number of beams will be thirty to more than one hundred. This paper shows that Multi Port Amplifier is most suitable to multiple beam transmitter for personal communications satellite. It was shown that the single beam coverage area(cell) diameter is determined by personal earth station(PES) eirp, uplink C/No and uplink frequency band. Required number of cells for European or North American regional coverage at FPLMTS uplink frequency band is shown as around 32. It was shown that 32 beams systems will be easily implemented by using 2 set of 16-port MPA. Redundancy to SSPA failure is considered by increasing number of SSPAs. Actual configuration for 16-port MPA are briefly shown. The presented configuration will be easy to implement and the most economical solution.

  12. New techniques in communications satellites and their implications

    NASA Astrophysics Data System (ADS)

    Hockeimer, H. E.

    Advances in communications technologies featured on Intelsat V are reviewed and used as an indicator for further progress through the 1980s. Each Intelsat spacecraft, and there will be 12-15 of them, has 12,000 two-way voice links and two television channels. The satellites feature three-axis stabilization, multiple beam antennas, interband connectivity, metal-hydride batteries, and a low-mass communications filter multiplexer. The structures feature the use of graphite-fiber reinforced composites and electrothermal monopropellant thrusters for stationkeeping chores. Intelsat VI satellites, intended for launch in 1986, will triple the Intelsat capabilities, use millimeter waves, solid-state power amplifiers, microprocessor-based data-handling equipment, have bipropellant propulsion systems, and an intersatellite link operating at RF and optical frequencies. A necessity is asserted for assuring the profitability of the satellite manufacturing industry.

  13. Application of adaptive antenna techniques to future commercial satellite communication

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  14. Laser Communications Airborne Testbed: Potential For An Air-To-Satellite Laser Communications Link

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert J.

    1988-05-01

    The Laser Communications Airborne Testbed (LCAT) offers an excellent opportunity for testing of an air-to-satellite laser communications link with the NASA Advanced Communications Technology Satellite (ACTS). The direct detection laser portion of the ACTS is suitable for examining the feasibility of an airborne terminal. Development of an airborne laser communications terminal is not currently part of the ACTS program; however, an air-to-satellite link is of interest. The Air Force performs airborne laser communications experiments to examine the potential usefulness of this technology to future aircraft. Lasers could be used, for example, by future airborne command posts and reconnaissance aircraft to communicate via satellite over long distances and transmit large quantities of data in the fastest way possible from one aircraft to another or to ground sites. Lasers are potentially secure, jam resistant and hard to detect and in this regard increase the survivability of the users. Under a contract awarded by Aeronautical Systems Division's Avionics Laboratory, a C-135E testbed aircraft belonging to ASD's 4950th Test Wing will be modified to create a Laser Communications Airborne Testbed. The contract is for development and fabrication of laser testbed equipment and support of the aircraft modification effort by the Test Wing. The plane to be modified is already in use as a testbed for other satellite communications projects and the LCAT effort will expand those capabilities. This analysis examines the characteristics of an LCAT to ACTS direct detection communications link. The link analysis provides a measure of the feasibility of developing an airborne laser terminal which will interface directly to the LCAT. Through the existence of the LCAT, the potential for development of an air-to-satellite laser communications terminal for the experimentation with the ACTS system is greatly enhanced.

  15. Two-way communication promote value-added services

    SciTech Connect

    1996-06-01

    This article reviews a number of developments in the efforts of electric utilities to establish two-way communications with their customers in order to develop products and services to fit each customer`s needs. In their efforts, utilities are facing an array of technology, including broadband, radio frequency, cellular, satellite, dial inbound, and power line carrier current. Individual efforts with each technology are noted. In many cases, the utilities are finding that existing cable and telephone companies are powerful allies in their efforts. Finding that their technology is marketable, the electric utilities are also diversifying horizontally and marketing their communications tools to other, both inside and outside of the utility industry.

  16. Fault-tolerant onboard digital information switching and routing for communications satellites

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  17. Achieving QoS for TCP Traffic in Satellite Networks with Differentiated Services

    NASA Technical Reports Server (NTRS)

    Durresi, Arjan; Kota, Sastri; Goyal, Mukul; Jain, Raj; Bharani, Venkata

    2001-01-01

    Satellite networks play an indispensable role in providing global Internet access and electronic connectivity. To achieve such a global communications, provisioning of quality of service (QoS) within the advanced satellite systems is the main requirement. One of the key mechanisms of implementing the quality of service is traffic management. Traffic management becomes a crucial factor in the case of satellite network because of the limited availability of their resources. Currently, Internet Protocol (IP) only has minimal traffic management capabilities and provides best effort services. In this paper, we presented a broadband satellite network QoS model and simulated performance results. In particular, we discussed the TCP flow aggregates performance for their good behavior in the presence of competing UDP flow aggregates in the same assured forwarding. We identified several factors that affect the performance in the mixed environments and quantified their effects using a full factorial design of experiment methodology.

  18. Satellite Technologies and Services: Implications for International Distance Education.

    ERIC Educational Resources Information Center

    Stahmer, Anna

    1987-01-01

    This examination of international distance education and open university applications of communication satellites at the postsecondary level notes activities in less developed countries (LDCs); presents potential models for cooperation; and describes technical systems for distance education, emphasizing satellite technology and possible problems…

  19. The 30/20 GHz fixed communications systems service demand assessment. Volume 2: Main report

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A forecast of demand for telecommunications services through the year 2000 is presented with particular reference to demand for satellite communications. Estimates of demand are provided for voice, video, and data services and for various subcategories of these services. The results are converted to a common digital measure in terms of terabits per year and aggregated to obtain total demand projections.

  20. Improving Library Services to Satellite Campuses: The Case of the University of Lethbridge

    ERIC Educational Resources Information Center

    Eva, Nicole C.

    2012-01-01

    A survey was done of instructors at two satellite campuses located at a distance from the main campus of the University of Lethbridge in order to ascertain both utilization and awareness of library resources and services. Results were enlightening, indicating that lack of awareness and communication is one of the biggest obstacles for these…

  1. Communications Satellites: A New Channel for International Communications, A New Source of International Tension.

    ERIC Educational Resources Information Center

    Mickelson, Sig

    Communications satellites could be the subject of bitter and potentially dangerous international controversy. They threaten to upset the comfortable monopoly of internal national communications systems which have enrolled national governments to screen intrusions of unwanted information or ideas. The United Nations Working Committee on Direct…

  2. Communication Media and Educational Technology: An Overview and Assessment with Reference to Communication Satellites.

    ERIC Educational Resources Information Center

    Ohlman, Herbert

    In this survey and analysis of the present state and future trends of communication media and educational technology, particular emphasis is placed on the potential uses of communication satellites and the substitution of electronic transmission for physical distribution of educational materials. The author analyzes in detail the characteristics…

  3. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  4. Concepts for 18/30 GHz satellite communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    Concepts for 18/30 GHz satellite communication systems are presented. Major terminal trunking as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

  5. Causal relationships between solar proton events and single event upsets for communication satellites

    NASA Astrophysics Data System (ADS)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  6. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  7. A study and experiment plan for digital mobile communication via satellite

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Craighill, E. J.; Evans, R. G.; Vincze, A. D.; Tom, N. N.

    1978-01-01

    The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described.

  8. United States societal experiments via the Communications Technology Satellite. [antenna coverage

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a cooperative experimental program of the United States and Canadian governments. The CTS uses a high-power transponder at the frequencies of 14/12 GHz for two-way television and voice communication. The United States and Canada have agreed to share equally in the use of CTS. The U.S. program includes a variety of societal experiments. The ground stations for these experiments are located from the Atlantic to the Pacific. The satellite communications capabilities and the antenna coverage for the U.S. are summarized. Emphasis is placed on the U.S. societal experiments in the areas of education, health care, and community and special services; nine separate experiments are discussed.

  9. Communications satellites in the national and global health care information infrastructure: their role, impact, and issues

    NASA Technical Reports Server (NTRS)

    Zuzek, J. E.; Bhasin, K. B.

    1996-01-01

    Health care services delivered from a distance, known collectively as telemedicine, are being increasingly demonstrated on various transmission media. Telemedicine activities have included diagnosis by a doctor at a remote location, emergency and disaster medical assistance, medical education, and medical informatics. The ability of communications satellites to offer communication channels and bandwidth on demand, connectivity to mobile, remote and under served regions, and global access will afford them a critical role for telemedicine applications within the National and Global Information Infrastructure (NII/GII). The importance that communications satellites will have in telemedicine applications within the NII/GII the differences in requirements for NII vs. GII, the major issues such as interoperability, confidentiality, quality, availability, and costs, and preliminary conclusions for future usability based on the review of several recent trails at national and global levels are presented.

  10. 75 FR 43088 - Personal Communications Services and Miscellaneous Wireless Communications Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 24 and 27 Personal Communications Services and Miscellaneous Wireless Communications Services CFR Correction In Title 47 of the Code of Federal Regulations, Parts 20 to 39, revised as...

  11. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with...

  12. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with...

  13. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with...

  14. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with...

  15. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... licensing regime for export to U.S. allies of commercial communications satellite components, systems, parts... and certain associated technical data for commercial communications satellites, and who are...

  16. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  17. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  18. US development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  19. A Low Earth Orbit satellite marine communication system demonstration

    NASA Technical Reports Server (NTRS)

    Elms, T. Keith; Butt, Kenneth A.; Asmus, Ken W.

    1995-01-01

    An application of Low Earth Orbit (LEO) satellite communications technology was investigated during a joint Canadian/American scientific expedition to the north pole in the summer of 1994. The Canadian ice breaker involved, was equipped with a store-and-forward LEO satellite terminal which was linked to a ground station in St. John's, Newfoundland, via the near-polar-orbiting satellite, HealthSat-l. The objective was to evaluate the performance of such a system while providing an alternate means of communications in the far north. The system performed well, given its inherent limitations. All 151 attempts to send data files to the ship were successful. Only two (2) of the 35 attempts to send files from the ship were unsuccessful. The files ranged in size from 0.1 to 60 Kbytes. In the high arctic, above 80 deg north, this system often provided the only practical means of data communications. This experiment demonstrated the potential of such a system for not-real-time communications with remote and/or mobile stations, and highlighted the many issues involved. This paper describes the project objectives, system configuration and experimental procedure used, related technical issues, trial results, future work, and conclusions.

  20. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    NASA Astrophysics Data System (ADS)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.