Sample records for satellite laser altimetry

  1. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Liu; Qigang, Jiang; Zhang, Xuesong

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely

  2. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    NASA Astrophysics Data System (ADS)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  3. Current state of art of satellite altimetry

    NASA Astrophysics Data System (ADS)

    Łyszkowicz, Adam Bolesław; Bernatowicz, Anna

    2017-12-01

    One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth's environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  4. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  5. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  6. Validation of multi-mission satellite altimetry for the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Nadia; Soomere, Tarmo; Giudici, Andrea

    2016-04-01

    Currently, three sources of wave data are available for the research community, namely, buoys, modelling, and satellite altimetry. The buoy measurements provide high-quality time series of wave properties but they are deployed only in a few locations. Wave modelling covers large domains and provides good results for the open sea conditions. However, the limitation of modelling is that the results are dependent on wind quality and assumptions put into the model. Satellite altimetry in many occasions provides homogeneous data over large sea areas with an appreciable spatial and temporal resolution. The use of satellite altimetry is problematic in coastal areas and partially ice-covered water bodies. These limitations can be circumvented by careful analysis of the geometry of the basin, ice conditions and spatial coverage of each altimetry snapshot. In this poster, for the first time, we discuss a validation of 30 years of multi-mission altimetry covering the whole Baltic Sea. We analysed data from RADS database (Scharroo et al. 2013) which span from 1985 to 2015. To assess the limitations of the satellite altimeter data quality, the data were cross-matched with available wave measurements from buoys of the Swedish Meteorological and Hydrological Institute and Finnish Meteorological Institute. The altimeter-measured significant wave heights showed a very good correspondence with the wave buoys. We show that the data with backscatter coefficients more than 13.5 and high errors in significant wave heights and range should be excluded. We also examined the effect of ice cover and distance from the land on satellite altimetry measurements. The analysis of cross-matches between the satellite altimetry data and buoys' measurements shows that the data are only corrupted in the nearshore domain within 0.2 degrees from the coast. The statistical analysis showed a significant decrease in wave heights for sea areas with ice concentration more than 30 percent. We also checked and

  7. Satellite altimetry and hydrologic modeling of poorly-gauged tropical watershed

    NASA Astrophysics Data System (ADS)

    Sulistioadi, Yohanes Budi

    Fresh water resources are critical for daily human consumption. Therefore, a continuous monitoring effort over their quantity and quality is instrumental. One important model for water quantity monitoring is the rainfall-runoff model, which represents the response of a watershed to the variability of precipitation, thus estimating the discharge of a channel (Bedient and Huber, 2002, Beven, 2012). Remote sensing and satellite geodetic observations are capable to provide critical hydrological parameters, which can be used to support hydrologic modeling. For the case of satellite radar altimetry, limited temporal resolutions (e.g., satellite revisit period) prohibit the use of this method for a short (less than weekly) interval monitoring of water level or discharge. On the other hand, the current satellite radar altimeter footprints limit the water level measurement for rivers wider than 1 km (Birkett, 1998, Birkett et al., 2002). Some studies indeed reported successful retrieval of water level for small-size rivers as narrow as 80 m (Kuo and Kao, 2011, Michailovsky et al., 2012); however, the processing of current satellite altimetry signals for small water bodies to retrieve accurate water levels, remains challenging. To address this scientific challenge, this study poses two main objectives: (1) to monitor small (40--200 m width) and medium-sized (200--800 m width) rivers and lakes using satellite altimetry through identification and choice of the over-water radar waveforms corresponding to the appropriately waveform-retracked water level; and (2) to develop a rainfall-runoff hydrological model to represent the response of mesoscale watershed to the variability of precipitation. Both studies address the humid tropics of Southeast Asia, specifically in Indonesia, where similar studies do not yet exist. This study uses the Level 2 radar altimeter measurements generated by European Space Agency's (ESA's) Envisat (Environmental Satellite) mission. The first study

  8. Sand dune tracking from satellite laser altimetry

    NASA Astrophysics Data System (ADS)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  9. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  10. Investigation Hydrometeorological Regime of the White Sea Based on Satellite Altimetry Data

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey A.

    2016-08-01

    The White Sea are the seas of the Arctic Ocean. Today complicated hydrodynamic, tidal, ice, and meteorological regimes of these seas may be investigated on the basis of remote sensing data, specifically of satellite altimetry data. Results of calibration and validation of satellite altimetry measurements (sea surface height and sea surface wind speed) and comparison with regional tidal model show that this type of data may be successfully used in scientific research and in monitoring of the environment. Complex analysis of the tidal regime of the White Sea and comparison between global and regional tidal models show advantages of regional tidal model for use in tidal correction of satellite altimetry data. Examples of using the sea level data in studying long-term variability of the Barents and White Seas are presented. Interannual variability of sea ice edge position is estimated on the basis of altimetry data.

  11. A review of satellite radar altimetry applied to coastal ocean studies

    NASA Astrophysics Data System (ADS)

    Vignudelli, Stefano

    2016-07-01

    Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.

  12. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  13. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  14. Seafloor Tectonic Fabric from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.

    Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km--scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10--80 km) roughness of old ocean floor is spreading-rate dependent in the same that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.

  15. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  16. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  17. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    NASA Astrophysics Data System (ADS)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  18. Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.

    NASA Astrophysics Data System (ADS)

    Okeowo, M. A.; Lee, H.; Hossain, F.

    2015-12-01

    Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. ­­ Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.

  19. North Atlantic teleconnection patterns signature on sea level from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Iglesias, Isabel; Lázaro, Clara; Joana Fernandes, M.; Bastos, Luísa

    2015-04-01

    Presently, satellite altimetry record is long enough to appropriately study inter-annual signals in sea level anomaly and ocean surface circulation, allowing the association of teleconnection patterns of low-frequency variability with the response of sea level. The variability of the Atlantic Ocean at basin-scale is known to be complex in space and time, with the dominant mode occurring on annual timescales. However, interannual and decadal variability have already been documented in sea surface temperature. Both modes are believed to be linked and are known to influence sea level along coastal regions. The analysis of the sea level multiannual variability is thus essential to understand the present climate and its long-term variability. While in the open-ocean sea level anomaly from satellite altimetry currently possesses centimetre-level accuracy, satellite altimetry measurements become invalid or of lower accuracy along the coast due to the invalidity of the wet tropospheric correction (WTC) derived from on-board microwave radiometers. In order to adequately analyse long-term changes in sea level in the coastal regions, satellite altimetry measurements can be recovered by using an improved WTC computed from recent algorithms that combine wet path delays from all available observations (remote sensing scanning imaging radiometers, GNSS stations, microwave radiometers on-board satellite altimetry missions and numerical weather models). In this study, a 20-year (1993-2013) time series of multi-mission satellite altimetry (TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1/2, ENVISAT, CryoSat-2 and SARAL), are used to characterize the North Atlantic (NA) long-term variability on sea level at basin-scale and analyse its response to several atmospheric teleconnections known to operate on the NA. The altimetry record was generated using an improved coastal WTC computed from either the GNSS-derived path Delay or the Data Combination methodologies developed by University of

  20. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  1. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin

    2018-03-01

    The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With

  2. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  3. Conquering the Coastal Zone: A New Frontier for Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Benveniste, Jerome; Miller, Laury; Picot, Nicolas; Scharroo, Remko; Strub, Ted; Vandemark, Doug; Vignudelli, Stefano; Zoffoli, Simona; Andersen, Ole; Bao, Lifeng; Birol, Florence; Coelho, Emanuel; Deng, Xiaoli; Emery, William; Fenoglio, Luciana; Fernandes, Joana; Gomez-Enri, Jesus; Griffin, David; Han, Guoqi; Hausman, Jessica; Ichikawa, Kaoru; Kostianoy, Andrey; Kourafalou, Villy; Labroue, Sylvie; Ray, Richard; Saraceno, Martin; Smith, Walter; Thibault, Pierre; Wilkin, John; Yenamandra, Somayajulu

    2013-09-01

    Coastal altimetry, that is the effort to recover meaningful measurements of sea level and significant wave height in the coastal strip from satellite-borne radar instruments, is successfully extending altimetry to a previously uncharted domain. This success is apparent at the annual Coastal Altimetry Workshops, whose 6th edition (Riva del Garda 20-21 September, 2012) was held just before the "20 Year of Progress in Radar Altimetry" Symposium.The efforts of such a vibrant international community are bringing coastal altimetry to maturity, as a science topic of great relevance to monitor the coastal environment and assess the impact of global change on the coasts. Datasets are being produced, results are coming out and being disseminated, applications are pioneered. The Springer book Coastal Altimetry, published in 2011, is a good account of such efforts. The cross-fertilization of ideas with OSTST (of which the coastal altimetry community constitutes a special splinter) brings significant mutual benefits, both in terms of technical insight and in terms of synergy of open-ocean and coastal applications.The present contribution is meant as a 'community white paper' and aims at giving an account of the development and accomplishments of the new field. We summarize the main technical achievements and the many diverse applications of the new discipline, as well as the recommendations that stemmed from recent discussion. While coastal altimetry techniques are recovering extremely valuable information from the 20+ years of data already in the archives, even more exciting prospects are ahead of us with the processing of higher resolution altimetric missions (CryoSat, Sentinel-3, Jason-CS, SWOT).

  4. The Ebb and Flow of Tidal Science, and the Impact of Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2006-01-01

    In the years immediately preceding the launches of Geosat and Topex/Poseidon, tidal science had lapsed into a period of uncertainty and discouragement, brought about by the failure of once-exciting new ideas that eventually proved overly optimistic. A long list of outstanding problems presented themselves, but progress had reached a "low water mark". What was lacking was a high-quality global dataset of tidal measurements, which satellite altimetry -- and especially Topex/Poseidon -- provided. With these data in hand, a "flood tide" of marked progress resulted. In this paper we review some of that progress. An important area of progress, with potentially important implications for other areas of physical oceanography, falls under the topic of "energy dissipation." With precise global constraints provided by altimetry -- combined with precise laser tracking of the altimeter, other geodetic satellites like Lageos, as well as the moon -- the planetary energy budgets of both Earth and ocean tides are now well determined. Moreover, the local energy balances, and thus local estimates of tidal dissipation, have now been mapped, although somewhat coarsely, throughout the ocean. This work has pointed to internal-tide generation in the deep ocean as the once missing sink of tidal energy, and has led to a plethora of new observational and theoretical studies of internal tides, and their role in vertical mixing of the deep ocean. The discovery that internal tides, or some part of them, can be directly mapped with an altimeter opens new lines of research on this topic. Low-mode internal tides have been found, at least in some regions, to propagate several thousand kilometers across open ocean. The study of such waves with altimetry gives us a global view heretofore unattainable, allowing strong observational constraints to be placed on possible ocean mixing processes, such as subharmonic instabilities.

  5. A Decade of Arctic Sea Ice Thickness Change from Airborne and Satellite Altimetry (Invited)

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.

    2013-12-01

    Altimeters on both airborne and satellite platforms provide direct measurements of sea ice freeboard from which sea ice thickness may be calculated. Satellite altimetry observations of Arctic sea ice from ICESat and CryoSat-2 indicate a significant decline in ice thickness, and volume, over the last decade. During this time the ice pack has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year ice to thinner, increasingly seasonal ice. We will discuss the regional trends in ice thickness derived from ICESat and IceBridge altimetry between 2003 and 2013, contrasting observations of the multi-year ice pack with seasonal ice zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the IceBridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to ice thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to ice type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea ice thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea ice thickness record. We briefly present the status of planned ICESat-2 sea ice data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea ice.

  6. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  7. Monitoring Lakes in Africa with Altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J. P.

    2017-12-01

    Thanks to more than two decades of radar altimetry measurements from TOPEX/POSEIDON, Jason 1, 2 and 3, ENVISAT and others, 18 Ice, Cloud and Land Elevation Satellite (ICESat) laser altimeter measurement campaigns over 6 years, and 15 years of Gravity Recovery And Climate Experiment (GRACE) observations, water levels changes of major lakes and reservoirs can be remotely measured regularly with unprecedented precision, facilitating monitoring of continental water storage variations. Smaller footprint laser altimeters like ICESat are more suitable for the retrieval of water level variations of small inland water bodies, better discriminating water returns when water height measurements have the potential to be contaminated by land or vegetation. Using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) contemporaneous with the altimetry data collections, in combination with careful examination of the laser waveforms, one can better isolate returns form the water surface. Combining these altimetry observations, we derive and compare water height estimates for several lakes and reservoirs in Africa from radar and laser altimetry measurements, we estimate the surface extent of each individual water body from available MODIS imagery, and derive corresponding estimates of volume variations for each water body. Mass variations from time-variable gravity measurements from the GRACE mission, using the latest one-degree global iterated mascons solution from GSFC are then transformed into volume changes, assuming a constant density, and compared to altimetry plus imagery estimates. These methods demonstrate the power of combined observations to monitor water resources and facilitate their management. Upcoming laser altimetry missions like ICESat-2, with vastly improved coverage and temporal sampling, continuous observations, better measurements techniques, including inland water products specifically formulated for these applications, when combined with SWOT

  8. The role of satellite altimetry in climate studies

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1980-01-01

    The results of three generations of satellite-borne radar altimetry experiments are summarized. The diverse measurements possible from this instrument are shown to be directly applicable to studies of the importance of the oceans in climate. The radar altimeter has unique value for investigations seeking knowledge of the interconnections between ocean dynamics, heat and momentum transfer across the air-sea interface, sea ice extent, and polar ice sheet thickness.

  9. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i

  10. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Calafat, Francisco M.; Jevrejeva, Svetlana; Melet, Angelique; Prandi, Pierre

    2017-01-01

    We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

  11. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  12. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  13. Satellite Altimetry And Radiometry for Inland Hydrology, Coastal Sea-Level And Environmental Studies

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin

    In this study, we demonstrate three environmental-related applications employing altimetry and remote sensing satellites, and exemplify the prospective usage underlying the current progressivity in mechanical and data analyzing technologies. Our discussion starts from the improved waveform retracking techniques in need for altimetry measurements over coastal and inland water regions. We developed two novel auxiliary procedures, namely the Subwaveform Filtering (SF) method and the Track Offset Correction (TOC), for waveform retracking algorithms to operationally detect altimetry waveform anomalies and further reduce possible errors in determination of the track offset. After that, we present two demonstrative studies related to the ionospheric and tropospheric compositions, respectively, as their variations are the important error sources for satellite electromagnetic signals. We firstly compare the total electron content (TEC) measured by multiple altimetry and GNSS sensors. We conclude that the ionosphere delay measured by Jason-2 is about 6-10 mm shorter than the GPS models. On the other hand, we use several atmospheric variables to study the climate change over high elevation areas. Five types of satellite data and reanalysis models were used to study climate change indicators. We conclude that the spatial distribution of temperature trend among data products is quite different, which is probably due to the choice of various time spans. Following discussions about the measuring techniques and relative bias between data products, we applied our improved altimetry techniques to three environmental science applications with helps of remote sensing imagery. We first manifest the detectability of hydrological events by satellite altimetry and radiometry. The characterization of one-dimensional (along-track) water boundary using former Backscattering Coefficient (BC) method is assisted by the two-dimensional (horizontal) estimate of water extent using the Moderate

  14. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  15. Laser Altimetry Sampling Strategies over Sea Ice

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence

    2011-01-01

    With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.

  16. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  17. Malvinas Current variability from Argo floats and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Artana, Camila; Ferrari, Ramiro; Koenig, Zoé; Saraceno, Martin; Piola, Alberto R.; Provost, Christine

    2016-07-01

    The Malvinas Current (MC) is an offshoot of the Antarctic Circumpolar Current (ACC). Downstream of Drake Passage, the northern fronts of the ACC veer northward, cross over the North Scotia Ridge (NSR) and the Malvinas Plateau, and enter the Argentine Basin. We investigate the variations of the MC circulation between the NSR and 41°S and their possible relations with the ACC circulation using data from Argo floats and satellite altimetry. The data depict meandering and eddy shedding of the northern ACC jets as they cross the NSR. The altimetry fields show that these eddies are trapped, break down, and dissipate over the Malvinas Plateau, suggesting that this region is a hot spot for dissipation of mesoscale variability. Variations of sea level anomalies (SLA) across the NSR do not impact the MC further north, except for intra-seasonal variability associated with coastal trapped waves. Altimetry and float trajectories show events during which a large fraction of the MC is cut off from the ACC. Blocking events at around 48.5°S are a recurrent feature of the MC circulation. Over the 23 year altimetry record, we detected 26 events during which the MC surface transport at 48.5°S was reduced to less than half its long-term mean. Blocking events last from 10 to 35 days and do not present any significant trend. These events were tracked back to positive SLA that built up over the Argentine Abyssal Plain. Future work is needed to understand the processes responsible for these blocking events.

  18. Spatiotemporal Interpolation of Elevation Changes Derived from Satellite Altimetry for Jakobshavn Isbrae, Greenland

    NASA Technical Reports Server (NTRS)

    Hurkmans, R.T.W.L.; Bamber, J.L.; Sorensen, L. S.; Joughin, I. R.; Davis, C. H.; Krabill, W. B.

    2012-01-01

    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED).

  19. GNSS VTEC calibration using satellite altimetry and LEO data

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald

    2015-04-01

    Among different systems remote sensing the ionosphere, space geodetic techniques have turned into a promising tool for monitoring and modeling the ionospheric parameters. Due to the fact that ionosphere is a dispersive medium, the signals travelling through this medium provide information about the parameters of the ionosphere in terms of Total Electron Content (TEC) or electron density along the ray path. The classical input data for development of Global Ionosphere Maps (GIM) of the Vertical Total Electron Content (VTEC) is obtained from the dual-frequency Global Navigation Satellite Systems (GNSS) ground-based observations. Nevertheless due to the fact that GNSS ground stations are in-homogeneously distributed with poor coverage over the oceans (namely southern Pacific and southern Atlantic) and also parts of Africa, the precision of VTEC maps are rather low in these areas. From long term analyses it is believed that the International GNSS Service (IGS) VTEC maps have an accuracy of 1-2 TECU in areas well covered with GNSS receivers; conversely, in areas with poor coverage the accuracy can be degraded by a factor of up to five. On the other hand dual-frequency satellite altimetry missions (such as Jason-1&2) provide direct VTEC values exactly over the oceans, and furthermore the Low Earth Orbiting (LEO) satellites such as the Formosat-3/COSMIC (F/C) provide about a great number of globally distributed occultation measurements per day, which can be used to obtain VTEC values. Combining these data with the ground-based data improves the accuracy and reliability of the VTEC maps by closing of observation gaps that arise when using ground-based data only. In this approach an essential step is the evaluation and calibration of the different data sources used for the combination procedure. This study investigates the compatibility of calibrated TEC observables derived from GNSS dual-frequency data, recorded at global ground-based station networks, with space-based TEC

  20. Imaging Small-scale Seafloor and Sub-seafloor Tectonic Fabric Using Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Müller, D.; Matthews, K. J.; Smith, W. H. F.

    2017-12-01

    Marine gravity anomalies derived from satellite radar altimetry now provide an unprecedented resolution of about 7 km for mapping small-scale seafloor and sub-seafloor tectonic fabric. These gravity maps are improving rapidly because three satellite altimeters are currently collecting data with dense track coverage: (1) CryoSat-2 has routinely collected altimetry data over ice, land, and ocean since July 2010. The satellite has a long 369-day repeat cycle resulting in an average ground track spacing of 3.5 km at the equator. To date it has completed more than 7 geodetic mappings of the ocean surface. (2) The SARAL AltiKa altimeter began a non-repeat orbit phase in July 2016. AltiKa has a new Ka-band instrument with a factor of 2 better range precision than all previous altimeters. (3) Jason-2 was placed in a geodetic orbit starting July 2017. It has lower inclination coverage to provide improved gravity recovery for N-S trending anomalies. These data combined with sparse soundings will provide a dramatic improvement in predicted bathymetry and thus help guide future deep ocean surveys. The most recent global marine gravity anomaly map based on these geodetic mission data with 2-pass retracking for optimal range precision has an accuracy that is 2-4 times better than the maps derived from Geosat and ERS-1. The new data reveal the detailed fabric of fracture zones, previously unmapped, now extinct oceanic microplates in the central Pacific, and fault networks buried beneath thick sediments along continental margins. By combining satellite altimetry with marine magnetic anomalies and seafloor age dates from rock samples we are able to pinpoint the geometry and age of major plate reorganizations, particularly the enigmatic 100 Ma event, which occurred during the Cretaceous Magnetic Superchron.

  1. On the unification of geodetic leveling datums using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Rizos, C.; Morrison, T.

    1978-01-01

    Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.

  2. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  3. Satellite altimetry and the intensification of Hurricane Katrina

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Smith, Walter H. F.; Lillibridge, John L.

    Remotely sensed infrared images of Hurricane Katrina taken on 26, 27, and 28 August 2005 (Figure 1, left panels) show the aerial extent of the cloud cover and the central “eye” increasing as the storm that swamped areas of the U.S. Gulf Coast intensified. Computer animations of such image sequences show forecasters the tracks of storms and are a familiar staple of weather news. Less well known is the role that satellite altimetry plays both in forecasting conditions that can intensify a tropical storm and in observing the storm conditions at the sea surface.Satellite altimeter data indicate that Katrina intensified over areas of anomalously high dynamic topography rather than areas of unusually warm surface waters. Altimeter data from Katrina also for the first time observed the building of a storm surge.

  4. New satellite altimetry products for coastal oceans

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  5. Mapping the grounding zone of Ross Ice Shelf using ICESat laser altimetry

    USGS Publications Warehouse

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie; Scambos, Ted A.; O'Neel, Shad

    2010-01-01

    We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60 km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets

  6. A new Ellipsoidal Gravimetric-Satellite Altimetry Boundary Value Problem; Case study: High Resolution Geoid of Iran

    NASA Astrophysics Data System (ADS)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!

  7. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  8. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  9. Variability in Annual and Average Mass Changes in Antarctica from 2004 to 2009 using Satellite Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.; Schenk, A. F.

    2016-12-01

    We present a new record of Antarctic ice thickness changes, reconstructed from ICESat laser altimetry observations, from 2004-2009, at over 100,000 locations across the Antarctic Ice Sheet (AIS). This work generates elevation time series at ICESat groundtrack crossover regions on an observation-by-observation basis, with rigorous, quantified, error estimates using the SERAC approach (Schenk and Csatho, 2012). The results include average and annual elevation, volume and mass changes in Antarctica, fully corrected for glacial isostatic adjustment (GIA) and known intercampaign biases; and partitioned into contributions from surficial processes (e.g. firn densification) and ice dynamics. The modular flexibility of the SERAC framework allows for the assimilation of multiple ancillary datasets (e.g. GIA models, Intercampaign Bias Corrections, IBC), in a common framework, to calculate mass changes for several different combinations of GIA models and IBCs and to arrive at a measure of variability from these results. We are able to determine the effect these corrections have on annual and average volume and mass change calculations in Antarctica, and to explore how these differences vary between drainage basins and with elevation. As such, this contribution presents a method that compliments, and is consistent with, the 2012 Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) results (Shepherd 2012). Additionally, this work will contribute to the 2016 IMBIE, which seeks to reconcile ice sheet mass changes from different observations,, including laser altimetry, using a different methodologies and ancillary datasets including GIA models, Firn Densification Models, and Intercampaign Bias Corrections.

  10. Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry

    USGS Publications Warehouse

    Baek, S.; Kwoun, Oh-Ig; Braun, Andreas; Lu, Z.; Shum, C.K.

    2005-01-01

    We present a digital elevation model (DEM) of King Edward VII Peninsula, Sulzberger Bay, West Antarctica, developed using 12 European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes and 24 Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles. We employ differential interferograms from the ERS tandem mission SAR scenes acquired in the austral fall of 1996, and four selected ICESat laser altimetry profiles acquired in the austral fall of 2004, as ground control points (GCPs) to construct an improved geocentric 60-m resolution DEM over the grounded ice region. We then extend the DEM to include two ice shelves using ICESat profiles via Kriging. Twenty additional ICESat profiles acquired in 2003-2004 are used to assess the accuracy of the DEM. After accounting for radar penetration depth and predicted surface changes, including effects due to ice mass balance, solid Earth tides, and glacial isostatic adjustment, in part to account for the eight-year data acquisition discrepancy, the resulting difference between the DEM and ICESat profiles is -0.57 ?? 5.88 m. After removing the discrepancy between the DEM and ICESat profiles for a final combined DEM using a bicubic spline, the overall difference is 0.05 ?? 1.35 m. ?? 2005 IEEE.

  11. The Use of Laser Altimetry in the Orbit and Attitude Determination of Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Rowlands, D. D.; Pavlis, D. E.; Lemoine, F. G.; Neumann, G. A.; Luthcke, S. B.

    1999-01-01

    Altimetry from the Mars Observer Laser Altimeter (MOLA) which is carried on board Mars Global Surveyor (MGS) has been analyzed for the period of the MOS mission known as Science Phasing Orbit 1 (SPO-1). We have used these altimeter ranges to improve orbit and attitude knowledge for MGS. This has been accomplished by writing crossover constraint equations that have been derived from short passes of MOLA data. These constraint equations differ from traditional Crossover constraints and exploit the small foot print associated with laser altimetry.

  12. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  13. HY-2A altimetry satellite GPS orbits processing and performances

    NASA Astrophysics Data System (ADS)

    Mercier, F.; Houry, S.; Couhert, A.; Cerri, L.

    2012-04-01

    The Chinese HY-2A altimetry satellite is on the mission orbit since 1st october 2011. This satellite uses a Doris receiver (French cooperation), a GPS receiver and a SLR retro-reflector for the precise orbit determination. The GPS is a dual frequency semi-codeless receiver. Precise orbits are computed at CNES on the basis of 7 days arcs since the beginning of the mission (repeat cycle is 14 days). This presentation describes the current processing performed at CNES for this satellite. The GPS only orbits perform very well and are compared with the Doris only orbits (floating ambiguity resolution, as for Jason 1 and 2). SLR measurements are also available at ILRS, and allow an external validation of the actual radial orbit performance. This talk adresses the current status of POE solutions and the prospects for improvement based on the preliminary analysis of the tracking data.

  14. Using Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.; Williams, N. P.

    1997-01-01

    Long Valley caldera, California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of approximately 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and approximately 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about 1 cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data

  15. Using Laser Altimetry to Detect Topographic Change in Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.

    1997-01-01

    Long Valley caldera California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of about 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and about 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera, and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about I cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data indicates uplift

  16. The Caspian Sea water dynamics based on satellite imagery and altimetry

    NASA Astrophysics Data System (ADS)

    Kostianoy, Andrey G.; Lebedev, Sergey

    The Caspian Sea water dynamics is poorly known due to a lack of special hydrographic measurements. The known schemes of general circulation of the sea proposed by N.M. Knipovich in 1914-1915 and 1921, A.I. Mikhalevskiy (1931), G.N. Zaitsev (1935) and V.N. Zenin (1942) represent the basin-scale cyclonic gyres in the Middle and Southern Caspian, and no clear scheme for the shallow Northern Caspian. Later numerical models could move forward from these simple schemes of circulation to the more detailed seasonal or climatic schemes of currents, but different approaches and models give different results which significantly differ from each other (Trukhchev et al., 1995; Ibrayev et al., 2003, 2010; Popov, 2004, 2009; Knysh et al., 2008). Satellite monitoring of the Caspian Sea, we perform since 2000, is a useful tool for investigation of water dynamics in the Caspian Sea. To determine mesoscale water structure and dynamics, we used different kind of physical (SST and ice), chemical (suspended matter and water turbidity) and biological (chlorophyll concentration and algal bloom) tracers on satellite imagery. Satellite altimetry (sea level anomalies in combination with the mean dynamic level derived from numerical modeling) provides fields of currents in the whole Caspian Sea on a regular basis (every 10 days). Seasonal fields of currents derived from satellite altimetry also differ from those obtained in numerical models. Finally, we show the results of the first drifter experiment performed in the Caspian Sea in 2006-2008 in the framework of the MACE Project. Special attention is paid to the seasonal upwelling along the eastern coast of the sea, coastal currents, and a giant intrusion of warm water from the Southern to the Middle Caspian Sea.

  17. Improved satellite observations in coastal areas from altimetry and SAR

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Martin, Adrien; Gommenginger, Christine; Calafat, Francisco

    2017-04-01

    The coastal environment is under constant pressure by natural forces and anthropogenic activities and is very sensitive to climate change. Observations of many physical and biological parameters are critical for its monitoring and management. Satellite observations constitute an efficient way to observe the global coastal environment, but ocean satellite observations have often been designed and optimised for the open ocean: algorithms and processing techniques need to be revisited and adapted for application in the coastal zone. A case in point is that of satellite altimetry, which over the oceans is regarded as one of the most successful remote sensing techniques, as it has allowed an unprecedented mapping of the ocean surface dynamics at the large- and meso-scale. With the improvements in orbit models, radar processing, atmospheric and geophysical effect corrections that have emerged over the years, altimetry gives today also a very accurate estimation of the rate of sea level rise and its geographical variability. However, altimetric data in the near-land strip (0 to 50 km from the coastline) are often flagged as bad and left unused, essentially owing to 1) difficulties with the corrections; and/or 2) the modification of the radar returns due to the presence of land in the footprint, which makes the fitting of the altimetric echoes with a waveform model (the so-called "retracking") problematic. Techniques to recover meaningful estimates of the altimeter-derived parameters (height, significant wave height and wind) in the coastal zone have been developed and lead to a number of new applications, which will be presented here. The new observation from coastal altimetry are highly synergistic with Synthetic Aperture Radar (SAR). SAR imagers measure the backscattered signal from the ocean surface at spatial resolution better than 100m. This backscattered signal gives knowledge on the sea surface roughness, which is related to wind and waves. The very high resolution

  18. What We Do Not Yet Know About Global Ocean Depths, and How Satellite Altimetry Can Help

    NASA Astrophysics Data System (ADS)

    Smith, W. H. F.; Sandwell, D. T.; Marks, K. M.

    2017-12-01

    Half Earth's ocean floor area lies several km or more away from the nearest depth measurement. Areas more than 50 km from any sounding sum to a total area larger than the entire United States land area; areas more than 100 km from any sounding comprise a total area larger than Alaska. In remote basins the majority of available data were collected before the mid-1960s, and so often are mis-located by many km, as well as mis-digitized. Satellite altimetry has mapped the marine gravity field with better than 10 km horizontal resolution, revealing nearly all seamounts taller than 2 km; new data can detect some seamounts less than 1 km tall. Seafloor topography can be estimated from satellite altimetry if sediment is thin and relief is due to seafloor spreading and mid-plate volcanism. The accuracy of the estimate depends on the geological nature of the relief and on the accuracy of the soundings available to calibrate the estimation. At best, the estimate is a band-pass-filtered version of the true depth variations, but does not resolve the small-scale seafloor roughness needed to model mixing and dissipation in the ocean. In areas of thick or variable sediment cover there can be little correlation between depth and altimetry. Yet altimeter-estimated depth is the best guess available in most of the ocean. The MH370 search area provides an illustration. Prior to the search it was very sparsely (1% to 5%) covered by soundings, many of these were old, low-tech data, and plateaus with thick sediments complicate the estimation of depth from altimetry. Even so, the estimate was generally correct about the tectonic nature of the terrain and the extent of depth variations to be expected. If ships will fill gaps strategically, visiting areas where altimetry shows that interesting features will be found, and passing near the centroids of the larger gaps, the data will be exciting in their own right and will also improve future altimetry estimates.

  19. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  20. Mapping Error in Southern Ocean Transport Computed from Satellite Altimetry and Argo

    NASA Astrophysics Data System (ADS)

    Kosempa, M.; Chambers, D. P.

    2016-02-01

    Argo profiling floats afford basin-scale coverage of the Southern Ocean since 2005. When density estimates from Argo are combined with surface geostrophic currents derived from satellite altimetry, one can estimate integrated geostrophic transport above 2000 dbar [e.g., Kosempa and Chambers, JGR, 2014]. However, the interpolation techniques relied upon to generate mapped data from Argo and altimetry will impart a mapping error. We quantify this mapping error by sampling the high-resolution Southern Ocean State Estimate (SOSE) at the locations of Argo floats and Jason-1, and -2 altimeter ground tracks, then create gridded products using the same optimal interpolation algorithms used for the Argo/altimetry gridded products. We combine these surface and subsurface grids to compare the sampled-then-interpolated transport grids to those from the original SOSE data in an effort to quantify the uncertainty in volume transport integrated across the Antarctic Circumpolar Current (ACC). This uncertainty is then used to answer two fundamental questions: 1) What is the minimum linear trend that can be observed in ACC transport given the present length of the instrument record? 2) How long must the instrument record be to observe a trend with an accuracy of 0.1 Sv/year?

  1. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  2. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  3. SAR Altimetry for Mean Sea Surface Determination in the Arctic DTU15MSS

    NASA Astrophysics Data System (ADS)

    Piccioni, G.; Andersen, O. B.; Stenseng, L.

    2015-12-01

    A reliable MSS that includes high-latitude regions within the 82 degree parallel is required for the Sentinel-3 data processing. In this paper we present the new DTU15MSS which is an update of the DTU13MSS with more years of CryoSat-2. CryoSat-2 offers a unique dataset in the Arctic Ocean for testing SAR altimetry with nearly five years of high-resolution SAR altimetry. In the Arctic Ocean older conventional altimetry satellites (ERS-1/ERS-2/Envisat) have only been able to provide sparse data for the past 20 years. Here we present the development of the DTU13MSS in the Arctic being the latest release of the global high resolution mean sea surface from DTU Space based on 4 years/repeat of Cryostat-2. The analysis shows that Laser Altimetry from the ICESat satellite being the basis of DTU10 and DTU13MSS between 82 and 86N is now obsolete for mean sea surface determination. The study also highlight the problems of integrating altimetry from various modes (LRM, SAR and SAR-in) as well as the problems relating to the fact that the averaging period of CryoSat-2 is adjacent to the 20 years (1993-2012) period used to develop DTU13MSS. Evaluation of the new MSS is performed and comparison with existing MSS models is performed to evaluate the impact of these updates into MSS computation.

  4. Satellite altimetry based rating curves throughout the entire Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, A.; Calmant, S.; Paiva, R. C.; Collischonn, W.; Silva, J. S.; Bonnet, M.; Seyler, F.

    2013-05-01

    The Amazonian basin is the largest hydrological basin all over the world. In the recent past years, the basin has experienced an unusual succession of extreme draughts and floods, which origin is still a matter of debate. Yet, the amount of data available is poor, both over time and space scales, due to factor like basin's size, access difficulty and so on. One of the major locks is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2010. The stage dataset is made of ~800 altimetry series at ENVISAT and JASON-2 virtual stations. Altimetry series span between 2002 and 2010. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are consistent throughout the entire Amazon basin. The rating curve parameters have been computed using a parameter optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best parameters for the rating curve, but also their posterior probability distribution, allowing the determination of a credibility interval for the rating curve. Also is included in the rating curve determination the error over discharges estimates from the MGB-IPH model. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present

  5. Improved gravity anomaly fields from retracked multimission satellite radar altimetry observations over the Persian Gulf and the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Forootan, E.; Sharifi, M. A.; Awange, J.; Kuhn, M.

    2015-09-01

    Satellite radar altimetry observations are used to derive short wavelength gravity anomaly fields over the Persian Gulf and the Caspian Sea, where in situ and ship-borne gravity measurements have limited spatial coverage. In this study the retracking algorithm `Extrema Retracking' (ExtR) was employed to improve sea surface height (SSH) measurements that are highly biased in the study regions due to land contaminations in the footprints of the satellite altimetry observations. ExtR was applied to the waveforms sampled by the five satellite radar altimetry missions: TOPEX/POSEIDON, JASON-1, JASON-2, GFO and ERS-1. Along-track slopes have been estimated from the improved SSH measurements and used in an iterative process to estimate deflections of the vertical, and subsequently, the desired gravity anomalies. The main steps of the gravity anomaly computations involve estimating improved SSH using the ExtR technique, computing deflections of the vertical from interpolated SSHs on a regular grid using a biharmonic spline interpolation and finally estimating gridded gravity anomalies. A remove-compute-restore algorithm, based on the fast Fourier transform, has been applied to convert deflections of the vertical into gravity anomalies. Finally, spline interpolation has been used to estimate regular gravity anomaly grids over the two study regions. Results were evaluated by comparing the estimated altimetry-derived gravity anomalies (with and without implementing the ExtR algorithm) with ship-borne free air gravity anomaly observations, and free air gravity anomalies from the Earth Gravitational Model 2008 (EGM2008). The comparison indicates a range of 3-5 mGal in the residuals, which were computed by taking the differences between the retracked altimetry-derived gravity anomaly and the ship-borne data. The comparison of retracked data with ship-borne data indicates a range in the root-mean-square-error (RMSE) between approximately 1.8 and 4.4 mGal and a bias between 0

  6. Correcting the hooking effect in satellite altimetry data for time series estimation over smaller rivers

    NASA Astrophysics Data System (ADS)

    Boergens, Eva; Dettmering, Denise; Schwatke, Christian

    2015-04-01

    Since many years the numbers of in-situ gauging stations are declining. Satellite altimetry can be used as a gap-filler even over smaller inland waters like rivers. However, since altimetry measurements are not designed for inland water bodies a special data handling is necessary in order to estimate reliable water level heights over inland waters. We developed a new routine for estimating water level heights over smaller inland waters with satellite altimetry by correcting the hooking effect. The hooking effect occurs when the altimeter is not measuring in nadir before and after passing a water body due to the stronger reflectance of the water than the surrounding land surface. These off-nadir measurements, together with the motion of the satellite, lead to overlong ranges and heights declining in a parabolic shape. The vertex of this parabola is on the water surface. Therefore, by estimating the parabola we are able to determine the water level height without the need of any point over the water body itself. For estimating the parabola we only use selected measurements which are effected by the hooking effect. The applied search approach is based on the RANSAC algorithm (random sample consensus) which is a non-deterministic algorithm especially designed for finding geometric entities in point clouds with many outliers. With the hooking effect correction we are able to retrieve water level height time series from the Mekong River from Envisat and Saral/Altika high frequency data. It is possible to determine reliable time series even if the river has only a width of 500m or less. The expected annual variations are clearly depicted and the comparison of the time series with available in-situ gauging data shows a very good agreement.

  7. Satellite Altimetry Outreach During Hurricane Rita: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Leben, R.; Born, G. H.; Srinivasan, M.

    2006-07-01

    The 2005 hurricane season was th e most costly on record with estimated d amages in th e U.S. of over 100 billion. What may hav e been lost in the signif icant after math of these storms is the pr imary role th at Gulf of Mexico oceanography played in this very active hurricane season. The four most destructive storms - Dennis (1.84 B), Katrin a (80B), Rita (9.4B) , and Wilma ($14.4 B) - all interacted w ith deep warm ocean currents in th e Gulf contributing to the intensity of these storms and their destructive po ten tial. In the aftermath of Hurrican e K atr ina and during Hurricane Rita we made a concer ted effort to tell this story through satellite altimetry ou treach activ ities at the Un iversity of Colorado, Boulder .

  8. Detailed gravity anomalies from GEOS-3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1978-01-01

    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.

  9. Assimilation of satellite altimetry data in hydrological models for improved inland surface water information: Case studies from the "Sentinel-3 Hydrologic Altimetry Processor prototypE" project (SHAPE)

    NASA Astrophysics Data System (ADS)

    Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space

  10. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  11. Merging Satellite Optical Sensors and Radar Altimetry for Daily River Discharge Estimation

    NASA Astrophysics Data System (ADS)

    Tarpanelli, A.; Santi, E. S.; Tourian, M. J.; Filippucci, P.; Amarnath, G.; Brocca, L.; Benveniste, J.

    2017-12-01

    River discharge is a fundamental physical variable of the hydrological cycle and notwithstanding its importance the monitoring of the flow in many parts of the Earth is still an open issue. Satellite sensors have great potential in offering new ways to monitor river discharge, because they guarantees regular, uniform and global measurements for long period thanks to the large number of satellites launched during the last twenty-five years. The multi-mission approach has been becoming a useful tool to integrate measurements and intensify the number of samples in space and time. In this study, we investigated the possibility to merge data from optical, i.e. Near InfraRed bands (from MODIS, MERIS, Landsat, and OLCI) and altimetry data (from Topex-Poseidon, Envisat/RA-2, Jason-2, SARAL/AltiKa and CryoSat-2) for estimating daily river discharge in Nigeria and Italy. The merging procedure is carried out by using artificial neural networks. Regarding the optical sensors, results are more affected by the temporal resolution than the spatial resolution. Landsat fails in the estimation of extreme events missing most of the peak values because of the long revisit time (14-16 days). Better performances are obtained with the Near InfraRed bands from MODIS and MERIS that give similar results in river discharge estimation. Finally, the multi-mission approach involving also radar altimetry data is found to be the most reliable tool to estimate river discharge in medium to large rivers.

  12. Revisiting the pole tide for and from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Wahr, John; Beckley, Brian

    2015-12-01

    Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.

  13. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry - First results

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.

    2008-12-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.

  14. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  15. Using airborne laser altimetry to determine fuel models for estimating fire behavior

    Treesearch

    Carl A. Seielstad; Lloyd P. Queen

    2003-01-01

    Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...

  16. Synthesis of a quarter-century of satellite and airborne altimetry records to resolve long-term ice sheet elevation change

    NASA Astrophysics Data System (ADS)

    Nilsson, J.; Paolo, F. S.; Simonsen, S.; Gardner, A. S.

    2017-12-01

    Satellite and airborne altimetry provide the longest continuous record from which the mass balance of the Antarctic ice sheet can be derived, starting with the launch of ERS-1 in 1992. Accurate knowledge of the long-term mass balance is vital for understanding the geophysical processes governing the ice sheet contribution to present day sea-level rise. However, this record is comprised of several different measurement systems, with different accuracies and varying resolution. This poses a major challenge on the interpretation and reconstruction of consistent elevation-change time series for determining long-term ice sheet trends and variability. Previous studies using data from multiple satellite altimetry missions have relied on a cross-calibration technique based on crossover bias analysis to merge records from different sensors. This methodology, though accurate, limits the spatial coverage to typical resolutions of 10-50 km, restricting the approach to regional or continental-wide studies. In this study, we present a novel framework for seamless integration of heterogeneous altimetry records, using an adaptive least-squares minimization technique. The procedure allows reconstructing time series at fine spatial (<5 km) and temporal (monthly) scales, while accounting for sensor-dependent biases and heterogeneous data quality. We synthesize altimetry records spanning the time period 1992-2016 to derive long-term time series of elevation change for the Antarctica ice sheet, including both data from the European Space Agency (ERS-1, ERS-2, Envisat and CryoSat-2) and NASA (ICESat and Operation IceBridge), with future inclusion of data from NASA's ICESat-2. Mission specific errors, estimated from independent airborne measurements and crossover analysis, are propagated to derive uncertainty bounds for each individual time series. We also perform an extensive analysis of the major corrections applied to raw satellite altimetry data to assess their overall effect on the

  17. On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Irrgang, C.; Thomas, M.

    2018-03-01

    Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.

  18. AVISO+, the new reference web portal for altimetry

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; Guinle, Thierry; Maheu, Caroline; Morrow, Rosemary; Nino, Fernando; Birol, Florence

    2014-05-01

    AVISO is the showcase of CNES activities in altimetry. Indeed, the altimetric products processed by the SALP service from CNES (Service d'Altimetrie et de Localisation Precise) are disseminated via AVISO portal since 1995. In recent years, AVISO became a reference in the international oceanographic and altimetry communities, with more than 5,000 registered users in 2013. In 2014 AVISO is enlarging its applications outside the purely ocean-oriented ones, thus becoming AVISO + (www.aviso.altimetry.fr). The portal opens to new applications such as hydrology / coastal / ice. Moreover, it merges with the CTOH (French Observation Service dedicated to satellite altimetry studies) website to provide users with operational as well as demonstration products and expertise in a unique website. We present here all the novelties - new look, new functionnalities, new products, new data access service… hoping to see you soon on our brand-new altimetry portal, www.aviso.altimetry.fr!

  19. Satellite altimetry and GOCE contribution to the pre-definition of the Kingdom of Saudi Arabia (KSA) Vertical Network

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Grebenitcharsky, Rossen S.; Natsiopoulos, Dimitrios A.; Al-Kherayef, Othman; Al-Muslmani, Bandar

    2017-04-01

    The availability of a unified and well-established national vertical system and frame is of outmost importance in support of everyday geodetic, surveying and engineering applications. Vertical reference system (VRS) modernization and unification has gained increased importance especially during the last years due to the advent of gravity-field dedicated missions and GOCE in particular, since it is the first time that an unprecedented in accuracy dataset of gravity field functionals has become available at a global scale. The Kingdom of Saudi Arabia VRS is outdated and exhibits significant tilts and biases, so that during the last couple of years an extensive effort has been put forth in order to: re-measure by traditional levelling the entire network, establish new benchmarks (BMs), perform high-quality absolute and relative gravity observations and construct new tide-gauge (TG) stations in both the Arab and Red Seas. The Current work focuses on the combined analysis of the existing, recently collected, terrestrial observations with satellite altimetry data and the latest GOCE-based Earth Geopotential Models (EGMs) in order to provide a pre-definition of the KSA VRS. To that respect, a 30-year satellite altimetry time-series is constructed for each TG station in order to derive both the Mean Sea Level (MSL) as well as the sea level trends. This information is analyzed, through Wavelet (WL) Multi-resolution Analysis (MRA), with the TG sea level records in order to determine annual, semi-annual and secular trends of the Red and Arab Sea variations. Finally, the so-derived trends and MSL are combined with local gravity observations at the TG BMs, levelling offsets between the TGs and the network BMs, levelling observations between the network BMs themselves and GOCE-based EGM-derived geoid heights and potential values. The validation of GOCE contribution and of the satellite altimetry derived MSL and trends is based on a simultaneous adjustment of the entire KSA

  20. Airborne laser altimetry and multispectral imagery for modeling Golden-cheeked Warbler (Setophaga chrysoparia) density

    Treesearch

    Steven E. Sesnie; James M. Mueller; Sarah E. Lehnen; Scott M. Rowin; Jennifer L. Reidy; Frank R. Thompson

    2016-01-01

    Robust models of wildlife population size, spatial distribution, and habitat relationships are needed to more effectively monitor endangered species and prioritize habitat conservation efforts. Remotely sensed data such as airborne laser altimetry (LiDAR) and digital color infrared (CIR) aerial photography combined with well-designed field studies can help fill these...

  1. Temporal changes in surface roughness around 88°S from repeat high-resolution Airborne Topographic Mapper laser altimetry

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Medley, B.; Casey, K.; Neumann, T.

    2017-12-01

    The southern convergence of all ICESat-2 and CryoSat-2 tracks at 88°S is in a region of relatively low accumulation and surface slope making it ideal for satellite altimetry calibration and validation. In order to evaluate the stability and surface characteristics of the area we have analyzed repeat airborne laser altimetry measurements acquired around 88°S during 2014 and 2016 by NASA's Airborne Topographic Mapper (ATM) as part of Operation IceBridge. ATM is a conical scanner that operates at a wavelength of 532 nm, with a footprint of 1 meter and a 250-m-wide swath on the ground. The ATM Level 2 ICESSN data product includes slope and roughness estimates in 80 m × 80 m platelets across the swath. The mean surface roughness around 88°S for the 2014 data is 9.4 ± 2.0 cm, with the repeat flights in 2016 showing 8.6 ± 2.8 cm. The 2014 data reveals several areas where surface roughness doubles over very short spatial scales of only a few hundred meters. These features are several tens of km wide and appear to be oriented parallel to the main sastrugi direction visible in ATM spot elevation data and Digital Mapping System (DMS) visual imagery collected simultaneously. The rougher surface features are also present in the CReSIS snow radar data collected at the same time. These areas of increased surface roughness disappear in 2016 or seem to be significantly reduced in amplitude with the sharpness of the edges significantly reduced. The combination of simultaneous altimetry, snow radar and visual imagery on a regional scale provides a unique data set to study small scale deposition and erosional processes and their temporal variability. Our long-term goal is to quantify the spatial variability in snow accumulation rates south of 86°S in support of past, current and future altimetry measurements and surface mass balance model evaluation.

  2. Geoscience Laser Altimetry System (GLAS) Loop Heat Pipe Anomaly and On Orbit Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Grob, Eric; Jester, Peggy

    2011-01-01

    The Geoscience Laser Altimetry System (GLAS) is the sole instrument on the ICESat Satellite. On day 230 of 2003, the GLAS Component Loop Heat Pipe (CLHP) entered a slow circulation mode that resulted in the main electronics box reaching its hot safing temperature, after which the entire instrument was turned off. The CLHP had a propylene working fluid and was actively temperature controlled via a heater on the compensation chamber. The slow circulation mode happened right after a planned propulsive yaw maneuver with the spacecraft. It took several days to recover the CLHP and ensure that it was still operational. The recovery occurred after the entire instrument was cooled to survival temperatures and the CLHP compensation chamber cycled on a survival heater. There are several theories as to why this slow circulation mode exhibited itself, including: accumulation of Non-Condensible Gas (NCG), the secondary wick being under designed or improperly implemented, or an expanded (post-launch) leak across the primary wick. Each of these is discussed in turn, and the secondary wick performance is identified as the most likely source of the anomalous behavior. After the anomaly, the CLHP was controlled to colder temperatures to improve its performance (as the surface tension increases with lower temperature, as does the volume of liquid in the compensation chamber) and only precursor pulses occurred later in the mission. After GLAS s last laser failed, in late 2009, a decision was made to conduct engineering tests of both LHPs to try and duplicate this flight anomaly. The engineering tests consisted of control setpoint changes, sink changes, and one similar propulsive Yaw maneuver. The only test that showed any similar anomaly precursors on the CLHP was the propulsive maneuver followed by a setpoint increase. The ICESat Satellite was placed in a decaying orbit and ended its mission on August 30, 2010 in Barents Sea.

  3. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  4. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  5. Sea level budget in the Arctic during the satellite altimetry era

    NASA Astrophysics Data System (ADS)

    Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro

    2016-04-01

    Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.

  6. Detailed gravity anomalies from Geos 3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1979-01-01

    Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.

  7. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  8. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves

    NASA Technical Reports Server (NTRS)

    Song, Tony Y.; Ji, Chen; Fu, L. -L.; Zlotnicki, Victor; Shum, C. K.; Yi, Yuchan; Hjorleifsdottir, Vala

    2005-01-01

    The 26 December 2004 Indian Ocean tsunami was the first earthquake tsunami of its magnitude to occur since the advent of both digital seismometry and satellite radar altimetry. Both have independently recorded the event from different physical aspects. The seismic data has then been used to estimate the earthquake fault parameters, and a three-dimensional ocean-general-circulation-model (OGCM) coupled with the fault information has been used to simulate the satellite-observed tsunami waves. Here we show that these two datasets consistently provide the tsunami source using independent methodologies of seismic waveform inversion and ocean modeling. Cross-examining the two independent results confirms that the slip function is the most important condition controlling the tsunami strength, while the geometry and the rupture velocity of the tectonic plane determine the spatial patterns of the tsunami.

  9. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    NASA Astrophysics Data System (ADS)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  10. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  11. Prospects for altimetry and scatterometry in the 90's. [satellite oceanography

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.

    1985-01-01

    Current NASA plans for altimetry and scatterometry of the oceans using spaceborne instrumentation are outlined. The data of interest covers geostrophic and wind-driven circulation, heat content, the horizontal heat flux of the ocean, and the interactions between atmosphere and ocean and ocean and climate. A proposed TOPEX satellite is to be launched in 1991, carrying a radar altimeter to measure the ocean surface topography. Employing dual-wavelength operation would furnish ionospheric correction data. Multibeam instruments could also be flown on the multiple-instrument polar orbiting platforms comprising the Earth Observation System. A microwave radar scatterometer, which functions on the basis of Bragg scattering of microwave energy off of wavelets, would operate at various view angles and furnish wind speeds accurate to 1.5 m/sec and directions accurate to 20 deg.

  12. Studies of oceanic tectonics based on GEOS-3 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.

    1979-01-01

    Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.

  13. Evaluation of Aster Gdem v3 Using Icesat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.-P.

    2016-06-01

    We have used a set of Ground Control Points (GCPs) derived from altimetry measurements from the Ice, Cloud and land Elevation Satellite (ICESat) to evaluate the quality of the 30 m posting ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (GDEM) V3 elevation products produced by NASA/METI for Greenland and Antarctica. These data represent the highest quality globally distributed altimetry measurements that can be used for geodetic ground control, selected by applying rigorous editing criteria, useful at high latitudes, where other topographic control is scarce. Even if large outliers still remain in all ASTER GDEM V3 data for both, Greenland and Antarctica, they are significantly reduced when editing ASTER by number of scenes (N≥5) included in the elevation processing. For 667,354 GCPs in Greenland, differences show a mean of 13.74 m, a median of -6.37 m, with an RMSE of 109.65 m. For Antarctica, 6,976,703 GCPs show a mean of 0.41 m, with a median of -4.66 m, and a 54.85 m RMSE, displaying smaller means, similar medians, and less scatter than GDEM V2. Mean and median differences between ASTER and ICESat are lower than 10 m, and RMSEs lower than 10 m for Greenland, and 20 m for Antarctica when only 9 to 31 scenes are included.

  14. Predicted Deepwater Bathymetry from Satellite Altimetry: Non-Fourier Transform Alternatives

    NASA Astrophysics Data System (ADS)

    Salazar, M.; Elmore, P. A.

    2017-12-01

    Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb's phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of the step and saw-tooth functions and resulted in lower RMS error with fewer coefficients. This investigation, thus, examined the feasibility of utilizing sparser base functions such as the Mexican Hat Wavelet, which is local in space, to first calculate the gravitational potential, and then relate it to sea-floor topography.

  15. Bottom Pressure Tides Along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Byrne, Deidre A.

    2010-01-01

    Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.

  16. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  17. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    NASA Astrophysics Data System (ADS)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  18. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and

  19. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-07-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. In the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution and the development of Argo were essential to the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and

  20. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  1. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    NASA Astrophysics Data System (ADS)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  2. Sea level variations during rapid changing Arctic Ocean from tide gauge and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Du, Ling; Xu, Daohuan

    2016-04-01

    Sea level variations can introduce the useful information under the circumstance of the rapid changing Arctic. Based on tide gauge records and the satellite altimetry data in the Arctic Ocean, the sea level variations in the 20th century are analyzed with the stochastic dynamic method. The average secular trend of the sea level record is about 1 mm/yr, which is smaller than the global mean cited by the IPCC climate assessment report. The secular trend in the coastal region differs from that in the deep water. After the mid-1970s, a weak acceleration of sea level rise is found along the coasts of the Siberian and Aleutian Islands. Analysis of synchronous TOPEX/Poseidon altimetry data indicates that the amplitude of the seasonal variation is less than that of the inter-annual variation, whose periods vary from 4.7 to 6 years. This relationship is different from that in the mid-latitudes. The climate indices are the pre-cursors of the sea level variations on multi-temporal scales. The model results show that while steric effects contribute significantly to the seasonal variation, the influence of atmospheric wind forcing is an important factor of sea level during ice free region.

  3. Radar altimetry systems cost analysis

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Heuring, F. T.; Denman, W. F.

    1976-01-01

    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible.

  4. Basic Radar Altimetry Toolbox and Radar Altimetry Tutorial: Tools for all Altimetry Users

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Benveniste, J.; Breebaart, L.; Bronner, E.; Dinardo, S.; Earith, D.; Lucas, B. M.; Maheu, C.; Niejmeier, S.; Picot, N.

    2013-09-01

    The Basic Radar Altimetry Toolbox is an "all- altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the next mission to be launched, Saral.It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. Nearly 2000 people downloaded it (January 2012), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2 to 4. Others are under development, some are in discussion for the future.The Basic Radar Altimetry Toolbox is able:- to read most distributed radar altimetry data, including the one from future missions like Saral, Jason-3- to perform some processing, data editing and statistic, - and to visualize the results.It can be used at several levels/several ways, including as an educational tool, with the graphical user interface.As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data.BRAT is developed under contract with ESA and CNES. It is available at http://www.altimetry.info and http://earth.esa.int/brat/It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. More than 2000 people downloaded it (as of end of September 2012), with many "newcomers" to altimetry among them, and teachers/students. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been

  5. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    NASA Astrophysics Data System (ADS)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  6. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.

  7. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  8. Laser Communication Experiments with Artemis Satellite

    NASA Astrophysics Data System (ADS)

    Kuzkov, Sergii; Sodnik, Zoran; Kuzkov, Volodymyr

    2013-10-01

    In November 2001, the European Space Agency (ESA) established the world-first inter-satellite laser communication link between the geostationary ARTEMIS satellite and the low Earth orbiting (LEO) SPOT-4 Earth observation satellite, demonstrating data rates of 50 Mbps. In 2006, the Japanese Space Agency launched the KIRARI (OICETS) LEO satellite with a compatible laser communication terminal and bidirectional laser communication links (50 Mbps and 2 Mbps) were successfully realized between KIRARI and ARTEMIS. ESA is now developing the European Data Relay Satellite (EDRS) system, which will use laser communication technology to transmit data between the Sentinel 1 and 2 satellites in LEO to two geostationary satellites (EDRS-A and EDRS-C) at data rates of 1.8 Gbps. As the data handling capabilities of state-of-the-art telecommunication satellites in GEO increase so is the demand for the feeder-link bandwidth to be transmitted from ground. This is why there is an increasing interest in developing high bandwidth ground-to-space laser communication systems working through atmosphere. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system for its 0.7m AZT-2 telescope, located in Kyiv, Ukraine. The work was supported by the National Space Agency of Ukraine and by ESA. MAO developed a highly accurate computerized tracking system for AZT-2 telescope and a compact laser communication package called LACES (Laser Atmosphere and Communication Experiments with Satellites). The LACES instrument includes a camera of the pointing and tracking subsystems, a receiver module, a laser transmitter module, a tip/tilt atmospheric turbulence compensation subsystem, a bit error rate tester module and other optical and electronic components. The principal subsystems are mounted on a platform, which is located at the Cassegrain focus of the AZT-2 telescope. All systems were tested with the laser communication payload on-board ARTEMIS and

  9. Impact of the Combination of GNSS and Altimetry Data on the Derived Global Ionosphere Maps

    NASA Astrophysics Data System (ADS)

    Todorova, S.; Schuh, H.; Hobiger, T.; Hernandez-Pajares, M.

    2007-05-01

    The classical input data for development of Global Ionosphere Maps (GIM) of the Total Electron Content (TEC) is the so called "geometry free linear combination", obtained from the dual-frequency Global Navigation Satellite System (GNSS) observations. Such maps in general achieve good quality of the ionosphere representation. However, the GNSS stations are inhomogeneously distributed, with large gaps particularly over the sea surface, which lowers the precision of the GIM over these areas. On the other hand, the dual-frequency satellite altimetry missions such as Jason-1 and TOPEX/Poseidon provide information about the parameter of the ionosphere precisely above the sea surface, where the altimetry observations are preformed. Due to the limited spread of the measurements and some open issues related to systematic errors, the ionospheric data from satellite altimetry is used only for cross-validation of the GNSS GIM. It can be anticipated however, that some specifics of the ionosphere parameter derived by satellite altimetry will partly balance the inhomogeneity of the GNSS data. Such important features are complementing in the global resolution, different biasing and the absence of additional mapping, as it is the case in GNSS. In this study we create two-hourly GIM from GNSS data and additionally introduce satellite altimetry observations, which help to compensate the insufficient GNSS coverage of the oceans. The combination of the data from around 180 GNSS stations and the satellite altimetry mission Jason-1 is performed on the normal equation level. The comparison between the integrated ionosphere models and the GNSS-only maps shows a higher accuracy of the combined GIM over the seas. A further effect of the combination is that the method allows the independent estimation of daily values of the Differential Code Biases (DCB) for all GNSS satellites and receivers, and of the systematic errors affecting the altimetry measurements. Such errors should include a

  10. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100m

  11. Laser Geodynamics Satellite (LAGEOS)

    NASA Image and Video Library

    2016-05-04

    This 1975 NASA video highlights the development of LAser GEOdynamics Satellite (LAGEOS I) developed at NASA's Marshall Space Flight Center in Huntsville, Alabama. LAGEOS I is a passive satellite constructed from brass and aluminum and contains 426 individual precision reflectors made from fused silica glass. The mirrored surface of the satellite was designed to reflect laser beams from ground stations for accurate ranging measurements. LAGEOS I was launched on May 4, 1976 from Vandenberg Air Force Base, California. The two-foot diameter, 900-pound satellite orbited the Earth from pole to pole, measuring the movements of the Earth's surface relative to earthquakes, continental drift, and other geophysical phenomena. Scientists at NASA's Marshall Space Flight Center in Huntsville, Alabama came up with the idea for the satellite and built it at the Marshall Center.

  12. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-05-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a data set containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data were randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency (Ens) of 0.68. When the MGB discharge uncertainties were less than 5%, the Ens value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an Ens value of 0.71 for the validation samples (and 0.77 for calibration). The Ens values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission-dependent, and the Ens value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at crossovers. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated

  13. Global determination of rating curves in the Amazon basin from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach

  14. Twenty Years of Progress on Global Ocean Tide: The Impact of Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Egbert, Gary D.; Ray, Richard D.

    2013-09-01

    At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean tides were properly viewed as a source of noise-tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by tides, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of tides has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period tides; non-linear tides in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal tide conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal tides, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal tides. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the sub-mesoscale with SWOT, which will require correction for internal tides) may bring us full circle, again pushing

  15. Twenty Years of Progress on Global Ocean Tides: The Impact of Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Egbert, Gary; Ray, Richard

    2012-01-01

    At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean tides were properly viewed as a source of noise--tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by tides, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of tides has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period tides; non-linear tides in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal tide conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal tides, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal tides. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the submesoscale with SWOT, which will require correction for internal tides) may bring us full circle, again pushing

  16. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  17. Satellite and Instrument Influences on ICESat Waveforms

    NASA Astrophysics Data System (ADS)

    Webb, C. E.; Urban, T. J.; Neuenschwander, A. L.; Gutierrez, R.; Schutz, B. E.

    2007-12-01

    The White Sands Space Harbor (WSSH) has served as the principal ground calibration site throughout the Ice, Cloud and land Elevation Satellite (ICESat) mission. The Center for Space Research (CSR) at the University of Texas at Austin continues to conduct various experiments designed to validate the timing, geolocation and geometric characteristics of individual laser footprints on the surface. In addition, two airborne lidar surveys of the calibration site and surrounding area were conducted during the mission, first in 2003 and again in 2007. Chosen for its limited surface roughness and topographic flatness, this area has been targeted 3-4 times in each of the 12 ICESat mapping campaigns to date, yielding a significant altimetry data set. The derived surface elevations are compared with those from the airborne lidar surveys, as well as those obtained by the Shuttle Radar Topography Mission (SRTM). Furthermore, the Geoscience Laser Altimetry System (GLAS) onboard ICESat records a digitized waveform for each laser pulse returned from the surface. The two methods currently used to fit such signals in ICESat data processing are examined and compared for the WSSH waveforms. The first fits up to two distinct Gaussians and provides a surface elevation at the location of the maximum peak. The second fits up to six overlapping Gaussians and provides a surface elevation at the centroid of the pulse. Observed differences in the reported elevations are discussed in terms of the satellite's off-nadir targeting geometry, the laser energy, and the skewness of the returned waveforms.

  18. Assessing the Controversy between Altimetry, Radiometry, and Scatterometry: Satellite Observation Requirements for Trends in Extreme Winds and Waves

    NASA Astrophysics Data System (ADS)

    Keefer, J.; Bourassa, M. A.

    2014-12-01

    A recent study (Young et al. 2011) investigated recent global trends in mean and extreme (90th- and 99th-percentile) wind speed and wave height. Wentz and Ricciardulli (2011) have criticized the study, citing the methodology solely employing data collected from a series of altimetry missions and lack of adequate verification of the results. An earlier study (Wentz et al. 2007) had differing results using data from microwave radiometers and scatterometers. This study serves as a response to these studies, employing a similar methodology but with a different set of data. Data collected from the QuikSCAT and ADEOS-2 SeaWinds scatterometers, SSMI(S), and TOPEX/POSEIDON and JASON-1 altimetry missions are used to calculate trends in the mean, 90th-, and 99th-percentile wind speed and wave height over the period 1999—2009. Linear regression analyses from the satellite missions are verified against regression analyses of data from the ERA-Interim reanalysis dataset. Temporal sampling presents the most critical consideration in the study. The scatterometers have a much greater independent temporal sampling (about 1.5 observations per day per satellite) than the altimeters (about 1 observation per 10 days). With this consideration, the satellite data are also used to sample the wind speeds in the ERA-Interim dataset. That portion of the study indicates the sampling requirements needed to accurately estimate the trends in the ERA-Interim reanalysis. Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233-235. Wentz, F.J. and L. Ricciardulli, 2011: Comment on "Global trends in wind speed and wave height." Science, 334, 905. Young, I.R., S. Zieger, and A.V. Babanin, 2011a: Global trends in wind speed and wave height. Science, 332, 451-455.

  19. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  20. ERS-ENVISAT radar altimetry over the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos da Silva, J.; Calmant, S.; Rotunno Filho, O. C.; Seyler, F.; Mansur, W. J.; Cochonneau, G.

    2009-12-01

    Since the launch of satellite embarking radar altimeters in the late 80’s, scientists have investigated the feasibility of using these ocean-dedicated data over the continental waters. In fact, satellite radar altimetry is being recognized as a powerful tool to obtain time series of water stage consistent to those obtained by conventional in situ gauge stations. In addition, this technology has been proved to provide reliable information about the dynamics of large water bodies such as lakes and inner seas. However, the results should be deeply examined as we shift the analysis to water levels acquired during satellite crosses over rivers. Yet, hydrologists are still reluctant in using these data, as neither the neces¬sary time sampling nor accuracy is achieved, leading to endless debates in specialized workshops. Noteworthy to highlight, few published studies are dedicated to an in depth assessment of the radar altimetry over rivers, in¬cluding comparisons with water levels at fluviometric gauges. In this work, we present an extensive analysis of the quality of times series of river stages that we have constructed in the Amazon basin for a variety of water bodies such as large rivers, narrow stems, lakes and flooded areas using radar altimeters embarked on¬board ERS-2 and ENVISAT. The approach includes the sensitivity to the raw data processing methodology such as the tracking algorithm, the data selection at the crossings between satellite track and river bed (so-called virtual stations) and correction for off-nadir effects. The VALS toolbox was developed to process altimetry data at virtual stations under the framework of this study. Results of internal validation at cross-overs and external validation by comparison with in situ gauges are presented.

  1. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    NASA Astrophysics Data System (ADS)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  2. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry

    NASA Astrophysics Data System (ADS)

    Slater, Thomas; Shepherd, Andrew; McMillan, Malcolm; Muir, Alan; Gilbert, Lin; Hogg, Anna E.; Konrad, Hannes; Parrinello, Tommaso

    2018-05-01

    We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m - a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.

  3. Sea level forecasts for Pacific Islands based on Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Merrifield, M. A.; Thompson, P. R.; Widlansky, M. J.; Marra, J. J.

    2017-12-01

    Coastal flooding at tropical Pacific Islands often occurs when positive sea level anomalies coincide with high tides. To help mitigate this risk, a forecast tool for daily-averaged sea level anomalies is developed that can be added to predicted tides at tropical Pacific Island sites. The forecast takes advantage of the observed westward propagation that sea level anomalies exhibit over a range of time scales. The daily near-real time altimetry gridded data from Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) is used to specify upstream sea level at each site, with lead times computed based on mode-one baroclinic Rossby wave speeds. To validate the forecast, hindcasts are compared to tide gauge and nearby AVISO gridded time series. The forecast skills exceed persistence at most stations out to a month or more lead time. The skill is highest at stations where eddy variability is relatively weak. The impacts on the forecasts due to varying propagation speed, decay time, and smoothing of the AVISO data are examined. In addition, the inclusion of forecast winds in a forced wave equation is compared to the freely propagating results. Case studies are presented for seasonally high tide events throughout the Pacific Island region.

  4. Improved Estimates of Temporally Coherent Internal Tides and Energy Fluxes from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    Satellite altimetry has opened a surprising new avenue to observing internal tides in the open ocean. The tidal surface signatures are very small, a few cm at most, but in many areas they are robust, owing to averaging over many years. By employing a simplified two dimensional wave fitting to the surface elevations in combination with climatological hydrography to define the relation between the surface height and the current and pressure at depth, we may obtain rough estimates of internal tide energy fluxes. Initial results near Hawaii with Topex/Poseidon (T/P) data show good agreement with detailed 3D (three dimensional) numerical models, but the altimeter picture is somewhat blurred owing to the widely spaced T/P tracks. The resolution may be enhanced somewhat by using data from the ERS-1 (ESA (European Space Agency) Remote Sensing) and ERS-2 satellite altimeters. The ERS satellite tracks are much more closely spaced (0.72 deg longitude vs. 2.83 deg for T/P), but the tidal estimates are less accurate than those for T/P. All altimeter estimates are also severely affected by noise in regions of high mesoscale variability, and we have obtained some success in reducing this contamination by employing a prior correction for mesoscale variability based on ten day detailed sea surface height maps developed by Le Traon and colleagues. These improvements allow us to more clearly define the internal tide surface field and the corresponding energy fluxes. Results from throughout the global ocean will be presented.

  5. Aviso: altimetry products & services in 2013

    NASA Astrophysics Data System (ADS)

    Mertz, F.; Bronner, E.; Rosmorduc, V.; Maheu, C.

    2013-12-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - a wide range of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies, gridded datasets and indicators such as MSL index or ENSO index. - a wide range of applications in the oceanographic community: ocean observation, biology, climate, ... - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 has seen major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  6. Basic Radar Altimetry Toolbox: tools to teach altimetry for ocean

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Benveniste, Jerome; Bronner, Emilie; Niemeijer, Sander; Lucas, Bruno Manuel; Dinardo, Salvatore

    2013-04-01

    The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data, including the next mission to be launched, CryoSat. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. More than 2000 people downloaded it (January 2013), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been added and/or improved in version 2 and 3. Others are in discussion for the future, including addition of the future Sentinel-3. The Basic Radar Altimetry Toolbox is able: - to read most distributed radar altimetry data, including the one from future missions like Saral, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways, including as an educational tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. Example from education uses will be presented, and feedback from those who used it as such will be most welcome. BRAT is developed under contract with ESA and CNES. It is available at http://www.altimetry.info and http://earth.esa.int/brat/

  7. Recovery of the Three-Gorges Reservoir Impoundment Signal from ICESat altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.; Luthcke, S. B.; Harding, D. J.; Rowlands, D. D.; Lemoine, F. G.

    2006-12-01

    The Three Gorges Dam along the Yangtze River in China is one of the largest dams in the world. The water impoundment of the Three-Gorges Reservoir started in June 2003, and the volume of water will continuously increase up to about 40 km3 in 2009, over a length of about 600 km. Although water-level changes along the Yangtze River and the Three Gorges Reservoir are measured by in situ water gauges, access to these data can be quite difficult. Estimates of inland water height and extent can also be recovered from altimetry measurements performed from satellite platforms, such as those acquired by the Geoscience laser Altimetry System (GLAS) on board the Ice, Cloud and Land Elevation Satellite (ICESat). ICESat has produced a comprehensive, highly precise, set of along-track elevation measurements, every three months since its launch in 2003, which intersect the Yangtze River along its East-West extent. In addition, the water impoundment of major artificial reservoirs induces variations of global geodetic quantities, such as the gravity field and Earth rotation (Chao, 1995, Boy & Chao, 2002). Water level changes within the reservoir are compared to GRACE (Gravity Recovery And Climate Experiment) recovered water mass changes. In addition, we compare the GRACE observations of mass change in the Yangtze region to hydrological changes computed from different global soil-moisture and snow models, such as GLDAS (Global Land Data Assimilation System).

  8. Application of satellite radar altimetry for near-real time monitoring of floods

    NASA Astrophysics Data System (ADS)

    Lee, H.; Calmant, S.; Shum, C.; Kim, J.; Huang, Z.; Bettadpur, S. V.; Alsdorf, D. E.

    2011-12-01

    According to the 2004 UNESCO World Disasters Report, it is estimated that flooding affected 116 million people globally, causing about 7000 deaths and leading to $7.5 billion in losses. The report also indicates that flood is the most frequently occurring disaster type among all other natural disasters. Hence, timely monitoring of changing of river, wetland and lake/reservoir levels is important to support disaster monitoring and proper response. Yet, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water discharge and storage changes globally. Although satellite radar altimetry has been successfully used to observe water height changes over rivers, lakes, reservoirs, and wetlands, there have been few studies for near-real time monitoring of floods mainly due to its limited spatial and temporal sampling of surface water elevations. In this study, we monitor flood by examining its spatial and temporal origin of the flooding and its timely propagation using multiple altimeter-river intersections over the entire hydrologic basin. We apply our method to the Amazon 2009 flood event that caused the most severe flooding in more than two decades. We also compare our results with inundated areas estimated from ALOS PALSAR ScanSAR measurements and GRACE 15-day Quick-Look (QL) gravity field data product. Our developed method would potentially enhance the capability of satellite altimeter toward near-real time monitoring of floods and mitigating their hazards.

  9. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.; hide

    2012-01-01

    Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.

  10. Broadening our View of the MOC using Satellite Altimetry and Two Moored Arrays in the Atlantic: MOVE 16N and RAPID 26N

    NASA Astrophysics Data System (ADS)

    Duchez, A.; Frajka-Williams, E.; Lankhorst, M. J.; Koelling, J.; Send, U.

    2016-02-01

    The Atlantic meridional overturning circulation (MOC) carries heat northwards in the top 1000m of the Atlantic, with a deep, cold return flow below. Climate simulations predict a slowing of the AMOC in the coming years, while present day observations from boundary arrays demonstrate substantial variability on weekly- to interannual timescales. Using simultaneous observations from the MOVE 16N and RAPID 26N arrays in the Atlantic, we investigate transport and property variability. On long timescales, the tendencies in deep densities are similar between the two latitudes (towards lighter water in the west), resulting in a change in the thermal wind balance across the Atlantic. This tendency is punctuated by a more abrupt change in late 2009 at 26N and 7 months later at 16N. In situ arrays such as RAPID 26N and MOVE 16N provide detailed depth structure of transport variability, but are necessarily limited to individual latitudes. Using satellite altimetry, we show that the sea surface height (SSH) anomalies in the western half of the Atlantic covary with in situ transport estimates on interannual timescales. We use satellite altimetry to extend estimates of depth-integrated ocean transports back in time to 1993, then investigate how the spatial pattern of SSH variability broadens our view of Atlantic MOC structure beyond individual latitudes. This analysis investigates two decade+ long time series of ocean transports, and complements the findings with satellite observations.

  11. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  12. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical

  13. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and

  14. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    NASA Astrophysics Data System (ADS)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  15. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  16. Space-Borne Laser Altimeter Geolocation Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, J.; Ai, Y.

    2018-05-01

    This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  17. Aviso: altimetry products and services in 2013

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; Maheu, Caroline; Mertz, Françoise

    2013-04-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - A bigger choice of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies and gridded datasets and indicators such as MSL index or ENSO index. - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 will see major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  18. Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.; Cheney, R. E.

    1994-01-01

    Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.

  19. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice

  20. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  1. The first satellite laser echoes recorded on the streak camera

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.

    1993-01-01

    The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.

  2. Louisiana Wetland Monitoring Using TOPEX/POSEIDON Altimetry

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Lee, H.; Ibaraki, M.; Shum, C.

    2006-12-01

    Conventional satellite radar altimetry is designed to observe ocean topography and significant technological advance has enabled our capability to measure sea level change, ice sheet elevation and sea ice freeboard height changes, hydrologic changes for large inland lake and rivers, and potentially land deformation. Wide- swath altimetry or interferometric altimetry onboard proposed and planned platforms are anticipated to significantly improve the spatial resolution of observations over ocean, land water, and ice surfaces. Coastal estuaries and wetlands play important roles in ecological environments. They not only provide habitat for thousands of aquatic/terrestrial plant and animal species but also control floods and storm surges by absorbing and reducing the velocity of storm water. Regional measurement of wetland water level changes from space is essential for hydrological studies. To our knowledge, there have been no reported successful attempts to use Ku-band altimetry for this purpose, especially over wetlands with seasonally varying vegetations. Here we demonstrate the use of the pulsed-limited radar altimeter (TOPEX), for the potential monitoring of wetland water level changes. The specific study regions are over the vegetated wetland in Louisiana. In addition to the retracking of Ku-band radar waveforms and generate a water level change time series over Louisiana wetland, we study the effect of media corrections, including the ionosphere and wet troposphere delays which are largely not applied for inland hydrological studies using altimetry. We find that most of the TOPEX waveform responses over the study region are specular or narrow-peaked, and we have tested various retrackers including the conventional OCOG, threshold, and the modified threshold algorithms which result in a decadal (1992-2002) height time series over several specific regions of the Louisiana wetland. It is found that the use of various corrections including wet troposphere delays

  3. Mass loss of the Greenland peripheral glaciers and ice caps from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Wouters, Bert; Noël, Brice; Moholdt, Geir; Ligtenberg, Stefan; van den Broeke, Michiel

    2017-04-01

    At its rapidly warming margins, the Greenland Ice Sheet is surrounded by (semi-)detached glaciers and ice caps (GIC). Although they cover only roughly 5% of the total glaciated area in the region, they are estimated to account for 15-20% of the total sea level rise contribution of Greenland. The spatial and temporal evolution of the mass changes of the peripheral GICs, however, remains poorly constrained. In this presentation, we use satellite altimetry from ICESat and Cryosat-2 combined with a high-resolution regional climate model to derive a 14 year time series (2003-2016) of regional elevation and mass changes. The total mass loss has been relatively constant during this period, but regionally, the GICs show marked temporal variations. Whereas thinning was concentrated along the eastern margin during 2003-2009, western GICs became the prime sea level rise contributors in recent years. Mass loss in the northern region has been steadily increasing throughout the record, due to a strong atmospheric warning and a deterioration of the capacity of the firn layer to buffer the resulting melt water.

  4. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  5. Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J.

    1994-12-01

    Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.

  6. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, Jean-Damien; Boy, F.; Sottolichio, A.; Valle-Levinson, A.

    2017-01-01

    For at least 20 years, nadir altimetry satellite missions have been successfully used to first monitor the surface elevation of oceans and, shortly after, of large rivers and lakes. For the last 5-10 years, few studies have demonstrated the possibility to also observe smaller water bodies than previously thought feasible (river smaller than 500 m wide and lake below 10 km2). The present study aims at quantifying the nadir altimetry performance over a medium river (200 m or lower wide) with a pluvio-nival regime in a temperate climate (the Garonne River, France). Three altimetry missions have been considered: ENVISAT (from 2002 to 2010), Jason-2 (from 2008 to 2014) and SARAL (from 2013 to 2014). Compared to nearby in situ gages, ENVISAT and Jason-2 observations over the lower Garonne River mainstream (110 km upstream of the estuary) have the smallest errors, with water elevation anomalies root mean square errors (RMSE) around 50 cm and 20 cm, respectively. The few ENVISAT upstream measurements have RMSE ranging from 80 cm to 160 cm. Over the estuary, ENVISAT and SARAL water elevation anomalies RMSE are around 30 cm and 10 cm, respectively. The most recent altimetry mission, SARAL, does not provide river elevation measurements for most satellite overflights of the river mainstream. The altimeter remains "locked" on the top of surrounding hilly areas and does not observe the steep-sided river valley, which could be 50-100 m lower. This phenomenon is also observed, for fewer dates, on Jason-2 and ENVISAT measurements. In these cases, the measurement is not "erroneous", it just does not correspond to water elevation of the river that is covered by the satellite. ENVISAT is less prone to get 'locked' on the top of the topography due to some differences in the instrument measurement parameters, trading lower accuracy for more useful measurements. Such problems are specific to continental surfaces (or near the coasts), but are not observed over the open oceans, which are

  7. Basic Radar Altimetry Toolbox: Tools to Use Radar Altimetry for Geodesy

    NASA Astrophysics Data System (ADS)

    Rosmorduc, V.; Benveniste, J. J.; Bronner, E.; Niejmeier, S.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications and uses. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for geodesy, especially combined witht ESA GOCE mission data is still somehow hard. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed (as well as, on ESA side, the GOCE User Toolbox, both being linked). The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them. Users' feedbacks, developments in altimetry, and practice, showed that new interesting features could be added. Some have been

  8. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  9. Somali current studied from SEASAT altimetry

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Minster, J. F.; Zlotnicki, V.; Balmino, G.

    1984-01-01

    Mesoscale variability has been obtained for the world ocean from satellite altimetry by using the repetitive tracks data of SEASAT. No significant results were obtained for the Somali current area for two main reasons: the repetitive tracks are too sparse to cover the expected eddy pattern and these data were obtained in late September and early October when the current is strongly decaying. The non-repetitive period of SEASAT offers the possibility to study a dozen of tracks parallel to the eddy axis or crossing it. These are used here to deduce the dynamic topography of the Somali current. Data error reduction and tide and orbit corrections are addressed. A local geoid was built using a collocation inverse method to combine surface gravity data and altimetry: the repetitive tracks show no variability (which confirms that the current is quasi-inexistent at that time) and can be used as data for the local geoid. This should provide a measure of the absolute dynamic topography of the Somali current.

  10. LARES Laser Relativity Satellite

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; et al.

    2011-05-01

    After almost three decades since the first idea of launching a passive satellite to measure gravitomagnetism, launch of LARES satellite is approaching. The new developed VEGA launcher will carry LARES in a nominally circular orbit at 1450 km altitude. This satellite, along with the two LAGEOS satellites, will allow to improve a previous measurement of the Lense-Thirring effect by a factor of 10. This important achievement will be a result of the idea of combining orbital parameters of a constellation of laser ranging satellites along with a specific design of LARES satellite. Other key points of the experiment are: the ever improving knowledge of the gravitational field of Earth, in particular the lower degree even zonal harmonics with GRACE satellites, and an accurate estimate of all the classical perturbations such as atmospheric drag and solar radiation pressure. In the paper both the scientific aspects as well as the design consideration will be described

  11. Water Storage Changes using Floodplain Bathymetry from InSAR and satellite altimetry in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.

    2016-12-01

    Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements

  12. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  13. Basic Radar Altimetry Toolbox: Tools and Tutorial To Use Radar Altimetry For Cryosphere

    NASA Astrophysics Data System (ADS)

    Benveniste, J. J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious, especially for new Altimetry data products users. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them, including teachers

  14. Next-generation laser retroreflectors for GNSS, solar system exploration, geodesy, gravitational physics and earth observation

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.

    2017-11-01

    The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.

  15. Tracking strategies for laser ranging to multiple satellite targets

    NASA Technical Reports Server (NTRS)

    Robbins, J. W.; Smith, D. E.; Kolenkiewicz, R.

    1994-01-01

    By the middle of the decade, several new Laser Geodynamic Satellites will be launched to join the current constellation comprised of the laser geodynamic satellite (LAGEOS) (US), Starlette (France), Ajisai (Japan), and Etalon I and II (USSR). The satellites to be launched, LAGEOS II and III (US & Italy), and Stella (France), will be injected into orbits that differ from the existing constellation so that geodetic and gravimetric quantities are sampled to enhance their resolution and accuracy. An examination of various possible tracking strategies adopted by the network of laser tracking stations has revealed that the recovery of precise geodetic parameters can be obtained over shorter intervals than is currently obtainable with the present constellation of satellites. This is particularly important in the planning of mobile laser tracking operations, given a network of permanently operating tracking sites. Through simulations, it is shown that laser tracking of certain satellite passes, pre-selected to provide optimal sky-coverage, provides the means to acquire a sufficient amount of data to allow the recovery of 1 cm station positions.

  16. Laser technology for high precision satellite tracking

    NASA Technical Reports Server (NTRS)

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  17. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  18. Monitoring River Water Levels from Space: Quality Assessment of 20 Years of Satellite Altimetry Data

    NASA Astrophysics Data System (ADS)

    Bercher, Nicolas; Kosuth, Pascal

    2013-09-01

    This paper presents the results of 20 years of validation of altimetry data for the monitoring of river water levels using a standardized method. The method was initially developed by Cemagref (2006-2011, [5, 6, 3]), now Irste ´a, its implementation is now pursued at LEGOS.Our initial statement was: "what if someone1 wants to use satellite measurements of river water levels ?" The obvious question that comes to mind is "what the quality of the data ?". Moreover, there's also a need - a demand from data producers, to monitor products quality in a standardized fashion.We addressed such questions and have developped a method to assess the quality of, so called, "Alti-Hydro Products". The method was implemented for the following Alti-Hydro products (and automatically derived from a L2 product*) : AVISO* (Topex/Poseidon, Jason-2), CASH project (Topex/Poseidon), HydroWeb (Topex/Poseidon, ENVISAT), River & Lake Hydrology (ERS-2, ENVISAT) and PISTACH* (Jason-2).

  19. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  20. Use of surface drifters to increase resolution and accuracy of oceanic geostrophic circulation mapped from satellite only (altimetry and gravimetry)

    NASA Astrophysics Data System (ADS)

    Mulet, Sandrine; Rio, Marie-Hélène; Etienne, Hélène

    2017-04-01

    Strong improvements have been made in our knowledge of the surface ocean geostrophic circulation thanks to satellite observations. For instance, the use of the latest GOCE (Gravity field and steady-state Ocean Circulation Explorer) geoid model with altimetry data gives good estimate of the mean oceanic circulation at spatial scales down to 125 km. However, surface drifters are essential to resolve smaller scales, it is thus mandatory to carefully process drifter data and then to combine these different data sources. In this framework, the global 1/4° CNES-CLS13 Mean Dynamic Topography (MDT) and associated mean geostrophic currents have been computed (Rio et al, 2014). First a satellite only MDT was computed from altimetric and gravimetric data. Then, an important work was to pre-process drifter data to extract only the geostrophic component in order to be consistent with physical content of satellite only MDT. This step include estimate and remove of Ekman current and wind slippage. Finally drifters and satellite only MDT were combined. Similar approaches are used regionally to go further toward higher resolution, for instance in the Agulhas current or along the Brazilian coast. Also, a case study in the Gulf of Mexico intends to use drifters in the same way to improve weekly geostrophic current estimate.

  1. Current Trends in Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.

    2010-01-01

    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster

  2. Impact study of the Argo array definition in the Mediterranean Sea based on satellite altimetry gridded data

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, Antonio; Ruiz, Simón; Pascual, Ananda; Guinehut, Stéphanie; Mourre, Baptiste

    2016-04-01

    The existing Argo network provides essential data in near real time to constrain monitoring and forecasting centers and strongly complements the observations of the ocean surface from space. The comparison of Sea Level Anomalies (SLA) provided by satellite altimeters with in-situ Dynamic Heights Anomalies (DHA) derived from the temperature and salinity profiles of Argo floats contribute to better characterize the error budget associated with the altimeter observations. In this work, performed in the frame of the E-AIMS FP7 European Project, we focus on the Argo observing system in the Mediterranean Sea and its impact on SLA fields provided by satellite altimetry measurements in the basin. Namely, we focus on the sensitivity of specific SLA gridded merged products provided by AVISO in the Mediterranean to the reference depth (400 or 900 dbar) selected in the computation of the Argo Dynamic Height (DH) as an integration of the Argo T/S profiles through the water column. This reference depth will have impact on the number of valid Argo profiles and therefore on their temporal sampling and the coverage by the network used to compare with altimeter data. To compare both datasets, altimeter grids and synthetic climatologies used to compute DHA were spatially and temporally interpolated at the position and time of each in-situ Argo profile by a mapping method based on an optimal interpolation scheme. The analysis was conducted in the entire Mediterranean Sea and different sub-regions of the basin. The second part of this work is devoted to investigate which configuration in terms of spatial sampling of the Argo array in the Mediterranean will properly reproduce the mesoscale dynamics in this basin, which is comprehensively captured by new standards of specific altimeter products for this region. To do that, several Observing System Simulation Experiments (OSSEs) were conducted assuming that altimetry data computed from AVISO specific reanalysis gridded merged product for

  3. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  4. Assessment of ocean models in Mediterranean Sea against altimetry and gravimetry measurements

    NASA Astrophysics Data System (ADS)

    Fenoglio-Marc, Luciana; Uebbing, Bernd; Kusche, Jürgen

    2017-04-01

    This work aims at assessing in a regional study in the Mediterranean Sea the agreement between ocean model outputs and satellite altimetry and satellite gravity observations. Satellite sea level change are from altimeter data made available by the Sea Level Climate Change Initiative (SLCCI) and from satellite gravity data made available by GRACE. We consider two ocean simulations not assimilating satellite altimeter data and one ocean model reanalysis assimilating satellite altimetry. Ocean model simulations can provide some insight on the ocean variability, but they are affected by biases due to errors in model formulation, specification of initial states and forcing, and are not directly constrained by observations. Their trend can be quite different from the altimetric observations due to surface radiation biases, however they are physically consistent. Ocean reanalyses are the combination of ocean models, atmospheric forcing fluxes and ocean observations via data assimilation methods and have the potential to provide more accurate information than observation-only or model-only based ocean estimations. They will be closer to altimetry at long and short timescales, but assimilation may destroy mass consistency. We use two ocean simulations which are part of the Med-CORDEX initiative (https://www.medcordex.eu). The first is the CNRM-RCM4 fully-coupled Regional Climate System Model (RCMS) simulation developed at METEOFRANCE for 1980-2012. The second is the PROTHEUS standalone hindcast simulation developed at ENEA and covers the interval 1960-2012. The third model is the regional model MEDSEA_REANALYSIS_PHIS_006_004 assimilating satellite altimeter data (http://marine.copernicus.eu/) and available over 1987-2014. Comparison at basin and regional scale are made. First the steric, thermo-steric, halosteric and dynamic components output of the models are compared. Then the total sea level given by the models is compared to the altimeter observations. Finally the mass

  5. Multi-Year Elevation Changes Near the West Margin of the Greenland Ice Sheet from Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Brenner, Anita C.; Zwally, H. Jay; DiMarzio, John P.

    1991-01-01

    Mean changes in the surface elevation near the west margin of the Greenland ice sheet are measured using Seasat altimetry and altimetry from the Geosat Exact Repeat Mission (ERM). The Seasat data extend from early July through early October 1978. The ERM data extend from winter 1986-87 through fall 1988. Both seasonal and multi-year changes are measured using altimetry referenced to GEM T2 orbits. The possible effects of orbit error are minimized by adjusting the orbits into a common ocean surface. Seasonal mean changes in the surface height are recognizable during the Geosat ERM. The multi-year measurements indicate the surface was lower by 0.4 +/- 0.4 m on average in late summer 1987 than in late summer 1978. The surface was lower by 0.2 +/- 0.5 m on average in late summer 1988 than in late summer 1978. As a control case, the computations art also carried out using altimetry referenced to orbits not adjusted into a common ocean surface.

  6. Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data

    NASA Astrophysics Data System (ADS)

    Wu, I.; Chao, B. F.; Chen, Y.

    2009-12-01

    We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.

  7. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.

  8. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  9. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  10. Evaluation of a satellite laser ranging technique using pseudonoise code modulated laser diodes

    NASA Technical Reports Server (NTRS)

    Ball, Carolyn Kay

    1987-01-01

    Several types of Satellite Laser Ranging systems exist, operating with pulsed, high-energy lasers. The distance between a ground point and an orbiting satellite can be determined to within a few centimeters. A new technique substitutes pseudonoise code modulated laser diodes, which are much more compact, reliable and less costly, for the lasers now used. Since laser diode technology is only now achieving sufficiently powerful lasers, the capabilities of the new technique are investigated. Also examined are the effects of using an avalanche photodiode detector instead of a photomultiplier tube. The influence of noise terms (including background radiation, detector dark and thermal noise and speckle) that limit the system range and performance is evaluated.

  11. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    NASA Astrophysics Data System (ADS)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  12. Laser Geodynamics Satellite- B-roll footage (No Sound)

    NASA Image and Video Library

    2016-05-04

    This 1975 NASA video highlights the development of LAser GEOdynamics Satellite (LAGEOS I). LAGEOS I is a passive satellite constructed from brass and aluminum and contains 426 individual precision reflectors made from fused silica glass. The mirrored surface of the satellite was designed to reflect laser beams from ground stations for accurate ranging measurements. LAGEOS I was launched on May 4, 1976 from Vandenberg Air Force Base, California. The two-foot diameter, 900-pound satellite orbited the Earth from pole to pole, measuring the movements of the Earth's surface relative to earthquakes, continental drift, and other geophysical phenomena. Scientists at NASA's Marshall Space Flight Center in Huntsville, Alabama came up with the idea for the satellite and built it at the Marshall Center.

  13. Exploring New Challenges of High-Resolution SWOT Satellite Altimetry with a Regional Model of the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Brasseur, P.; Verron, J. A.; Djath, B.; Duran, M.; Gaultier, L.; Gourdeau, L.; Melet, A.; Molines, J. M.; Ubelmann, C.

    2014-12-01

    The upcoming high-resolution SWOT altimetry satellite will provide an unprecedented description of the ocean dynamic topography for studying sub- and meso-scale processes in the ocean. But there is still much uncertainty on the signal that will be observed. There are many scientific questions that are unresolved about the observability of altimetry at vhigh resolution and on the dynamical role of the ocean meso- and submesoscales. In addition, SWOT data will raise specific problems due to the size of the data flows. These issues will probably impact the data assimilation approaches for future scientific or operational oceanography applications. In this work, we propose to use a high-resolution numerical model of the Western Pacific Solomon Sea as a regional laboratory to explore such observability and dynamical issues, as well as new data assimilation challenges raised by SWOT. The Solomon Sea connects subtropical water masses to the equatorial ones through the low latitude western boundary currents and could potentially modulate the tropical Pacific climate. In the South Western Pacific, the Solomon Sea exhibits very intense eddy kinetic energy levels, while relatively little is known about the mesoscale and submesoscale activities in this region. The complex bathymetry of the region, complicated by the presence of narrow straits and numerous islands, raises specific challenges. So far, a Solomon sea model configuration has been set up at 1/36° resolution. Numerical simulations have been performed to explore the meso- and submesoscales dynamics. The numerical solutions which have been validated against available in situ data, show the development of small scale features, eddies, fronts and filaments. Spectral analysis reveals a behavior that is consistent with the SQG theory. There is a clear evidence of energy cascade from the small scales including the submesoscales, although those submesoscales are only partially resolved by the model. In parallel

  14. Study on feasibility of laser reflective tomography with satellite-accompany

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang

    2015-10-01

    Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.

  15. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  16. Laser beamed power - Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    Feasibility of using a ground-based laser to beam light to the solar arrays of orbiting satellites to a level sufficient to provide the operating power required is discussed. An example case of a GEO communications satellite near the end of life due to radiation damage of the solar arrays or battery failure is considered. It is concluded that the commercial satellite industry should be able to reap significant economic benefits through the use of power beaming which is capable of providing supplemental power for satellites with failing arrays, or primary power for failed batteries.

  17. Laser Experiments with ARTEMIS Satellite in Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Kuzkov, Volodymyr; Sodnik, Zoran; Kuzkov, Sergii; Caramia, Vincenzo

    2014-05-01

    In July 2001, the ARTEMIS satellite with laser communication terminal OPALE on board was launched. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. In addition ESA's Optical Ground Station (OGS) performed laser communication experiments with OPALE in various atmospheric conditions. Since the launch of ARTEMIS, the amount of information handled by geostationary telecommunication satellites has increased dramatically and so has the demand for data rate that needs to be transmitted from ground. With limited bandwidth allocations in the radio frequency bands interest has grown for laser communication feeder link technology. In this respect there is interest to compare the influence of atmosphere conditions in different atmospheric regions with respect to laser transmission. Two locations are being compared, namely ESA's OGS (located in an altitude of 2400 m above sea level) and the Main Astronomical Observatory of Ukraine (MAO) (located at an altitude of 190 m above sea level). In 2002 MAO started the development of a ground laser communication system for the AZT-2 telescope. The MAO developed compact laser communication system is called LACES (Laser Atmosphere and Communication Experiments with Satellites) [1] and the work was supported by the National Space Agency of Ukraine and by ESA. The beacon laser from OPALE was occasionally detected even in cloudy conditions and an anomalous atmospheric refraction at low elevation angles was observed. The main results of laser experiments with ARTEMIS through clouds are presented in the paper.

  18. Digital Elevation Models of Greenland based on combined radar and laser altimetry as well as high-resolution stereoscopic imagery

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sorensen, L.; Khvorostovsky, K.; Simonsen, S. B.; Forsberg, R.

    2015-12-01

    A number of Digital Elevation Models (DEMs) of Greenland exist, each of which are applicable for different purposes. This study presents two such DEMs: One developed by merging contemporary radar and laser altimeter data, and one derived from high-resolution stereoscopic imagery. All products are made freely available. The former DEM covers the entire Greenland. It is specific to the year 2010, providing it with an advantage over previous models suffering from either a reduced spatial/ temporal data coverage or errors from surface elevation changes (SEC) occurring during data acquisition. Radar data are acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation Satellite, the Land, Vegetation, and Ice Sensor, and the Airborne Topographic Mapper. Correcting radar data for errors from slope effects and surface penetration of the echoes, and merging these with laser data, yields a DEM capable of resolving both surface depressions as well as topographic features at higher altitudes. The spatial resolution is 2 x 2 km, making the DEM ideal for application in surface mass balance studies, SEC detection from radar altimetry, or for correcting such data for slope-induced errors. The other DEM is developed in a pilot study building the expertise to map all ice-free parts of Greenland. The work combines WorldView-2 and -3 as well as GeoEye1 imagery from 2014 and 2015 over the Disko, Narsaq, Tassilaq, and Zackenberg regions. The novelty of the work is the determination of the product specifications after elaborate discussions with interested parties from government institutions, the tourist industry, etc. Thus, a 10 m DEM, 1.5 m orthophotos, and vector maps are produced. This opens to the possibility of using orthophotos with up-to-date contour lines or for deriving updated coastlines to aid, e.g., emergency management. This allows for a product development directly in line with the needs of parties with specific interests in Greenland.

  19. Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter

    2016-04-01

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of

  20. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  1. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  2. Radar Altimetry for Hydrological Modeling and Monitoring in the Zambezi River Basin

    NASA Astrophysics Data System (ADS)

    Michailovsky, C. I.; Berry, P. A.; Smith, R. G.; Bauer-Gottwein, P.

    2011-12-01

    Hydrological model forecasts are subject to large uncertainties stemming from uncertain input data, model structure, parameterization and lack of sufficient calibration/validation data. For real-time or near-real-time applications data assimilation techniques such as the Ensemble Kalman Filter (EnKF) can be used to reduce forecast uncertainty by updating model states as new data becomes available. The use of remote sensing data is attractive for such applications as it provides wide geographical coverage and continuous time-series without the typically long delays that exist in obtaining in-situ data. River discharge is one of the main hydrological variables of interest, and while it cannot currently be directly measured remotely, water levels in rivers can be obtained from satellite based radar altimetry and converted to discharge through rating curves. This study aims to give a realistic assessment of the improvements that can be derived from the use of satellite radar altimetry measurements from the Envisat mission for discharge monitoring and modeling on the basin scale for the Zambezi River. The altimetry data used is the Radar AlTimetry (RAT) product developed at the Earth and Planetary Remote Sensing Laboratory at the De Montfort University. The first step in analyzing the data is the determination of potential altimetry targets which are the locations at which the Envisat orbit and the river network cross in order to select data points corresponding to surface water. The quality of the water level time-series is then analyzed for all targets and the exploitable targets identified. Rating curves are derived from in-situ or remotely-sensed data depending on data-availability at the various locations and discharge time-series are established. A Monte Carlo analysis is carried out to assess the uncertainties on the computed discharge. It was found that having a single cross-section and associated discharge measurement at one point in time significantly reduces

  3. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  4. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Bamber, Jonathan

    2016-04-01

    The Antarctic ice shelves provide buttressing to the inland grounded ice sheet, and therefore play a controlling role in regulating ice dynamics and mass imbalance. Accurate knowledge of ice shelf thickness is essential for input-output method mass balance calculations, sub-ice shelf ocean models and buttressing parameterisations in ice sheet models. Ice shelf thickness has previously been inferred from satellite altimetry elevation measurements using the assumption of hydrostatic equilibrium, as direct measurements of ice thickness do not provide the spatial coverage necessary for these applications. The sensor limitations of previous radar altimeters have led to poor data coverage and a lack of accuracy, particularly the grounding zone where a break in slope exists. We present a new ice shelf thickness dataset using four years (2011-2014) of CryoSat-2 elevation measurements, with its SARIn dual antennae mode of operation alleviating the issues affecting previous sensors. These improvements and the dense across track spacing of the satellite has resulted in ˜92% coverage of the ice shelves, with substantial improvements, for example, of over 50% across the Venable and Totten Ice Shelves in comparison to the previous dataset. Significant improvements in coverage and accuracy are also seen south of 81.5° for the Ross and Filchner-Ronne Ice Shelves. Validation of the surface elevation measurements, used to derive ice thickness, against NASA ICESat laser altimetry data shows a mean bias of less than 1 m (equivalent to less than 9 m in ice thickness) and a fourfold decrease in standard deviation in comparison to the previous continental dataset. Importantly, the most substantial improvements are found in the grounding zone. Validation of the derived thickness data has been carried out using multiple Radio Echo Sounding (RES) campaigns across the continent. Over the Amery ice shelf, where extensive RES measurements exist, the mean difference between the datasets is 3

  5. New trends in laser satellite communications: design and limitations

    NASA Astrophysics Data System (ADS)

    Císar, J.; Wilfert, O.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-11-01

    Optical communications offer a capable alternative to radio frequency (RF) communications for applications where high data-rate is required. This technology is particularly promising and challenging in the field of future inter-satellite communications. The term laser satellite communications (LSC) stands for optical links between satellites and/or high altitude platforms (HAPs). However, optical links between an earth station and a satellite or HAPs can be also involved. This work gives an overview of nowadays laser satellite communications. Particularly, it is focused on the factors causing degradation of the optical beam in the atmosphere. If an optical link passes through the atmosphere, it suffers from various influences such as attenuation due to absorption and scattering, intensity fluctuations due to atmospheric turbulence and background radiation. Furthermore, platform vibrations cause mispointing and following tracking losses. Suitable devices and used pointing and tracking system for laser satellite communications are discussed. At the end, various scenarios of the optical links and calculations of their power link budgets and limitations are designed. Implemented software is used for calculation of optical links. This work proves that the Free Space Optics (FSO) systems on mobile platforms, like satellites and HAPs are a promising solution for future communication networks.

  6. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  7. On the exploitation of optical and thermal band for river discharge estimation: synergy with radar altimetry

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Filippucci, Paolo; Brocca, Luca

    2017-04-01

    River discharge is recognized as a fundamental physical variable and it is included among the Essential Climate Variables by GCOS (Global Climate Observing System). Notwithstanding river discharge is one of the most measured components of the hydrological cycle, its monitoring is still an open issue. Collection, archiving and distribution of river discharge data globally is limited, and the currently operating network is inadequate in many parts of the Earth and is still declining. Remote sensing, especially satellite sensors, have great potential in offering new ways to monitor river discharge. Remote sensing guarantees regular, uniform and global measurements for long period thanks to the large number of satellites launched during the last twenty years. Because of its nature, river discharge cannot be measured directly and both satellite and traditional monitoring are referred to measurements of other hydraulic variables, e.g. water level, flow velocity, water extent and slope. In this study, we illustrate the potential of different satellite sensors for river discharge estimation. The recent advances in radar altimetry technology offered important information for water levels monitoring of rivers even if the spatio-temporal sampling is still a limitation. The multi-mission approach, i.e. interpolating different altimetry tracks, has potential to cope with the spatial and temporal resolution, but so far few studies were dedicated to deal with this issue. Alternatively, optical sensors, thanks to their frequent revisit time and large spatial coverage, could give a better support for the evaluation of river discharge variations. In this study, we focus on the optical (Near InfraRed) and thermal bands of different satellite sensors (MODIS, MERIS, AATSR, Landsat, Sentinel-2) and particularly, on the derived products such as reflectance, emissivity and land surface temperature. The performances are compared with respect to the well-known altimetry (Envisat/Ra-2, Jason

  8. Ranging performance of satellite laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, Chester S.

    1992-01-01

    Topographic mapping of the earth, moon and planets can be accomplished with high resolution and accuracy using satellite laser altimeters. These systems employ nanosecond laser pulses and microradian beam divergences to achieve submeter vertical range resolution from orbital altitudes of several hundred kilometers. Here, we develop detailed expressions for the range and pulse width measurement accuracies and use the results to evaluate the ranging performances of several satellite laser altimeters currently under development by NASA for launch during the next decade. Our analysis includes the effects of the target surface characteristics, spacecraft pointing jitter and waveform digitizer characteristics. The results show that ranging accuracy is critically dependent on the pointing accuracy and stability of the altimeter especially over high relief terrain where surface slopes are large. At typical orbital altitudes of several hundred kilometers, single-shot accuracies of a few centimeters can be achieved only when the pointing jitter is on the order of 10 mu rad or less.

  9. On estimating the basin-scale ocean circulation from satellite altimetry. Part 1: Straightforward spherical harmonic expansion

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    Direct estimation of the absolute dynamic topography from satellite altimetry has been confined to the largest scales (basically the basin-scale) owing to the fact that the signal-to-noise ratio is more unfavorable everywhere else. But even for the largest scales, the results are contaminated by the orbit error and geoid uncertainties. Recently a more accurate Earth gravity model (GEM-T1) became available, providing the opportunity to examine the whole question of direct estimation under a more critical limelight. It is found that our knowledge of the Earth's gravity field has indeed improved a great deal. However, it is not yet possible to claim definitively that our knowledge of the ocean circulation has improved through direct estimation. Yet, the improvement in the gravity model has come to the point that it is no longer possible to attribute the discrepancy at the basin scales between altimetric and hydrographic results as mostly due to geoid uncertainties. A substantial part of the difference must be due to other factors; i.e., the orbit error, or the uncertainty of the hydrographically derived dynamic topography.

  10. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  11. Refined Simulation of Satellite Laser Altimeter Full Echo Waveform

    NASA Astrophysics Data System (ADS)

    Men, H.; Xing, Y.; Li, G.; Gao, X.; Zhao, Y.; Gao, X.

    2018-04-01

    The return waveform of satellite laser altimeter plays vital role in the satellite parameters designation, data processing and application. In this paper, a method of refined full waveform simulation is proposed based on the reflectivity of the ground target, the true emission waveform and the Laser Profile Array (LPA). The ICESat/GLAS data is used as the validation data. Finally, we evaluated the simulation accuracy with the correlation coefficient. It was found that the accuracy of echo simulation could be significantly improved by considering the reflectivity of the ground target and the emission waveform. However, the laser intensity distribution recorded by the LPA has little effect on the echo simulation accuracy when compared with the distribution of the simulated laser energy. At last, we proposed a refinement idea by analyzing the experimental results, in the hope of providing references for the waveform data simulation and processing of GF-7 satellite in the future.

  12. Vertical Crustal Motion Derived from Satellite Altimetry and Tide Gauges, and Comparisons with DORIS Measurements

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Beckley, B. D.; Lemoine, F. G.

    2010-01-01

    A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.

  13. Estimation of the ocean geoid near the Blake Escarpment using GEOS-3 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1979-01-01

    The accuracy with which the local ocean geoid structure could be determined using satellite altimetry data was investigated. The undulation and along-track component of the vertical deflection for selected passes of GEOS-3 near the Blake Escarpment were estimated and compared with independent analogous estimates based on U. S. Navy surface gravimetric survey data. The results of these comparisons show agreement in the geoid undulation values generally to within one or two meters. The nature of the discrepancy in the undulation values was primarily that of a bias error believed to be due essentially to radial orbit uncertainties. The agreement between the vertical deflection estimates was not significantly affected by orbit uncertainties over the track lengths considered in this study (100 - 1500 km), and the comparisons show typical rms differences of between one and two arc secs. In addition, the capability of the altimeter to resolve short wavelength features of the geoid was determined. This analysis involved spectrum and cross spectrum analysis of sets of closely spaced parallel subtracks to determine statistically significant short wavelength geoid resolution capability. The results of this analysis show that resolution can be achieved down to wavelengths as short as 30 km - 80 km depending on regional geoid variations.

  14. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  15. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn; Li, Hongyin

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  16. Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands

    NASA Astrophysics Data System (ADS)

    Ovando, A.; Martinez, J. M.; Tomasella, J.; Rodriguez, D. A.; von Randow, C.

    2018-07-01

    The Bolivian Amazon wetlands are extensive floodplains distributed over the Mamore, Beni, Madre de Dios and Guapore Rivers. Located within the upper Madeira River Basin, the wetlands play important roles in regulating the biogeochemical processes and hydrological cycle of the region. In addition, they have major ecological and hydrological relevance for the entire Amazon Basin. These wetlands are characterized by the occurrence of episodic floods that result from contrasting hydro-meteorological processes in the Andean Mountain region, the piedmont area and the Amazon lowlands. In this study, we characterized the flood dynamics of the region using multi-temporal flood mapping based on optical altimetry (MODIS - Moderate Resolution Imaging Spectroradiometer - M*D09A1) and satellite altimetry (ENVISAT RA-2 and SARAL AltiKa altimeters). This study provides new insights regarding the frequency, magnitude and spatial distribution of exogenous floods, which are created by flood waves from the Andes; and endogenous floods, which result from runoff originating in the lowlands. The maximum extent of flooding during 2001-2014 was 43144 km2 in the Mamore Basin and 34852 km2 in the Guapore Basin, and the total surface water storage in these floodplains reached 94 km3. The regionalization of flood regimes based on water stage time series signatures allowed those regions that are exposed to frequent floods, which are generally located along rivers without a direct connection with the Andes, to be distinguished from floodplains that are more dependent on flood waves originating in the Andes and its piedmonts. This information is of great importance for understanding the roles of these wetlands in the provision of ecosystem services.

  17. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    NASA Astrophysics Data System (ADS)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  18. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  19. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional

  20. Current Trends and Challenges in Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  1. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  2. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  3. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  4. Mass Evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and Altimetry: Accuracy Assessment and Solution Calibration

    NASA Technical Reports Server (NTRS)

    Loomis, B. D.; Luthcke, S. B.

    2016-01-01

    We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.

  5. IAS Mesoscale Surface Circulation Observed Through Satellite Altimetry and its Influence in a Small Scale, Coastal Domain, Studied with a ROMS Model of the Cariaco Basin.

    NASA Astrophysics Data System (ADS)

    Alvera-Azcarate, A.; Barth, A.; Virmani, J. I.; Weisberg, R. H.

    2007-05-01

    The Intra-Americas Sea (IAS) surface circulation is characterized by large scale currents. The Caribbean current, which originates in the Lesser Antilles, travels westwards through the Caribbean Sea and eastern Mexico and passes through the Gulf of Mexico to finally form the Gulf Stream. This complex system of currents is also characterized by a high mesoscale variability, such as eddies and meanders. The objectives of this work are twofold: first, the multi-scale surface circulation of the IAS is described using satellite altimetry. The topographic influence of the different basins forming the IAS, the characteristic time and spatial scales, and the time variability of the surface circulation will be addressed. The second objective is to analyze the influence of this large scale circulation on a small scale coastal domain with a ROMS-based model of the Cariaco basin (Venezuela). Cariaco is a deep (1400 m), semi-enclosed basin connected to the open ocean by two shallow channels (Tortuga and Centinela Channels). Its connection with the open sea, and therefore the ventilation of the basin, occurs in the surface layers. The Cariaco ROMS model will be used to study the exchanges of mass, heat and salt through the channels. A 1/60 degree ROMS model nested in the global 1/12 degree HYCOM model from the Naval Research Laboratory will be used for this study. In addition, a series of observations (satellite altimetry and in situ temperature, salinity and velocity data), will be used to assess the influence of the Caribbean circulation on the basin.

  6. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    PubMed

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.

  7. Assimilation of river altimetry data for effective bed elevation and roughness coefficient

    NASA Astrophysics Data System (ADS)

    Brêda, João Paulo L. F.; Paiva, Rodrigo C. D.; Bravo, Juan Martin; Passaia, Otávio

    2017-04-01

    Hydrodynamic models of large rivers are important prediction tools of river discharge, height and floods. However, these techniques still carry considerable errors; part of them related to parameters uncertainties related to river bathymetry and roughness coefficient. Data from recent spatial altimetry missions offers an opportunity to reduce parameters uncertainty through inverse methods. This study aims to develop and access different methods of altimetry data assimilation to improve river bottom levels and Manning roughness estimations in a 1-D hydrodynamic model. The case study was a 1,100 km reach of the Madeira River, a tributary of the Amazon. The tested assimilation methods are direct insertion, linear interpolation, SCE-UA global optimization algorithm and a Kalman Filter adaptation. The Kalman Filter method is composed by new physically based covariance functions developed from steady-flow and backwater equations. It is accessed the benefits of altimetry missions with different spatio-temporal resolutions, such as ICESAT-1, Envisat and Jason 2. Level time series of 5 gauging stations and 5 GPS river height profiles are used to assess and validate the assimilation methods. Finally, the potential of future missions are discussed, such as ICESAT-2 and SWOT satellites.

  8. Sentinel-3 SAR Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  9. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C. K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-06-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992-2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr-1 with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr-1. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr-1 and cumulative subsidence as much as 155 cm.

  10. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    PubMed Central

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C. K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-01-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992–2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr−1 with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr−1. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr−1 and cumulative subsidence as much as 155 cm. PMID:27324935

  11. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China.

    PubMed

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C K; Galloway, Devin L; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-06-21

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and icesheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992-2015 show time-varying trends with respect to displacement over time in California's San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm yr(-1) with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm yr(-1). Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm yr(-1) and cumulative subsidence as much as 155 cm.

  12. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China

    USGS Publications Warehouse

    Hwang, Cheinway; Yang, Yuande; Kao, Ricky; Han, Jiancheng; Shum, C.K.; Galloway, Devin L.; Sneed, Michelle; Hung, Wei-Chia; Cheng, Yung-Sheng; Li, Fei

    2016-01-01

    Contemporary applications of radar altimetry include sea-level rise, ocean circulation, marine gravity, and ice sheet elevation change. Unlike InSAR and GNSS, which are widely used to map surface deformation, altimetry is neither reliant on highly temporally-correlated ground features nor as limited by the available spatial coverage, and can provide long-term temporal subsidence monitoring capability. Here we use multi-mission radar altimetry with an approximately 23 year data-span to quantify land subsidence in cropland areas. Subsidence rates from TOPEX/POSEIDON, JASON-1, ENVISAT, and JASON-2 during 1992–2015 show time-varying trends with respect to displacement over time in California’s San Joaquin Valley and central Taiwan, possibly related to changes in land use, climatic conditions (drought) and regulatory measures affecting groundwater use. Near Hanford, California, subsidence rates reach 18 cm/yr with a cumulative subsidence of 206 cm, which potentially could adversely affect operations of the planned California High-Speed Rail. The maximum subsidence rate in central Taiwan is 8 cm/yr. Radar altimetry also reveals time-varying subsidence in the North China Plain consistent with the declines of groundwater storage and existing water infrastructure detected by the Gravity Recovery And Climate Experiment (GRACE) satellites, with rates reaching 20 cm/yr and cumulative subsidence as much as 155 cm.

  13. The use of coastal altimetry to support storm surge studies in project eSurge

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Harwood, P.; Snaith, H.; Vignudelli, S.; West, L.; Zecchetto, S.; Donlon, C.

    2012-04-01

    One of the most promising applications of the new field of coastal altimetry, i.e. the discipline aiming to recover meaningful estimates of geophysical parameters (sea level, significant wave height and wind speed) from satellite altimeter data in the coastal zone, is the study of storm surges. The understanding and realistic modelling of surges supports both preparation and mitigation activities and should eventually bring enormous societal benefits, especially to some of the world's poorest countries (like Bangladesh). Earth Observation data have an important role to play in storm surge monitoring and forecasting, but the full uptake of these data by users (such as environmental agencies and tidal prediction centres) must first be encouraged by showcasing their usefulness, and then supported by providing easy access. Having recognized the above needs, The European Space Agency has recently launched a Data User Element (DUE) project called eSurge. The main purposes of eSurge are a) to contribute to an integrated approach to storm surge, wave, sea-level and flood forecasting through Earth Observation, as part of a wider optimal strategy for building an improved forecast and early warning capability for coastal inundation; and b) to increase the use of the advanced capabilities of ESA and other satellite data for storm surge applications. The project is led by Logica UK, with NOC (UK), DMI (Denmark), CMRC (Ireland) and KNMI (Netherlands) as scientific partners. A very important component of eSurge is the development, validation and provision of dedicated coastal altimetry products, which is the focus of the present contribution. Coastal altimetry has a prominent role to play as it measures the total water level envelope directly, and this is one of the key quantities required by storm surge applications and services. But it can also provide important information on the wave field in the coastal strip, which helps the development of more realistic wave models that in

  14. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  15. Satellite Altimetry and Current-Meter Velocities in the Malvinas Current at 41°S: Comparisons and Modes of Variations

    NASA Astrophysics Data System (ADS)

    Ferrari, Ramiro; Artana, Camila; Saraceno, Martin; Piola, Alberto R.; Provost, Christine

    2017-12-01

    Three year long current-meter arrays were deployed in the Malvinas Current at 41°S below a satellite altimeter track at about 10 years intervals. Surface geostrophic velocities (SGV) derived from satellite altimetric data are compared with the in situ velocities at the upper current meter (˜300 m). Multisatellite gridded SGV compare better with in situ observations than along-track SGV. In spite of the proximity of the moorings to the complex Brazil-Malvinas Confluence (BMC) region, satellite SGV are significantly correlated with the 20 day low-passed in situ velocities (0.85 for along-isobaths velocities, 0.8 for cross-isobaths velocities). The recent in situ measurement period (2014-2015) stands out in the altimetry record with a long-lasting (4 months) high level of eddy kinetic energy at the mooring site and a southernmost location of the Subantarctic Front (SAF). The first two modes of variations of sea level anomaly (SLA) over the BMC remarkably match the first two modes of the low-passed in situ velocities. The first mode is associated with a latitudinal migration of the SAF, and the second with a longitudinal displacement of the Brazil Current overshoot. The two modes dominate the 24 year long record of SLA in the BMC, with energy peaks at the annual and semiannual periods for the first mode and at 3-5 months for the second mode. The SLA over the Southwest Atlantic was regressed onto the two confluence modes of SLA variations and showed remarkable standing wave train like structures in the Argentine Basin.

  16. Coastal and mesoscale dynamics characterization combining glider and altimetry: case study over the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jerome, Bouffard; Pascual, Ananda; Ruiz, Simon; Isabelle Pujol, Marie; Faugere, Yannice; Larnicol, Gilles; Tintore, Joaquin

    Satellite altimetry allows a direct computation of geostrophic velocity anomalies. However, conventional altimetry measurements remain largely spurious in coastal zone, due to several factors such as inaccurate geophysical corrections (e.g. atmospheric and tidal signals) as well as environmental issues (land contamination in the altimetric and radiometric footprints). At the present time and in the attempt of future relevant technologies (cf. SWOT satellite), experimen-tal coastal altimeter products are under development (XTRACK, PISTACH, COASTALT. . . ). The main efforts consist in the application of coastal-oriented corrections and the review of the data recovery strategies near the coast. The new coastal altimetric products need to be assessed with independent data before to be used in synergy with other measurements and fully exploited for scientific applications. This is the frame of this study as part of an intensive observational program conducted in the Western Mediterranean Sea. We present here the main outcomes resulting from the combination of coastal altimetry and gliders. Gliders -autonomous underwater vehicles -allow to provide precise and high resolution data complementary to altimetry (temperature, salinity, pressure, velocity. . . ) both at surface and over the whole water column. Since July 2007, several glider missions have been performed along Jason-1, Jason-2 and ENVISAT altimeters. The altimetric sea level anomalies have been processed from both standard and coastal-oriented strategies. Furthermore, new methodologies have also been developed in order to combine surface glider geostrophic velocities (derived from CTD measurements) with integrated currents estimated by the glider (derived from GPS locations every 6 hours). These approaches prove to be very efficient to improve the budget errors and homogenize the physical contents of altimetry and glider data. Further, the combined analysis of the two datasets provides interesting insights of

  17. Satellite laser ranging work at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.

    1975-01-01

    Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS.

  18. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.

  19. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  20. Methods of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  1. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed

  2. Validation of Sentinel-3A altimetry data by using in-situ multi-platform observations near Mallorca Island (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Antonio; Heslop, Emma; Reeve, Krissy; Rodriguez, Daniel; Pujol, Isabelle; Faugère, Yannice; Torner, Marc; Tintoré, Joaquín; Pascual, Ananda

    2017-04-01

    In the frame of the Copernicus Marine Environment Monitoring Service (CMEMS) Sea Level Thematic Assembly Center (SL-TAC), a glider mission was undertaken between May and June 2016 along the same track as the overpass of the Sentinel 3A satellite in the Southern Mallorca region. Moreover, a one-day ship mission on May 30, synchronous with the overpass of the satellite, captured two transects of moving vessel ADCP close to the coastal area. The aim was to compare the along track altimeter products and multi-platform in-situ observations in the southern coastal zone of the Mallorca Island and the Algerian Basin. In addition, we explored the potential of the Synthetic Aperture Radar Mode (SARM) instrumentation of Sentinel-3 mission, which enables the satellite to measure nearest the coasts with both higher spatial resolution and higher precision than previous missions. With the ultimate goal of contributing to a more complete understanding of both ocean and coastal physical processes and the biogeochemical impacts. The analyses presented here are conducted through the comparison of Absolute Dynamic Topography (ADT) obtained from the Sentinel-3A altimetry measurements along ground-track #713 and Dynamic Height (DH) derived from temperature and salinity profiles measured by the glider along the trajectory followed by the satellite. Moreover, currents derived from altimetry and in-situ glider data along the track followed by the satellite; and from ADCP data collected in the coastal region are analysed. Results show a good agreement between ADT from altimetry and DH from glider data with maximum differences of around 2 cm that promote a root mean square error (RMSE) of 1 cm, the correlation coefficient between both datasets is 0.89. The satellite data closely resemble the geostrophic velocity pattern observed by the glider measurements along the Algerian Current, and also the ADCP data in the coastal zone, exhibiting a RMSE lower than 10 cm/s and a correlation coefficient

  3. GPS-Based Precision Orbit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Lemoine, Frank G.; Zelensky, Nikita P.; Williams, Teresa A.

    2003-01-01

    Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter (Dec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm, while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both Jason-1 and ICESat are presented.

  4. Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kleinherenbrink, Marcel; Riva, Riccardo; Sun, Yu

    2016-11-01

    In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance-covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr-1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance-covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr-1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10-20 % is applied; however, the performance of the DDK5-filtered solution strongly depends

  5. Power transmission by laser beam from lunar-synchronous satellite

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  6. Sea ice thickness derived from radar altimetry: achievements and future plans

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Paul, S.; Kaleschke, L.; Tian-Kunze, X.

    2017-12-01

    The retrieval of Arctic sea ice thickness is one of the major objectives of the European CryoSat-2 radar altimeter mission and the 7-year long period of operation has produced an unprecedented record of monthly sea ice thickness information. We present CryoSat-2 results that show changes and variability of Arctic sea ice from the winter season 2010/2011 until fall 2017. CryoSat-2, however, was designed to observe thick perennial sea ice, while an accurate retrieval of thin seasonal sea ice is more challenging. We have therefore developed a method of completing and improving Arctic sea ice thickness information within the ESA SMOS+ Sea Ice project by merging CryoSat-2 and SMOS sea ice thickness retrievals. Using these satellite missions together overcomes several issues of single-mission retrievals and provides a more accurate and comprehensive view on the state of Arctic sea-ice thickness at higher temporal resolution. However, stand-alone CryoSat-2 observations can be used as reference data for the exploitation of older pulse-limited radar altimetry data sets over sea ice. In order to observe trends in sea ice thickness, it is required to minimize inter-mission biases between subsequent satellite missions. Within the ESA Climate Change Initiative (CCI) on Sea Ice, a climate data record of sea ice thickness derived from satellite radar altimetry has been developed for both hemispheres, based on the 15-year (2002-2017) monthly retrievals from Envisat and CryoSat-2 and calibrated in the 2010-2012 overlap period. The next step in promoting the utilization of sea ice thickness information from radar altimetry is to provide products by a service that meets the requirements for climate applications and operational systems. This task will be pursued within a Copernicus Climate Change Service project (C3S). This framework also aims to include additional sensors such as onboard Sentinel-3 and we will show first results of Sentinel-3 Arctic sea-ice thickness. These

  7. Physical oceanography from satellites: Currents and the slope of the sea surface

    NASA Technical Reports Server (NTRS)

    Sturges, W.

    1974-01-01

    A global scheme using satellite altimetry in conjunction with thermometry techniques provides for more accurate determinations of first order leveling networks by overcoming discrepancies between ocean leveling and land leveling methods. The high noise content in altimetry signals requires filtering or correction for tides, etc., as well as carefully planned sampling schemes.

  8. Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.

    2014-05-01

    Lagrangian particle trajectory models based on several altimetry-derived surface current products are used to hindcast the drifter trajectories observed in the eastern Gulf of Mexico during May to August 2010 (the Deepwater Horizon oil spill incident). The performances of the trajectory models are gauged in terms of Lagrangian separation distances (d) and a nondimensional skill score (s), respectively. A series of numerical experiments show that these altimetry-based trajectory models have about the same performance, with a certain improvement by adding surface wind Ekman components, especially over the shelf region. However, their hindcast skills are slightly better than those of the data assimilative numerical model output. After 3 days' simulation the altimetry-based trajectory models have mean d values of 75-83 and 34-42 km (s values of 0.49-0.51 and 0.35-0.43) in the Gulf of Mexico deep water area and on the West Florida Continental Shelf, respectively. These satellite altimetry data products are useful for providing essential information on ocean surface currents of use in water property transports, offshore oil and gas operations, hazardous spill mitigation, search and rescue, etc.

  9. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    PubMed Central

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993–2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt⋅y−1, equivalent to 0.68 mm⋅y−1 sea level rise (SLR) for 2003–2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004–2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland’s outlet glaciers. PMID:25512537

  10. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.

  11. Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.

    2017-12-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).

  12. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  13. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  14. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice

  15. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2 and in situ observations was found to be 0.38 meters. CryoSat-2 was also shown to be useful for channel roughness calibration in a hydrodynamic model of the Po River. The small across-track distance of CryoSat-2 means that observations are distributed almost continuously along the river. This allowed resolving channel roughness with higher spatial resolution than possible with in situ or virtual station altimetry data. Despite the Po River being extensively monitored, CryoSat-2 still provides added value thanks to its unique spatio-temporal sampling pattern.

  16. Satellite and lunar laser ranging in infrared

    NASA Astrophysics Data System (ADS)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  17. Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, W.; Lemoine, J.-M.; Zhong, M.; Hsu, H. T.

    2014-08-01

    An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (<3 cm) and out of phase of the mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.

  18. Atmospheric Multiple Scattering Effects on GLAS Altimetry. Part 2; Analysis of Expected Errors in Antarctic Altitude Measurements

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Spinhirne, James D.; Duda, David P.; Eloranta, Edwin W.; Starr, David O'C (Technical Monitor)

    2001-01-01

    The altimetry bias in GLAS (Geoscience Laser Altimeter System) or other laser altimeters resulting from atmospheric multiple scattering is studied in relationship to current knowledge of cloud properties over the Antarctic Plateau. Estimates of seasonal and interannual changes in the bias are presented. Results show the bias in altitude from multiple scattering in clouds would be a significant error source without correction. The selective use of low optical depth clouds or cloudfree observations, as well as improved analysis of the return pulse such as by the Gaussian method used here, are necessary to minimize the surface altitude errors. The magnitude of the bias is affected by variations in cloud height, cloud effective particle size and optical depth. Interannual variations in these properties as well as in cloud cover fraction could lead to significant year-to-year variations in the altitude bias. Although cloud-free observations reduce biases in surface elevation measurements from space, over Antarctica these may often include near-surface blowing snow, also a source of scattering-induced delay. With careful selection and analysis of data, laser altimetry specifications can be met.

  19. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  20. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  1. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test

  2. Improved algorithms for the retrieval of the h2 Love number of Mercury from laser altimetry data

    NASA Astrophysics Data System (ADS)

    Thor, Robin; Kallenbach, Reinald; Christensen, Ulrich; Oberst, Jürgen; Stark, Alexander; Steinbrügge, Gregor

    2017-04-01

    We simulate measurements to be performed by the BepiColombo laser altimeter (BELA) aboard the Mercury Planetary Orbiter (MPO) of the BepiColombo mission and investigate whether coverage and accuracy will be sufficient to retrieve the h2 Love number of Mercury. The h2 Love number describes the tidal response of Mercury's surface and is a function of the materials in its interior and their properties and distribution. Therefore, it can serve as an important constraint for models of the internal structure. The tide-generating potential from the Sun causes periodic radial displacements of up to ˜2 m on Mercury which can be detected by laser altimetry. In this study, we simultaneously extract the static global shape, parametrized by local basis functions, and its variability in time. The usage of cubic splines as local basis functions in both longitudinal and latitudinal direction provides an improvement over the methodology of Koch et al. (2010, Planetary and Space Science, 58(14), 2022-2030) who used cubic splines in longitudinal direction, but only step functions in latitudinal direction. We achieve a relative 1σ accuracy of the h2 Love number of 1.7% assuming nominal data acquisition for BELA during a one-year mission, but considering only stochastic noise.

  3. Crisis in geosciences in epoch of altimetry measurments and ways of its overcoming

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2009-04-01

    Scientific results by determination of increase of a global sea level, basing on altimetry measurements, are erroneous. Unfortunately, modern researches of global behavior of ocean in present period have resulted in a lot of paradoxes, to the inexplicable phenomena for today and to contradictions with the classical data of ground (coastal) observations. The basic contradiction consists that values of rate of increase of mean sea level, obtained with the help of satellite methods - methods of altimetry, in 2 - 3 times and more surpass classical determinations of this velocity by coastal methods with the help of measurements at tidal stations. Some authors actually resort to a juggling of the facts in the attempts to explain the found out contradictions (for example, with the help of selection of stations and regions of ocean with the increased values of rates). Thus rather big series of works has lost the scientific importance. The purpose of the report - to show, that conclusions about global increase of a level of the ocean, obtained with application of a method of satellite altimetry are rough - erroneous. "The global sea level rise estimate in the 20th century has been reported at 1.8 mm/yr [Church et al., 2004; Douglas, 2001], which is consistent with the IPCC TAR estimate of 1.5+/-0.5 mm/yr for the 20th Century [Church et al., 2001]. In contrast to the 1.8 mm/yr sea level rise estimate derived from tide gauges, sea level trend estimate from satellite altimetry since 1993 has increased to 3.1+/-0.4 mm/yr [Cazenave and Nerem, 2004]. Although the sea level rise during the TOPEX/POSEIDON period or the last decade is observed to rise almost 50% faster than the average rate over the last Century, visual inspection and fitting a quadratic to the time series confirms there is no significant increase in the rate [Church et al., 2004]." [2], p.7. The statement is rather eloquent. We shall notice only, that the marked difference in rates of MSLR not 50 %, and 100 % and

  4. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    NASA Astrophysics Data System (ADS)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  5. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  6. Status of the geopotential. [earth gravity measurement

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1983-01-01

    Satellite laser ranging, satellite altimetry, and improved measurements of surface gravitational anomalies have broadened the data base on intermediate and short wavelength regions of the earth gravity field. The global data set served to develop new geopotential models with a resolution in spherical harmonics out to degree 180. The resolution was made possible using Seasat altimetry data containing 56,761 values of 1 x 1 deg gravity anomalies. Satellite-to-satellite tracking techniques involving the Geos-3 and Apollo spacecraft data for the sea surface temperature have yielded accurate intermediate wavelength gravity variations which correlate well with residual depth anomalies. Oceanic gravity anomalies have been computed directly from satellite altimetry or through statistical estimation using oceanic geoid heights. The data sets for gravimetric geoids have been compared with altimetric surfaces to identify areas which were of interest for geophysical investigation. Future data sets could become available from a proposed satellite-to-satellite Doppler tracking system (Gravsat) launched by NASA.

  7. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  8. Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders

    NASA Astrophysics Data System (ADS)

    Alvarez, A.; Chiggiato, J.; Schroeder, K.

    2013-04-01

    Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.

  9. Laser ranging application to time transfer using geodetic satellite and to other Japanese space programs

    NASA Technical Reports Server (NTRS)

    Kunimori, Hiroo; Takahashi, Fujinobu; Itabe, Toshikazu; Yamamoto, Atsushi

    1993-01-01

    Communications Research Laboratory (CRL) has been developing a laser time transfer system using a satellite laser ranging (SLR) system. We propose Japanese geodetic satellite 'AJISAI', launched in 1986 as a target satellite. The surface is covered not only with corner cube reflectors but also with mirrors. The mirrors are originally designed for observation of flushing solar light reflected by the separate mirrors while the satellite is spinning. In the experiment, synchronized laser pulses are transferred via specified mirror from one station to another while the satellite is up on the horizon to both stations. The system is based on the epoch timing ranging system with 40 ps ranging precision, connected together with UTC(CRL). Simulation study indicates that two stations at thousands of km distance from each other can be linked with signal strength of more than 10 photons and the distributed images of laser beam from AJISAI mirrors give many chances for two stations to link each other during a single AJISAI pass. Retro-reflector In Space for Advanced Earth Observation Satellite (ADEOS) and RendDezVous docking mission of Experimental Technology Satellite-7 (ETS-7) are briefly presented.

  10. A comparison of satellite systems for gravity field measurements

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Lowrey, B. E.

    1977-01-01

    A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.

  11. The C3PO project: a laser communication system concept for small satellites

    NASA Astrophysics Data System (ADS)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  12. Evaluation of Coastal Sea Level from Jason-2 Altimetry Offshore Hong Kong

    NASA Astrophysics Data System (ADS)

    Birol, F.; Xu, X. Y., , Dr; Cazenave, A. A.

    2017-12-01

    In the recent years, several coastal altimetry products of Jason-2 mission have been distributed by different agencies, the most advance ones of which are XTRACK, PISTACH and ALES. Each product represents extraordinary endeavors on some aspects of retracking or advanced geophysical corrections, and each has its advantage. The motivation of this presentation is to evaluate these products in order to refine the sea level measurements at the coast. Three retrackers: MLE4, MLE3 and ALES are focused on. Within 20km coastward, neither GDR nor ALES readily provides sea level anomaly (SLA) measurements, so we recomputed the 20Hz GDR and ALES SLA from the raw data, adopting auxiliary information (such as waveform classification and wet tropospheric delay) from PISTACH. The region of interest is track #153 of the Jason-2 satellite (offshore Hong Kong, China), and the altimetry products are processed over seven years (2008-2015, cycles 1-252). The coastline offshore Hong Kong is rather complicated and we feel that it can be a good indicator of the performance of coastal altimetry under undesirable coast conditions. We computed the bias and noise level of ALES, MLE3 and MLE4 SLA over open ocean and in the coastal zone (within 10km or 5km coast-ward). The results showed that, after outlier-editing, ALES performs better than MLE4 and MLE3 both in terms of noise level and uncertainty in sea level trend estimation. We validated the coastal altimetry-based SLA by comparing with data from the Hong Kong tide gauge (located 10km across-track). An interesting , but still preliminary, result is that the computed sea level trend within 5 km from the coast is significantly larger than the trend estimated at larger distances from the coast. Keywords: Jason-2, Hong Kong coast, ALES, MLE3, MLE4

  13. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  14. CryoSat swath altimetry to measure ice cap and glacier surface elevation change

    NASA Astrophysics Data System (ADS)

    Tepes, P.; Gourmelen, N.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.

    2016-12-01

    Satellite altimetry has been used extensively in the past few decades to observe changes affecting large and remote regions covered by land ice such as the Greenland and Antarctic ice sheets. Glaciers and ice caps have been studied less extensively due to limitation of altimetry over complex topography. However their role in current sea-level budgets is significant and is expected to continue over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Radar altimetry is well suited to monitor elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over glaciers and ice caps. Its Synthetic Aperture Radar Interferometric (SARIn) processing feature reduces the size of the footprint along-track and locates the across-track origin of a surface reflector in the presence of a slope. This offers new perspectives for the measurement of regions marked by complex topography. More recently, data from the CS-SARIn mode have been used to infer elevation beyond the point of closest approach (POCA) with a novel approach known as "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, the swath processing technique provides unprecedented spatial coverage and resolution for space borne altimetry, enabling the study of key processes that underlie current changes of ice caps and glaciers. In this study, we use CS swath observations to generate maps of ice elevation change for selected ice caps and glaciers. We present a validation exercise and discuss the benefit of swath

  15. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  16. Geoscience Laser Altimetry System (GLAS) On-Orbit Flight Report on the Propylene Loop Heat Pipes (LHPs)

    NASA Technical Reports Server (NTRS)

    Baker, Charles L.; Grob, Eric W.; McCarthy, Thomas V.; Nikitkin, Michael N.; Ancarrow, Walter C.

    2003-01-01

    The Geoscience Laser Altimetry System (GLAS) instrument which is the sole instrument on ICESat was launched on January 12, 2003. GLAS utilizes two actively controlled propylene Loop Heat Pipes (LHPs) as the core of its thermal system. The LHPs started quickly when the Dale Ohm starter heaters were powered and have as designed. The low control heater power and on-orbit tight temperature control appear independent of gravity effects when comparing ground testing to flight data. The use of coupling blocks was also unique to these LHPs. Their application reduced control heater power by reducing the subcooling from the radiator. The effectiveness in reducing subcooling of the coupler blocks decreased during flight from ground testing, but internal thermal isolation in the compensation chamber between the subcooled returning liquid increased in flight resulting in no net increase in control heater power versus ground measurements. Overall the application of LHPs in the thermal system for GLAS met instrument requirements and provided flexibility for the overall system as last minute requirements became known.

  17. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  18. Normalized GNSS Interference Pattern Technique for Altimetry

    PubMed Central

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-01-01

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals. PMID:24922453

  19. SWOT: A high-resolution wide-swath altimetry mission for oceanography and hydrology

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Fu, Lee-Lueng; Rodriguez, Ernesto

    2013-04-01

    A new satellite mission called Surface Water and Ocean Topography (SWOT) has been developed jointly by the U.S. National Aeronautics and Space Administration and France's Centre National d'Etudes Spatiales. Based on the success of nadir-looking altimetry missions in the past, SWOT will use the technique of radar interferometry to make wide-swath altimetric measurements of the elevation of surface water on land and the ocean's surface topography. The new measurements will provide information on the changing ocean currents that are key to the prediction of climate change, as well as the shifting fresh water resources resulting from climate change. Conventional satellite altimetry has revolutionized oceanography by providing nearly two decades' worth of global measurements of ocean surface topography. However, the noise level of radar altimeters limits the along-track spatial resolution to 50-100 km over the oceans. The large spacing between the satellite ground tracks limits the resolution of 2D gridded data to 200 km. Yet most of the kinetic energy of ocean circulation takes place at the scales unresolved by conventional altimetry. About 50% of the vertical transfer of heat and chemical properties of the ocean (e.g., dissolved CO2 and nutrients) is also accomplished by processes at these scales. SWOT observations will provide the critical new information at these scales for developing and testing ocean models that are designed for predicting future climate change. SWOT measurements will be in Ka band (~35 GHZ), chosen for the radar to achieve high precision with a much shorter inteferometry baseline of 10 m. Small look angles (~ 4 degrees) are required to minimize elevation errors, which limits the swath width to 120 km. An orbit with inclination of 78 degrees and 22 day repeat period was chosen for gapless coverage and good tidal aliasing properties. With this configuration, SWOT is expected to achieve 1 cm precision at 1 km x 1 km pixels over the ocean and 10 cm

  20. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  1. Sea Ice Mass Reconciliation Exercise (SIMRE) for altimetry derived sea ice thickness data sets

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.

    2017-12-01

    Satellite altimetry is the primary remote sensing data source for retrieval of Arctic sea-ice thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The Sea Ice Mass Reconciliation Exercise (SIMRE) is a project by the sea-ice radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic sea ice mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent ice thickness estimates. Three regions representative of first-year ice, multiyear ice and mixed ice conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of sea ice thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.

  2. Site evaluation for laser satellite-tracking stations

    NASA Technical Reports Server (NTRS)

    Mao, N. H.; Mohr, P. A.

    1976-01-01

    Twenty-six locations for potential laser satellite-tracking stations, four of them actually already occupied in this role, are reviewed in terms of their known local and regional geology and geophysics. The sites are also considered briefly in terms of weather and operational factors. Fifteen of the sites qualify as suitable for a stable station whose motions are likely to reflect only gross plate motion. The others, including two of the present laser station sites (Arequipa and Athens), fail to qualify unless extra monitoring schemes can be included, such as precise geodetic surveying of ground deformation.

  3. Sea level reconstructions from altimetry and tide gauges using independent component analysis

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Forootan, Ehsan

    2017-04-01

    Many reconstructions of global and regional sea level rise derived from tide gauges and satellite altimetry used the method of empirical orthogonal functions (EOF) to reduce noise, improving the spatial resolution of the reconstructed outputs and investigate the different signals in climate time series. However, the second order EOF method has some limitations, e.g. in the separation of individual physical signals into different modes of sea level variations and in the capability to physically interpret the different modes as they are assumed to be orthogonal. Therefore, we investigate the use of the more advanced statistical signal decomposition technique called independent component analysis (ICA) to reconstruct global and regional sea level change from satellite altimetry and tide gauge records. Our results indicate that the used method has almost no influence on the reconstruction of global mean sea level change (1.6 mm/yr from 1960-2010 and 2.9 mm/yr from 1993-2013). Only different numbers of modes are needed for the reconstruction. Using the ICA method is advantageous for separating independent climate variability signals from regional sea level variations as the mixing problem of the EOF method is strongly reduced. As an example, the modes most dominated by the El Niño-Southern Oscillation (ENSO) signal are compared. Regional sea level changes near Tianjin, China, Los Angeles, USA, and Majuro, Marshall Islands are reconstructed and the contributions from ENSO are identified.

  4. Implementation of Altimetry Data in the GIPSY POD Software Package

    NASA Technical Reports Server (NTRS)

    Stauch, Jason R.; Gold, Kenn; Born, George H.

    2001-01-01

    Altimetry data has been used extensively to acquire data about characteristics of the Earth, the Moon, and Mars. More recently, the idea of using altimetry for orbit determination has also been explored. This report discusses modifications to JPL's GIPSY/OASIS II software to include altimetry data as an observation type for precise orbit determination. The mathematical foundation of using altimetry for the purpose of orbit determination is presented, along with results.

  5. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s

  6. Advances in satellite oceanography

    NASA Technical Reports Server (NTRS)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  7. Solar power satellite system definition study. Volume 3: Laser SPS analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential use of lasers for transmitting power to Earth from Solar Power Satellites was examined. Free electron lasers appear most promising and would have some benefits over microwave power transmission. Further research in laser technology is needed.

  8. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  9. Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data

    NASA Astrophysics Data System (ADS)

    Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.

    2017-05-01

    The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.

  10. Basic Radar Altimetry Toolbox: Tools and Tutorial to Use Cryosat Data

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.; Niemeijer, S.

    2011-12-01

    Radar altimetry is very much a technique expanding its applications. Even If quite a lot of effort has been invested for oceanography users, the use of Altimetry data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious for new Altimetry data products users. ESA and CNES therfore developed the Basic Radar Altimetry Toolbox a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat, the future Saral missions and is ready for adaptation to Sentinel-3 products - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available since April 2007, and had been demonstrated during training courses and scientific meetings. About 2000 people downloaded it (Summer 2011), with many "newcomers" to altimetry among them

  11. Gravity field, geoid and ocean surface by space techniques

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.

  12. The statistics of laser returns from cube-corner arrays on satellite

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1973-01-01

    A method first presented by Goodman is used to derive an equation for the statistical effects associated with laser returns from satellites having retroreflecting arrays of cube corners. The effect of the distribution on the returns of a satellite-tracking system is illustrated by a computation based on randomly generated numbers.

  13. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  14. COASTALT Project's contribution to the development and dissemination of coastal altimetry

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Benveniste, J.

    2012-04-01

    Satellite altimeters have been monitoring the global ocean for 20 years, with an excellent degree of accuracy; but in the coastal strip data are normally flagged as bad because of a number of technical problems, and therefore rejected. However this situation is rapidly changing: prompted by the tantalizing prospect of recovering 20 years of data over the coastal ocean, and encouraged by the improved suitability for coastal applications of new and future altimeters (like those on Cryosat-2, AltiKa and Sentinel-3), a lively community of researchers in coastal altimetry has coalesced in the last few years, and is developing techniques to recover useful measurements of sea level and significant wave height in the coastal strip, as well as implementing and promoting new applications. The major space agencies are strongly supporting R&D in this new field with initiatives like ESA's COASTALT (for Envisat) and CNES' PISTACH (for Jason-2). The coastal altimetry community holds regular workshops (see http://www.coastalt.eu/community) where the science and techniques of coastal altimetry are reviewed and various applications are showcased and discussed. The present contribution revisits briefly the many recent technical improvements that are contributing to the steady progress of this new field and in particular focuses on the results of the COASTALT project, which has recently concluded. COASTALT has been an excellent incubator of ideas and new techniques for the improvement of coastal altimetry: first of all it has contributed to establish user requirements for this new field, and it has defined detailed product specifications for the new coastal altimetry products and produced the relevant documentation. At the same time COASTALT has tackled the two main areas of improvement for coastal altimetry. These are: 1) retracking, i.e. fitting a waveform model to the waveforms to obtain an estimate of the geophysical parameters: and 2) designing and validating improved coastal

  15. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  16. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  17. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  18. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  19. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  20. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track

    NASA Astrophysics Data System (ADS)

    Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.

    2018-03-01

    The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.

  1. Transmission media appropriate laser-microwave solar power satellite system

    NASA Astrophysics Data System (ADS)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  2. Multi-GNSS orbit determination using satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  3. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992-December 2013) based on evolutionary support vector regression algorithms and gene expression programming

    NASA Astrophysics Data System (ADS)

    Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen

    2014-10-01

    Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.

  4. Gravimetric geodesy and sea surface topography studies by means of satellite-to-satellite tracking and satellite altimetry

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.

  5. Improving Altimetry Height-change Retrieval on the Fringes of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Nilsson, J.; Gardner, A. S.

    2017-12-01

    Projections of sea-level change over the next century are highly uncertain, in part, due to insufficient understanding of ice-sheet sensitivity to changes in oceanic and atmospheric circulation. This limitation is, to a large degree, related to the lack of long and continuous observational records covering critical regions along the ice-sheet margins where the ice interacts with the ocean. Of particular importance are accurate records of changes in ice thickness that provide information on how mass fluctuates on the floating extensions of ice streams and glaciers through which the ice-sheet drains. These changes can modify the stability of the grounded ice sheet through changing back-stress, for example, through loss of ice-shelf buttressing. Here, we synthetize 25+ years of satellite altimetry observations to extend the time span and improve the resolution and accuracy of the existing record of Antarctic floating ice thickness. We incorporate data from ESA's ERS-1, ERS-2, Envisat and Cryosat-2 radar altimeters (1992-present) and NASA's ICESat laser altimeter (2003-2009) and Operation IceBridge surveys (2009-present); with plans to include ICESat-2 data soon after its launch in September 2018. Towards this effort, we revisit some of the main corrections applied to altimeter data, such as minimization of the difference between measurements from radar and laser systems; and we improve the approach for the synthesis of heterogeneous measurements of ice-surface topography and uncertainty estimation. We report on our progress in constructing this long-term and homogeneous record, with a particular focus on the floating ice shelves.

  6. Mesoscale resolution capability of altimetry: Present and future

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves

    2016-07-01

    Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.

  7. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  8. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  9. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    USGS Publications Warehouse

    Lu, Zhong; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  10. Compact optical duplicate system for satellite-ground laser communications: application of averaging effects

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko

    2014-09-01

    In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.

  11. TOPEX/Poseidon - An international satellite oceanography mission

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.; Fellous, J.-L.

    1986-01-01

    The TOPEX/Poseidon mission, a joint NASA-CNES effort, strives to provide highly accurate global ocean topography measurements over a three year period utilizing highly advanced satellite radar altimetry techniques. Scheduled for launch in late 1991, the TOPEX/Poseidon satellite, together with ESA's first European remote sensing satellite and NASA's scatterometer, promises to provide a fundamental breakthrough in the present knowledge of how the oceans work as a global system. As part of the World Ocean Circulation Experiment, TOPEX/Poseidon measurements will aid in the determination of the three-dimensional current structure of the global oceans.

  12. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  13. Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Kim, S.; Sandwell, D. T.

    2006-12-01

    Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation

  14. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  15. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  16. Transport of the Norwegian Atlantic current as determined from satellite altimetry

    NASA Technical Reports Server (NTRS)

    Pistek, Pavel; Johnson, Donald R.

    1992-01-01

    Relatively warm and salty North Atlantic surface waters flow through the Faeroe-Shetland Channel into the higher latitudes of the Nordic Seas, preserving an ice-free winter environment for much of the exterior coast of northern Europe. This flow was monitored along the Norwegian coast using Geosat altimetry on two ascending arcs during the Exact Repeat Mission in 1987-1989. Concurrent undertrack CTD surveys were used to fix a reference surface for the altimeter-derived SSH anomalies, in effect creating time series of alongtrack surface dynamic height topographies. Climatologic CTD casts were then used, with empirical orthogonal function (EOF) analysis, to derive relationships between historical surface dynamic heights and vertical temperature and salinity profiles. Applying these EOF relationships to the altimeter signals, mean transports of volume, heat, and salt were calculated at approximately 2.9 Sverdrups, 8.1 x 10 exp 11 KCal/s and 1.0 x 10 exp 8 Kg/s, respectively. Maximum transports occurred in February/March and minimum in July/August.

  17. Surface mass balance model evaluation from satellite and airborne lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  18. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    NASA Astrophysics Data System (ADS)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  19. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  20. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  1. INRRI-EDM/2016: the first laser retroreflector on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Delle Monache, G.; Porcelli, L.; Boni, A.; Contessa, S.; Ciocci, E.; Martini, M.; Tibuzzi, M.; Intaglietta, N.; Salvatori, L.; Tuscano, P.; Patrizi, G.; Mondaini, C.; Lops, C.; Vittori, R.; Maiello, M.; Flamini, E.; Marchetti, E.; Bianco, G.; Mugnuolo, R.; Cantone, C.

    2017-01-01

    During Summer 2015 the SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and cube/microsat Characterization Facilities Laboratory, http://www.lnf.infn.it/esperimenti/etrusco, Team of INFN-LNF, with support by ASI, carried out an intense activity of final design, manufacturing and testing in order to construct, space qualify and finally integrate INRRI-EDM/2016 on ESA's ExoMars EDM spacecraft (also dubbed "Schiaparelli"), which was successfully launched on March 14, 2016. INRRI (INstrument for landing-Roving laser Retroreflector Investigation) for the EDM (Entry descent and landing Demonstration Module) 2016 mission is a compact, lightweight, passive, maintenance-free array of eight cube corner laser retroreflectors fixed to an aluminum alloy frame through the use of silicon rubber suitable for space applications. INRRI was installed on the top panel of the EDM Central Bay on October 14, 2015. It will enable the EDM to be laser-located from Mars orbiters, through laser ranging and altimetry, lidar atmospheric observations from orbit, laser flashes emitted by orbiters, and lasercom. One or all of the above means of observation can be supported by INRRI when there is an active, laser-equipped orbiter, especially after EDM end-of-life and for a long time. INRRI goals will cover science (Mars geodesy/geophysics, future Mars test of General Relativity, GR), technology and exploration. Concerning the latter two, INRRI will support mars-georeferencing of the EDM landing site, support potential precision lidar-based landing next to the EDM, support test & diagnostics of lasercom for data exchange among Mars orbit, Mars surface and Earth, and it will be a precursor for additional Mars surface retroreflectors, for example on exploration rovers. This paper describes in detail our innovative payload, hopefully the very first to be deployed safely with the lander Schiaparelli on the Mars surface, and its space qualification for the ExoMars EDM 2016 mission. Despite the fate

  2. ICESAT Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, D. D.; Carabajal, C. C.; Harding, D. H.; Bufton, J. L.; Williams, T. A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.

  3. Satellite Laser Ranging in the 1990s: Report of the 1994 Belmont Workshop

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Editor)

    1994-01-01

    An international network of 43 stations in 30 countries routinely collects satellite ranging data which is used to study the solid Earth and its interactions with the oceans, atmosphere, and Moon. Data products include centimeter accuracy site positions on a global scale, tectonic plate motions, regional crustal deformation, long wavelength gravity field and geoid, polar motion, and variations in the Earth's spin rate. By calibrating and providing precise orbits for spaceborne microwave altimeters, satellite laser ranging also enables global measurement of sea and ice surface topography, mean sea level, global ocean circulation, and short wavelength gravity fields and marine geoids. It provides tests of general relativity and a means or subnanosecond time transfer. This workshop was convened to define future roles and directions in satellite laser ranging.

  4. Coastal Sea Level along the North Eastern Atlantic Shelf from Delay Doppler Altimetry

    NASA Astrophysics Data System (ADS)

    Fenoglio-Marc, L.; Benveniste, J.; Andersen, O. B.; Gravelle, M.; Dinardo, S.; Uebbing, B.; Scharroo, R.; Kusche, J.; Kern, M.; Buchhaupt, C.

    2017-12-01

    Satellite altimetry data of the CryoSat-2 and Sentinel-3 missions processed with Delay Doppler methodology (DDA) provide improved coastal sea level measurements up to 2-4 km from coast, thanks to an along-track resolution of about 300m and a higher signal to noise ratio. We investigate the 10 Kilometre stripe along the North-Eastern Atlantic shelf from Lisbon to Bergen to detect the possible impacts in sea level change studies of this enhanced dataset. We consider SAR CryoSat-2 and Sentinel-3 altimetry products from the ESA GPOD processor and in-house reduced SAR altimetry (RDSAR) products. Improved processing includes in RDSAR the application of enhanced retrackers for the RDSAR waveform. Improved processing in SAR includes modification both in the generation of SAR waveforms, (as Hamming weighting window on the burst data prior to the azimuth FFT, zero-padding prior to the range FFT, doubling of the extension for the radar range swath) and in the SAMOSA2 retracker. Data cover the full lifetime of CryoSat-2 (6 years) and Sentinel-3 (1 year). Conventional altimetry are from the sea level CCI database. First we analyse the impact of these SAR altimeter data on the sea level trend and on the estimation of vertical motion from the altimeter minus tide gauge differences. VLM along the North-Eastern Atlantic shelf is generally small compared to the North-Western Atlantic Coast VLM, with a smaller signal to noise ratio. Second we investigate impact on the coastal mean sea level surface and the mean dynamic topography. We evaluate a mean surface from the new altimeter data to be combined to state of the art geoid models to derive the mean dynamic topography. We compare the results to existing oceanographic and geodetic mean dynamic topography solutions, both on grid and pointwise at the tide gauge stations. This study is supported by ESA through the Sea Level CCI and the GOCE++DYCOT projects

  5. Laser altimetry simulator. Version 3.0: User's guide

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Mcgarry, Jan F.; Pacini, Linda K.; Blair, J. Bryan; Elman, Gregory C.

    1994-01-01

    A numerical simulator of a pulsed, direct detection laser altimeter has been developed to investigate the performance of space-based laser altimeters operating over surfaces with various height profiles. The simulator calculates the laser's optical intensity waveform as it propagates to and is reflected from the terrain surface and is collected by the receiver telescope. It also calculates the signal and noise waveforms output from the receiver's optical detector and waveform digitizer. Both avalanche photodiode and photomultiplier detectors may be selected. Parameters of the detected signal, including energy, the 50 percent rise-time point, the mean timing point, and the centroid, can be collected into histograms and statistics calculated after a number of laser firings. The laser altimeter can be selected to be fixed over the terrain at any altitude. Alternatively, it can move between laser shots to simulate the terrain profile measured with the laser altimeter.

  6. Using multi-source satellite data for lake level modelling in ungauged basins: A case study for Lake Turkana, East Africa

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2011-01-01

    Managing limited surface water resources is a great challenge in areas where ground-based data are either limited or unavailable. Direct or indirect measurements of surface water resources through remote sensing offer several advantages of monitoring in ungauged basins. A physical based hydrologic technique to monitor lake water levels in ungauged basins using multi-source satellite data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, a digital elevation model, and other data is presented. This approach is applied to model Lake Turkana water levels from 1998 to 2009. Modelling results showed that the model can reasonably capture all the patterns and seasonal variations of the lake water level fluctuations. A composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data is used for model calibration (1998-2000) and model validation (2001-2009). Validation results showed that model-based lake levels are in good agreement with observed satellite altimetry data. Compared to satellite altimetry data, the Pearson's correlation coefficient was found to be 0.81 during the validation period. The model efficiency estimated using NSCE is found to be 0.93, 0.55 and 0.66 for calibration, validation and combined periods, respectively. Further, the model-based estimates showed a root mean square error of 0.62 m and mean absolute error of 0.46 m with a positive mean bias error of 0.36 m for the validation period (2001-2009). These error estimates were found to be less than 15 % of the natural variability of the lake, thus giving high confidence on the modelled lake level estimates. The approach presented in this paper can be used to (a) simulate patterns of lake water level variations in data scarce regions, (b) operationally monitor lake water levels in ungauged basins, (c) derive historical lake level information using satellite rainfall and evapotranspiration data, and (d) augment the information provided by the

  7. Time-transfer experiments between satellite laser ranging ground stations via one-way laser ranging to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Sun, X.; Skillman, D. R.; Mcgarry, J.; Hoffman, E.; Neumann, G. A.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Satellite laser ranging (SLR) has long been used to measure the distance from a ground station to an Earth-orbiting satellite in order to determine the spacecraft position in orbit, and to conduct other geodetic measurements such as plate motions. This technique can also be used to transfer time between the station and satellite, and between remote SLR sites, as recently demonstrated by the Time Transfer by Laser Link (T2L2) project by the Centre National d'Etudes Spatiaes (CNES) and Observatorire de la Cote d'Azur (OCA) as well as the Laser Time Transfer (LTT) project by the Shanghai Astronomical Observatory, where two-way and one-way measurements were obtained at the same time. Here we report a new technique to transfer time between distant SLR stations via simultaneous one-way laser ranging (LR) to the Lunar Reconnaissance Orbiter (LRO) spacecraft at lunar distance. The major objectives are to establish accurate ground station times and to improve LRO orbit determination via these measurements. The results of these simultaneous LR measurements are used to compare the SLR station times or transfer time from one to the other using times-of-flight estimated from conventional radio frequency tracking of LRO. The accuracy of the time transfer depends only on the difference of the times-of-flight from each ground station to the spacecraft, and is expected to be at sub-nano second level. The technique has been validated by both a ground-based experiment and an experiment that utilized LRO. Here we present the results to show that sub-nanosecond precision and accuracy are achievable. Both experiments were carried out between the primary LRO-LR station, The Next Generation Satellite Laser Ranging (NGSLR) station, and its nearby station, Mobile Laser System (MOBLAS-7), both at Greenbelt, Maryland. The laser transmit time from both stations were recorded by the same event timer referenced to a Hydrogen maser. The results have been compared to data from a common All

  8. Development of a passively Q-switched Nd:YAG microchip laser for use in the Satellite Laser Ranging 2000 project

    NASA Astrophysics Data System (ADS)

    Gompers, Samuel Leo

    Presently, NASA is designing a replacement for its existing satellite laser ranging systems. These systems are used to measure Earth-satellite distances, tectonic plate movement, variations in rotational motion and other geodetic phenomena. Satellite Laser Ranging 2000 (SLR2000) is envisioned as a fully automated, sub- centimeter accuracy, eye-safe, low-cost replacement to the current SLR systems. It is expected to overcome present limitations by operating autonomously; being free of optical, chemical or electrical hazards; and having a greater average time between failures. Expected shot range precision is about one centimeter with normal point precision of better than three centimeters. This system will have twenty-four hour tracking coverage. SLR2000 specifications dictate operation at visible wavelengths with eye-safe energies on the order of one hundred microjoules and repetition rates on the order of two kilohertz. The optical subsystem of SLR2000 includes a passively Q- switched Nd:YAG microlaser. Passive Q-switching will be achieved using a saturable absorber and offers a number of advantages over the mode-locked lasers currently used in ranging stations: no need for long resonators with tight thermal control; no electro-optic switch required for single pulse selection; saturable absorbers precluding the use of carcinogenic dyes and solvents; and RF drive frequency electronics not tied to the resonator length of the laser cavity. The presented work describes the research and development of a prototype laser used to produce the energies, repetition rates and pulsewidths required for SLR2000. Optimization theories and models were applied to the laser design in order to accurately predict and assess performance characteristics of both gain medium and saturable absorber. Data were obtained which illustrated the affect of pump laser saturation and thermal lensing of the gain medium. Important laboratory skills and techniques were acquired in the design and

  9. Evidence for a slow subsidence of the Tahiti Island from GPS, DORIS, GRACE, and combined satellite altimetry and tide gauge sea level records

    NASA Astrophysics Data System (ADS)

    Fadil, A.; Barriot, J.; Sichoix, L.; Ortega, P.; Willis, P.; Serafini, J.

    2010-12-01

    Monitoring vertical land motion is of crucial interest in observations of long-term sea level change and its reconstruction, but is among of the most, yet highly challenging, tasks of space geodesy. The aim of the paper is to compare the vertical velocity estimates of Tahiti Island obtained from six independent geophysical measurements, namely a decade of GPS, DORIS, and GRACE data, 17 years sea level difference (altimeter minus tide gauge (TG)) time series, ICE-5G (VM2 L90) Post-Glacial Rebound (PGR) model predictions, and coral reef stratigraphy. Except The Glacial Isostatic Adjustment (GIA also known as PGR) model, all the techniques are in a good agreement and reveal a very slow subsidence of the Tahiti Island averaged at -0.3 mm/yr which is barely significant. Neverthless, despite of that vertical motion, Tahiti remains an ideal location for the calibration of satellite altimeter measurements.Estimated vertical crustal motions from GPS, DORIS, GRACE, (altimetry - tide-gauge) sea level records, coral reef stratigraphy, and GIA. GG = GAMIT-GLOBK software packageGOA= GIPSY-OASIS II software package

  10. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  11. SPCOLA: Combining laser altimetry and stereophotoclinometery to obtain topography for Bennu

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Barnouin, O. S.; Palmer, E. E.; Gaskell, R. W.; Weirich, J. R.; Daly, M. G.; Seabrook, J.; Nair, H.; Espiritu, R. C.; Lauretta, D. S.; Perry, M. E.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will return pristine samples of carbonaceous material from the surface of asteroid (101955) Bennu. Two instruments on OSIRIS-REx enable independent determination of topography: the OSIRIS-REx Laser Altimeter (OLA) and the OSIRIS-REx Camera Suite (OCAMS). OLA is a scanning lidar that ranges to the surface, returning altimetry information. OCAMS returns imaging data that are used to perform stereophotoclinometery (SPC) on these images to construct slope and albedo "maplets", small patches of the surface with central control points. Here we present a technique to combine topographic maplets generated using SPC with a compatible set of "mapolas" generated from OLA data. This "SPCOLA" process leverages the strengths of both while mitigating their respective weaknesses. A key advantage of SPC is that it allows a solution of the topography at accuracies similar to those of the best images used. SPC can make use of images at a wide range of viewing geometries and resolutions to simultaneously solve for slope and albedo. SPC also provides precise control point location from large stereo separation over multiple trajectories and can fill in gaps where point-based lidar data may not exist. Key strengths of lidar ranging include the ability to operate under any illumination conditions (including in the dark), insensitivity to albedo variations, robustness over large changes in slope, and provision of an absolute measurement of the range constraint to the surface. This range can be used to derive a control network for SPC, to improve the knowledge of the spacecraft position, to provide an independent scale for imagery and spectral data, and to provide constraints for any gravity solution obtained with radio science. Our goal in combining OLA data sets with image-based data is to generate Digital Elevation Models (DEMs) with higher accuracy than those using either

  12. Eddy Properties and their Spatiotemporal Variability in the North Indian Ocean from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Dandapat, S.; Chakraborty, A.

    2016-12-01

    A comprehensive study on the statistics and variability of mesoscale eddies in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale eddies is applied to detect the eddies and track their propagation. The potential eddies with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of eddy generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic eddies (CEs) are found to be significant in AS, while the anticyclonic eddies (ACEs) dominate the BOB. In both the oceans eddies mostly propagate westward. The AS eddies showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB eddies. In the AS, it is found that eddies formed on the western side of the basin persist longer and move towards north where as the number of eddies in the eastern coast of the basin is fewer and short lived. In the BOB, two highly eddy productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the eddy temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the eddy genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-core vertical structure with the core at a depth of about 100-200 dbar.

  13. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

  14. Satellite techniques for determining the geopotential for sea-surface elevations

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.

    1984-01-01

    Spaceborne altimetry with measurement accuracies of a few centimeters which has the potential to determine sea surface elevations necessary to compute accurate three-dimensonal geostrophic currents from traditional hydrographic observation is discussed. The limitation in this approach is the uncertainties in knowledge of the global and ocean geopotentials which produce satellite and height uncertainties about an order of magnitude larger than the goal of about 10 cm. The quantative effects of geopotential uncertainties on processing altimetry data are described. Potential near term improvements, not requiring additional spacecraft, are discussed. Even though there is substantial improvements at the longer wavelengths, the oceanographic goal will be achieved. The geopotential research mission (GRM) is described which should produce goepotential models that are capable of defining the ocean geid to 10 cm and near-Earth satellite position. The state of the art and the potential of spaceborne gravimetry is described as an alternative approach to improve our knowledge of the geopotential.

  15. Global ocean tides through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model

    NASA Technical Reports Server (NTRS)

    Leprovost, Christian; Mazzega, P.; Vincent, P.

    1991-01-01

    Ocean tides must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean tide contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean tide solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean tide predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.

  16. Inter-annual Variations in Snow/Firn Density over the Greenland Ice Sheet by Combining GRACE gravimetry and Envisat Altimetry

    NASA Astrophysics Data System (ADS)

    Su, X.; Shum, C. K.; Guo, J.; Howat, I.; Jezek, K. C.; Luo, Z.; Zhou, Z.

    2017-12-01

    Satellite altimetry has been used to monitor elevation and volume change of polar ice sheets since the 1990s. In order to derive mass change from the measured volume change, different density assumptions are commonly used in the research community, which may cause discrepancies on accurately estimating ice sheets mass balance. In this study, we investigate the inter-annual anomalies of mass change from GRACE gravimetry and elevation change from Envisat altimetry during years 2003-2009, with the objective of determining inter-annual variations of snow/firn density over the Greenland ice sheet (GrIS). High positive correlations (0.6 or higher) between these two inter-annual anomalies at are found over 93% of the GrIS, which suggests that both techniques detect the same geophysical process at the inter-annual timescale. Interpreting the two anomalies in terms of near surface density variations, over 80% of the GrIS, the inter-annual variation in average density is between the densities of snow and pure ice. In particular, at the Summit of Central Greenland, we validate the satellite data estimated density with the in situ data available from 75 snow pits and 9 ice cores. This study provides constraints on the currently applied density assumptions for the GrIS.

  17. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  18. Modification of earth-satellite orbits using medium-energy pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, C.R.

    1992-01-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will bemore » best for all scenarios. In this paper, we will focus on the last two applications.« less

  19. Modification of earth-satellite orbits using medium-energy pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, C.R.

    1992-10-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will bemore » best for all scenarios. In this paper, we will focus on the last two applications.« less

  20. Satellite Observations of Antarctic Sea Ice Thickness and Volume

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan; Markus, Thorsten

    2012-01-01

    We utilize satellite laser altimetry data from ICESat combined with passive microwave measurements to analyze basin-wide changes in Antarctic sea ice thickness and volume over a 5 year period from 2003-2008. Sea ice thickness exhibits a small negative trend while area increases in the summer and fall balanced losses in thickness leading to small overall volume changes. Using a five year time-series, we show that only small ice thickness changes of less than -0.03 m/yr and volume changes of -266 cu km/yr and 160 cu km/yr occurred for the spring and summer periods, respectively. The calculated thickness and volume trends are small compared to the observational time period and interannual variability which masks the determination of long-term trend or cyclical variability in the sea ice cover. These results are in stark contrast to the much greater observed losses in Arctic sea ice volume and illustrate the different hemispheric changes of the polar sea ice covers in recent years.

  1. New progress of ranging technology at Wuhan Satellite Laser Ranging Station

    NASA Technical Reports Server (NTRS)

    Xia, Zhiz-Hong; Ye, Wen-Wei; Cai, Qing-Fu

    1993-01-01

    A satellite laser ranging system with an accuracy of the level of centimeter has been successfully developed at the Institute of Seismology, State Seismological Bureau with the cooperation of the Institute of Geodesy and Geophysics, Chinese Academy of Science. With significant improvements on the base of the second generation SLR system developed in 1985, ranging accuracy of the new system has been upgraded from 15 cm to 3-4 cm. Measuring range has also been expanded, so that the ETALON satellite with an orbit height of 20,000 km launched by the former U.S.S.R. can now be tracked. Compared with the 2nd generation SLR system, the newly developed system has the following improvements. A Q modulated laser is replaced by a mode-locked YAG laser. The new device has a pulse width of 150 ps and a repetition rate of 1-4 pps. A quick response photomultiplier has been adopted as the receiver for echo; for example, the adoption of the MCP tube has obviously reduced the jitter error of the transit time and has improved the ranging accuracy. The whole system is controlled by an IBM PC/XT Computer to guide automatic tracking and measurement. It can carry out these functions for satellite orbit calculation, real-time tracking and adjusting, data acquisition and the preprocessed of observing data, etc. The automatization level and reliability of the observation have obviously improved.

  2. Estimates of Internal Tide Energy Fluxes from Topex/Poseidon Altimetry: Central North Pacific

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Cartwright, David E.; Smith, David E. (Technical Monitor)

    2000-01-01

    Energy fluxes for first-mode M(sub 2) internal tides are deduced throughout the central North Pacific Ocean from Topex/Poseidon satellite altimeter data. Temporally coherent internal tide signals in the altimetry, combined with climatological hydrographic data, determine the tidal displacements, pressures, and currents at depth, which yield power transmission rates. For a variety of reasons the deduced rates should be considered lower bounds. Internal tides were found to emanate from several large bathymetric structures, especially the Hawaiian Ridge, where the integrated flux amounts to about six gigawatts. Internal tides are generated at the Aleutian Trench near 172 deg west and propagate southwards nearly 2000 km.

  3. Coastal Sea Level and Estuary Tide Modeling in Bangladesh Using SAR, Radar and GNSS-R Altimetry

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Shum, C. K.; Sun, J.; Li, D.; Shang, K.; Yi, Y.; Calmant, S.; Ballu, V.; Chu, P.; Johnson, J.; Park, J.; Bao, L.; Kuo, C. Y.; Wickert, J.

    2017-12-01

    Bangladesh, located at the confluence of three large rivers - Ganges, Brahmaputra and Meghna, is a low-lying country. It is prone to monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Its coastal estuaries, the Sundarbans wetlands, have the largest Mangrove forest in the world, and exhibits complex tidal dynamics. In order to study flood hazards, ecological or climate changes over floodplains, it is fundamentally important to know the water level and water storage capacity in wetlands. Inaccurate or inadequate information about wetland water storage will cause significant errors in hydrological simulation and modeling for understanding ecological and economic implications. However, in most areas, the exact knowledge of water level change and the flow patterns is lacking due to insufficient monitoring of water level gauging stations on private and public lands within wetlands or floodplains, due to the difficulty of physical access to the sites and logistics in data gathering. Usage of satellite all-weather remote sensing products provides an alternative approach for monitoring the water level variation over floodplains or wetlands. In this study, we used a combination of observations from satellite radar altimetry (Envisat/Jason-2/Altika/Sentinel-3), L-band synthetic aperture radar (ALOS-1/-2) backscattering coefficients inferred water level, GNSS-R altimetry from two coastal/river GNSS sites, for measuring coastal and estuary sea-level and conducting estuary ocean tide modeling in the Bangladesh delta including the Sundarbans wetlands.

  4. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  5. A ground-based memory state tracker for satellite on-board computer memory

    NASA Technical Reports Server (NTRS)

    Quan, Alan; Angelino, Robert; Hill, Michael; Schwuttke, Ursula; Hervias, Felipe

    1993-01-01

    The TOPEX/POSEIDON satellite, currently in Earth orbit, will use radar altimetry to measure sea surface height over 90 percent of the world's ice-free oceans. In combination with a precise determination of the spacecraft orbit, the altimetry data will provide maps of ocean topography, which will be used to calculate the speed and direction of ocean currents worldwide. NASA's Jet Propulsion Laboratory (JPL) has primary responsibility for mission operations for TOPEX/POSEIDON. Software applications have been developed to automate mission operations tasks. This paper describes one of these applications, the Memory State Tracker, which allows the ground analyst to examine and track the contents of satellite on-board computer memory quickly and efficiently, in a human-readable format, without having to receive the data directly from the spacecraft. This process is accomplished by maintaining a groundbased mirror-image of spacecraft On-board Computer memory.

  6. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  7. The determination of the orbit of the Japanese satellite Ajisai and the GEM-T1 and GEM-T2 gravity field models

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.

    1990-01-01

    The Japanese Experimental Geodetic Satellite Ajisai was launched on August 12, 1986. In response to the TOPEX-POSEIDON mission requirements, the GSFC Space Geodesy Branch and its associates are producing improved models of the Earth's gravitational field. With the launch of Ajisai, precise laser data is now available which can be used to test many current gravity models. The testing of the various gravity field models show improvements of more than 70 percent in the orbital fits when using GEM-T1 and GEM-T2 relative to results obtained with the earlier GEM-10B model. The GEM-T2 orbital fits are at the 13-cm level (RMS). The results of the tests with the various versions of the GEM-T1 model indicate that the addition of satellite altimetry and surface gravity anomalies as additional data types should improve future gravity field models.

  8. The precision of today's satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  9. The precision of today's satellite laser ranging systems

    NASA Technical Reports Server (NTRS)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-01-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  10. Estimates of forest canopy height and aboveground biomass using ICESat.

    Treesearch

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  11. Precise attitude determination of defunct satellite laser ranging tragets

    NASA Astrophysics Data System (ADS)

    Pittet, Jean-Noel; Schildknecht, Thomas; Silha, Jiri

    2016-07-01

    The Satellite Laser Ranging (SLR) technology is used to determine the dynamics of objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to range to the spacecraft with very high precision, which leads to determination of very accurate orbits. Non-active spacecraft, which are not any more attitude controlled, tend to start to spin or tumble under influence of the external and internal torques. Such a spinning can be around one constant axis of rotation or it can be more complex, when also precession and nutation motions are present. The rotation of the RRA around the spacecraft's centre of mass can create both a oscillation pattern of laser range signal and a periodic signal interruption when the RRA is hidden behind the satellite. In our work we will demonstrate how the SLR ranging technique to cooperative targets can be used to determine precisely their attitude state. The processing of the obtained data will be discussed, as well as the attitude determination based on parameters estimation. Continuous SLR measurements to one target can allow to accurately monitor attitude change over time which can be further used for the future attitude modelling. We will show our solutions of the attitude states determined for the non-active ESA satellite ENVISAT based on measurements acquired during year 2013-2015 by Zimmerwald SLR station, Switzerland. The angular momentum shows a stable behaviour with respect to the orbital plane but is not aligned with orbital momentum. The determination of the inertial rotation over time, shows it evolving between 130 to 190 seconds within two year. Parameter estimation also bring a strong indication of a retrograde rotation. Results on other former satellites in low and medium Earth orbit such as TOPEX/Poseidon or GLONASS type will be also presented.

  12. Satellite Laser Ranging and the Modelling of Non-gravitational Perturbations: the LARASE experiment

    NASA Astrophysics Data System (ADS)

    Lucchesi, David; Anselmo, Luciano; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Visco, Massimo

    Laser ranging to passive (cannonball) satellites like the two LAGEOS still represents a way to extract relevant information on Earth’s internal structure, its surface and the way it interacts with the surrounding medium, the atmosphere. The related precise orbit determination (POD) represents the first issue to be fulfilled, to be followed by a solve for the unknown global parameters. The POD requires two main features: i) high-quality observations and ii) high-quality dynamical models. The first item, i.e., the availability of high-quality tracking data, is provided by the International Laser Ranging Service (ILRS) by means of the very precise Satellite Laser Ranging (SLR) technique. With regard to the second point, a big effort has been done to develop models for the non-gravitational forces (i.e., non-conservative forces) on passive satellites, especially for the two LAGEOS, since early ’80s, with significant results in the literature. However, some of the models built were valid only under particular approximations or simplifications, as for the spin model and the thermal thrust forces, and have not been generalized or tested under different conditions. Other aspects, such as the asymmetric reflectivity of the two LAGEOS satellites, are not fully understood. For instance, one of the main parameters that enters in these models is the spin rate of the satellite and its slowing down due to the coupling of the induced magnetic moment produced by eddy currents with the external geomagnetic field. Once the value of the spin period is close to other characteristics time scales, as the thermal inertia of the cube corner retroreflectors or the orbital period of the satellite, resonances are present and more complicated (non-averaged) equations have to be considered for a reliable model of the spin evolution. In order to account for such effects and also to extend/apply (correctly) the models to the new LARES satellite, new efforts are needed in the field of the non

  13. Topex/Poseidon satellite - Enabling a joint U.S.-French mission for global ocean study

    NASA Technical Reports Server (NTRS)

    Hall, Ralph L.

    1990-01-01

    A joint U.S./French mission, which represents a merging of the prior NASA Topex and CNES Poseidon progams, is described. The Topex/Poseidon satellite will contribute to two of the World Climate Research Program's phases: the World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere experiment. The satellite's instruments will measure the ocean currents and their variability on the global basis via satellite altimetry and precision orbit determinations. The paper describes the satellite configuration and characteristics and the mission instruments and system elements. The Topex/Poseidon's design diagrams and block diagrams are included.

  14. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  15. Satellite laser ranging as a tool for the recovery of tropospheric gradients

    NASA Astrophysics Data System (ADS)

    Drożdżewski, M.; Sośnica, K.

    2018-11-01

    Space geodetic techniques, such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) have been extensively used for the recovery of the tropospheric parameters. Both techniques employ microwave observations, for which the troposphere is a non-dispersive medium and which are very sensitive to the water vapor content. Satellite laser ranging (SLR) is the only space geodetic technique used for the definition of the terrestrial reference frames which employs optical - laser observations. The SLR sensitivity to the hydrostatic part of the troposphere delay is similar to that of microwave observations, whereas the sensitivity of laser observations to non-hydrostatic part of the delay is about two orders of magnitude smaller than in the case of microwave observations. Troposphere is a dispersive medium for optical wavelengths, which means that the SLR tropospheric delay depends on the laser wavelength. This paper presents the sensitivity and capability of the SLR observations for the recovery of azimuthal asymmetry over the SLR stations, which can be described as horizontal gradients of the troposphere delay. For the first time, the horizontal gradients are estimated, together with other parameters typically estimated from the SLR observations to spherical LAGEOS satellites, i.e., station coordinates, earth rotation parameters, and satellite orbits. Most of the SLR stations are co-located with GNSS receivers, thus, a cross-correlation between both techniques is possible. We compare our SLR horizontal gradients to GNSS results and to the horizontal gradients derived from the numerical weather models (NWM). Due to a small number of the SLR observations, SLR is not capable of reconstructing short-period phenomena occurring in the atmosphere. However, the long-term analysis allows for the recovery of the atmosphere asymmetry using SLR. As a result, the mean offsets of the SLR-derived horizontal gradients agree to the level of 47%, 74%, 54

  16. Surface elevation change over the Patagonia Ice Fields using CryoSat-2 swath altimetry

    NASA Astrophysics Data System (ADS)

    Foresta, Luca; Gourmelen, Noel; José Escorihuela, MarÍa; Garcia Mondejar, Albert; Wuite, Jan; Shepherd, Andrew; Roca, Mònica; Nagler, Thomas; Brockley, David; Baker, Steven; Nienow, Pete

    2017-04-01

    Satellite altimetry has been traditionally used in the past few decades to infer elevation of land ice, quantify changes in ice topography and infer mass balance estimates over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability of observing the ice surface. However, monitoring of ice caps (area < 104 km^2) as well as mountain glaciers has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change. Since 2010, the European Space Agency's CryoSat-2 (CS-2) satellite has collected ice elevation measurements over ice caps with its novel radar altimeter. CS-2 provides higher density of observations w.r.t. previous satellite altimeters, reduces the along-track footprint using Synthetic Aperture Radar (SAR) processing and locates the across-track origin of a surface reflector in the presence of a slope with SAR Interferometry (SARIn). Here, we exploit CS-2 as a swath altimeter [Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Ignéczi et al., 2016, Foresta et al., 2016] over the Southern and Northern Patagonian Ice Fields (SPI and NPI, respectively). The SPI and NPI are the two largest ice masses in the southern hemisphere outside of Antarctica and are thinning very rapidly in recent decades [e.g Rignot et al., 2003; Willis et al, 2012]. However, studies of surface, volume and mass change in the literature, covering the entire SPI and NPI, are limited in number due to their remoteness, extremely complex topography and wide range of slopes. In this work, we present rates of surface elevation change for five glaciological years between 2011-2016 using swath-processed CS-2 SARIn heights and

  17. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

    NASA Astrophysics Data System (ADS)

    Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole B.; Stenseng, Lars; Nielsen, Karina; Knudsen, Per

    2016-06-01

    Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated. In addition, the possible benefits from combining physical and empirical retrackers are investigated. The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies and Applications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple Waveform Persistent Peak (MWaPP) retracker, and a method combining the physical and empirical retrackers. Using a physical SAR waveform retracker over inland water has not been attempted before but shows great promise in this study. The evaluation is performed for two medium-sized lakes (Lake Vänern in Sweden and Lake Okeechobee in Florida), and in the Amazon River in Brazil. Comparing with in situ data shows that using the SAMOSA3 retracker generally provides the lowest root-mean-squared-errors (RMSE), closely followed by the MWaPP retracker. For the empirical retrackers, the RMSE values obtained when comparing with in situ data in Lake Vänern and Lake Okeechobee are in the order of 2-5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standard deviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels are obtained using the SAMOSA3 retracker whenever information about other physical properties apart from range is desired. Otherwise we suggest using the empirical MWaPP retracker described in this paper, which is both easy to implement, computationally efficient, and gives a height estimate for even the most contaminated waveforms.

  18. SWEAT: Snow Water Equivalent with AlTimetry

    NASA Astrophysics Data System (ADS)

    Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge

    2017-04-01

    To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.

  19. 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Sandberg Sørensen, Louise; Simonsen, Sebastian B.; Forsberg, René; Khvorostovsky, Kirill; Meister, Rakia; Engdahl, Marcus E.

    2018-08-01

    The shape of the large ice sheets responds rapidly to climate change, making the elevation changes of these ice-covered regions an essential climate variable. Consistent, long time series of these elevation changes are of great scientific value. Here, we present a newly-developed data product of 25 years of elevation changes of the Greenland Ice Sheet, derived from satellite radar altimetry. The data product is made publicly available within the Greenland Ice Sheets project as part of the ESA Climate Change Initiative programme. Analyzing repeated elevation measurements from radar altimetry is widely used for monitoring changes of ice-covered regions. The Greenland Ice Sheet has been mapped by conventional radar altimetry since the launch of ERS-1 in 1991, which was followed by ERS-2, Envisat and currently CryoSat-2. The recently launched Sentinel-3A will provide a continuation of the radar altimetry time series. Since 2010, CryoSat-2 has for the first time measured the changes in the coastal regions of the ice sheet with radar altimetry, with its novel SAR Interferometric (SARIn) mode, which provides improved measurement over regions with steep slopes. Here, we apply a mission-specific combination of cross-over, along-track and plane-fit elevation change algorithms to radar data from the ERS-1, ERS-2, Envisat and CryoSat-2 radar missions, resulting in 25 years of nearly continuous elevation change estimates (1992-2016) of the Greenland Ice Sheet. This analysis has been made possible through the recent reprocessing in the REAPER project, of data from the ERS-1 and ERS-2 radar missions, making them consistent with Envisat data. The 25 years of elevation changes are evaluated as 5-year running means, shifted almost continuously by one year. A clear acceleration in thinning is evident in the 5-year maps of elevation following 2003, while only small elevation changes observed in the maps from the 1990s.

  20. Development of a multi-sensor elevation time series pole-ward of 86°S in support of altimetry validation and ice sheet mass balance studies

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.

    2015-12-01

    In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.

  1. Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)

    NASA Astrophysics Data System (ADS)

    Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R.

    2018-03-01

    The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003-2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions

  2. Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry

    USGS Publications Warehouse

    Lee, H.; Shum, C.K.; Yi, Y.; Ibaraki, M.; Kim, J.-W.; Braun, Andreas; Kuo, C.-Y.; Lu, Z.

    2009-01-01

    Previous studies using satellite radar altimetry to observe inland river and wetland water level changes usually spatially average high-rate (10-Hz for TOPEX, 18-Hz for Envisat) measurements. Here we develop a technique to apply retracking of TOPEX waveforms by optimizing the estimated retracked gate positions using the Offset Center of Gravity retracker. This study, for the first time, utilizes stacking of retracked TOPEX data over Louisiana wetland and concludes that the water level observed by each of 10-Hz data with along-track sampling of ∼660 m exhibit variations, indicating detection of wetland dynamics. After further validations using nearby river gauges, we conclude that TOPEX is capable of measuring accurate water level changes beneath heavy-vegetation canopy region (swamp forest), and that it revealed wetland dynamic flow characteristics along track with spatial scale of 660 m or longer.

  3. Airborne Laser Altimetry Measurements of Glacier Wastage in Alaska and NW Canada

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Hock, R. M.; Arendt, A. A.; Zirnheld, S. L.

    2009-12-01

    Laser altimetry elevation profiles of glaciers in NW North America (Alaska, Yukon, and NW British Columbia) have been collected by the University of Alaska Geophysical Institute (UAF-GI) beginning in 1993. Since then, more than 200 glaciers throughout NW North America have been measured, many of them multiple times with typical repeat intervals of 3 to 5 years. All of the largest glaciers here have been profiled, including at least some representative glaciers from every major icefield in NW North America. Over 40 glaciers were surveyed again in the summer of 2009, a significant and unusually large annual addition to our database of surface elevation changes. Beginning in August 2009 we flew the surveys using the new UAF-GI swath mapping LiDAR system which records a 0.5 km wide 3-d map of survey points on an approximately 1 m x 1 m grid along the glacier centerlines. Over 40 glaciers and icefields have now been surveyed 3 or more times over the past 15 years, and these regions have been analyzed for changes in their rates of wastage. These regions include the Stikine Icefield of southeast Alaska, the Columbia Glacier, the Bering-Bagley and Seward-Malaspina systems, the Yakutat Icefield, Glacier Bay, the Harding Icefield, and the Alaska Range. Increased melt rates are generally observed over the most recent 3 to 5 year interval when compared to the previous 5 to 10 years, with many glaciers experiencing a factor of two or greater in their recent area-averaged thinning rates. Hypsometry appears to be a significant factor, with those areas that have relatively low average elevation and low accumulation areas showing stronger effects of the accelerated thinning. In particular, those icefields near the Gulf of Alaska coast, such as the Yakutat, Harding and Brady Icefields, are now rapidly wasting. A few areas that have relatively high elevation accumulation areas appear to have steady rates of thinning, such as within the St. Elias Mountains.

  4. ICESat Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis: A Summary of Early Mission Results

    NASA Technical Reports Server (NTRS)

    Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities

  5. NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance

    NASA Astrophysics Data System (ADS)

    Fields, Renny; Lunde, Carl; Wong, Robert; Wicker, Josef; Kozlowski, David; Jordan, John; Hansen, Brian; Muehlnikel, Gerd; Scheel, Wayne; Sterr, Uwe; Kahle, Ralph; Meyer, Rolf

    2009-05-01

    Starting in late 2007 and continuing through the present, NFIRE (Near-Field Infrared Experiment), a Missile Defense Agency (MDA) experimental satellite and TerraSAR-X, a German commercial SAR satellite have been conducting mutual crosslink experiments utilizing a secondary laser communication payload built by Tesat-Spacecom. The narrow laser beam-widths and high relative inter-spacecraft velocities for the two low-earth-orbiting satellites imply strict pointing control and dynamics aboard both vehicles. The satellites have achieved rapid communication acquisition times and maintained communication for hundreds of seconds before losing line of sight to the counter satellite due to earth blockage. Through post-mission analysis and other related telemetry we will show results for pointing accuracy, disturbance environments and pre-engagement prediction requirements that support successful and reliable operations.

  6. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  7. Preliminary results from the portable standard satellite laser ranging intercomparison with MOBLAS-7

    NASA Technical Reports Server (NTRS)

    Selden, Michael; Varghese, Thomas K.; Heinick, Michael; Oldham, Thomas

    1993-01-01

    Conventional Satellite Laser Ranging (SLR) instrumentation has been configured and successfully used to provide high-accuracy laboratory measurements on the LAGEOS-2 and TOPEX cube-corner arrays. The instrumentation, referred to as the Portable Standard, has also been used for field measurements of satellite ranges in tandem with MOBLAS-7. Preliminary results of the SLR measurements suggest that improved range accuracy can be achieved using this system. Results are discussed.

  8. Exploiting coastal altimetry to improve the surface circulation scheme over the central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jebri, Fatma; Birol, Florence; Zakardjian, Bruno; Bouffard, Jérome; Sammari, Cherif

    2016-07-01

    This work is the first study exploiting along track altimetry data to observe and monitor coastal ocean features over the transition area between the western and eastern Mediterranean Basins. The relative performances of both the AVISO and the X-TRACK research regional altimetric data sets are compared using in situ observations. Both products are cross validated with tide gauge records. The altimeter-derived geostrophic velocities are also compared with observations from a moored Acoustic Doppler Current Profiler. Results indicate the good potential of satellite altimetry to retrieve dynamic features over the area. However, X-TRACK shows a more homogenous data coverage than AVISO, with longer time series in the 50 km coastal band. The seasonal evolution of the surface circulation is therefore analyzed by conjointly using X-TRACK data and remotely sensed sea surface temperature observations. This combined data set clearly depicts different current regimes and bifurcations, which allows us to propose a new seasonal circulation scheme for the central Mediterranean. The analysis shows variations of the path and temporal behavior of the main circulation features: the Atlantic Tunisian Current, the Atlantic Ionian Stream, the Atlantic Libyan Current, and the Sidra Gyre. The resulting bifurcating veins of these currents are also discussed, and a new current branch is observed for the first time.

  9. Satellite laser ranging to low Earth orbiters: orbit and network validation

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  10. State-of-the-art satellite laser range modeling for geodetic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Klosko, Steve M.; Smith, David E.

    1993-01-01

    Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.

  11. Theoretical analysis and experimental study of constraint boundary conditions for acquiring the beacon in satellite-ground laser communications

    NASA Astrophysics Data System (ADS)

    Yu, Siyuan; Wu, Feng; Wang, Qiang; Tan, Liying; Ma, Jing

    2017-11-01

    Acquisition and recognition for the beacon is the core technology of establishing the satellite optical link. In order to acquire the beacon correctly, the beacon image should be recognized firstly, excluding the influence of the background light. In this processing, many factors will influence the recognition precision of the beacon. This paper studies the constraint boundary conditions for acquiring the beacon from the perspective of theory and experiment, and as satellite-ground laser communications, an approach for obtaining the adaptive segmentation method is also proposed. Finally, the long distance laser communication experiment (11.16 km) verifies the validity of this method and the tracking error with the method is the least compared with the traditional approaches. The method helps to greatly improve the tracking precision in the satellite-ground laser communications.

  12. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; hide

    2001-01-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.

  13. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  14. COASTALT Project's Contribution to the Development and Dissemination of Coastal Altimetry

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Barbosa, Susana; Benveniste, Jérôme; Bos, Machiel; Caparrini, Marco; Challenor, Peter; Coelho, Henrique; Dinardo, Salvatore; Fernandes, Joana; Gleason, Scott; Gómez-Enri, Jesus; Gommenginger, Christine; Lázaro, Clara; Lucas, Bruno M.; Martin-Puig, Cristina; Moreno, Laura; Nunes, Alexandra; Pires, Nelson; Quartly, Graham; Scozzari, Andrea; Snaith, Helen; Tsimplis, Mikis; Vignudelli, Stefano; West, Luke; Wolf, Judith; Woodworth, Phil

    2013-09-01

    The present contribution revisits briefly the many recent technical improvements that are contributing to the steady progress of the new field of Coastal Altimetry, and in particular focuses on the results of the ESA-funded COASTALT project (2008- 2011), which has recently concluded.COASTALT has been an excellent incubator of ideas and new techniques for the improvement of coastal altimetry: first of all it has contributed to establish user requirements for this new field, and it has defined detailed product specifications for the new coastal altimetry products and produced the relevant documentation. At the same time COASTALT has tackled the two main areas of improvement for coastal altimetry, i.e. 1) retracking, i.e. fitting a waveform model to the waveforms to obtain an estimate of the geophysical parameters: and 2) designing and validating improved coastal corrections for the effects of the atmosphere and/or other geophysical phenomena, like tides.The main results of COASTALT, as far as retracking is concerned, are the innovative techniques to deal with the waveforms in proximity of the coast, where there are often quasi-specular returns due to stretches of calm water which prevent a successful use of the standard (open-ocean) Brown-model retracker. This issue has been investigated in a number of cases around islands, and we present a hyperbolic pre-tracker that has been suggested as a way to precondition the waveform stack prior to conventional retracking. In terms of coastal-specific corrections, the main contribution by COASTALT has been the implementation of an innovative scheme for the Wet Tropospheric Correction (i.e. the path delay due to water vapour in the troposphere) based on GPSobservations and following pioneering research by the University of Porto.An important part of the COASTALT mission has been to facilitate the coming together of the international coastal altimetry community of researchers. This has been achieved via the moderation of the

  15. Evolution of Altimetry Calibration and Future Challenges

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  16. Prelaunch testing of the laser geodynamic satellite (LAGEOS)

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M. W.; Minott, P. O.; Abshire, J. B.; Rowe, H. E.

    1977-01-01

    The LAGEOS was extensively tested optically prior to launch. The measurement techniques used are described and resulting data is presented. Principal emphasis was placed on pulse spreading characteristics, range correction for center of mass tracking, and pulse distortion due to coherent effects. A mode-locked freqeuncy doubled Nd:YAG laser with a pulse width of about 60 ps was used as the ranging transmitter and a crossfield photo-multiplier was used in the receiver. High speed sampling electronics were employed to increase receiver bandwidth. LAGEOS reflected pulses typically had a width of 250 ps with a variability in the range correction of less than 2 mm rms. Pulse distortion due to coherent effects was inferred from average waveforms and appears to introduce less than + or - 50 ps jitter in the location of the pulse peak. Analytic results on this effect based on computer simulations are also presented. Theoretical and experimental data on the lidar cross section were developed in order to predict the strength of lidar echoes from the satellite. Cross section was measured using a large aperture laser collimating system to illuminate the LAGEOS. Reflected radiation far-field patterns were measured using the collimator in an autocollimating mode. Data were collected with an optical data digitzer and displayed as a three-dimensional plot of intensity versus the two far-field coordinates. Measurements were made at several wavelengths, for several types of polarizations, and as a function of satellite orientation.

  17. TerraHertz Free Electron Laser Applications for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2003-01-01

    The development of a Free Electron Laser (EL) operating in the terahertz frequency regime by the group at the University of Hawaii (Elias et al.) represents a significant new opportunity in the area of atmospheric remote sensing. The FEL has 2 salient features that create a unique opportunity. First of all it represents the only source in this frequency range with sufficient power to enable lidar instrumentation. Secondly its very high electrical efficiency (several times more efficient than any currently employed spaceborne laser) renders it a strong candidate for use in satellite remote sensing. On the negative side the atmosphere is rather strongly absorbing throughout this frequency range due primarily to the water vapor continuum absorption. This means that the instruments using this laser will not be able to access the lower troposphere because of its very high water concentration.. However the instrument will be very capable of measurements in the upper troposphere and stratosphere. A passive instrument, the Microwave Limb Sounder on the UARS satellite operated by Jet Propulsion Laboratory, has already demonstrated that this wavelength region can be used for chemical species with strong emission lines. A lidar would complement the capabilities of this instrument by providing the capability to measure absorbing species in the upper atmosphere. I will discuss the design of such an instrument in greater detail and estimate its performance in measuring a number of chemical species of interest to the Earth Science community.

  18. Assessment of GPS Reflectometry from TechDemoSat-1 for Scatterometry and Altimetry Applications

    NASA Astrophysics Data System (ADS)

    Shah, R.; Hajj, G. A.

    2015-12-01

    The value of GPS reflectometry for scatterometry and altimetry applications has been a topic of investigation for the past two decades. TechDemoSat-1 (TDS-1), a technology demonstration satellite launched in July of 2014, with an instrument to collect GPS reflections from 4 GPS satellites simultaneously, provide the first extensive data that allows for validation and evaluation of GPS reflectometry from space against more established techniques. TDS-1 uses a high gain (~13 dBi) L1 antenna pointing 6 degrees off nadir with a 60ohalf-beam width. Reflected GPS L1 signals are processed into Delay Doppler Maps (DDMs) inside the receiver and made available (through Level-1b) along with metadata describing the bistatic geometry, antenna gain, etc., on a second-by-second basis for each of the 4 GPS tracks recorded at any given time. In this paper we examine level-1b data from TDS-1 for thousands of tracks collected over the span of Jan.-Feb., 2015. This data corresponds to reflections from various types of surfaces throughout the globe including ice, deserts, forests, oceans, lakes, wetlands, etc. Our analysis will consider how the surface type manifests itself in the DDMs (e.g., coherence vs. non-coherence reflection) and derivable physical quantities. We will consider questions regarding footprint resolution, waveform rise time and corresponding bistatic range accuracy, and level of precision for altimetry (sea surface height) and scatterometry (significant wave height and sea surface wind). Tracks from TDS-1 that coincide with Jason-1 or 2 tracks will be analyzed, where the latter can be used as truth for comparison and validation. Where coincidences are found, vertical delay introduced by the media as measured by Jason will be mapped to bistatic propagation path to correct for neutral atmospheric and ionospheric delays.

  19. A Step Towards the Characterization of SAR Mode Altimetry to Inform Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Fabry, Pierre; Bercher, Nicolas; Ambrozio, Americo; Restano, Marco; Benveniste, Jerome

    2016-08-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. In order to define refine the L1B processor and the retrackers for alti-hydrology applications, we need to characterise the SARM Individual Echoes, Multi- Look Stacks as well as 20Hz waveforms over the inland water domain.This paper deals with the continuation of works presented in 2015 [Fabry et Bercher, Venice 2015b] [Fabry et Bercher, Frascati 2015a/c] where we introduced an automated technique to assess the water fraction within the Beam-Doppler limited footprint through its intersection area with a water mask. We hereby refine the utilisation of these water classes and run the classification on a wider dataset so as to improve the readout of the Range Integrated Power1 (RIP) parameters and the waveforms versus the Water Fraction.

  20. Satellite Laser Ranging Photon-Budget Calculations for a Single Satellite Cornercube Retroreflector: Attitude Control Tolerance

    DTIC Science & Technology

    2015-11-01

    beam splitter , and an arrangement of polarising prisms and waveplates to measure the diffraction pattern resulting from uni- form laser beams in...cornercube retroreflectors identified in the current satellite design are found to allow for a significant variation in the reflected beam width. The...Surface quality 60-40 Housing tolerance OD:† +0/− 0.5 mm H: ±0.25 mm Beam -angle tolerance 3 arcsec Substrate N-BK7 Coating Internal silver Figure 2: Design

  1. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  2. Laser-based satellite communication systems stabilized by non-mechanical electro-optic scanners

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael; Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Benjamin; Gamble, Joseph D.; Anderson, Mike

    2016-05-01

    Laser communications systems provide numerous advantages for establishing satellite-to-ground data links. As a carrier for information, lasers are characterized by high bandwidth and directionality, allowing for fast and secure transfer of data. These systems are also highly resistant to RF influences since they operate in the infrared portion of the electromagnetic spectrum, far from radio bands. In this paper we will discuss an entirely non-mechanical electro-optic (EO) laser beam steering technology, with no moving parts, which we have used to form robust 400 Mbps optical data connections through air. This technology will enable low cost, compact, and rugged free space optical (FSO) communication modules for small satellite applications. The EO beam-steerer at the heart of this system is used to maintain beam pointing as the satellite orbits. It is characterized by extremely low values for size, weight and power consumption (SWaP) - approximately 300 cm3, 300 g, and 5 W respectively, which represents a marked improvement compared to heavy, and power-consuming gimbal mechanisms. It is capable of steering a 500 mW, 1 mm short wave infrared (SWIR) beam over a field of view (FOV) of up to 50° x 15°, a range which can be increased by adding polarization gratings, which provide a coarse adjust stage at the EO beam scanner output. We have integrated this device into a communication system and demonstrated the capability to lock on and transmit a high quality data stream by modulation of SWIR power.

  3. Preliminary Global Topographic Model of Mars Based on MOLA Altimetry, Earth-Based Radar, and Viking, Mariner and MGS Occultations

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    1999-01-01

    The recent altimetry data acquired by MOLA over the northern hemisphere of Mars have been combined with the Earth-based radar data obtained between 1971 and 1982, and occultation measurements of the Viking 1 and 2 Orbiters, Mariner 9, and MGS to derive a global model of the shape and topography of Mars. This preliminary model has a horizontal resolution of about 300 km. Vertical accuracy is on average a few hundred meters in the region of the data. Datasets: The altimetry and radar datasets were individually binned in 1.25 degree grids and merged with the occultation data. The Viking and Mariner occultation data in the northern hemisphere were excluded from the combined dataset where MOLA altimetry were available. The laser altimetry provided extensive and almost complete coverage of the northern hemisphere north of latitude 30 while the radar provided longitudinal coverage at several latitude bands between 23N and 23S. South of this region the only data were occultations. The majority of the occultations were obtained from Mariner 9, and the rest from Viking 1 & 2, and MGS. Earlier studies had shown that the Viking and Mariner occultations were on average only accurate to 500 meters. The recent MGS occultations are accurate to a few tens of meters. However, the highest southern latitude reached by the MGS occultations is only about 64S and data near the target region for the Mars 98 lander is limited to a few Viking and Mariner observations of relatively poor quality. In addition to the above datasets the locations of the Viking 1, Viking 2, and Pathfinder landers, obtained from the radio tracking of their signals, were included.

  4. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  5. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  6. Interaction of marine geodesy, satellite technology and ocean physics

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Fubara, D. M. J.

    1972-01-01

    The possible applications of satellite technology in marine geodesy and geodetic related ocean physics were investigated. Four major problems were identified in the areas of geodesy and ocean physics: (1) geodetic positioning and control establishment; (2) sea surface topography and geoid determination; (3) geodetic applications to ocean physics; and (4) ground truth establishment. It was found that satellite technology can play a major role in their solution. For solution of the first problem, the use of satellite geodetic techniques, such as Doppler and C-band radar ranging, is demonstrated to fix the three-dimensional coordinates of marine geodetic control if multi-satellite passes are used. The second problem is shown to require the use of satellite altimetry, along with accurate knowledge of ocean-dynamics parameters such as sea state, ocean tides, and mean sea level. The use of both conventional and advanced satellite techniques appeared to be necessary to solve the third and fourth problems.

  7. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    NASA Astrophysics Data System (ADS)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  8. Multibeam Laser Altimeter for Planetary Topographic Mapping

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Bufton, J. L.; Harding, D. J.

    1993-01-01

    Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.

  9. Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon (T/P) satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  10. Tidal Energy Available for Deep Ocean Mixing: Bounds From Altimetry Data

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  11. Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented an interesting problem. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  12. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  13. Coherent detection of position errors in inter-satellite laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu

    2007-09-01

    Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.

  14. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  15. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  16. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    NASA Astrophysics Data System (ADS)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  17. Determination of crustal motions using satellite laser ranging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Satellite laser ranging has matured over the last decade into one of the essential space geodesy techniques. It has demonstrated centimeter site positioning and millimeter per year velocity determinations in a frame tied dynamically to the mass center of the solid Earth hydrosphere atmosphere system. Such a coordinate system is a requirement for studying long term eustatic sea level rise and other global change phenomena. Earth orientation parameters determined with the coordinate system have been produced in near real time operationally since 1983, at a relatively modest cost. The SLR ranging to Lageos has also provided a rich spectrum of results based upon the analysis of Lageos orbital dynamics. These include significant improvements in the knowledge of the mean and variable components of the Earth's gravity field and the Earth's gravitational parameter. The ability to measure the time variations of the Earth's gravity field has opened as exciting area of study in relating global processes, including meteorologically derived mass transport through changes in the satellite dynamics. New confirmation of general relativity was obtained using the Lageos SLR data.

  18. Monitoring surface currents and transport variability in Drake Passage using altimetry and hydrography

    NASA Astrophysics Data System (ADS)

    Pavic, M.; Cunningham, S. A.; Challenor, P.; Duncan, L.

    2003-04-01

    Between 1993 and 2001 the UK has completed seven occupations of WOCE section SR1b from Burdwood Bank to Elephant Island across Drake Passage. The section consists of a minimum of 31 full depth CTD stations, shipboard ADCP measurements of currents in the upper 300m, and in three of the years full depth lowered ADCP measurements at each station. The section lies under the satellite track of ERS2. The satellite altimeter can determine the along track slope of the sea surface relative to a reference satellite pass once every 35 days. From this we can calculate the relative SSH slope or geostrophic surface current anomalies. If we measure simultaneously with any satellite pass, we can estimate the absolute surface geostrophic current for any subsequent pass. This says that by combining in situ absolute velocity measurements - the reference velocities with altimetry at one time the absolute geostrophic current can be estimated on any subsequent (or previous) altimeter pass. This is the method of Challenor et al. 1996, though they did not have the data to test this relationship. We have seven estimates of the surface reference velocity: one for each of the seven occupations of the WOCE line. The difference in any pair of reference velocities is predicted by the difference of the corresponding altimeter measurements. Errors in combining the satellite and hydrographic data are estimated by comparing pairs of these differences: errors arise from the in situ observations and from the altimetric measurements. Finally we produce our best estimates of eight years of absolute surface geostrophic currents and transport variability along WOCE section SR1 in Drake Passage.

  19. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  20. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission’s data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d’Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as

  1. LARES: A new mission to improve the measurement of lense-thirring effect with Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Ciufolini, I.; Paolozzi, A.

    2012-12-01

    LARES, Laser Relativity Satellite, is a spherical laser-ranged satellite, passive and covered with retroreflectors. It will be launched with ESA's new launch vehicle VEGA (ESA-ELV-ASI-AVIO) in early 2012. Its orbital elements will be: inclination 70° ± 1, semi-major axis 7830 km and near zero eccentricity. Its weight is about 387 kg and its radius 18.2 cm. It will be the single known most dense body orbiting Earth in the solar system, and the non-gravitational perturbations will be minimized by its very small 'cross-section-to-mass' ratio. The main objective of the LARES satellite is a test of the frame-dragging effect, a consequence of the gravitomagnetic field predicted by Einstein's theory of General Relativity. Together with the orbital data from LAGEOS and LAGEOS 2, it will allow a measurement of frame-dragging with an accuracy of a few percent.

  2. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links

    NASA Astrophysics Data System (ADS)

    Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio

    2016-03-01

    Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.

  3. Evaluation of JGM 2 geopotential errors from geosat, TOPEX/poseidon and ERS-1 crossover altimetry

    NASA Astrophysics Data System (ADS)

    Wagner, C. A.; Klokocník, J.; Tai, C. K.

    1995-08-01

    World-ocean distribution of the crossover altimetry data from Geosat, TOPEX/Poseidon (T/P) and the ERS 1 missions have provided strong independent evidence that NASA's/CSR's JGM 2 geopotential model (70 x 70 in spherical harmonics) yields accurate radial ephemerides for these satellites. In testing the sea height crossover differences found from altimetry and JGM 2 orbits for these satellites, we have used the sea height differences themselves (of ascending minus descending passes averaged at each location over many exact repeat cycles) and the Lumped Latitude Coefficients (LLC) derived from them. For Geosat we find the geopotential-induced LLC errors (exclusive of non-gravitational and initial state discrepancies) mostly below 6 cm, for TOPEX the corresponding errors are usually below 2 cm, and for ERS 1 (35-day cycle) they are generally belo2 5 cm. In addition, we have found that these observations agree well overall with predictions of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected LLC errors for Geosat, T/P, and ERS 1 are usually between 1 and 4 cm, 1 - 2 cm, and 1 - 4 cm, respectively (they depend on the filtering of long-periodic perturbations and on the order of the LLC). This agreement is especially impressive for ERS 1 since no data of any kind from this mission was used in forming JGM 2. The observed crossover differences for Geosat, T/P and ERS 1 are 8, 3, and 11 cm (rms), respectively. These observations also agree well with prediction of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected crossover errors for Geosat and T/P are 8 cm and 2.3 cm, respectively. The precision of our mean difference observations is about 3 cm for Geosat (approx. 24,000 observations), 1.5 cm for T/P (approx. 6,000 observations) and 5 cm for ERS 1 (approx. 44,000 observations). Thus, these ``global'' independent data should provide a valuable new source for improving geopotential models. Our results

  4. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  5. Arctic Ocean Tides from GRACE Satellite Accelerations

    NASA Astrophysics Data System (ADS)

    Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.

    2010-12-01

    Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these tides directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar tides in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.

  6. GRRATS: A New Approach to Inland Altimetry Processing for Major World Rivers

    NASA Astrophysics Data System (ADS)

    Coss, S. P.

    2016-12-01

    Here we present work-in-progress results aimed at generating a new radar altimetry dataset GRRATS (Global River Radar Altimetry Time Series) extracted over global ocean-draining rivers wider than 900 m. GRATTS was developed as a component of the NASA MEaSUREs project (PI: Dennis Lettenmaier, UCLA) to generate pre-SWOT data products for decadal or longer global river elevation changes from multi-mission satellite radar altimetry data. The dataset at present includes 909 time series from 39 rivers. A new method of filtering VS (virtual station) height time series is presented where, DEM based heights were used to establish limits for the ice1 retracked Jason2 and Envisat heights at present. While GRRATS is following in the footsteps of several predecessors, it contributes to one of the critical climate data records in generating a validated and comprehensive hydrologic observations in river height. The current data product includes VSs in north and south Americas, Africa and Eurasia, with the most comprehensive set of Jason-2 and Envisat RA time series available for North America and Eurasia. We present a semi-automated procedure to process returns from river locations, identified with Landsat images and updated water mask extent. Consistent methodologies for flagging ice cover are presented. DEM heights used in height filtering were retained and can be used as river height profiles. All non-validated VS have been assigned a letter grade A-D to aid end users in selection of data. Validated VS are accompanied with a suite of fit statistics. Due to the inclusiveness of the dataset, not all VS were able to undergo validation (415 of 909), but those that were demonstrate that confidence in the data product is warranted. Validation was accomplished using records from 45 in situ gauges from 12 rivers. Meta-analysis was performed to compare each gauge with each VS by relative height. Preliminary validation results are as follows. 89.3% of the data have positive Nash

  7. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    NASA Astrophysics Data System (ADS)

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  8. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across <20 sensors connected to two separate optical channels. In order to achieve the required temperature specifications of +/-0.5°C across a temperature range of -20°C to +65°C using femtosecond inscribed FBGs (fs-FBG), a polarization switch is used to mitigate for the polarization dependent

  9. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    NASA Astrophysics Data System (ADS)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  10. Quantification of Glacier Depletion in the Central Tibetan Plateau by Using Integrated Satellite Remote Sensing and Gravimetry

    NASA Astrophysics Data System (ADS)

    Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.

    2016-06-01

    Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.

  11. Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, Gregory Scott

    There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly

  12. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  13. Seamless geoids across coastal zones - a comparison of satellite-derived gravity to airborne gravity across the seven continents

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Barnes, D.; Ingalls, S. E.; Minter, C. F.; Presicci, M. R.

    2017-12-01

    An accurate coastal geoid model is important for determination of near-shore ocean dynamic topography and currents, as well as for land GPS surveys and global geopotential models. Since many coastal regions across the globe are regions of intense development and coastal protection projects, precise geoid models at cm-level accuracy are essential. The only way to secure cm-geoid accuracies across coastal regions is to acquire more marine gravity data; here airborne gravity is the obvious method of choice due to the uniform accuracy, and the ability to provide a seamless geoid accuracy across the coastline. Current practice for gravity and geoid models, such as EGM2008 and many national projects, is to complement land gravity data with satellite radar altimetry at sea, a procedure which can give large errors in regions close to the coast. To quantify the coastal errors in satellite gravity, we compare results of a large set of recent airborne gravity surveys, acquired across a range of coastal zones globally from polar to equatorial regions, and quantify the errors as a function of distance from the coast line for a number of different global altimetry gravity solutions. We find that accuracy in satellite altimetry solutions depend very much on the availability of gravity data along the coast-near land regions in the underlying reference fields (e.g., EGM2008), with satellite gravity accuracy in the near-shore zone ranging from anywhere between 5 to 20 mGal r.m.s., with occasional large outliers; we also show how these errors may typically propagate into coastal geoid errors of 5-10 cm r.m.s. or more. This highlight the need for airborne (land) gravity surveys to be extended at least 20-30 km offshore, especially for regions of insufficient marine gravity coverage; we give examples of a few such recent surveys and associated marine geoid impacts.

  14. A novel laser ranging system for measurement of ground-to-satellite distances

    NASA Technical Reports Server (NTRS)

    Golden, K. E.; Kind, D. E.; Leonard, S. L.; Ward, R. C.

    1973-01-01

    A technique was developed for improving the precision of laser ranging measurements of ground-to-satellite distances. The method employs a mode-locked laser transmitter and utilizes an image converter tube equipped with deflection plates in measuring the time of flight of the laser pulse to a distant retroreflector and back. Samples of the outgoing and returning light pulses are focussed on the photocathode of the image converter tube, whose deflection plates are driven by a high-voltage 120 MHz sine wave derived from a very stable oscillator. From the relative positions of the images produced at the output phosphor by the two light pulses, it is possible to make a precise determination of the fractional amount by which the time of flight exceeds some large integral multiple of the period of the deflection sinusoid.

  15. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.

    PubMed

    Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-10

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  16. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-01

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  17. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.

    2017-12-01

    Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.

  18. Non-stationary internal tides observed with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Ray, R. D.; Zaron, E. D.

    2011-09-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-1 tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 cm2. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  19. Non-Stationary Internal Tides Observed with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  20. Assessment Study of Small Space Debris Removal by Laser Satellites

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Papa, Richard S.

    2011-01-01

    Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube ( 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement

  1. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  2. An Altimetry-Derived Index of the Offshore Forcing on the "Pressure Point" of the West Florida Shelf: Anomalous Upwelling and Its Influence on Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.; Lenes, J. M.; Zheng, L.; Hubbard, K.; Walsh, J. J.

    2017-12-01

    Gulf of Mexico Loop Current (LC) interactions with the West Florida Shelf (WFS) slope play an important role in shelf ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly the case when the LC impinges upon the shelf slope in the southwest portion of the WFS near the Dry Tortugas. By contacting shallow water isobaths at this "pressure point" the LC forcing sets the entire shelf into motion. Characteristic patterns of LC interactions with the WFS and their occurrences are identified from altimetry data using unsupervised neural network, self-organizing map. The duration of the occurrences of such LC patterns is used as an indicator of offshore forcing of anomalous upwelling. Consistency is found between the altimetry-derived offshore forcing and the occurrence and severity of WFS coastal blooms of the toxic dinoflagellate, Karenia brevis: years without major blooms tend to have prolonged LC contact at the "pressure point," whereas years with major blooms tend not to have prolonged offshore forcing. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology. A satellite altimetry-derived seasonal predictor for major K. brevis blooms is also proposed.

  3. Precise satellite orbit determination with particular application to ERS-1

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Joana Afonso Pereira

    The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.

  4. Gravity model development for precise orbit computations for satellite altimetry

    NASA Technical Reports Server (NTRS)

    Marsh, James G.; Lerch, Francis, J.; Smith, David E.; Klosko, Steven M.; Pavlis, Erricos

    1986-01-01

    Two preliminary gravity models developed as a first step in reaching the TOPEX/Poseidon modeling goals are discussed. They were obtained by NASA-Goddard from an analysis of exclusively satellite tracking observations. With the new Preliminary Gravity Solution-T2 model, an improved global estimate of the field is achieved with an improved description of the geoid.

  5. T2L2/Jason-2, first year of processing activities

    NASA Astrophysics Data System (ADS)

    Exertier, P.

    2009-11-01

    The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle is derived from laser telemetry technology with a dedicated space equipment designed to record arrival time of laser pulses at the satellite. T2L2 was accepted in 2005 to be on board the Jason-2 altimetry satellite. It has been successfully launched from Vandenberg (CA, US) in June 2008. T2L2 acquired the first laser pulses a few days after the launch. First analysis permitted to validate some important characteristics of the instrument such as sensitivity, noise, dynamic, event timer precision and ground to space time stability.

  6. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  7. Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links.

    PubMed

    Belmonte, Aniceto; Taylor, Michael T; Hollberg, Leo; Kahn, Joseph M

    2017-07-10

    The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.

  8. Gravity Models from CHAMP and other Satellite Data

    NASA Technical Reports Server (NTRS)

    Lemoime, Frank G.; Cox, C. M.; Chinn, D. S.; Zelensky, N. P.; Thompson, B. F.; Rowlands, D. D.; Luthdke, S. B.; Nerem, R. S.

    2003-01-01

    CHAMP spacecraft is the first of a series of new spacecraft missions that are revolutionizing our ability to model the Earth's geopotential. We report on the analysis of over 100 days of CHAMP data in 2001 and 2002, merged with tracking data of other satellites such as Jason, Topex, GFO, Starlette, Stella, Spot-2, as well as satellite altimetry. We find that the CHAMP-only component of these solutions is a significant improvement over pre-CHAMP satellite only models with respect to the high degree information expressed by the geopotential model coefficients. For example, the variance of the differences with altimeter-derived anomalies through degree 70 is 2.80 mGal(sup 2) for the CHAMP-only solution based on 87 days of data vs. 10.19 mGal(sup 2) for EGM96S. Nonetheless, in order to model properly the various resonances to which different satellites are sensitive, we must include other satellite data. We evaluate the performance of these new CHAMP derived solutions with EGM96 and the EIGEN series of solutions. We review carefully the performance of these models for altimetric satellites.

  9. Satellite Survivability Module

    NASA Astrophysics Data System (ADS)

    Buehler, P.; Smith, J.

    The Satellite Survivability Module (SSM) is an end-to-end, physics-based, performance prediction model for directed energy engagement of orbiting spacecraft. SSM was created as an add-on module for the Satellite Tool Kit (STK). Two engagement types are currently supported: laser engagement of the focal plane array of an imaging spacecraft; and Radio Frequency (RF) engagement of spacecraft components. This paper will focus on the laser engagement scenario, the process by which it is defined, and how we use this tool to support a future laser threat detection system experiment. For a laser engagement, the user creates a spacecraft, defines its optical system, adds any protection techniques used by the optical system, introduces a laser threat, and then defines the atmosphere through which the laser will pass. SSM models the laser engagement and its impact on the spacecraft's optical system using four impact levels: degradation, saturation, damage, and destruction. Protection techniques, if employed, will mitigate engagement effects. SSM currently supports two laser protection techniques. SSM allows the user to create and implement a variety of "what if" scenarios. Satellites can be placed in a variety of orbits. Threats can be placed anywhere on the Earth or, for version 2.0, on other satellites. Satellites and threats can be mixed and matched to examine possibilities. Protection techniques for a particular spacecraft can be turned on or off individually; and can be arranged in any order to simulate more complicated protection schemes. Results can be displayed as 2-D or 3-D visualizations, or as textual reports. A new report feature available in version 2.0 will allow laser effects data to be displayed dynamically during scenario execution. In order to test SSM capabilities, the Ball team used SSM to model several engagement scenarios for our future laser threat detection system experiment. Actual test sites, along with actual laser, optics, and detector

  10. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  11. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an

  12. The Beauty and Complexity of the Brunt Ice Shelf from MOA and ICESat

    NASA Technical Reports Server (NTRS)

    Humbert, Angelika; Shuman, Christopher A.

    2005-01-01

    Beginning in February 2003, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) has determined surface elevations from approx. 86degN to 86degS latitude. To date, altimetry data have been acquired in a series of observation periods in repeated track patterns using all three Geoscience Laser Altimeter System (GLAS) lasers. This paper will focus on ice shelf elevation data that were obtained in 2003 across the Brunt Ice Shelf and the Stancomb-Wills Ice Tongue. Integrating the altimetry with the recently available MODIS Mosaic of Antarctica (MOA), quantifies the relative accuracy and precision of the resulting ice shelf elevations. Furthermore, the elevation data was processed onto an elevation grid, by regional interpolation across the area s complex glacial features only. Ice thickness estimation from the altimetry of the floating ice is discussed. ICESat operates at 40Hz and its elevation data is obtained every 172m along track. These elevations have a relative accuracy of about 14cm based on the standard deviation of low-slope crossover differences and a precision of close to 2cm for the Laser 2a, Release 21, GLA12 data used here.

  13. Photogrammetry and altimetry. Part A: Apollo 16 laser altimeter

    NASA Technical Reports Server (NTRS)

    Wollenhaupt, W. R.; Sjogren, W. L.

    1972-01-01

    The laser altimeter measures precise altitudes of the command and service module above the lunar surface and can function either with the metric (mapping) camera or independently. In the camera mode, the laser altimeter ranges at each exposure time, which varies between 20 and 28 sec (i.e., 30 to 43 km on the lunar surface). In the independent mode, the laser altimeter ranges every 20 sec. These altitude data and the spacecraft attitudes that are derived from simultaneous stellar photography are used to constrain the photogrammetric reduction of the lunar surface photographs when cartographic products are generated. In addition, the altimeter measurements alone provide broad-scale topographic relief around the entire circumference of the moon. These data are useful in investigating the selenodetic figure of the moon and may provide information regarding gravitational anomalies on the lunar far side.

  14. SLR2000: a microlaser-based single photoelectron satellite laser ranging system

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; McGarry, Jan F.

    1998-01-01

    SLR2000 is an autonomous and eyesafe satellite laser ranging (SLR) station with an expected single shot range precision of about one centimeter and a normal point (time-averaged) precision better than 3 mm. The system wil provide continuous 24 hour tracking coverage for a constellation of over twenty artificial satellites. Replication costs are expected to be roughly an order of magnitude less than current operational systems, and the system will be about 75% less expensive to operate and maintain relative to manned systems. Computer simulations have predicted a daylight tracking capability to GPS and lower satellites with telescope apertures of 40 cm and have demonstrated the ability of our current autotracking algorithm to extract mean signal strengths below .001 photoelectrons per pulse from daytime background noise. The dominant cost driver in present SLR systems is the onsite and central infrastructure manpower required to operate the system, to service and maintain the complex subsystems, and to ensure that the transmitted laser beam is not a hazard to onsite personnel or to overflying aircraft. To keep development, fabrication, and maintenance costs at a minimum, we adopted the following design philosophies: (1) use off the shelf commercial components wherever possible; this allows rapid component replacement and "outsourcing" of engineering support; (2) use smaller telescopes (less than 50 cm) since this constrains the cost, size, and weight of the telescope and tracking mount; and (3) for low maintenance and failsafe reliability, choose simple versus complex technical approaches and, where possible, use passive techniques and components rather than active ones. Adherence to these philosophies has led to the SLR2000 design described here.

  15. First Vertical Land Movement Estimates on South Georgia Island: An Impact Study on Sea Level Change from Tide Gauge and Satellite Altimetry Measurements

    NASA Astrophysics Data System (ADS)

    Abraha, K. E.; Teferle, F. N.; Hunegnaw, A.; Woodworth, P. L.; Williams, S. D. P.; Hibbert, A.; Smalley, R., Jr.; Dalziel, I.; Lawver, L.

    2017-12-01

    KEP tide gauge which is ideally situated in a mid-ocean location for satellite altimetry calibration over the Southern Atlantic and Southern Oceans.

  16. Librations and obliquity of Mercury from the BepiColombo laser altimetry, radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V. M.

    2010-12-01

    Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the

  17. The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case

    NASA Astrophysics Data System (ADS)

    Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen

    2015-04-01

    Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998

  18. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been

  19. Demonstration of centimeter-level precision, swath mapping, full-waveform laser altimetry from high altitude on the Global Hawk UAV for future application to cryospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Wake, S.; Rabine, D.; Hofton, M. A.; Mitchell, S.

    2013-12-01

    The Land Vegetation and Ice Sensor (LVIS) is a high-altitude, wide-swath laser altimeter that has, for over 15 years, demonstrated state-of-the-art performance in surface altimetry, including many aspects of remote sensing of the cryosphere such as precise topography of ice sheets and sea ice. NASA Goddard, in cooperation with NASA's Earth Science Technology Office (ESTO), has developed a new, more capable sensor that can operate autonomously from a high-altitude UAV aircraft to further enhance the LVIS capability and extend its reach and coverage. In June 2012, this latest sensor, known as LVIS-GH, was integrated onto NASA's Global Hawk aircraft and completed a successful high-altitude demonstration flight over Death Valley, Owens Valley, and the Sierra Nevada region of California. Data were collected over a wide variety of terrain types from 58,000' (> 17 km) altitude during the 6 hour long test flight. The full-waveform laser altimetry technique employed by LVIS and LVIS-GH provides precise surface topography measurements for solid earth and cryospheric applications and captures the vertical structure of forests in support of territorial ecology studies. LVIS-GH fully illuminates and maps a 4 km swath and provides cm-level range precision, as demonstrated in laboratory and horizontal range testing, as well as during this test flight. The cm range precision is notable as it applies to accurate measurements of sea ice freeboard and change detection of subtle surface deformation such as heaving in permafrost areas. In recent years, LVIS has primarily supported Operation IceBridge activities, including deployments to the Arctic and Antarctic on manned aircraft such as the NASA DC-8 and P-3. The LVIS-GH sensor provides an major upgrade of coverage capability and remote access; LVIS-GH operating on the long-duration Global Hawk aircraft can map up to 50,000 km^2 in a single flight and can provide access to remote regions such as the entirety of Antarctica. Future

  20. Comparison of Surface Elevation Changes of the Greenland and Antarctic Ice Sheets from Radar and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2012-01-01

    A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.

  1. The Basic Radar Altimetry Toolbox for Sentinel 3 Users

    NASA Astrophysics Data System (ADS)

    Lucas, Bruno; Rosmorduc, Vinca; Niemeijer, Sander; Bronner, Emilie; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    The Basic Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2006 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales). The latest version of the software, 3.1, was released on March 2012. The tools enable users to interact with the most common altimetry data formats, being the most used way, the Graphical User Interface (BratGui). This GUI is a front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. The BratDisplay (graphic visualizer) can be launched from BratGui, or used as a stand-alone tool to visualize netCDF files - it is distributed with another ESA toolbox (GUT) as the visualizer. The most frequent uses of BRAT are teaching remote sensing, altimetry data reading (all missions from ERS-1 to Saral and soon Sentinel-3), quick data visualization/export and simple computation on the data fields. BRAT can be used for importing data and having a quick look at his contents, with several different types of plotting available. One can also use it to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BratGui involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas (MSS, -SSH, MSLA, editing of spurious data, etc.). The documentation collection includes the standard user manual explaining all the ways to interact with the set of software tools but the most important item is the Radar Altimeter Tutorial, that contains a strong introduction to

  2. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    NASA Astrophysics Data System (ADS)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  3. Energy scaling of passively Q-switched lasers In the Mj-range

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Huss, R.; Kolleck, C.; Kracht, Dietmar

    2017-11-01

    Q-switched lasers systems with ns pulse duration and energies ranging from 1 to more than 100mJ are utilized for many spaceborne applications such as altimetry of planets and moons. Furthermore, Q-switched lasers can be used for distance measurements during docking and landing manoeuvres. To keep the diameter of the beam small over a large distance and to consequently achieve a good lateral resolution, a good beam propagation factor M² is required. Moreover, Q-switched lasers can be used directly on the planetary surface for exploration by laser-induced breakdown spectroscopy or laser desorption mass spectrometry.

  4. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Martino, Anthony; Abdalati, Waleed; Brunt, Kelly; Csatho, Beata; Farrell, Sinead; Fricker, Helen; Gardner, Alex; Harding, David; hide

    2017-01-01

    The Ice, Cloud, and land Elevation Satellite (ICESat) mission used laser altimetry measurements to determine changes in elevations of glaciers and ice sheets, as well as sea ice thickness distribution. These measurements have provided important information on the response of the cryosphere (Earths frozen surfaces) to changes in atmosphere and ocean condition. ICESat operated from 2003-2009 and provided repeat altimetry measurements not only to the cryosphere scientific community but also to the ocean, terrestrial and atmospheric scientific communities. The conclusive assessment of significant ongoing rapid changes in the Earths ice cover, in part supported by ICESat observations, has strengthened the need for sustained, high accuracy, repeat observations similar to what was provided by the ICESat mission. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for planned launch in 2018. The primary scientific aims of the ICESat-2 mission are to continue measurements of sea ice freeboard and ice sheet elevation to determine their changes at scales from outlet glaciers to the entire ice sheet, and from 10s of meters to the entire polar oceans for sea ice freeboard. ICESat carried a single beam profiling laser altimeter that produced approximately 70 m diameter footprints on the surface of the Earth at approximately 150 m along-track intervals. In contrast, ICESat-2 will operate with three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. Each of the beams will have a nominal 17 m diameter footprint with an along-track sampling interval of 0.7 m. The differences in the ICESat-2 measurement concept are a result of overcoming some limitations associated with the approach used in the ICESat mission. The beam pair configuration of ICESat-2 allows for the determination of local cross-track slope, a significant factor in measuring elevation change

  5. Global ocean tide mapping using TOPEX/Poseidon altimetry

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.

    1991-01-01

    The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.

  6. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    NASA Astrophysics Data System (ADS)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  7. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  8. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    NASA Astrophysics Data System (ADS)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  9. Homodyne BPSK-based optical inter-satellite communication links

    NASA Astrophysics Data System (ADS)

    Lange, Robert; Smutny, Berry

    2007-02-01

    Summer 2007, Tesat will verify laser communication terminals based on homodyne BPSK (binary phase shift keying) in-orbit. A 5.625 Gbps LEO-LEO laser communication link, established between the German satellite TerraSAR-X and the US satellite NFIRE, shall demonstrate the performance and advantages of laser communication. End of 2006, a further program has been kicked-off to demonstrate the performance of ~2 Gbps LEO-GEO laser communication links. The link is part of a data relais from the German LEO satellite TanDEM-X via a Geo satellite to ground. The LEO-to-GEO laser commmunication link can be extended to further ~2 Gpbs GEO-GEO, and GEO-to-ground links.

  10. High rate GPS positioning , JASON altimetry and marine gravimetry : monitoring the Antarctic Circumpolar Current (ACC) through the DRAKE campaigns.

    NASA Astrophysics Data System (ADS)

    Melachroinos, S. A.; Biancale, R.; Menard, Y.; Sarrailh, M.

    2008-12-01

    The Drake campaign which took place from Jan 14, 2006 - 08 Feb, 2006 has been a very successful mission in collecting a wide range of GPS and marine gravity data all along JASON altimetry ground track n° 104. The same campaign will be repeated in 2009 along 028 and 104 JASON-2 ground track. The Drake Passage (DP) chokepoint is not only well suited geographically, as the Antarctic Circumpolar Current (ACC) is constricted to its narrowest extent of 700 km, but observations and models suggest that dynamical balances are particular effective in this area. Furthermore the space geodesy observations and their products provided from several altimetry missions (currently operating ENVISAT, JASON 1 and 2, GFO, ERS and other plannified for the future such as Altika, SWOT) require the cross comparison with independent geodetic techniques at the DP. The current experiment comprises a kinematic GPS and marine gravimetry Cal/Val geodetic approach and it aims to : validate with respect to altimetry data and surface models such a kinematic high frequency GPS technique for measuring sea state and sea surface height (SSH), compare the GPS SSH profiles with altimetry mean dynamic topography (MDT) and mean sea surface (MSS) models, give recommendations for future "offshore" Cal/Val activities on the ground tracks of altimeter satellites such as JASON-2, GFO, Altika using the GNSS technology etc. The GPS observations are collected from GPS antennas installed on a wave-rider buoy , aboard the R/V "Polarstern" and from continuous geodetic reference stations in the proximity. We also analyse problems related to the ship's attitude variations in roll, pitch and yaw and a way to correct them. We also give emphasis on the impact of the ship's acceleration profiles on the so called "squat effect" and ways to deal with it. The project will in particular benefit the GOCE mission by proposing to integrate GOCE in the ocean circulation study and validate GOCE products with our independent

  11. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  12. Cross-frontal cold jets near Iceland: In-water, satellite infrared, and Geosat altimeter data

    NASA Astrophysics Data System (ADS)

    Scott, John C.; McDowall, Anne L.

    1990-10-01

    This paper reports detailed in-water observations and satellite infrared images which are approximately coincident with a single Geosat altimeter track across the Iceland-Faeroes Frontal Zone. The ARE thermistor chain covered the upper 300 m of the ocean along the track, and the first two of a long sequence of NOAA satellite infrared images were obtained, all within 24 hours of the Geosat overpass. The data are interpreted as showing cold cross-frontal jets related to the formation of cold eddies south of the main frontal boundary. Implications for the use of altimetry for ocean monitoring are considered.

  13. Application of precise altimetry to the study of precise leveling of the sea surface, the Earth's gravity field, and the rotation of the Earth

    NASA Technical Reports Server (NTRS)

    Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.

    1991-01-01

    Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.

  14. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  15. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  16. Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter

    2015-04-01

    Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in

  17. Validation of Mean Absolute Sea Level of the North Atlantic obtained from Drifter, Altimetry and Wind Data

    NASA Technical Reports Server (NTRS)

    Maximenko, Nikolai A.

    2003-01-01

    Mean absolute sea level reflects the deviation of the Ocean surface from geoid due to the ocean currents and is an important characteristic of the dynamical state of the ocean. Values of its spatial variations (order of 1 m) are generally much smaller than deviations of the geoid shape from ellipsoid (order of 100 m) that makes the derivation of the absolute mean sea level a difficult task for gravity and satellite altimetry observations. Technique used by Niiler et al. for computation of the absolute mean sea level in the Kuroshio Extension was then developed into more general method and applied by Niiler et al. (2003b) to the global Ocean. The method is based on the consideration of balance of horizontal momentum.

  18. Study of radar pulse compression for high resolution satellite altimetry

    NASA Technical Reports Server (NTRS)

    Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.

    1974-01-01

    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.

  19. Societal Benefits of Ocean Altimetry Data

    NASA Astrophysics Data System (ADS)

    Srinivasan, M.; Leben, R.

    2006-07-01

    The NASA/CNES Jason satellite, follow-on to the highly successful TOPEX/Poseidon mission, continues to provide oceanographers and marine operators across the globe with a continuous thirteen-year, high-quality stream of sea surface height data. The mission is expected to extend through 2008, when the NASA/NOAA/CNES follow-on mission, the ocean surface topography mission, will be launched. This unprecedented resource of valuable ocean data is being used to map sea surface height, geostrophic velocity, significant wave height, and wind speed over the global oceans. Altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and improve our understanding of the role of the oceans in climate and weather. Ocean altimeter data have many societal benefits and have proven invaluable in many practical applications including; -Climate research and forecasting -Hurricane forecasting and tracking -Ocean forecasting systems -Ship routing and marine operations -Marine mammal habitat monitoring -Education The data have been cited in over 2,100 research and popular articles since the launch of TOPEX/Poseidon in 1992, and almost 200 scientific users receive the global coverage altimeter data on a monthly basis. In addition to the scientific and operational uses of the data, the educational community has seized the unique concepts highlighted by these altimeter missions as a resource for teaching ocean science to students from grade school through college. This presentation will highlight new societal benefits of ocean altimetry data in the areas of climate studies, marine operations, marine research, and non-ocean investigations.

  20. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  1. Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast

    NASA Astrophysics Data System (ADS)

    Gharineiat, Zahra; Deng, Xiaoli

    2018-05-01

    This paper aims at providing a descriptive view of the low-frequency sea-level changes around the northern Australian coastline. Twenty years of sea-level observations from multi-mission satellite altimetry and tide gauges are used to characterize sea-level trends and inter-annual variability over the study region. The results show that the interannual sea-level fingerprint in the northern Australian coastline is closely related to El Niño Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) events, with the greatest influence on the Gulf Carpentaria, Arafura Sea, and the Timor Sea. The basin average of 14 tide-gauge time series is in strong agreement with the basin average of the altimeter data, with a root mean square difference of 18 mm and a correlation coefficient of 0.95. The rate of the sea-level trend over the altimetry period (6.3 ± 1.4 mm/yr) estimated from tide gauges is slightly higher than that (6.1 ± 1.3 mm/yr) from altimetry in the time interval 1993-2013, which can vary with the length of the time interval. Here we provide new insights into examining the significance of sea-level trends by applying the non-parametric Mann-Kendall test. This test is applied to assess if the trends are significant (upward or downward). Apart from a positive rate of sea-level trends are not statistically significant in this region due to the effects of natural variability. The findings suggest that altimetric trends are not significant along the coasts and some parts of the Gulf Carpentaria (14°S-8°S), where geophysical corrections (e.g., ocean tides) cannot be estimated accurately and altimeter measurements are contaminated by reflections from the land.

  2. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Luthcke, Scott B.; Zelensky, Nikita P.; Chinn, Douglas S.; Pavlis, Despina E.; Marr, Gregory

    2001-01-01

    The US Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 with the primary objective of the mission to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. Satellite laser ranging (SLR) and Doppler (Tranet-style) beacons track the spacecraft. Although limited amounts of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. The GFO altimeter measurements are highly precise, with orbit error the largest component in the error budget. We have tuned the non-conservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data sampled over one year. Gravity covariance projections to 70x70 show the radial orbit error on GEOSAT was reduced from 2.6 cm in EGM96 to 1.3 cm with the addition of SLR, GFO/GFO and TOPEX/GFO crossover data. Evaluation of the gravity fields using SLR and crossover data support the covariance projections and also show a dramatic reduction in geographically-correlated error for the tuned fields. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We will discuss improvements in satellite force modeling and orbit determination strategy, which allows reduction in GFO radial orbit error from 10-15 cm to better than 5 cm.

  3. Improved estimate of accelerated Antarctica ice mass loses from GRACE, Altimetry and surface mass balance from regional climate model output

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.

    2016-12-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc

  4. Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.

    NASA Astrophysics Data System (ADS)

    Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary

    2012-07-01

    The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.

  5. Sentinel-3 SAR Altimetry over Coastal and Open Ocean: performance assessment and improved retrieval methods in the ESA SCOOP Project.

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.

    2017-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.

  6. Considerations in the Design of Future Planetary Laser Altimeters

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.

    2017-12-01

    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary

  7. Characteristics of ocean-reflected short radar pulses with application to altimetry and surface roughness determination

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Hayne, G. S.

    1972-01-01

    Current work related to geodetic altimetry is summarized. Special emphasis is placed on the effects of pulse length on both altimetry and sea-state estimation. Some discussion is also given of system tradeoff parameters and sea truth requirements to support scattering studies. The problem of analyzing signal characteristics and altimeter waveforms arising from rough surface backscattering is also considered.

  8. Single photon laser altimeter simulator and statistical signal processing

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  9. A first assessment of Sentinel-3 SAR altimetry over ice sheets

    NASA Astrophysics Data System (ADS)

    McMillan, M.; Muir, A. S.; Shepherd, A.

    2017-12-01

    The first Sentinel-3 satellite was launched in 2016 and carries onboard a Ku-band Synthetic Aperture Radar (SAR) altimeter. With coverage up to a latitude of 81.5 degrees and a repeat period of 27 days, it offers the opportunity to measure surface topography and elevation change across much of the Antarctic and Greenland Ice Sheets, therefore continuing the existing 25 year radar altimeter record. The global operation of Sentinel-3 in SAR mode differs from all past Ku-band instruments; for the first time SAR measurements are routinely acquired across the interiors of the ice sheets; however unlike CryoSat-2 it does not carry an interferometer to aid signal retrieval in regions of complex coastal terrain. In view of these differences and the novel characteristics of the Sentinel-3 system, assessments of the performance of the instrument are required, to evaluate the satellite's utility for monitoring Earth's Polar regions. Here, we analyse data acquired during the first year of routine operations, to assess the performance of the Sentinel-3 SAR altimeter to date. We focus both on inland ice sheet regions, where Sentinel-3 provides the first operational SAR altimeter measurements, and also on coastal areas with more complex topography. We investigate SAR waveforms and retrieved elevations in both regions, and through comparison to measurements from earlier missions examine the impact of the different modes of operation. We also conduct a high level evaluation of the data, by comparing it to reference airborne altimetry, to provide an assessment of Sentinel-3 performance to date over ice sheets.

  10. Real-Time Access to Altimetry and Operational Oceanography Products via OPeNDAP/LAS Technologies : the Example of Aviso, Mercator and Mersea Projects

    NASA Astrophysics Data System (ADS)

    Baudel, S.; Blanc, F.; Jolibois, T.; Rosmorduc, V.

    2004-12-01

    The Products and Services (P&S) department in the Space Oceanography Division at CLS is in charge of diffusing and promoting altimetry and operational oceanography data. P&S is so involved in Aviso satellite altimetry project, in Mercator ocean operational forecasting system, and in the European Godae /Mersea ocean portal. Aiming to a standardisation and a common vision and management of all these ocean data, these projects led to the implementation of several OPeNDAP/LAS Internet servers. OPeNDAP allows the user to extract via a client software (like IDL, Matlab or Ferret) the data he is interested in and only this data, avoiding him to download full information files. OPeNDAP allows to extract a geographic area, a period time, an oceanic variable, and an output format. LAS is an OPeNDAP data access web server whose special feature consists in the facility for unify in a single vision the access to multiple types of data from distributed data sources. The LAS can make requests to different remote OPeNDAP servers. This enables to make comparisons or statistics upon several different data types. Aviso is the CNES/CLS service which distributes altimetry products since 1993. The Aviso LAS distributes several Ssalto/Duacs altimetry products such as delayed and near-real time mean sea level anomaly, absolute dynamic topography, absolute geostrophic velocities, gridded significant wave height and gridded wind speed modulus. Mercator-Ocean is a French operational oceanography centre which distributes its products by several means among them LAS/OPeNDAP servers as part of Mercator Mersea-strand1 contribution. 3D ocean description (temperature, salinity, current and other oceanic variables) of the North Atlantic and Mediterranean are real-time available and weekly updated. LAS special feature consisting in the possibility of making requests to several remote data centres with same OPeNDAP configurations particularly fitted to Mersea strand-1 problematics. This European

  11. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  12. Societal Benefits of Ocean Altimetry Data

    NASA Technical Reports Server (NTRS)

    Srinivasen, Margaret; Leben, Robert

    2004-01-01

    The NASA/CNES Jason satellite, follow-on to the highly successful TOPEX/Poseidon mission, continues to provide oceanographers and marine operators across the globe with a continuous twelve-year, high quality stream of sea surface height data. The mission is expected to extend through 2007, when the NASA/NOAA/CNES follow-on mission, OSTM, will be launched with the wide-swath ocean altimeter on board. This unprecedented resource of valuable ocean data is being used to map sea surface height, geostrophic velocity, significant wave height, and wind speed over the global oceans. Altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and improve our understanding of the role of the oceans in climate and weather. Ocean altimeter data has many societal benefits and has proven invaluable in many practical applications including; a) Ocean forecasting systems; b) Climate research and forecasting; c) Ship routing; d) Fisheries management; e) Marine mammal habitat monitoring; f) Hurricane forecasting and tracking; g) Debris tracking; and h) Precision marine operations such as cable-laying and oil production. The data has been cited in nearly 2,000 research and popular articles since the launch of TOPEX/Poseidon in 1992, and almost 200 scientific users receive the global coverage altimeter data on a monthly basis. In addition to the scientific and operational uses of the data, the educational community has seized the unique concepts highlighted by these altimeter missions as a resource for teaching ocean science to students from grade school through college. This presentation will highlight societal benefits of ocean altimetry data in the areas of climate studies, marine operations, marine research, and non-ocean investigations.

  13. Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Allenby, R. J.; Frey, H. V.

    1979-01-01

    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.

  14. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  15. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Cardellach, Estel; Fabra, Fran; Rius, Antonio; Ribó, Serni; Martín-Neira, Manuel

    2017-08-01

    A track of sea ice reflected Global Navigation Satellite System (GNSS) signal collected by the TechDemoSat-1 mission is processed to perform phase altimetry over sea ice. High-precision carrier phase measurements are extracted from coherent GNSS reflections at a high angle of elevation (>57°). The altimetric results show good consistency with a mean sea surface (MSS) model, and the root-mean-square difference is 4.7 cm with an along-track sampling distance of ˜140 m and a spatial resolution of ˜400 m. The difference observed between the altimetric results and the MSS shows good correlation with the colocated sea ice thickness data from Soil Moisture and Ocean Salinity. This is consistent with the reflecting surface aligned with the bottom of the ice-water interface, due to the penetration of the GNSS signal into the sea ice. Therefore, these high-precision altimetric results have potential to be used for determination of sea ice thickness.

  16. Nineteenth International Laser Radar Conference. Part 2

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling, Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, Including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  17. Nineteenth International Laser Radar Conference. Part 1

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling; Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  18. GNSS-derived Path Delay Plus (GPD+): a methodology for the computation of improved wet tropospheric corrections for coastal altimetry

    NASA Astrophysics Data System (ADS)

    Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    Satellite altimetry missions provide the sea surface height above a reference ellipsoid with centimetric accuracy as long as all terms involved in the altimeter measurement system (satellite orbit, altimeter range between the satellite and the sea surface, and instrumental, range and geophysical corrections) are known with the same accuracy. The wet tropospheric correction (WTC), the range correction that accounts for the delay induced by the presence of water vapour and liquid water in the troposphere, has an absolute value less than 50 cm but large space-time variability, being therefore difficult to model. Despite the progress observed in WTC modelling from numerical weather models (NWM), the accuracy of present NWM-derived WTC is still deficient for most altimetry applications such as e.g. sea level variation. Actually, accurate WTC at time and location of the altimetric measurements can only be achieved through observations of the atmospheric water vapour content, acquired by on-board microwave radiometers (MWR). In open ocean, MWR-derived WTC are centimeter-level accurate; in coastal regions, WTC degrades due to several reasons, among which is the contamination, from the surrounding land surfaces, of the signal measured by the MWR. Also the presence of ice and rain contaminates the MWR observations. Therefore, MWR-derived WTC are generally incorrect or invalid in coastal, rainy and high-latitude regions, and altimeter measurements cannot benefit from MWR corrections. The GNSS-derived Path Delay (GPD) algorithm was developed by the University of Porto (UPorto) aiming at computing the WTC for coastal regions where MWR observations are invalid, envisaging the recovery of the altimeter data in these regions. The GPD-derived WTC is based on a space-time optimal interpolation that combines path delays measured by MWR and computed at more than 800 coastal/island GNSS stations. Its most recent version, the GPD Plus (GPD+) estimates the WTC globally relying also on

  19. Ocean eddy structure by satellite radar altimetry required for iceberg towing

    USGS Publications Warehouse

    Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.

    1980-01-01

    Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.

  20. Dynamic sea surface topography from GEOS-3 altimetry - Determination of some dominant parameters

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.

    1979-01-01

    The second, third and fourth degree zonal harmonics of the quasi-stationary dynamic sea surface topography can be recovered from the GEOS-3 altimetry despite the adverse levels of noise indicated by the crossover discrepancies generated from the best orbits available at the end of 1977 and the GEOS-3 altimetry. Techniques for modelling the global sea surface topography are discussed along with methods for signal recovery in the presence of significant levels of noise. The analysis also provides a means of defining the geocentricity of the system of reference used in preparing the GEOS-3 ephemeris.

  1. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1976-01-01

    Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.

  2. Land, Ocean and Ice sheet surface elevation retrieval from CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Lu, X.; Hu, Y.

    2013-12-01

    Since launching in April 2006 the main objective of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been studying the climate impact of clouds and aerosols in the atmosphere. However, CALIPSO also collects information about other components of the Earth's ecosystem, such as lands, oceans and polar ice sheets. The objective of this study is to propose a Super-Resolution Altimetry (SRA) technique to provide high resolution of land, ocean and polar ice sheet surface elevation from CALIPSO single shot lidar measurements (70 m spot size). The land surface results by the new technique agree with the United States Geological Survey (USGS) National Elevation Database (NED) high-resolution elevation maps, and the ice sheet surface results in the region of Greenland and Antarctic compare very well with the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry measurements. The comparisons suggest that the obtained CALIPSO surface elevation information by the new technique is accurate to within 1 m. The effects of error sources on the retrieved surface elevation are discussed. Based on the new technique, the preliminary data products of along-track topography retrieved from the CALIPSO lidar measurements is available to the altimetry community for evaluation.

  3. Meteorological Satellite Education Resources: Web-based Learning Modules, Initiatives, and the Environmental Satellite Resource Center (ESRC)

    NASA Astrophysics Data System (ADS)

    Schreiber-Abshire, W.; Dills, P.

    2008-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS and the NPOESS Integrated Program Office (IPO), with additional contributions from the GOES-R Program Office and EUMETSAT, to directly support education and training efforts in the area of satellite meteorology. This partnership enables COMET to create educational materials of global interest on geostationary and polar- orbiting remote sensing platforms and their instruments, data, products, and operational applications. Over the last several years, COMET's satellite education programs have focused on the capabilities and applications of the upcoming next generation operational polar-orbiting NPP/NPOESS system and its relevance to operational forecasters and other user communities. COMET's activities have recently expanded to include education on the future Geostationary Operational Environmental Satellites (GOES-R). By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and various user communities, COMET stimulates greater utilization of both current and future satellite observations and products. In addition, COMET has broadened the scope of its online training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System (IJPS) between NOAA and EUMETSAT, while Meteosat imaging capabilities provide an early look for the next generation GOES-R satellites. Also in collaboration with EUMETSAT, COMET is developing future modules on the joint NASA-CNES Jason altimetry mission and on satellite capabilities for monitoring the global climate. COMET also provides Spanish translations of relevant GOES materials in order to support the GEOSS (Global Earth Observation System of Systems) Americas effort, which is associated with the move of GOES-10 to provide routine satellite coverage over South America. This poster presentation provides an overview of COMET

  4. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    NASA Astrophysics Data System (ADS)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  5. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    NASA Astrophysics Data System (ADS)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  6. Laser range measurement for a satellite navigation scheme and mid-range path selection and obstacle avoidance. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Zuraski, G. D.

    1972-01-01

    The functions of a laser rangefinder on board an autonomous Martian roving vehicle are discussed. The functions are: (1) navigation by means of a passive satellite and (2) mid-range path selection and obstacle avoidance. The feasibility of using a laser to make the necessary range measurements is explored and a preliminary design is presented. The two uses of the rangefinder dictate widely different operating parameters making it impossible to use the same system for both functions.

  7. M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry*

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Zaron, E. D.

    2015-01-01

    A near-global chart of surface elevations associated with the stationary M2 internal tide is empirically constructed from multi-mission satellite altimeter data. An advantage of a strictly empirical mapping approach is that results are independent of assumptions about ocean wave dynamics and, in fact, can be used to test such assumptions. A disadvantage is that present-day altimeter coverage is only marginally adequate to support mapping such short-wavelength features. Moreover, predominantly north-south ground-track orientations and contamination from nontidal oceanographic variability can lead to deficiencies in mapped tides. Independent data from Cryosphere Satellite-2 (CryoSat-2) and other altimeters are used to test the solutions and show positive reduction in variance except in regions of large mesoscale variability. The tidal fields are subjected to two-dimensional wavenumber spectral analysis, which allows for the construction of an empirical map of modal wavelengths. Mode-1 wavelengths show good agreement with theoretical wavelengths calculated from the ocean's mean stratification, with a few localized exceptions (e.g., Tasman Sea). Mode-2 waves are detectable in much of the ocean, with wavelengths in reasonable agreement with theoretical expectations, but their spectral signatures grow too weak to map in some regions.

  8. Combining GRACE and Altimetry to solve for present day mass changes and GIA

    NASA Astrophysics Data System (ADS)

    Rietbroek, R.; Lück, C.; Uebbing, B.; Kusche, J.; King, M. A.

    2017-12-01

    Past and present day sea level rise is closely linked to geoid and surface deformation changes from the ongoing glacial isostatic adjustment (GIA). Sea level, as detected by radar altimetry, senses the radial deformation of the ocean floor as mantle material slowly flows back to the locations of the former glacial domes. This manifests itself as a net subsidence when averaged over the entire ocean, but can regionally be seen as an uplift for locations close to the former ice sheets. Furthermore, mass driven sea level as derived from GRACE, is even more sensitive to GIA induced mass redistribution in the solid Earth. Consequently, errors in GIA corrections, most notably errors in mantle viscosity and ice histories, have a different leverage on regional sea level estimates from GRACE and altimetry. In this study, we discuss the abilities of a GRACE-altimetry combination to co-estimate GIA corrections together with present day contributors to sea level, rather than simply prescribing a GIA correction from a model. The data is combined in a joint inversion scheme which makes use of spatial patterns to parameterize present day loading effects and GIA. We show that the GRACE-altimetry combination requires constraints, but generally steers the Antarctic GIA signal towards a weaker present day signal in Antarctica compared to a ICE5-G(VM2) derived model. Furthermore, in light of the aging GRACE mission, we show sensitivity studies of how well one could estimate GIA corrections when using other low earth orbiters such as SWARM or CHAMP. Finally, we show whether the Antarctic GNSS station network may be useful in separating GIA from present day mass signals in this type of inversion schemes.

  9. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com

  10. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  11. Horizontal crustal motion in the central and eastern Mediterranean inferred from Satellite Laser Ranging measurements

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Kolenkiewicz, Ron; Robbins, John W.; Dunn, Peter J.; Torrence, Mark H.

    1994-01-01

    Four campaigns to acquire Satellite Laser Ranging (SLR) measurements at sites in the Mediterranean region have been completed. These measurements to the LAGEOS satellite, made largely by mobile systems, cover a time span beginning in November 1985 and ending in June 1993. The range data from 18 sites in the central and eastern Mediterranean have been simultaneously analyzed with data acquired by the remainder of the global laser tracking network. Estimates of horizontal motion were placed into a regional, northern Europe-fixed, kinematic reference frame. Uncertainties are on the order of 5 mm/yr for sites having at least four occupations by mobile systems and approach 1 mm/yr for permanently located sites with long histories of tracking. The resulting relative motion between sites in the Aegean exhibit characteristics of broadly distributed pattern of radial extension, but at rates that are about 50% larger than those implied from studies of seismic strain rates based on seismicity of magnitude 6 or greater or across the region. The motion estimated for sites in Turkey exhibit velocity components associated with the westward motion of the Anatolian Block relative to Eurasia. These results provide a present-day 'snapshot' of ongoing deformational processes as experienced by the locations occupied by SLR systems.

  12. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  13. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  14. Using altimetry and seafloor pressure data to estimate vertical deformation offshore: Vanuatu case study

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Bonnefond, P.; Calmant, S.; Bouin, M.-N.; Pelletier, B.; Laurain, O.; Crawford, W. C.; Baillard, C.; de Viron, O.

    2013-04-01

    Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.This paper represents the first combination of altimetry and pressure data to derive absolute vertical motions offshore. The deformation results are obtained in a global reference frame, allowing them to be integrated with on-land GNSS data.

  15. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    NASA Astrophysics Data System (ADS)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with

  16. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    NASA Technical Reports Server (NTRS)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  17. Design of 2*6 optical hybrid in inter-satellite coherent laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu

    2008-08-01

    Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.

  18. Interannual Variations of Surface Currents and Transports in the Sicily Channel Derived From Coastal Altimetry

    NASA Astrophysics Data System (ADS)

    Jebri, Fatma; Zakardjian, Bruno; Birol, Florence; Bouffard, Jérôme; Jullion, Loïc.; Sammari, Cherif

    2017-11-01

    A 20 year coastal altimetry data set (X-TRACK) is used, for the first time, to gain insight into the long-term interannual variations of the surface circulation in the Sicily Channel. First, a spectral along with a time/space diagram analysis are applied to the monthly means. They reveal a regionally coherent current patterns from track to track with a marked interannual variability that is unequally shared between the Atlantic Tunisian Current and Atlantic Ionian Stream inflows in the Sicily Channel and the Bifurcation Tyrrhenian Current outflow northeast of Sicily. Second, an empirical altimetry-based transport-like technique is proposed to quantify volume budgets inside the closed boxes formed by the crossing of the altimetry tracks and coastlines over the study area. A set of hydrographic measurements is used to validate the method. The inferred altimetry transports give a well-balanced mean eastward Atlantic Waters baroclinic flow of 0.4 Sv and standard deviations of 0.2 Sv on a yearly basis throughout the Sicily Channel and toward the Ionian Sea, which is fairly coherent with those found in the literature. Furthermore, the analysis allows to quantify the intrusions of Atlantic Waters over the Tunisian Shelf (0.12 ± 0.1 Sv) and highlights two main modes of variability of the main surface waters path over the Sicily Channel through the Bifurcation Atlantic Tunisian Current and Atlantic Ionian Stream systems. Some physical mechanisms are finally discussed with regards to changes in the observed currents and transports.

  19. Satellite laser ranging and geological constraints on plate motion

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Douglas, Nancy B.

    1990-01-01

    Satellite laser ranging (SLR) observed baseline rates of change were measured and compared with rates determined from sea floor spreading rates and directions, and earth-quake solutions. With the number of years of observation now over six for many of the baselines, the inaccuracy of determining baseline rates of change has diminished so that in some cases it is less than a few mm per year. Thus, a direct comparison between baseline rates of change and rates of change established using geophysical information (called geological rates) is now feasible. In most cases, there is good agreement between the rates determined from SLR and geological rates, but in some cases there appear to be discrepancies. These discrepancies involve many of the data for which one end of the baseline is either Quincy (California), Huahine (French Polynesia), or Simosato (Japan). A method for looking at the discrepancies for these SLR observatories has been devised which makes it possible to calculate the motion not modeled by the geologic information.

  20. Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972-2006

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Sauber, Jeanne M.; Post, Austin S.; Tangborn, Wendell V.; Rabus, Bernhard T.; Echelmeyer, Keith A.

    Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972-95 was 0.9±0.1 m a-1; (2) this rate accelerated to 3.0±0.7 m a-1 during 1995-2000; and (3) during 2000-03 the lowering rate was 1.5±0.4 m a-1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191±17 km3, which was an area-average surface elevation lowering of 1.7±0.2 m a-1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal-englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

  1. Application of Radar Altimetry Methods to Monitoring of Parasitic Disease Transmission: Schistosomiasis in Poyang Lake, China

    NASA Astrophysics Data System (ADS)

    McCandless, M.; Ibaraki, M.; Shum, C.; Lee, H.; Liang, S.

    2008-12-01

    Schistosomiasis is the second-most prevalent tropical disease after malaria affecting two-hundred million people annually world-wide; it shortens lifespan on average by ten years in endemic areas and no vaccine exists. The current control methods of human host chemotherapy and application of molluscicides to the environment do not break the disease transmission cycle. Schistosomiasis transmission in southern China involves an amphibious intermediate host snail for which hydrology is a key factor because the adults need moist vegetation while the juveniles are fully aquatic. Thus, hydrology is a key factor in schistosomiasis transmission and understanding its role can inform control measures. Our objective is to integrate hydrologic, ecologic, and other environmental factors to determine the changes in available snail habitat through space and time. We use radar altimetry measurements to determine water level every 35 days when the Envisat (Environmental Satellite) passes over the lake. The radar altimetry readings have been calibrated to levels from in-situ gauging stations and will support remote analysis of disease transmission potential without the need for gauging station data. A geographic information system was used to combine key factors including water level, topography, and air temperature data to identify areas of available snail habitat. In order to accomplish this, we conducted three steps including: delineating the watershed, specifying potential snail habitat areas through topography and air temperature classification, and calculating the intersection between potential snail habitat and non-flooded areas in the watershed. Statistical analyses of total available habitat area are also conducted. These maps and statistics analyses can be used by public health agencies to monitor snail habitat trends over time. Coupling remote sensing of water levels with a geographic information system model will continue to be important as the hydrology of the lake

  2. Tide Corrections for Coastal Altimetry: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2008-01-01

    Knowledge of global oceanic tides has markedly advanced over the last two decades, in no small part because of the near-global measurements provided by satellite altimeters, and especially the long and precise Topex/Poseidon time series e.g. [2]. Satellite altimetry in turn places very severe demands on the accuracy of tidal models. The reason is clear: tides are by far the largest contributor to the variance of sea-surface elevation, so any study of non-tidal ocean signals requires removal of this dominant tidal component. Efforts toward improving models for altimetric tide corrections have understandably focused on deep-water, open-ocean regions. These efforts have produced models thought to be generally accurate to about 2 cm rms. Corresponding tide predictions in shelf and near-coastal regions, however, are far less accurate. This paper discusses the status of our current abilities to provide near-global tidal predictions in shelf and near-coastal waters, highlights some of the difficulties that must be overcome, and attempts to divine a path toward some degree of progress. There are, of course, many groups worldwide who model tides over fairly localized shallow-water regions, and such work is extremely valuable for any altimeter study limited to those regions, but this paper considers the more global models necessary for the general user. There have indeed been efforts to patch local and global models together, but such work is difficult to maintain over many updates and can often encounter problems of proprietary or political nature. Such a path, however, might yet prove the most fruitful, and there are now new plans afoot to try again. As is well known, tides in shallow waters tend to be large, possibly nonlinear, and high wavenumber. The short spatial scales mean that current mapping capabilities with (multiple) nadir-oriented altimeters often yield inadequate coverage. This necessitates added reliance on numerical hydrodynamic models and data assimilation

  3. Reflector control technology in space laser communication

    NASA Astrophysics Data System (ADS)

    Xie, Meilin; Ma, Caiwen; Yao, Cheng; Huang, Wei; Lian, Xuezheng; Feng, Xubin; Jing, Feng

    2017-11-01

    The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.

  4. The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Restano, M.; Ambrózio, A.

    2017-12-01

    The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's next release (4.2.0) is planned for October 2017. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.1 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance-Covariance Matrix tool (VCM). BRAT and GUT toolboxes can be freely

  5. ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.

    2017-01-01

    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

  6. The Moon as a Laser-ranged Test Body for General Relativity and New Gravitational Physics

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, Simone; Currie, Douglas

    operating a unique ground infrastructure, the SCF-Lab (Satellite/lunar/GNSS laser ranging and altimetry Characterization Facilities Laboratory) and created a new industry-standard test procedure (SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions for science (like LLR) and for industrial applications (for example to the Galileo and Copernicus European flagship space programs). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP), Wavefront Fizeau Interferometry (WFI) and the temperature distribution of laser retroreflector payloads under thermal conditions produced with up to two close-match AM0 solar simulators. The SCF-Lab includes infrared cameras for non-invasive thermometry, thermal control and real-time payload movement to simulate satellite orientation on orbit with respect to solar illumination and laser interrogation beams. These capabilities provide: unique pre-launch performance validation of the space segment of LLR/SLR; retroreflector design optimization to maximize ranging efficiency and signal-to-noise conditions in daylight. Negotiations are underway to propose our payload and SCF-Test services for precision gravity and lunar science measurements with next robotic lunar landing missions. Results on analysis of Apollo LLR data and search of new gravitational physics with LLR, Mercury Radar Ranging, SLR of LAGEOS (Laser GEOdynamics Satellite) will also be presented.

  7. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  8. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  9. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    PubMed

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  10. Seasonal and Interannual Variability of the Brazil - Malvinas Front: an Altimetry Perspective

    NASA Astrophysics Data System (ADS)

    Saraceno, M.; Valla, D.; Pelegrí, J. L.; Piola, A. R.

    2016-02-01

    The Brazil and Malvinas Confluence in the Southwestern Atlantic is one of the most energetic regions of the world ocean. Using recent measurements of sub-surface velocity currents, collected along 2348 nautical miles with a vessel mounted acoustic Doppler profiler onboard R/V BIO Hespérides, we validate geostrophic velocities derived from gridded fields of sea surface height (SSH). A remarkable correspondence between in-situ surface hydrographic data collected from the vessel and satellite sea surface temperature (SST), color and altimetry data allows selecting a specific SSH contour to track the position of the Brazil-Malvinas front. We then use 22 years of SSH data distributed by AVISO to show that the Brazil-Malvinas front shows a NS orientation in winter and a NE-SW orientation in summer, in good agreement with results based on the analysis of SST gradients. Furthermore, a clear southward migration of the front during the 22 year period is observed. The migration is associated with the southward shift of the South Atlantic high-pressure system that is in turn related to large climate changes in the southern portion of the South American continent. The seasonal variability in the orientation of the front is related to the Brazil and Malvinas encountering currents.

  11. Nonlinear diffusion filtering of the GOCE-based satellite-only MDT

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Mikula, Karol

    2015-04-01

    A combination of the GRACE/GOCE-based geoid models and mean sea surface models provided by satellite altimetry allows modelling of the satellite-only mean dynamic topography (MDT). Such MDT models are significantly affected by a stripping noise due to omission errors of the spherical harmonics approach. Appropriate filtering of this kind of noise is crucial in obtaining reliable results. In our study we use the nonlinear diffusion filtering based on a numerical solution to the nonlinear diffusion equation on closed surfaces (e.g. on a sphere, ellipsoid or the discretized Earth's surface), namely the regularized surface Perona-Malik model. A key idea is that the diffusivity coefficient depends on an edge detector. It allows effectively reduce the noise while preserve important gradients in filtered data. Numerical experiments present nonlinear filtering of the satellite-only MDT obtained as a combination of the DTU13 mean sea surface model and GO_CONS_GCF_2_DIR_R5 geopotential model. They emphasize an adaptive smoothing effect as a principal advantage of the nonlinear diffusion filtering. Consequently, the derived velocities of the ocean geostrophic surface currents contain stronger signal.

  12. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  13. Greenland GPS network: Measurements and Models of 3D Elastic deformation

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; van Dam, T. M.; Bevis, M. G.; Sasgen, I.; Bamber, J. L.; Helm, V.; Bjork, A. A.; Liu, L.; Kjaer, K. H.; Knudsen, P.; Kjeldsen, K. K.

    2017-12-01

    The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Here, we focus on present-day changes and compare measurements with models. To retrieve 3D elastic displacements from GPS time series, we correct our observations for glacial-isostatic adjustment and tectonic plate motion, and study the effect of the underlying mantle viscosity, ice load history and Euler parameters. To model 3D elastic displacements, we first estimate mass loss using 1995-2014 NASA's Airborne Topographic Mapper (ATM) flights derived altimetry, supplemented with laser altimetry observations from the Ice, Cloud, and Land Elevation Satellite (ICESat) during 2003-2009; the airborne Land, Vegetation, and Ice Sensor (LVIS) instrument during 2007-2013; radar altimetry from the CryoSat-2 satellite during 2010-2017; and European Remote-Sensing Satellite-1 (ERS-1) and ERS-2 data during 1995-2003. We converted the volume loss rate into a mass loss rate accounting for firn compaction as described by Kuipers Munneke et al. (2015). We predict the elastic displacements by convolving mass loss estimates with Green's functions for vertical and horizontal displacements. We use a variety of elastic Green's functions and mass change grid resolutions, respectively, to study the sensitivity of 3D elastic deformation on Earth model parameters different from the Preliminary Reference Earth Reference Model (PREM; Dziewonski & Anderson 1981) and the forcing ice load.

  14. ESA activities on satellite laser ranging to non-cooperative objects

    NASA Astrophysics Data System (ADS)

    Flohrer, Tim; Krag, Holger; Funke, Quirin; Jilete, Beatriz; Mancas, Alexandru

    2016-07-01

    Satellite laser ranging (SLR) to non-cooperative objects is an emerging technology that can contribute significantly to operational, modelling and mitigation needs set by the space debris population. ESA is conducting various research and development activities in SLR to non-cooperative objects. ESA's Space Situational Awareness (SSA) program supports specific activities in the Space Surveillance and Tracking (SST) segment. Research and development activities with operational aspects are run by ESA's Space Debris Office. At ESA SSA/SST comprises detecting, cataloguing and predicting the objects orbiting the Earth, and the derived applications. SST aims at facilitating research and development of sensor and data processing technologies and of related common components while staying complementary with, and in support of, national and multi-national European initiatives. SST promotes standardisation and interoperability of the technology developments. For SLR these goals are implemented through researching, developing, and deploying an expert centre. This centre shall coordinate the contribution of system-external loosely connected SLR sensors, and shall provide back calibration and expert evaluation support to the sensors. The Space Debris Office at ESA is responsible for all aspects related to space debris in the Agency. It is in charge of providing operational support to ESA and third party missions. Currently, the office studies the potential benefits of laser ranging to space debris objects to resolve close approaches to active satellites, to improve re-entry predictions of time and locations, and the more general SLR support during contingency situations. The office studies the determination of attitude and attitude motion of uncooperative objects with special focus on the combination of SLR, light-curve, and radar imaging data. Generating sufficiently precise information to allow for the acquisition of debris objects by a SLR sensor in a stare

  15. Characterization of the surface wave variability in the California Current region from satellite altimetry.

    NASA Astrophysics Data System (ADS)

    Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.

    2016-02-01

    Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.

  16. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  17. An Evaluation of Spacecraft Pointing Requirements for Optically Linked Satellite Systems

    NASA Astrophysics Data System (ADS)

    Gunter, B. C.; Dahl, T.

    2017-12-01

    Free space optical (laser) communications can offer certain advantages for many remote sensing applications, due primarily to the high data rates (Gb/s) and energy efficiences possible from such systems. An orbiting network of crosslinked satellites could potentially relay imagery and other high-volume data at near real-time intervals. To achieve this would require satellites actively tracking one or more satellites, as well as ground terminals. The narrow laser beam width utilized by the transmitting satellites pose technical challenges due to the higher pointing accuracy required for effective signal transmission, in particular if small satellites are involved. To better understand what it would take to realize such a small-satellite laser communication network, this study investigates the pointing requirements needed to support optical data links. A general method for characterizing pointing tolerance, angle rates and accelerations for line of site vectors is devised and applied to various case studies. Comparisons with state-of-the-art small satellite attitude control systems are also made to assess what is possible using current technology. The results help refine the trade space for designs for optically linked networks from the hardware aboard each satellite to the design of the satellite constellation itself.

  18. Using altimetry to help explain patchy changes in hydrographic carbon measurements

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro

    2009-09-01

    Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).

  19. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  20. Gravity model improvement using GEOS 3 /GEM 9 and 10/. [and Seasat altimetry data

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Wagner, C. A.; Klosko, S. M.; Laubscher, R. E.

    1979-01-01

    Although errors in previous gravity models have produced large uncertainties in the orbital position of GEOS 3, significant improvement has been obtained with new geopotential solutions, Goddard Earth Model (GEM) 9 and 10. The GEM 9 and 10 solutions for the potential coefficients and station coordinates are presented along with a discussion of the new techniques employed. Also presented and discussed are solutions for three fundamental geodetic reference parameters, viz. the mean radius of the earth, the gravitational constant, and mean equatorial gravity. Evaluation of the gravity field is examined together with evaluation of GEM 9 and 10 for orbit determination accuracy. The major objectives of GEM 9 and 10 are achieved. GEOS 3 orbital accuracies from these models are about 1 m in their radial components for 5-day arc lengths. Both models yield significantly improved results over GEM solutions when compared to surface gravimetry, Skylab and GEOS 3 altimetry, and highly accurate BE-C (Beacon Explorer-C) laser ranges. The new values of the parameters discussed are given.