Sample records for satellite-based navigation system

  1. Interference and deception detection technology of satellite navigation based on deep learning

    NASA Astrophysics Data System (ADS)

    Chen, Weiyi; Deng, Pingke; Qu, Yi; Zhang, Xiaoguang; Li, Yaping

    2017-10-01

    Satellite navigation system plays an important role in people's daily life and war. The strategic position of satellite navigation system is prominent, so it is very important to ensure that the satellite navigation system is not disturbed or destroyed. It is a critical means to detect the jamming signal to avoid the accident in a navigation system. At present, the detection technology of jamming signal in satellite navigation system is not intelligent , mainly relying on artificial decision and experience. For this issue, the paper proposes a method based on deep learning to monitor the interference source in a satellite navigation. By training the interference signal data, and extracting the features of the interference signal, the detection sys tem model is constructed. The simulation results show that, the detection accuracy of our detection system can reach nearly 70%. The method in our paper provides a new idea for the research on intelligent detection of interference and deception signal in a satellite navigation system.

  2. Research on anti - interference based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yijun

    2017-05-01

    Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.

  3. TDRSS Augmentation System for Satellites

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems(GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  4. TDRSS Augmentation Service for Satellites (TASS)

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  5. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  6. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  7. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  8. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  9. Use of NTRIP for optimizing the decoding algorithm for real-time data streams.

    PubMed

    He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua

    2014-10-10

    As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.

  10. The First Result of Relative Positioning and Velocity Estimation Based on CAPS

    PubMed Central

    Zhao, Jiaojiao; Ge, Jian; Wang, Liang; Wang, Ningbo; Zhou, Kai; Yuan, Hong

    2018-01-01

    The Chinese Area Positioning System (CAPS) is a new positioning system developed by the Chinese Academy of Sciences based on the communication satellites in geosynchronous orbit. The CAPS has been regarded as a pilot system to test the new technology for the design, construction and update of the BeiDou Navigation Satellite System (BDS). The system structure of CAPS, including the space, ground control station and user segments, is almost like the traditional Global Navigation Satellite Systems (GNSSs), but with the clock on the ground, the navigation signal in C waveband, and different principles of operation. The major difference is that the CAPS navigation signal is first generated at the ground control station, before being transmitted to the satellite in orbit and finally forwarded by the communication satellite transponder to the user. This design moves the clock from the satellite in orbit to the ground. The clock error can therefore be easily controlled and mitigated to improve the positioning accuracy. This paper will present the performance of CAPS-based relative positioning and velocity estimation as assessed in Beijing, China. The numerical results show that, (1) the accuracies of relative positioning, using only code measurements, are 1.25 and 1.8 m in the horizontal and vertical components, respectively; (2) meanwhile, they are about 2.83 and 3.15 cm in static mode and 6.31 and 10.78 cm in kinematic mode, respectively, when using the carrier-phase measurements with ambiguities fixed; and (3) the accuracy of the velocity estimation is about 0.04 and 0.11 m/s in static and kinematic modes, respectively. These results indicate the potential application of CAPS for high-precision positioning and velocity estimation and the availability of a new navigation mode based on communication satellites. PMID:29757204

  11. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  12. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  13. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

    PubMed Central

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-01-01

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources. PMID:26426019

  14. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan.

    PubMed

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-09-29

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

  15. Navigation study for low-altitude Earth satellites

    NASA Technical Reports Server (NTRS)

    Pastor, P. R.; Fang, B. T.; Yee, C. P.

    1985-01-01

    This document describes several navigation studies for low-altitude Earth satellites. The use of Global Positioning System Navigation Package data for LANDSAT-5 orbit determination is evaluated. In addition, a navigation analysis for the proposed Tracking and Data Aquisition System is presented. This analysis, based on simulations employing one-way Doppler data, is used to determine the agreement between the Research and Development Goddard Trajectory Determination System and the Sequential Error Analysis Program results. Properties of several geopotential error models are studied and an exploratory study of orbit smoother process noise is presented.

  16. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  17. Maritime User Requirements at High Latitudes - the MARENOR Project

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2014-12-01

    The ionosphere at high latitudes is characterised by a great variety of spatial and temporal variations that influence radio signals. In addition to navigation solutions that are based on Global Navigation Satellite Systems (GNSS), satellite communication systems also suffer from ionospheric degradation. This is worsened by harsh weather conditions, insufficient coverage by geostationary satellites and the absence of land-based augmentation infrastructure. Climate change will lead to a decrease in sea ice extent and thus to an increased use of trans-polar shipping routes, presence of gas and oil industries in the High Arctic and higher focus on Search-and-Rescue (SAR) as well as sovereignty issues. These moments usually require navigation and communication solutions that are accurate and reliable. We describe requirements presented by industrial operators on and around Svalbard. In addition, we present the MARENOR project that aims on evaluating navigation and communication systems at high latitudes including first results

  18. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  19. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations

    PubMed Central

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun

    2016-01-01

    Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft. PMID:27548181

  20. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  1. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  2. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  3. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  4. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 2. System Functional Description and System Specification.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...

  5. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity validation is crucial for any ambiguity resolution algorithm using searching method. This study has proposed to use both Ellipsoidal Integer Aperture (EIA) estimator and R-ratio test for ambiguity validation. Using real GPS data and simulated Galileo data, it has been demonstrated that the new method performs better than the use of EIA or the R-ratio test alone, with much less ambiguity mis-fixed rate.

  6. The transmission link of CAPS navigation and communication system

    NASA Astrophysics Data System (ADS)

    Cui, Junxia; Shi, Huli; Chen, Jibin; Pei, Jun

    2009-03-01

    The Chinese Area Positioning System (CAPS) is based on communication satellites with integrated capability, which is different from the Global Positioning System (GPS), the International Maritime Satellite Organization (Inmarsat) and so on. CAPS works at C-band, and its navigation information is not directly generated from the satellite, but from the master control station on the ground and transmitted to users via the satellite. The slightly inclined geostationary-satellite orbit (SIGSO) satellites are adopted in CAPS. All of these increase the difficulty in the design of the system and terminals. In this paper, the authors study the CAPS configuration parameters of the navigation master control station, information transmission capability, and the selection of the antenna aperture of the communication center station, as well as the impact of satellite parameters on the whole communication system from the perspective of the transmission link budget. The conclusion of availability of the CAPS navigation system is achieved. The results show that the CAPS inbound communication system forms a new low-data-rate satellite communication system, which can accommodate mass communication terminals with the transmission rate of no more than 1 kbps for every terminal. The communication center station should be configured with a large-aperture antenna (about 10-15 m); spread spectrum communication technology should be used with the spreading gain as high as about 40 dB; reduction of the satellite transponder gain attenuation is beneficial to improving the signal-to-noise ratio of the system, with the attenuation value of 0 or 2 dB as the best choice. The fact that the CAPS navigation system has been checked and accepted by the experts and the operation is stable till now clarifies the rationality of the analysis results. The fact that a variety of experiments and applications of the satellite communication system designed according to the findings in this paper have been successfully carried out confirms the correctness of the study results.

  7. Augmentation method of XPNAV in Mars orbit based on Phobos and Deimos observations

    NASA Astrophysics Data System (ADS)

    Rong, Jiao; Luping, Xu; Zhang, Hua; Cong, Li

    2016-11-01

    Autonomous navigation for Mars probe spacecraft is required to reduce the operation costs and enhance the navigation performance in the future. X-ray pulsar-based navigation (XPNAV) is a potential candidate to meet this requirement. This paper addresses the use of the Mars' natural satellites to improve XPNAV for Mars probe spacecraft. Two observation variables of the field angle and natural satellites' direction vectors of Mars are added into the XPNAV positioning system. The measurement model of field angle and direction vectors is formulated by processing satellite image of Mars obtained from optical camera. This measurement model is integrated into the spacecraft orbit dynamics to build the filter model. In order to estimate position and velocity error of the spacecraft and reduce the impact of the system noise on navigation precision, an adaptive divided difference filter (ADDF) is applied. Numerical simulation results demonstrate that the performance of ADDF is better than Unscented Kalman Filter (UKF) DDF and EKF. In view of the invisibility of Mars' natural satellites in some cases, a visibility condition analysis is given and the augmented XPNAV in a different visibility condition is numerically simulated. The simulation results show that the navigation precision is evidently improved by using the augmented XPNAV based on the field angle and natural satellites' direction vectors of Mars in a comparison with the conventional XPNAV.

  8. National aerospace meeting of the Institute of Navigation

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.

  9. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  10. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  11. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.

  12. First Observations of GNSS Ionospheric Scintillations From DemoGRAPE Project

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Cilliers, P. J.; Romano, V.; Hunstad, I.; Correia, E.; Linty, N.; Dovis, F.; Terzo, O.; Ruiu, P.; Ward, J.; Riley, P.

    2016-10-01

    The Istituto Nazionale di Geofisica e Vulcanologia leads an international project funded by the Italian National Program for Antarctic Research, called Demonstrator of Global Navigation Satellite System (GNSS) Research and Application for Polar Environment (DemoGRAPE), in partnership with Politecnico di Torino, Istituto Superiore Mario Boella, and with South African National Space Agency and the Brazilian National Institute of Space Physics, as key collaborators. DemoGRAPE is a new prototype of support for the satellite navigation in Antarctica. Besides the scientific interest, the accuracy of satellite navigation in Antarctica is of paramount importance since there is always the danger that people and vehicles can fall into a crevasse during a snowstorm, when visibility is limited and travel is restricted to following specified routes using satellite navigation systems. The variability of ionospheric delay and ionospheric scintillation are two of the primary factors which affect the accuracy of satellite navigation. The project will provide a demonstrator of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions. The scope of the project includes new equipment for the recording and dissemination of GNSS data and products installed at the South African and Brazilian bases in Antarctica. The new equipment will facilitate the exchange of software and derived products via the Cloud computing technology infrastructure. The project portal is accessible at www.demogrape.net. We report the first Global Navigation Satellite System (GNSS) signal scintillations observed in Antarctica.

  13. ATS-1/ATS-3 dual satellite navigation study

    NASA Technical Reports Server (NTRS)

    Hoover, W. M.

    1971-01-01

    A study which illustrated the feasibility of implementing an on-board aircraft navigation system based on using the ATS-1 and ATS-3 satellites, the modified Omega Position Location Equipment (OPLE) Control Center, and a suitable aircraft terminal was conducted. The report provides: (1) a consideration of the problems of satellite navigation and an objective definition of the optimum system under the constraints of its specified components, (2) a description of the necessary modifications to the OPLE Control Center, the design of an aircraft terminal, and the design of ground reference terminals, and (3) an outline of an experiment plan and an estimate of the cost to be expected in conducting the program.

  14. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities, as well as relative positions and velocities in space. The second novelty is that ordinarily one requires many satellites in order to achieve full navigation of any given customer s position and velocity over time. With LiAISON navigation, only a single navigation satellite is needed, provided that the satellite is significantly affected by the gravity of the Earth and the Moon. That single satellite can track another satellite elsewhere in the Earth- Moon system and obtain absolute knowledge of both satellites states.

  15. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  16. Air traffic management system design using satellite based geo-positioning and communications assets

    NASA Technical Reports Server (NTRS)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  17. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  18. National Airspace System : status of wide area augmentation system project

    DOT National Transportation Integrated Search

    1998-04-30

    As a key element of its overall program for modernizing the National Airspace : System, the Federal Aviation Administration (FAA) is planning a transition from : ground- to satellite-based navigation by using satellite signals generated by : the Depa...

  19. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  20. Ionospheric Delay Compensation Using a Scale Factor Based on an Altitude of a Receiver

    NASA Technical Reports Server (NTRS)

    Zhao, Hui (Inventor); Savoy, John (Inventor)

    2014-01-01

    In one embodiment, a method for ionospheric delay compensation is provided. The method includes determining an ionospheric delay based on a signal having propagated from the navigation satellite to a location below the ionosphere. A scale factor can be applied to the ionospheric delay, wherein the scale factor corresponds to a ratio of an ionospheric delay in the vertical direction based on an altitude of the satellite navigation system receiver. Compensation can be applied based on the ionospheric delay.

  1. Digital avionics: A cornerstone of aviation

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1990-01-01

    Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.

  2. Rethinking Indoor Localization Solutions Towards the Future of Mobile Location-Based Services

    NASA Astrophysics Data System (ADS)

    Guney, C.

    2017-11-01

    Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user's location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.

  3. Cyber security with radio frequency interferences mitigation study for satellite systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  4. Arms Control and Missile Defense: Explaining Success and Failure in U.S.-Russian Cooperation

    DTIC Science & Technology

    2013-09-01

    Security Service) GLCM Ground-Launched Cruise Missile GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System...threat to us will only grow. We will be pulled into another round of the arms race that is beyond our capabilities . . . because we are already at...Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System).”111 Based on his review of events in Georgia, Vladimir

  5. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  6. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    NASA Technical Reports Server (NTRS)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  7. Determination of the number of navigation satellites within satellite acquisition range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurenkov, Vladimir I., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Kucherov, Alexander S., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Gordeev, Alexey I., E-mail: exactoone@yahoo.com

    2014-12-10

    The problem of determination of the number of navigation satellites within acquisition range with regard to antenna systems configuration and stochastic land remote sensing satellite maneuvers is the subject considered in the paper. Distribution function and density function of the number of navigation satellites within acquisition range are obtained.

  8. Impact of multiconstellation satellite signal reception on performance of satellite-based navigation under adverse ionospheric conditions

    NASA Astrophysics Data System (ADS)

    Paul, Ashik; Paul, Krishnendu Sekhar; Das, Aditi

    2017-03-01

    Application of multiconstellation satellites to address the issue of satellite signal outages during periods of equatorial ionospheric scintillations could prove to be an effective tool for maintaining the performance of satellite-based communication and navigation without compromise in accuracy and integrity. A receiver capable of tracking GPS, Global Navigation Satellite System (GLONASS), and Galileo satellites is operational at the Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India, located near the northern crest of the equatorial ionization anomaly in the Indian longitude sector. The present paper shows increased availability of satellites combining GPS, GLONASS, and Galileo constellations from Calcutta compared to GPS-only scenario and estimates intense scintillation-free (S4 < 0.6) satellite vehicle look angles at different hours of the postsunset period 19:00-01:00 LT during March 2014. A representative case of 1 March 2014 is highlighted in the paper and overall statistics for March 2014 presented to indicate quantitative advantages in terms of scintillation-free satellite vehicle look angles that may be utilized for planning communication and navigation channel spatial distribution under adverse ionospheric conditions. The number of satellites tracked and receiver position deviations has been found to show a good correspondence with the occurrence of intense scintillations and poor user receiver-satellite link geometry. The ground projection of the 350 km subionospheric points corresponding to multiconstellation shows extended spatial coverage during periods of scintillations (0.2 < S4 < 0.6) compared to GPS.

  9. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  10. Ranging Consistency Based on Ranging-Compensated Temperature-Sensing Sensor for Inter-Satellite Link of Navigation Constellation

    PubMed Central

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin

    2017-01-01

    Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809

  11. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  12. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  13. Technical assessment of satellites for CONUS air traffic control Volume III: satellite-to-aircraft techniques

    DOT National Transportation Integrated Search

    1974-02-17

    A number of satellite system techniques have been suggested as candidates to provide ATC surveillance, communication, and/or navigation service over CONUS. All techniques determine the aircraft positions by multilateration based on the arrival times ...

  14. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  15. Disposal strategy for the geosynchronous orbits of the Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin

    Beidou Navigation Satellite System (BDS) is China's navigation satelite system. It is now operational for navigation service in China and Asia-Pacific region and is due to be fully operational as a global navigation system by 2020. Unlike other navigation satellite systems, BDS consists of both 12-hour medium Earth orbit and 24-hour geosynchronous orbit. To sustain a safe environment for the navigation satellites, the end-of-life satellites must be disposed appropriately so they do not pose potential dangers to the operational satellites. There are currently two strategies for the disposal orbit. One is to put the disposed satellite in a graveyard orbit that has a safe distance from the operational satellites. It is often applied in geosynchronous orbits and such graveyard orbit can always maintain a safe distance even for a few centuries. This strategy is also currently adopted by GPS, yet recent researches show a re-entry orbit can sometimes be a better alternative. The interaction of Earth oblateness and lunisolar gravitation can lead to a rapid increase in the orbit eccentricity such that by proper design the disposed GPS satellite can be cleared out by re-entry into the atmosphere. In this work we focus on the disposal strategy for BDS geosynchronous orbit, which consists of the equatorial stationary orbit (GEO) and the inclined orbit (IGSO). We show that these two orbits are essentially in two different dynamical environments and evolve quite distinctly over a long period of time. Taking advantage of the dynamic nature, we apply the graveyard orbit and the re-entry orbit to GEO and IGSO respectively and propose appropriate disposal strategies accordingly.

  16. Space Weather Effects on Aircraft Navigation

    NASA Astrophysics Data System (ADS)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  17. Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation

    NASA Astrophysics Data System (ADS)

    Gratton, Livio Rafael

    The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual frequency civil GPS signals are available, the ability to provide integrity during ionospheric storms, without excessive loss of availability is a major challenge. For all users, with or without augmentation, some situations cause short duration losses of satellites in view. Two examples are aircraft banking during turns and ionospheric scintillation. The loss of range signals can translate into gaps in good satellite geometry, and the resulting challenge is to ensure navigation continuity by bridging these gaps, while simultaneously maintaining high integrity. It is shown that the RRAIM methods developed in this research can be applied to mitigate each of these obstacles to safe and reliable precision aircraft navigation.

  18. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    NASA Astrophysics Data System (ADS)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  19. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou

    PubMed Central

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-01-01

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5–2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates. PMID:28475142

  20. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou.

    PubMed

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-05-05

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5-2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates.

  1. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    PubMed

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  2. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying

    PubMed Central

    v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-01-01

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417

  3. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  4. Clock performance as a critical parameter in navigation satellite systems

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    The high performance of available oscillators has permitted the development of invaluable navigation and geodetic satellite systems. However, still higher performance oscillators would further improve the accuracy or flexibility of the systems.

  5. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  6. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  7. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA).

  8. Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)

    NASA Astrophysics Data System (ADS)

    Hesar, Siamak G.; Parker, Jeffrey S.; Leonard, Jason M.; McGranaghan, Ryan M.; Born, George H.

    2015-12-01

    We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth-Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters.

  9. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  10. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.

  11. Satellite time-transfer: recent developments and projects

    NASA Astrophysics Data System (ADS)

    Lewandowski, W.; Nawrocki, J.

    2006-10-01

    Global Navigation Satellite Systems (GNSS) keep a central role in the international timekeeping. American Global Positioning System (GPS) is a navigation system that has proven itself to be a reliable source of positioning for both the military community and the civilian community. But, little known by many, is the fact that GPS has proven itself to be an important and valuable utility to the timekeeping community (Lewandowski et al. 1999). GPS is a versatile and global tool which can be used to both distribute time to an arbitrary number of users and synchronise clocks over large distances with a high degree of precision and accuracy. Similar performance can be obtained with Russian Global Navigation Satellite System (GLONASS). It is expected in the near future satellites of a new European navigation system GALILEO might bring some important opportunities for international timekeeping. This paper after a brief introduction to international timekeeping focuses on the description of recent progress in time transfer techniques using GNSS satellites.

  12. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  13. Performance Analysis on Carrier Phase-Based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments

    PubMed Central

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-01-01

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191

  14. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments.

    PubMed

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-04-14

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.

  15. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  16. The ESA contribution to the European Satellite Navigation Programme

    NASA Astrophysics Data System (ADS)

    Lucas, R.; Lo Galbo, P.; de Mateo, M. L.; Steciw, A.; Ashford, E.

    1996-02-01

    This paper describes the ESA ARTES-9 programme on Global Navigation Satellite Systems (GNSS). This programme will be the ESA contribution to the wider European Satellite Navigation Programme which is to be implemented as a joint effort of the European Union, Eurocontrol and ESA with the support of other European bodies such as telecommunication operators, national civil aviation authorities, national space agencies, industry, universities and R&D institutes in general. In fact, in view of the geographical area concerned, the large number of parties interested, the experience required and the global nature of GNSS, the proposed initiative can only be successful if based on a strong cooperation at a European and international scale. The ESA ARTES-9 programme will consist on one side, of the design, development and validation of the European complement to the GPS and GLONASS systems (GNSS1), and on the other side of the study, design and pre-development of the European contribution to follow-on systems: GNSS2.

  17. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  18. Advancing Reflectrometry

    DTIC Science & Technology

    2013-05-21

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Reflectometry , a microwave remote sensing technique to extract geophysical data from scattered satellite...transmissions, was first demonstrated using Global Navigation Satellite System (GNSS) reflections. Recently, reflectometry has been extended to digital...potential missions. a 15. SUBJECT TERMS Reflectometry , Ocean Winds, Global Navigation Satellites, Communication Satellites 16. SECURITY

  19. Monitoring of GPS(Global Positioning System) System Performance

    DOT National Transportation Integrated Search

    1985-06-01

    The Global Positioning System (GPS), a worldwide satellite-based navigation system developed by the Department of Defense, is scheduled to become operational in late 1988. The system has the potential to become the primary radionaviagation system for...

  20. Study on Mobile Object Positioning and Alarming System Based on the “Map World” in the Core Area of the Silk Road Economic Belt

    NASA Astrophysics Data System (ADS)

    Mu, Kai

    2017-02-01

    The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.

  1. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  2. An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor

    PubMed Central

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust. PMID:24250261

  3. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    PubMed

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  4. On a Slow Roll

    NASA Technical Reports Server (NTRS)

    Hughes, David

    2005-01-01

    Satellite navigation and surveillance products and services can cut costs, improve accuracy, expand coverage and enhance safety. But the global transformation of air traffic management (ATM) that satellites and ground augmentation systems have promised is being realized much more slowly than expected. "There are still a lot of nations that could benefit [from satellite navigation and surveillance] that haven't invested dime in new equipment." says Tim Katanik, manager of business development for navigation and landing systems Raytheon. But then things usually move slowly in this industry, he adds.

  5. Time synchronization of new-generation BDS satellites using inter-satellite link measurements

    NASA Astrophysics Data System (ADS)

    Pan, Junyang; Hu, Xiaogong; Zhou, Shanshi; Tang, Chengpan; Guo, Rui; Zhu, Lingfeng; Tang, Guifeng; Hu, Guangming

    2018-01-01

    Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4 cm and 1 cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3 ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3 ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86 ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57 ns (RMS), which is a significant improvement by a factor of 3-4.

  6. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  7. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  8. An Analysis of CONUS Based Deployment of Pseudolites for Positioning, Navigation and Timing (PNT) Systems

    DTIC Science & Technology

    2015-09-17

    Geostationary Satellite cMateriel» Geostationary Satellite::Re-ceive Antennas cMBI!t’iel» Geostationary •Fiba OptioC.bl.h Satellite::CPU...8217 cRsdio Ftequency Signal» .Ra v dio Fre-queno; OBI» •Fiber OplicCsbl•• cMstMiel» Geostationary Satell ite:: Transmitters cMste

  9. Precise point positioning with the BeiDou navigation satellite system.

    PubMed

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  10. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  11. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  12. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  13. Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System.

    PubMed

    Liu, Yang; Li, Sihai; Fu, Qiangwen; Liu, Zhenbo

    2018-05-04

    In the face of emerging Global Navigation Satellite System (GNSS) spoofing attacks, there is a need to give a comprehensive analysis on how the inertial navigation system (INS)/GNSS integrated navigation system responds to different kinds of spoofing attacks. A better understanding of the integrated navigation system’s behavior with spoofed GNSS measurements gives us valuable clues to develop effective spoofing defenses. This paper focuses on an impact assessment of GNSS spoofing attacks on the integrated navigation system Kalman filter’s error covariance, innovation sequence and inertial sensor bias estimation. A simple and straightforward measurement-level trajectory spoofing simulation framework is presented, serving as the basis for an impact assessment of both unsynchronized and synchronized spoofing attacks. Recommendations are given for spoofing detection and mitigation based on our findings in the impact assessment process.

  14. Study on index system of GPS interference effect evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zeng, Fangling; Zhao, Yuan; Zeng, Ruiqi

    2018-05-01

    Satellite navigation interference effect evaluation is the key technology to break through the research of Navigation countermeasure. To evaluate accurately the interference degree and Anti-jamming ability of GPS receiver, this text based on the existing research results of Navigation interference effect evaluation, build the index system of GPS receiver effectiveness evaluation from four levels of signal acquisition, tracking, demodulation and positioning/timing and establish the model for each index. These indexes can accurately and quantitatively describe the interference effect at all levels.

  15. Signal Strength-Based Global Navigation Satellite System Performance Assessment in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.

  16. 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1996-01-01

    This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.

  17. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  18. Multi-GNSS real-time precise positioning service and Initial assessment of BDS-3 (G Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maaorong; Li, Xin; Zhang, Xiuaohong; Wu, Mingkui; Wickert, Jens; Schuh, Harald

    2017-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. The successful launch of five new-generation satellites of the Chinese BeiDou Navigation Satellite System (BDS-3) marks a significant step in expanding BeiDou into a navigation system with global coverage. We present an initial characterization and performance assessment for these new-generation BeiDou-3 satellites and their signals. The characteristics of the B1C, B1I, B2a, B2b and B3I signals are evaluated in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, triple-frequency carrier phase ionosphere-free and geometry-free combination, and double-differenced carrier phase and code residuals. With respect to BeiDou-2 satellites, the analysis of code multipath shows that the elevation-dependent code biases, which have been previously identified to exist in the code observations of BeiDou-2 satellites, seem to be not obvious for all the available signals of new-generation BeiDou-3 satellites. This will significantly benefit precise applications that resolve wide-lane ambiguity based on Melbourne-Wübbena (MW) linear combinations and other applications such as single-frequency Precise Point Positioning (PPP) based on the ionosphere free code-carrier combinations. With regard to the triple-frequency carrier phase ionosphere-free and geometry-free combinations, it is found that different from BeiDou-2 and GPS Block IIF satellites, no apparent bias variations could be observed in all the new-generation BeiDou-3 satellites, which show a good consistency of the new-generation BeiDou-3 signals. The absence of such triple-frequency biases will make it convenient for the future processing of multi-frequency PPP using observations from new-generation BeiDou-3 satellites.

  19. Tracking and Data Relay Satellite System (TDRSS) navigation with DSN radio metric data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1981-01-01

    The use of DSN radiometric data for enhancing the orbit determination capability for TDRS is examined. Results of a formal covariance analysis are presented which establish the nominal TDRS navigation performance and assess the performance improvement based on augmenting the nominal TDRS data strategy with radiometric data from DSN sites.

  20. Space-Based Information Services

    NASA Astrophysics Data System (ADS)

    Lee, C.

    With useful data now beginning to flow from earth observation and navigation satellites, it is an active time for the development of space services - all types of satellites are now being put to work, not just Comsats. However derived products require a blend of innovative software design, low cost operational support and a real insight into the information needs of the customer. Science Systems is meeting this challenge through a series of on-going projects, three of which are summarised here (addressing navigation, communications and earth observation). By demonstrating a broad range of related disciplines; from monitoring and control to back-room billing; from data management to intelligent systems, Science Systems hopes to play a key role in this developing market.

  1. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  2. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert

    1991-01-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  3. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Astrophysics Data System (ADS)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  4. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  5. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  6. Comparison of NAVSTAR satellite L band ionospheric calibrations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Royden, H. N.; Miller, R. B.; Buennagel, L. A.

    1984-01-01

    It is pointed out that interplanetary navigation at the Jet Propulsion Laboratory (JPL) is performed by analyzing measurements derived from the radio link between spacecraft and earth and, near the target, onboard optical measurements. For precise navigation, corrections for ionospheric effects must be applied, because the earth's ionosphere degrades the accuracy of the radiometric data. These corrections are based on ionospheric total electron content (TEC) determinations. The determinations are based on the measurement of the Faraday rotation of linearly polarized VHF signals from geostationary satellites. Problems arise in connection with the steadily declining number of satellites which are suitable for Faraday rotation measurements. For this reason, alternate methods of determining ionospheric electron content are being explored. One promising method involves the use of satellites of the NAVSTAR Global Positioning System (GPS). The results of a comparative study regarding this method are encouraging.

  7. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.

    PubMed

    Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin

    2018-01-12

    Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  8. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  9. GOES I/M image navigation and registration

    NASA Technical Reports Server (NTRS)

    Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.

    1989-01-01

    Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.

  10. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  11. A GPS Receiver for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.

    2008-01-01

    Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory.

  12. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  13. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  14. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped with Rubidium clocks and clocks performance are also presented. Finally, benefits of BDS processing strategies and further developments are concluded.

  15. Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation

    DTIC Science & Technology

    2015-06-01

    Multiple-Purpose Crew Vehicle (MPVC), which will be provided with a LIDAR sensor as primary relative navigation system [26, 33, 34]. A drawback of LIDAR...328–352, 2009. [63] C. Luigini and M. Romano, “A ballistic- pendulum test stand to characterize small cold-gas thruster nozzles,” Acta

  16. Distributed Timing and Localization (DiGiTaL)

    NASA Technical Reports Server (NTRS)

    D'Amico, Simone; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Distributed Timing and Localization (DiGiTaL) system provides nano satellite formations with unprecedented,centimeter-level navigation accuracy in real time and nanosecond-level time synchronization. This is achieved through the integration of a multi-constellation Global Navigation Satellite System (GNSS) receiver, a Chip-Scale Atomic Clock (CSAC), and a dedicated Inter-Satellite Link (ISL). In comparison, traditional single spacecraft GNSS navigation solutions are accurate only to the meter-level due to the sole usage of coarse pseudo-range measurements. To meet the strict requirements of future miniaturized distributed space systems, DiGiTaL uses powerful error-cancelling combinations of raw carrier-phase measurements which are exchanged between the swarming nano satellites through a decentralized network. A reduced-dynamics estimation architecture on board each individual nano satellite processes the resulting millimeter-level noise measurements to reconstruct the fullformation state with high accuracy.

  17. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  18. Airborne Observation of Ocean Surface Roughness Variations Using a Combination of Microwave Radiometer and Reflectometer Systems: The Second Virginia Offshore (Virgo II) Experiment

    DTIC Science & Technology

    2014-03-06

    from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS

  19. STEPPING - Smartphone-Based Portable Pedestrian Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Lukianto, C.; Sternberg, H.

    2011-12-01

    Many current smartphones are fitted with GPS receivers, which, in combination with a map application form a pedestrian navigation system for outdoor purposes. However, once an area with insufficient satellite signal coverage is entered, these navigation systems cease to function. For indoor positioning, there are already several solutions available which are usually based on measured distances to reference points. These solutions can achieve resolutions as low as the sub-millimetre range depending on the complexity of the set-up. STEPPING project, developed at HCU Hamburg Germany aims at designing an indoor navigation system consisting of a small inertial navigation system and a new, robust sensor fusion algorithm running on a current smartphone. As this system is theoretically able to integrate any available positioning method, it is independent of a particular method and can thus be realized on a smartphone without affecting user mobility. Potential applications include --but are not limited to: Large trade fairs, airports, parking decks and shopping malls, as well as ambient assisted living scenarios.

  20. Application of DGPS for Collision Avoidance in Intelligent Transportation Systems In a Wireless Environment

    DOT National Transportation Integrated Search

    2001-02-19

    The Global Positioning System (GPS) is a satellite based radio-navigation system. A relatively large number of vehicles are already equipped with GPS devices. This project evaluated the application of Global Positing System (GPS) technology in collis...

  1. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  2. Cruise Missile Penaid Nonproliferation: Hindering the Spread of Countermeasures Against Cruise Missile Defenses

    DTIC Science & Technology

    2014-01-01

    this report treats cruise missile penaids and UAV penaids, sometimes called “self-protection” (see La Franchi , 2004), interchangeably. 8 Cruise...Penaid Export Controls 41 2. Anti-Jam Equipment MTCR Item 11.A.3.b.3 (Avionics): Current text: “Receiving equipment for Global Navigation Satellite...subsystems beyond those for global navigation satellite systems to all sensor, navigation, and communications systems, and add “including multi-mode

  3. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    PubMed

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  4. Reference earth orbital research and applications investigations (blue book). Volume 5: Communications/navigation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design and development of a communications/navigation facility for operation aboard space stations and space shuttles are discussed. The objectives of the facility are as follows: (1) to develop and demonstrate satellite and spacecraft technology applicable to space communications, navigation, and traffic control, (2) to optimize the use of the electromagnetic spectrum for communications and navigation satellite systems, and (3) to provide fundamental understanding of the space communications and navigation sciences to permit application of this discipline to government and industry.

  5. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  6. Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies

    NASA Astrophysics Data System (ADS)

    Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.

    2017-05-01

    Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.

  7. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    PubMed

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  8. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation

    PubMed Central

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-01-01

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629

  9. February 11, 2009, Subcommittee on Aviation Hearing on FAA Reauthorization Act of 2009 questions for the record.

    DOT National Transportation Integrated Search

    2009-02-01

    The next generation air transportation system (NextGen) includes the : policies, procedures, and equipment that will allow satellite-based navigation in the : national airspace system. However, this systems ability to meet forecasted traffic : vol...

  10. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  11. Modern Inertial and Satellite Navigation Systems

    DTIC Science & Technology

    1994-05-02

    rotor spins, the harder it is to disturb it. This technique is called spin stabilization and it is commonly used for communication satellites. Moder... using a generalization of the complex number called the quaternion . Modem Inertial and Satellite Navigation Systems page 32. 4.2 Exdrson in Pincile...length by an integer. Positive feedback arises from the use of a lasing medium, a gas, liquid, crystal ions, or any of a number of other possibilities

  12. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  13. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  14. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    PubMed Central

    Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André

    2014-01-01

    The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773

  15. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  16. Compact autonomous navigation system (CANS)

    NASA Astrophysics Data System (ADS)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  17. Instantaneous BeiDou-GPS attitude determination: A performance analysis

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nandakumaran; Teunissen, Peter J. G.; Raziq, Noor

    2014-09-01

    The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou-GPS robustness analysis is carried out for instantaneous, unaided attitude determination. Precise attitude determination using multiple GNSS antennas mounted on a platform relies on the successful resolution of the integer carrier phase ambiguities. The constrained Least-squares AMBiguity Decorrelation Adjustment (C-LAMBDA) method has been developed for the quadratically constrained GNSS compass model that incorporates the known baseline length. In this contribution the method is used to analyse the attitude determination performance when using the GPS and BeiDou systems. The attitude determination performance is evaluated using GPS/BeiDou data sets from a real data campaign in Australia spanning several days. The study includes the performance analyses of both stand-alone and mixed constellation (GPS/BeiDou) attitude estimation under various satellite deprived environments. We demonstrate and quantify the improved availability and accuracy of attitude determination using the combined constellation.

  18. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  19. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    ERIC Educational Resources Information Center

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  20. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  1. Computer-aided evaluation of the railway track geometry on the basis of satellite measurements

    NASA Astrophysics Data System (ADS)

    Specht, Cezary; Koc, Władysław; Chrostowski, Piotr

    2016-05-01

    In recent years, all over the world there has been a period of intensive development of GNSS (Global Navigation Satellite Systems) measurement techniques and their extension for the purpose of their applications in the field of surveying and navigation. Moreover, in many countries a rising trend in the development of rail transportation systems has been noticed. In this paper, a method of railway track geometry assessment based on mobile satellite measurements is presented. The paper shows the implementation effects of satellite surveying railway geometry. The investigation process described in the paper is divided on two phases. The first phase is the GNSS mobile surveying and the analysis obtained data. The second phase is the analysis of the track geometry using the flat coordinates from the surveying. The visualization of the measured route, separation and quality assessment of the uniform geometric elements (straight sections, arcs), identification of the track polygon (main directions and intersection angles) are discussed and illustrated by the calculation example within the article.

  2. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  3. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  4. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  5. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1980-01-01

    Methods of determining satellite orbit and attitude parameters are considered. The Goddard Trajectory Determination System, the Global Positioning System, and the Tracking and Data Relay Satellites are among the satellite navigation systems discussed. Satellite perturbation theory, orbit/attitude determination using landmark data, and star measurements are also covered.

  6. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  7. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    PubMed Central

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-01-01

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318

  8. The GNSS Reflectometry Response to the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi

    2016-04-01

    Global Navigation Satellite System - Reflectometry (GNSS-R) exploits signals of opportunity from the Global Navigation Satellite System (GNSS). GNSS transmitters continuously transmit navigation signals at L-band toward the earth's surface. The scattered power reflected off the earth's surface can be sensed by specially designed GNSS-R receivers. The reflected signal can then be used to glean information about the surface of the earth, such as ocean surface roughness, snow depth, sea ice extent, and soil moisture. The use of GNSS-R for ocean wind retrievals was first demonstrated from aircraft. On July 8 2014, the TechDemoSat-1 satellite (TDS-1) was launched by Surrey Satellite Technology, Ltd as a technology risk reduction mission into sun-synchronous orbit. This paper investigates the GNSS-R measurements collected by the Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI) on board the TDS-1 satellite. The sensitivity of the SGR-ReSI measurements to the ocean surface winds and waves are characterized. The effects of sea surface temperature, wind direction, and rain are also investigated. The SGR-ReSI measurements exhibited sensitivity through the entire range of wind speeds sampled in this dataset, up to 35 m/s. A significant dependence on the larger waves was observed for winds < 6 m/s. Additionally, an interesting dependence on SST was observed where the slope of the SGR-ReSI measurements is positive for winds < 5 m/s and reverses for winds > 5 m/s. There appeared to be very little wind direction signal, and investigation of the rain impacts found no apparent sensitivity in the data. These results are shown through the analysis of global statistics and examination of a few case studies. This released SGR-ReSI dataset provided the first opportunity to comprehensively investigate the sensitivity of satellite-based GNSS-R measurements to various ocean surface parameters. The upcoming NASA's Cyclone Global Navigation Satellite System (CYGNSS) satellite constellation will utilize a similar receiver to SGI-ReSI and thus this data provides valuable pre-launch knowledge for the CYGNSS mission.

  9. GPS (Global Positioning System) Error Budgets, Accuracy and Applications Considerations for Test and Training Ranges.

    DTIC Science & Technology

    1982-12-01

    RELATIONSHIP OF POOP AND HOOP WITH A PRIORI ALTITUDE UNCERTAINTY IN 3 DIMENSIONAL NAVIGATION. 4Satellite configuration ( AZEL ), (00,100), (900,10O), (180,10O...RELATIONSHIP OF HOOP WITH A PRIORI ALTITUDE UNCERTAINTY IN 2 DIMENSIONAL NAVIGATION. Satellite configuration ( AZEL ), (°,lO), (90,10), (180,lOO), (27o8...UNCERTAINTY IN 2 DIMENSIONAL NAVIGATION. Satellite configuration ( AZEL ), (00,100), (909,200), (l80*,30*), (270*,40*) 4.4-12 4.t 78 " 70 " 30F 20F 4S, a

  10. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.

  11. Mobile satellite communications in the 1990's

    NASA Astrophysics Data System (ADS)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  12. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  13. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  14. a European Global Navigation Satellite System — the German Market and Value Adding Chain Effects

    NASA Astrophysics Data System (ADS)

    Vollerthun, A.; Wieser, M.

    2002-03-01

    Since Europe is considering to establish a "market-driven" European Global Navigation Satellite System, the German Center of Aerospace initiated a market research to justify a German investment in such a European project. The market research performed included the following market segments: aviation, railway, road traffic, shipping, surveying, farming, military, space applications, leisure, and sport. In these market segments, the forementioned inputs were determined for satellite navigation hardware (receivers) as well as satellite navigation services. The forecast period was from year 2007 to 2017. For the considered period, the market amounts to a total of DM 83.0 billion (approx. US $50 billion), whereas the satellite navigation equipment market makes up DM 39.8 billion, and charges for value-added-services amount to DM 43.2 billion. On closer examination road traffic can be identified as the dominant market share, both in the receiver-market and service-market. With a share of 96% for receivers and 73% for services the significance of the road traffic segment becomes obvious. The second part of this paper investigates the effects the market potential has on the Value-Adding-Chain. Therefore, all participants in the Value-Adding-Chain are identified, using industrial cost structure models the employment effect is analyzed, and possible tax revenues for the state are examined.

  15. Navigation and Landing Transition Strategy

    DOT National Transportation Integrated Search

    2002-08-01

    Attached is the Federal Aviation Administration's (FAA) Navigation and Landing Transition Strategy. This report defines the satellite navigation transition strategy that considers the vulnerability of the Global Positioning System (GPS) and describes...

  16. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  17. A simplified satellite navigation system for an autonomous Mars roving vehicle.

    NASA Technical Reports Server (NTRS)

    Janosko, R. E.; Shen, C. N.

    1972-01-01

    The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.

  18. Satellite-Based Fusion of Image/Inertial Sensors for Precise Geolocation

    DTIC Science & Technology

    2009-03-01

    largest contributor and is a valid approximation of orbital position prediction [15]. According to Newton, the gravitational force of the Earth onto an...steps in developing an image-aided navigation system for an orbiting satellite is the understanding of the satellite’s trajectory around the Earth . This...Development . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Low Earth Orbit Simulation . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 High Earth

  19. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  20. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  1. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  2. Satellite-aided coastal zone monitoring and vessel traffic system

    NASA Technical Reports Server (NTRS)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  3. Evaluation of Design Assurance Regulations for Safety of Space Navigation Services

    NASA Astrophysics Data System (ADS)

    Ratti, B.; Sarno, M.; De Andreis, C.

    2005-12-01

    The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.

  4. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  5. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  6. Response of data-driven artificial neural network-based TEC models to neutral wind for different locations, seasons, and solar activity levels from the Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Sur, D.; Haldar, S.; Ray, S.; Paul, A.

    2017-07-01

    The perturbations imposed on transionospheric signals by the ionosphere are a major concern for navigation. The dynamic nature of the ionosphere in the low-latitude equatorial region and the Indian longitude sector has some specific characteristics such as sharp temporal and latitudinal variation of total electron content (TEC). TEC in the Indian longitude sector also undergoes seasonal variations. The large magnitude and sharp variation of TEC cause large and variable range errors for satellite-based navigation system such as Global Positioning System (GPS) throughout the day. For accurate navigation using satellite-based augmentation systems, proper prediction of TEC under certain geophysical conditions is necessary in the equatorial region. It has been reported in the literature that prediction accuracy of TEC has been improved using measured data-driven artificial neural network (ANN)-based vertical TEC (VTEC) models, compared to standard ionospheric models. A set of observations carried out in the Indian longitude sector have been reported in this paper in order to find the amount of improvement in performance accuracy of an ANN-based VTEC model after incorporation of neutral wind as model input. The variations of this improvement in prediction accuracy with respect to latitude, longitude, season, and solar activity have also been reported in this paper.

  7. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  8. Engineering management consideration for an integrated aeronautical mobile satellite service

    NASA Astrophysics Data System (ADS)

    Belcher, John M.

    In order to meet local air traffic control terminal requirements as well as national and transborder requirements, countries have developed communications, navigation, and surveillance (CNS) systems having little systems integration and a solely ground-based solution to air traffic control problems. It is believed that the application of satellite technology is the only currently viable solution that will enable international civil aviation to overcome the shortcomings of the presently available CNS systems. If properly implemented, available satellite system technology integrated with avionics and ground based capabilities, can be used to meet new global aviation demands. A clear transition plan has to be implemented so as to ensure continuity of service, recognize user-borne costs, and satisfy institutional and national objectives in the progress toward a universal air traffic management (ATM) system. ATM systems design should rely on a modular approach for flexibility and upgrading. An aeronautical mobile satellite service is intended to provide a worldwide satellite data link and direct air/ground voice communication. Institutional and financial roadblocks for implemetation of a global based approach will likely be far greater than technical constraints.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  10. GPS Timing Performance

    DTIC Science & Technology

    2014-01-01

    termed the Galileo -GPS Time Offset (GGTO), and it will be Type 35 in the GPS CNAV message. Knowledge of the GGTO makes it possible for a properly...U.S. Naval Observatory (USNO) [1]. Interoperability with Galileo , and perhaps someday with other Global Navigation Satellite Systems (GNSS), is to...Interoperability with Galileo , and perhaps someday with other Global Navigation Satellite Systems (GNSS), is to be established through transmission of the

  11. Variations in the characteristics of the pseudopositioning of navigational receivers close to the weak earthquake in Tuapse on September 8, 2010

    NASA Astrophysics Data System (ADS)

    Tertyshnikov, A. V.

    2017-01-01

    The results of calculating the characteristics of the pseudopositioning of two navigational receivers in Tuapse and 60 km north of Tuapse at the Goryachii Klyuch locality before and after a weak submarine earthquake are presented. The earthquake with the epicenter 2 km offshore of Tuapse occurred on September 8, 2010. The experiment was conducted with the satellite receivers recoding the signals of the GLONASS/GPS global navigational satellite systems (GNSS). The receivers pertain to the system of satellite monitoring and forecasting the natural and manmade hazards on the segment of the North Caucasian Tuapse-Adler railroad. The pseudopositioning calculations based on the first carrier frequency of a GLONASS/GPS GNSS are conducted by the original author's technology for monitoring the ionosphere and geological motions. It is established that the errors of the pseudopositioning estimates increase by the time of the earthquake. The accompanying effects in the variations of the ionospheric electron density and in the state of the Earth's magnetic field are considered. The obtained results complement the existing data on the dynamics of the precursors of the earthquakes.

  12. Study of the global positioning system for maritime concepts/applications: Study of the feasibility of replacing maritime shipborne navigation systems with NAVSTAR

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Huston, W.

    1981-01-01

    A geostationary reference satellite (REFSAT) that broadcasts every four seconds updated GPS satellite coordinates was developed. This procedure reduces the complexity of the GPS receiver. The economic and performance payoffs associated with replacing maritime stripborne navigation systems with NAVSTAR was quantified and the use of NAVSTAR for measurements of ocean currents in the broad ocean areas of the world was evaluated.

  13. The Aquila launch service for small satellites

    NASA Astrophysics Data System (ADS)

    Whittinghill, George R.; McKinney, Bevin C.

    1992-07-01

    The Aquila launch vehicle is described emphasizing its use in the deployment of small satellites for the commercial sector. The Aquila is designed to use a guidance, navigation, and control system, and the rocket is based on hybrid propulsion incorporating a liquid oxidizer with a solid polybutadiene fuel. The launch vehicle for the system is a ground-launched four-stage vehicle that can deliver 3,200 lbs of payload into a 185-km circular orbit at 90-deg inclination. Aquila avionics include inertial navigation, radar transponder, and an S-band telemetry transmitter. The payload environment minimizes in-flight acoustic levels, and the launch-ascent profile is characterized by low acceleration. The launch vehicle uses low-cost rocket motors, a high-performance LO(x) feed system, and erector launch capability which contribute to efficient launches for commercial payloads for low polar earth orbits.

  14. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  15. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  16. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals.

    PubMed

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-03-29

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

  17. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

    NASA Astrophysics Data System (ADS)

    Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus

    2018-05-01

    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

  18. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  19. Navigation system and method

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Sennott, J. W. (Inventor)

    1984-01-01

    In a global positioning system (GPS), such as the NAVSTAR/GPS system, wherein the position coordinates of user terminals are obtained by processing multiple signals transmitted by a constellation of orbiting satellites, an acquisition-aiding signal generated by an earth-based control station is relayed to user terminals via a geostationary satellite to simplify user equipment. The aiding signal is FSK modulated on a reference channel slightly offset from the standard GPS channel. The aiding signal identifies satellites in view having best geometry and includes Doppler prediction data as well as GPS satellite coordinates and identification data associated with user terminals within an area being served by the control station and relay satellite. The aiding signal significantly reduces user equipment by simplifying spread spectrum signal demodulation and reducing data processing functions previously carried out at the user terminals.

  20. The Navstar GPS master control station's Kalman filter experience

    NASA Technical Reports Server (NTRS)

    Scardera, Michael P.

    1990-01-01

    The Navstar Global Positioning System (GPS) is a highly accurate space based navigation system providing all weather, 24 hour a day service to both military and civilian users. The system provides a Gaussian position solution with four satellites, each providing its ephemeris and clock offset with respect to GPS time. The GPS Master Clock Station (MCS) is charged with tracking each Navstar spacecraft and precisely defining the ephemeris and clock parameters for upload into the vehicle's navigation message. Briefly described here are the Navstar system and the Kalman filter estimation process used by MCS to determine, predict, and ensure quality control for each of the satellite's ephemeris and clock states. Routine performance is shown. Kalman filter reaction and response is discussed for anomalous clock behavior and trajectory perturbations. Particular attention is given to MCS efforts to improve orbital adjust modeling. The satellite out of service time due to orbital maneuvering has been reduced in the past year from four days to under twelve hours. The planning, reference trajectory model, and Kalman filter management improvements are explained.

  1. A study of autonomous satellite navigation methods using the global positioning satellite system

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.

    1980-01-01

    Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.

  2. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance improvement on both stand-alone OTF Locata and INS is shown. The Locata/INS integration can achieve centimetre-level accuracy for position solutions, and centimetre-per-second accuracy for velocity determination.

  3. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  4. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  5. An Extended ADOP for Performance Evaluation of Single-Frequency Single-Epoch Positioning by BDS/GPS in Asia-Pacific Region

    PubMed Central

    Liu, Xin; Zhang, Shubi; Zhang, Qiuzhao; Yang, Wei

    2017-01-01

    Single-Frequency Single-Epoch (SFSE) high-precision positioning has always been the hot spot of Global Navigation Satellite System (GNSS), and ambiguity dilution of precision (ADOP) is a well-known scalar measure for success rate of ambiguity resolution. Traditional ADOP expression is complicated, thus the SFSE extended ADOP (E-ADOP), with the newly defined Summation-Multiplication Ratio of Weight (SMRW) and two theorems for short baseline, was developed. This simplifies the ADOP expression; gives a clearer insight into the influences of SMRW and number of satellites on E-ADOP; and makes theoretical analysis of E-ADOP more convenient than that of ADOP, and through that the E-ADOP value can be predicted more accurately than through the ADOP expression for ADOP value. E-ADOP reveals that number of satellites and SMRW or high-elevation satellite are important for ADOP and, through E-ADOP, we studied which factor is dominant to control ADOP in different conditions and make ADOP different between BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and BDS/GPS. Based on experimental results of SFSE positioning with different baselines, some conclusions are made: (1) ADOP decreases when new satellites are added mainly because the number of satellites becomes larger; (2) when the number of satellites is constant, ADOP is mainly affected by SMRW; (3) in contrast to systems where the satellites with low-elevation are the majority or where low- and high-elevation satellites are equally distributed, in systems where the high-elevation satellites are the majority, the SMRW mainly makes ADOP smaller, even if there are fewer satellites than in the two previous cases, and the difference in numbers of satellites can be expanded as the proportion of high-elevation satellites becomes larger; and (4) ADOP of BDS is smaller than ADOP of GPS mainly because of its SMRW. PMID:28973977

  6. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  7. Radio science with Voyager 2 at Uranus - Results on masses and densities of the planet and five principal satellites

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Campbell, J. K.; Jacobson, R. A.; Sweetnam, D. N.; Taylor, A. H.

    1987-01-01

    Phase-coherent Doppler data generated by the Deep Space Network with the radio communication system during the Voyager 2 encounter with Uranus in January 1986, optical navigation data generated by the Voyager Navigation Team with the Voyager 2 imaging system, and ground-based astrometric data obtained over an 8-yr period are compiled and analyzed to determine the masses and densities of Uranus and its principal satellites. The data-analysis procedures are explained in detail, and the results are presented in tables and graphs. The mean density of Uranus is found to be 1.285 + or - 0.001 g/cu cm, whereas the mean uncompressed mass of all five satellites is 1.48 + or - 0.06 g/cu cm, or 0.10 g/cu cm above the density expected for a homogeneous solar mix of rock, H2O and NH3 ice, and CH4 as clathrate hydrate. This difference is tentatively attributed to the presence of 15 mass percent of pure graphite, which would provide the thermal conductivity required to keep the satellites cold and undifferentiated.

  8. The Global Positioning System and Its Integration into College Geography Curricula.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lambert, Dean P.

    1996-01-01

    Introduces global positioning system (GPS) technology to nonspecialist geographers and recommends a framework for implementing GPS instructional modules in college geography courses. GPS was developed as a worldwide satellite-based system by the U.S. Department of Defense to simplify and improve military and civilian navigation and positioning.…

  9. McIDAS-eXplorer: A version of McIDAS for planetary applications

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.; Saunders, R. Stephen; Sromovsky, Lawrence A.; Martin, Michael

    1994-01-01

    McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data applications in research and routine operations. The environment allows convenient access, navigation, analysis, display, and animation of planetary data by utilizing the full calibration data accompanying the planetary data. Support currently exists for Voyager images of the giant planets and their satellites; Magellan radar images (F-MIDR and C-MIDR's, global map products (GxDR's), and altimetry data (ARCDR's)); Galileo SSI images of the earth, moon, and Venus; Viking Mars images and MDIM's as well as most earth based telescopic images of solar system objects (FITS). The NAIF/JPL SPICE kernels are used for image navigation when available. For data without the SPICE kernels (such as the bulk of the Voyager Jupiter and Saturn imagery and Pioneer Orbiter images of Venus), tools based on NAIF toolkit allow the user to navigate the images interactively. Multiple navigation types can be attached to a given image (e.g., for ring navigation and planet navigation in the same image). Tools are available to perform common image processing tasks such as digital filtering, cartographic mapping, map overlays, and data extraction. It is also possible to have different planetary radii for an object such as Venus which requires a different radius for the surface and for the cloud level. A graphical user interface based on Tel-Tk scripting language is provided (UNIX only at present) for using the environment and also to provide on-line help. It is possible for end users to add applications of their own to the environment at any time.

  10. Real-Time seismic waveforms monitoring with BeiDou Navigation Satellite System (BDS) observations for the 2015 Mw 7.8 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Geng, T.

    2015-12-01

    Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).

  11. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  12. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    DTIC Science & Technology

    2015-03-26

    programs. This specific tool not only offers high fidelity simulations, but it also offers the visual aid provided by STK . The ability to...MATLAB and STK . STK is a program that allows users to model, analyze, and visualize space systems. Users can create objects such as satellites and...position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit ( STK ) to calculate PDOP values of navigation

  13. Self-calibrating pseudolite arrays: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lemaster, Edward Alan

    Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.

  14. Trajectory and navigation system design for robotic and piloted missions to Mars

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Matousek, S. E.

    1991-01-01

    Future Mars exploration missions, both robotic and piloted, may utilize Earth to Mars transfer trajectories that are significantly different from one another, depending upon the type of mission being flown and the time period during which the flight takes place. The use of new or emerging technologies for future missions to Mars, such as aerobraking and nuclear rocket propulsion, may yield navigation requirements that are much more stringent than those of past robotic missions, and are very difficult to meet for some trajectories. This article explores the interdependencies between the properties of direct Earth to Mars trajectories and the Mars approach navigation accuracy that can be achieved using different radio metric data types, such as ranging measurements between an approaching spacecraft and Mars orbiting relay satellites, or Earth based measurements such as coherent Doppler and very long baseline interferometry. The trajectory characteristics affecting navigation performance are identified, and the variations in accuracy that might be experienced over the range of different Mars approach trajectories are discussed. The results predict that three sigma periapsis altitude navigation uncertainties of 2 to 10 km can be achieved when a Mars orbiting satellite is used as a navigation aid.

  15. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  16. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  17. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  18. Differential GPS for air transport: Status

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1993-01-01

    The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.

  19. Galileo: The Added Value for Integrity in Harsh Environments.

    PubMed

    Borio, Daniele; Gioia, Ciro

    2016-01-16

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.

  20. Galileo: The Added Value for Integrity in Harsh Environments

    PubMed Central

    Borio, Daniele; Gioia, Ciro

    2016-01-01

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205

  1. A real-time GNSS-R system based on software-defined radio and graphics processing units

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  2. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  3. Time and frequency applications.

    PubMed

    Hellwig, H

    1993-01-01

    An overview is given of the capabilities of atomic clocks and quartz crystal oscillators in terms of available precision of time and frequency signals. The generation, comparison, and dissemination of time and frequency is then discussed. The principal focus is to survey uses of time and frequency in navigation, communication, and science. The examples given include the Global Positioning System, a satellite-based global navigation system, and general and dedicated communication networks, as well as experiments in general relativity and radioastronomy. The number of atomic clocks and crystal oscillators that are in actual use worldwide is estimated.

  4. Canadian Domestic and International Satellite Communications Conference, 1st, Ottawa, Canada, June 14-17, 1983, Proceedings

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Topics discussed include highlights of Canadian and US communication-satellite developments, video teleconferencing, modulation/system studies, organization/interface tradeoffs, Canadian satellite programs, performance monitoring techniques, spread spectrum satcom systems, social and educational satellite services, atmospheric/navigational satcom systems, TDMA systems, and Teleglobe/Intelsat and Inmarsat programs. Consideration is also given to SCPC developments, TV and program reception, earth station components, European satcom systems, TCTS/CNCP satellite communications services, satellite designs, coding techniques, Japanese satellite systems, network developments, the ANIK user workshop, industrial/business systems, and satellite antenna technology.

  5. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  6. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND INITIALIZATION OF THE MAGELLAN GPS SATELLITE NAVIGATOR (UA-F-22.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures for the operation and initialization of the Magellan Global Positioning System (GPS) Satellite Navigator. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the Borde...

  7. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND INITIALIZATION OF THE MAGELLAN GPS SATELLITE NAVIGATOR (UA-F-22.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures for the operation and initialization of the Magellan Global Positioning System (GPS) Satellite Navigator. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Bord...

  8. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    NASA Astrophysics Data System (ADS)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  9. INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.

    PubMed

    Xia, Guoqing; Wang, Guoqing

    2016-08-02

    This paper addresses the problem of integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled integration approach is one of the most promising architectures to fuse the GNSS data with INS measurements. However, the resulting system and measurement models turn out to be nonlinear, and the sensor stochastic measurement errors are non-Gaussian and distributed in a practical system. Particle filter (PF), one of the most theoretical attractive non-linear/non-Gaussian estimation methods, is becoming more and more attractive in navigation applications. However, the large computation burden limits its practical usage. For the purpose of reducing the computational burden without degrading the system estimation accuracy, a quaternion-based adaptive unscented particle filter (AUPF), which combines the adaptive unscented Kalman filter (AUKF) with PF, has been proposed in this paper. The unscented Kalman filter (UKF) is used in the algorithm to improve the proposal distribution and generate a posterior estimates, which specify the PF importance density function for generating particles more intelligently. In addition, the computational complexity of the filter is reduced with the avoidance of the re-sampling step. Furthermore, a residual-based covariance matching technique is used to adapt the measurement error covariance. A trajectory simulator based on a dynamic model of USV is used to test the proposed algorithm. Results show that quaternion-based AUPF can significantly improve the overall navigation accuracy and reliability.

  10. Technology initiatives for the autonomous guidance, navigation, and control of single and multiple satellites

    NASA Astrophysics Data System (ADS)

    Croft, John; Deily, John; Hartman, Kathy; Weidow, David

    1998-01-01

    In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.

  11. Tracking, sensing and predicting flood wave propagation using nomadic satellite communication systems and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Tailliez, C.; Iffly, J.-F.

    2011-11-01

    The main objective of this study is to contribute to the development and the improvement of flood forecasting systems. Since hydrometric stations are often poorly distributed for monitoring the propagation of extreme flood waves, the study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS). Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water level and flow velocity data, from virtually any point in the world. The presented study investigates the effect of assimilating GNSS-derived water level and flow velocity measurements into hydraulic models in order to reduce the associated predictive uncertainty.

  12. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor); hide

    2015-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  13. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor); hide

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  14. A system of sixteen synchronous satellites for worldwide navigation and surveillance

    DOT National Transportation Integrated Search

    1973-03-01

    This report considers the orbital mechanics aspects of a system of satellites to be used for position determination of any point on or near the surface of the earth. Only satellites having a period of twenty-four hours are examined. No perturbing for...

  15. Evaluation on real-time dynamic performance of BDS in PPP, RTK, and INS tightly aided modes

    NASA Astrophysics Data System (ADS)

    Gao, Zhouzheng; Li, Tuan; Zhang, Hongping; Ge, Maorong; Schuh, Harald

    2018-05-01

    Since China's BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS's coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS's real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6 cm in RTK mode and 7.8, 14.7, and 24.8 cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1 cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.

  16. Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.

    2013-12-01

    An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).

  17. Earth Science

    NASA Image and Video Library

    1993-03-29

    Small Expendable Deployer System (SEDS) is a tethered date collecting satellite and is intended to demonstrate a versatile and economical way of delivering smaller payloads to higher orbits or downward toward Earth's atmosphere. 19th Navstar Global Positioning System Satellite mission joined with previously launched satellites used for navigational purposes and geodite studies. These satellites are used commercially as well as by the military.

  18. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  19. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  20. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., either a LORAN-C receiver or a satellite navigational system such as the Global Positioning System (GPS... the following navigational-safety equipment: (1) Marine radar. By August 2, 1997, a marine radar that meets the following applicable requirements: (i) For a vessel of less than 300 tons gross tonnage that...

  1. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    NASA Astrophysics Data System (ADS)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  2. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    PubMed Central

    Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-01-01

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration. PMID:29596330

  3. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    NASA Astrophysics Data System (ADS)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  4. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  5. Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata

    2017-12-01

    Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.

  6. Conceptual design of a manned orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  7. Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP

    PubMed Central

    Gao, Zhouzheng; Shen, Wenbin; Zhang, Hongping; Niu, Xiaoji; Ge, Maorong

    2016-01-01

    Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP. PMID:27470270

  8. Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP.

    PubMed

    Gao, Zhouzheng; Shen, Wenbin; Zhang, Hongping; Niu, Xiaoji; Ge, Maorong

    2016-07-29

    Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP.

  9. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  10. Global Positioning System: Observations on Quarterly Reports from the Air Force

    DTIC Science & Technology

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS

  11. The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Otten, D. D.; Garabedian, A.; Morrison, D. D.; MALLINCKRODT; ZIPPER

    1970-01-01

    The objective was to determine on a priority basis the satellite applications to communications, navigation, and surveillance requirements for aircraft operating beyond 1975 over the contiguous United States and adjacent oceanic transition regions, and to determine if and how satellite technology can meet these requirements in a reliable, efficient, and economical manner. Major results and conclusions are as follows: (1) The satellite applications of greatest importance are surveillance and rapid collision warning communications; and (2) The necessary technology is available as demonstrated by an attractive system concept.

  12. 76 FR 5068 - Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T-288...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... (IFR) approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment... only be available for use by GPS/GNSS equipped aircraft. This action enhances safety and facilitates...

  13. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance

    PubMed Central

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-01-01

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by “clock coasting” when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy. PMID:27187399

  14. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance.

    PubMed

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-05-12

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by "clock coasting" when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy.

  15. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links.

    PubMed

    Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen

    2018-05-25

    Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.

  16. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    PubMed

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart.

  17. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    PubMed Central

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846

  18. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  19. GPS aviation outage prediction and reporting systems

    DOT National Transportation Integrated Search

    1997-11-01

    Use of GPS for instrument flight rule (IFR) air navigation requires that the system have integrity. Integrity is the ability to detect when a satellite is out of tolerance and should not be used in the navigation solution and then warns the pilot in ...

  20. Stereotaxy, navigation and the temporal concatenation.

    PubMed

    Apuzzo, M L; Chen, J C

    1999-01-01

    Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation. Copyright 2000 S. Karger AG, Basel

  1. Galileo FOC Satellite Group Delay Estimation based on Raw Method and published IOV Metadata

    NASA Astrophysics Data System (ADS)

    Reckeweg, Florian; Schönemann, Erik; Springer, Tim; Enderle, Werner

    2017-04-01

    In December 2016, the European GNSS Agency (GSA) published the Galileo In-Orbit Validation (IOV) satellite metadata. These metadata include among others the so-called Galileo satellite group delays, which were measured in an absolute sense by the satellite manufacturer on-ground for all three Galileo frequency bands E1, E5 and E6. Therewith Galileo is the first Global Navigation Satellite System (GNSS) for which absolute calibration values for satellite on-board group delays have been published. The different satellite group delays for the three frequency bands lead to the fact that the signals will not be transmitted at exactly the same epoch. Up to now, due to the lack of absolute group delays, it is common practice in GNSS analyses to estimate and apply the differences of these satellite group delays, commonly known as differential code biases (DCBs). However, this has the drawback that the determination of the "raw" clock and the absolute ionosphere is not possible. The use of absolute bias calibrations for satellites and receivers is a major step into the direction of more realistic (in a physical sense) clock and atmosphere estimates. The Navigation Support Office at the European Space Operation Centre (ESOC) was from the beginning involved in the validation process of the Galileo metadata. For the work presented in this presentation we will use the absolute bias calibrations of the Galileo IOV satellites to estimate and validate the absolute receiver group delays of the ESOC GNSS network and vice versa. The receiver group delays have exemplarily been calibrated in a calibration campaign with an IFEN GNSS Signal-Simulator at ESOC. Based on the calibrated network, making use of the ionosphere constraints given by the IOV satellites, GNSS raw observations are processed to estimate satellite group delays for the operational Galileo (Full Operational Capability) FOC satellites. In addition, "raw" satellite clock offsets are estimated, which are free of the ionosphere-free bias, which is inherent to all common satellite clock products, generated with the standard ionosphere-free linear combination processing approach. In the raw observation processing method, developed by the Navigation Support Office at ESOC, no differences or linear combinations of GNSS observations are formed and ionosphere parameters and multi-signal group delay parameters can be jointly estimated by making use of all available code and phase observations on multiple frequencies.

  2. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  3. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    NASA Technical Reports Server (NTRS)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  4. Proposal Drafted for Allocating Space-to-Space Frequencies in the GPS Spectrum Bands

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    2000-01-01

    Radionavigation Satellite Service (RNSS) systems such as the U.S. Global Positioning System (GPS) and the Russian Global Navigation Satellite System (GLONASS) are primarily being used today in the space-to-Earth direction (i.e., from GPS satellite to Earth user) for a broad range of applications such as geological surveying; aircraft, automobile, and maritime navigation; hiking and mountain climbing; and precision farming and mining. However, these navigation systems are being used increasingly in space. Beginning with the launch of the TOPEX/Poseidon remote-sensing mission in 1992, over 90 GPS receivers have flown onboard spacecraft for such applications as real-time spacecraft navigation, three-axis attitude control, precise time synchronization, precision orbit determination, and atmospheric profiling. In addition to use onboard many science spacecraft, GPS has been used or is planned to be used onboard the shuttles, the International Space Station, the International Space Station Emergency Crew Return Vehicle, and many commercial satellite systems such as Orbcomm, Globalstar, and Teledesic. From a frequency spectrum standpoint, however, one important difference between the space and terrestrial uses of GPS is that it is being used in space with no interference protection. This is because there is no frequency allocation for the space-to-space use of GPS (i.e., from GPS satellite to user spacecraft) in the International Telecommunications Union (ITU) regulatory table of frequency allocations. If another space-based or groundbased radio system interferes with a spaceborne GPS user, the spaceborne user presently has no recourse other than to accept the interference. Consequently, for the past year and a half, the NASA Glenn Research Center at Lewis Field and other Government agencies have been working within ITU toward obtaining a GPS space-to-space allocation at the next World Radio Conference in the year 2000 (WRC 2000). Numerous interference studies have been conducted in support of a primary space-tospace allocation in the 1215- to 1260-MHz and 1559- to 1610-MHz RNSS bands. Most of these studies and analyses were performed by Glenn and submitted as U.S. input documents to the international Working Party 8D meetings in Geneva, Switzerland. In the structure of the ITU, Working Party 8D is responsible for frequency spectrum issues in the RNSS and the mobile satellite service (MSS). The full texts of the studies are available from the ITU web site under Working Party 8D contributions. Note that because spaceborne RNSS receivers operate in a receive-only mode with navigation signals already being broadcast toward the Earth, the addition of a space-tospace allocation will not result in interference with other systems. A space-based RNSS receiver, however, could experience interference from systems of other services, including intraservice interference from other RNSS systems. The interference scenarios examined in the studies can be inferred from the following frequency allocation charts. In these charts, services labeled in all capital letters (e.g., "ARNS") have primary status, whereas those labeled with sentence-style capitalization (e.g., "Amateur radio") have secondary status (i.e., a service with secondary status cannot claim interference protection from or cause harmful interference to a service with primary status). Charts showing the ITU frequency allocations in the 960 to 1350 MHZ range and the 1525-1660 MHZ range are discussed and presented.

  5. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  6. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  7. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  8. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  9. BeiDou Signal Acquisition with Neumann–Hoffman Code Modulation in a Degraded Channel

    PubMed Central

    Zhao, Lin; Liu, Aimeng; Ding, Jicheng; Wang, Jing

    2017-01-01

    With the modernization of global navigation satellite systems (GNSS), secondary codes, also known as the Neumann–Hoffman (NH) codes, are modulated on the satellite signal to obtain a better positioning performance. However, this leads to an attenuation of the acquisition sensitivity of classic integration algorithms because of the frequent bit transitions that refer to the NH codes. Taking weak BeiDou navigation satellite system (BDS) signals as objects, the present study analyzes the side effect of NH codes on acquisition in detail and derives a straightforward formula, which indicates that bit transitions decrease the frequency accuracy. To meet the requirement of carrier-tracking loop initialization, a frequency recalculation algorithm is proposed based on verified fast Fourier transform (FFT) to mitigate the effect, meanwhile, the starting point of NH codes is found. Then, a differential correction is utilized to improve the acquisition accuracy of code phase. Monte Carlo simulations and real BDS data tests demonstrate that the new structure is superior to the conventional algorithms both in detection probability and frequency accuracy in a degraded channel. PMID:28208776

  10. Review of the Current Status of Four-Dimensional Ionospheric Imaging

    DTIC Science & Technology

    2006-06-01

    USA Navy Navigational Satellite System (NNSS) and the Russian CICADA satellites. Satellites in the NNSS configuration are in near-circular polar...orbits at around 1100 km altitude. They transmit phase coherent signals at approximately 150 and 400 MHz. The Russian CICADA satellites are in an orbit

  11. Global navigation satellite system receiver for weak signals under all dynamic conditions

    NASA Astrophysics Data System (ADS)

    Ziedan, Nesreen Ibrahim

    The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to reliably work with 15 dB-Hz signals and acceleration over 6 g.

  12. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation.

    PubMed

    Kim, Euiho; Seo, Jiwon

    2017-09-22

    In the Federal Aviation Administration's (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0-77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  13. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    PubMed Central

    Kim, Euiho

    2017-01-01

    In the Federal Aviation Administration’s (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment. PMID:28937615

  14. Research Technology

    NASA Image and Video Library

    2002-08-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  15. Application of space technologies for the purpose of education at the Belarusian state university

    NASA Astrophysics Data System (ADS)

    Liashkevich, Siarhey

    Application of space technologies for the purpose of education at the Aerospace Educational Center of Belarusian state university is discussed. The aim of the work is to prepare launch of small satellite. Students are expected to participate in the design of control station, systems of communication, earth observation, navigation, and positioning. Benefit of such project-based learning from economical perspective is discussed. At present our training system at the base of EyasSat classroom satellite is used for management of satellite orientation and stabilization system. Principles of video processing, communication technologies and informational security for small spacecraft are developed at the base of Wi9M-2443 developer kit. More recent equipment allows obtaining the skills in digital signal processing at the base of FPGA. Development of ground station includes setup of 2.6 meter diameter dish for L-band, and spiral rotational antennas for UHF and VHF bands. Receiver equipment from National Instruments is used for digital signal processing and signal management.

  16. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  17. Electron content of the ionosphere and the plasma sphere on the basis of ATS-6-Data, NNSS-data, and ionograms. [Navy Navigation Satellite System

    NASA Technical Reports Server (NTRS)

    Leitinger, R.; Hartmann, G. K.; Davies, K.

    1976-01-01

    The reported investigation takes into account data obtained with the aid of the geostationary satellite ATS-6, the satellites of the U.S. navy navigation system (NNSS) at an altitude between 900 and 1200 km, and the satellites ISIS 1 and ISIS 2. The altitude range between ground and ATS-6 is divided into two regions, including the 'ionosphere', involving the region with an upper limit of 2000 km, and the 'plasma sphere', involving the region above an altitude of 2000 km. Data concerning the electron content obtained from different sources are compared, taking into account discrepancies between ionogram-derived values and values computed on the basis of satellite measurements. Attention is also given to the vertical electron content of the ionosphere on the basis of a combination of data obtained with the aid of the ATS-6 and the NNSS.

  18. Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohong; Wu, Mingkui; Liu, Wanke; Li, Xingxing; Yu, Shun; Lu, Cuixian; Wickert, Jens

    2017-10-01

    The successful launch of five new-generation experimental satellites of the China's BeiDou Navigation Satellite System, namely BeiDou I1-S, I2-S, M1-S, M2-S, and M3-S, marks a significant step in expanding BeiDou into a navigation system with global coverage. In addition to B1I (1561.098 MHz) and B3I (1269.520 MHz) signals, the new-generation BeiDou-3 experimental satellites are also capable of transmitting several new navigation signals in space, namely B1C at 1575.42 MHz, B2a at 1176.45 MHz, and B2b at 1207.14 MHz. For the first time, we present an initial characterization and performance assessment for these new-generation BeiDou-3 satellites and their signals. The L1/L2/L5 signals from GPS Block IIF satellites, E1/E5a/E5b signals from Galileo satellites, and B1I/B2I/B3I signals from BeiDou-2 satellites are also evaluated for comparison. The characteristics of the B1C, B1I, B2a, B2b, and B3I signals are evaluated in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, triple-frequency carrier-phase ionosphere-free and geometry-free combination, and double-differenced carrier-phase and code residuals. The results demonstrate that the observational quality of the new-generation BeiDou-3 signals is comparable to that of GPS L1/L2/L5 and Galileo E1/E5a/E5b signals. However, the analysis of code multipath shows that the elevation-dependent code biases, which have been previously identified to exist in the code observations of the BeiDou-2 satellites, seem to be not obvious for all the available signals of the new-generation BeiDou-3 satellites. This will significantly benefit precise applications that resolve wide-lane ambiguity based on Hatch-Melbourne-Wübbena linear combinations and other applications such as single-frequency precise point positioning (PPP) based on the ionosphere-free code-carrier combinations. Furthermore, with regard to the triple-frequency carrier-phase ionosphere-free and geometry-free combination, it is found that different from the BeiDou-2 and GPS Block IIF satellites, no apparent bias variations could be observed in all the new-generation BeiDou-3 experimental satellites, which shows a good consistency of the new-generation BeiDou-3 signals. The absence of such triple-frequency biases simplifies the potential processing of multi-frequency PPP using observations from the new-generation BeiDou-3 satellites. Finally, the precise relative positioning results indicate that the additional observations from the new-generation BeiDou-3 satellites can improve ambiguity resolution performance with respect to BeiDou-2 only positioning, which indicates that observations from the new-generation BeiDou-3 satellites can contribute to precise relative positioning.

  19. The Global Positioning System

    USGS Publications Warehouse

    ,

    1999-01-01

    The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.

  20. Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics

    NASA Astrophysics Data System (ADS)

    Kuzmin, Yu. O.

    2017-11-01

    The comparative analysis of the Earth's surface deformations measured by ground-based and satellite geodetic methods on the regional and zonal measurement scales is carried out. The displacement velocities and strain rates are compared in the active regions such as Turkmenian-Iranian zone of interaction of the Arabian and Eurasian lithospheric plates and the Kamchatka segment of the subduction of the Pacific Plate beneath the Okotsk Plate. The comparison yields a paradoxical result. With the qualitatively identical kinematics of the motion, the quantitative characteristics of the displacement velocities and rates of strain revealed by the observations using the global navigational satellite system (GNSS) are by 1-2 orders of magnitude higher than those estimated by the more accurate methods of ground-based geodesy. For resolving the revealed paradoxes, it is required to set up special studies on the joint analysis of ground-based and satellite geodetic data from the combined observation sites.

  1. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  2. Earth satellites: A first look by the United States Navy

    NASA Technical Reports Server (NTRS)

    Hall, R. C.

    1977-01-01

    Immediately following World War II, the U.S. Navy considered the possibility of launching an earth satellite for navigational, communications, and meteorological applications. The technical feasibility of the satellite was based on extensions of German V-2 technology.

  3. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  4. A "Neogeographical Education"? The Geospatial Web, GIS and Digital Art in Adult Education

    ERIC Educational Resources Information Center

    Papadimitriou, Fivos

    2010-01-01

    Neogeography provides a link between the science of geography and digital art. The carriers of this link are geospatial technologies (global navigational satellite systems such as the global positioning system, Geographical Information System [GIS] and satellite imagery) along with ubiquitous information and communication technologies (such as…

  5. Seamless positioning and navigation by using geo-referenced images and multi-sensor data.

    PubMed

    Li, Xun; Wang, Jinling; Li, Tao

    2013-07-12

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.

  6. Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data

    PubMed Central

    Li, Xun; Wang, Jinling; Li, Tao

    2013-01-01

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments. PMID:23857267

  7. Design and realization of the baseband processor in satellite navigation and positioning receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Hu, Xiulin; Li, Chen

    2007-11-01

    The content of this paper is focused on the Design and realization of the baseband processor in satellite navigation and positioning receiver. Baseband processor is the most important part of the satellite positioning receiver. The design covers baseband processor's main functions include multi-channel digital signal DDC, acquisition, code tracking, carrier tracking, demodulation, etc. The realization is based on an Altera's FPGA device, that makes the system can be improved and upgraded without modifying the hardware. It embodies the theory of software defined radio (SDR), and puts the theory of the spread spectrum into practice. This paper puts emphasis on the realization of baseband processor in FPGA. In the order of choosing chips, design entry, debugging and synthesis, the flow is presented detailedly. Additionally the paper detailed realization of Digital PLL in order to explain a method of reducing the consumption of FPGA. Finally, the paper presents the result of Synthesis. This design has been used in BD-1, BD-2 and GPS.

  8. Timation 3 satellite. [artificial satellite for navigation, space radiation, and time transfer applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, C. A.

    1972-01-01

    The characteristics of the Timation 3 satellite are discussed. A diagram of the basic structure is provide to show the solar panels, navigation and telemetry antennas, gravity gradient booms, and solar cell experiments. The specific application of the satellite for time management or time transfer for navigation purposes is reported. Various measurements and experiments conducted by the satellite are described.

  9. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    NASA Technical Reports Server (NTRS)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  10. Evaluation of GPS Coverage for the X-33 Michael-6 Trajectory

    NASA Technical Reports Server (NTRS)

    Lundberg, John B.

    1998-01-01

    The onboard navigational system for the X-33 test flights will be based on the use of measurements collected from the Embedded Global Positioning System (GPS)/INS system. Some of the factors which will affect the quality of the GPS contribution to the navigational solution will be the number of pseudorange measurements collected at any instant in time, the distribution of the GPS satellites within the field of view, and the inherent noise level of the GPS receiver. The distribution of GPS satellites within the field of view of the receiver's antenna will depend on the receiver's position, the time of day, pointing direction of the antenna, and the effective cone angle of the antenna. The number of pseudorange measurements collected will depend upon these factors as well as the time required to lock onto a GPS satellite signal once the GPS satellite comes into the field of view of the antenna and the number of available receiver channels. The objective of this study is to evaluate the GPS coverage resulting from the proposed antenna pointing directions, the proposed antenna cone angles, and the effects due to the time of day for the X-33 Michael-6 trajectory from launch at Edwards AFB, California, to the start of the Terminal Area Energy Management (TAEM) phase on approach to Michael AAF, Utah.

  11. The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Goode, Plesent W.

    2002-01-01

    The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.

  12. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  13. A Conceptual Framework for Tactical Private Satellite Networks

    DTIC Science & Technology

    2008-09-01

    will be deployed on a controlled basis so as not to consume valuable bandwidth during critical time windows. Faults inside the network can be tracked ... attitude control , timing, and navigation - More precise station keeping - Optical LANs and inter-satellite links - Inter satellite links - New...Cluster operations, such as electromagnetic formation flying systems and remote attitude determination systems. • Distributed spacecraft computing

  14. Federal Research and Development for Satellite Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report of the Committee on Satellite Communications (COSC) reviews a number of future communication needs which could be satisfied by satellite systems, including needs in fields such as education, health care delivery, hazard warning, navigation aids, search and rescue, electronic mail delivery, time and frequency dissemination, and…

  15. Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships

    NASA Astrophysics Data System (ADS)

    Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.

    2016-12-01

    Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.

  16. Navigation: National Plans; NAVSTAR-GPS; Laser Gyros

    DTIC Science & Technology

    1982-08-31

    REFERENC-~CP STER . TECHNICAL REPORT ! "NO. 12686,-’-. - NAVIGATION: NATIONAL PLANS ; NAVSTAR-GPS; LASER GYROS CONTRACT NO. DAAK30-80-C-0073 31 AUGUST...Technical ReportAW Ng. riiNational Plans ; Navstar-GPS; S... : NavstarGPS; a3 Sept 1980 - 31 Aug 1982 ....Lasr Gyros. 6. PERFORMING ORG. REPORT NUMBER PRA...identify by block number) Navigation Navigation Satellites Laser Gyros Position-Location . NAVSTAR-GPS Fiberoptic Gyros Planning Global Positioning System

  17. Geometry-Based Observability Metric

    NASA Technical Reports Server (NTRS)

    Eaton, Colin; Naasz, Bo

    2012-01-01

    The Satellite Servicing Capabilities Office (SSCO) is currently developing and testing Goddard s Natural Feature Image Recognition (GNFIR) software for autonomous rendezvous and docking missions. GNFIR has flight heritage and is still being developed and tailored for future missions with non-cooperative targets: (1) DEXTRE Pointing Package System on the International Space Station, (2) Relative Navigation System (RNS) on the Space Shuttle for the fourth Hubble Servicing Mission.

  18. IPS - a vision aided navigation system

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey

    2017-04-01

    Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.

  19. Update on GPS Modernization Efforts

    DTIC Science & Technology

    2015-06-11

    International Committee On Global Navigation Satellite Systems ( GNSS ) Department of Transportation • Federal Aviation Administration Satellite Block...90 for GNSS International Cooperation • 57 Authorized Allied Users - 25+ Years of Cooperation • GNSS - Europe - Galilee - China - COMPASS

  20. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  1. Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Renga, A.; Grassi, M.

    2013-05-01

    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.

  2. An Optimized Method to Detect BDS Satellites' Orbit Maneuvering and Anomalies in Real-Time.

    PubMed

    Huang, Guanwen; Qin, Zhiwei; Zhang, Qin; Wang, Le; Yan, Xingyuan; Wang, Xiaolei

    2018-02-28

    The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites' orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites' orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017.

  3. The attribution of success when using navigation aids.

    PubMed

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors.

  4. The attribution of success when using navigation aids

    PubMed Central

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. Practitioner Summary: This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors. PMID:25384842

  5. Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications

    NASA Astrophysics Data System (ADS)

    Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.

    2014-03-01

    The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  6. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations, each spacecraft hosts 3 electro-optical sensors dedicated to imaging the companion satellite. The image processor will analyze the images to obtain estimates for range, bearing, and pose, with associated rates and uncertainties. These observations will be fed to the RPO processor's relative Kalman filter to perform relative navigation updates. This paper includes estimates for expected navigation accuracies for both absolute and relative position and velocity. Another key task for the RPO processor is maneuver planning. This includes automation to plan maneuvers to achieve a desired formation configuration or trajectory (including docking), as well as automation to safely react to potentially dangerous situations. This will allow each spacecraft to autonomously plan fuel-efficient maneuvers to achieve a desired trajectory as well as compute adjustment maneuvers to correct for thrusting errors. This paper discusses results from a trade study that has been conducted to examine maneuver targeting algorithms required on-board the spacecraft. Ground software will also work in conjunction with the on-board software to validate and approve maneuvers as necessary.

  7. The Science and technology Behind Galileo - Europes GPS

    NASA Astrophysics Data System (ADS)

    Saaj, C.; Underwood, C. I.; Noakes, C.; Park, D. W. G.; Moore, T.

    Over recent years, the public has become increasingly aware of the existence of global satellite positioning systems, such as the American Global Positioning System (GPS), for which the generic term is Global Navigation Satellite System (GNSS). This is primarily due to high-profile use in various military conflicts, the acceptance of the technology by the leisure market (hill walking, yachting, etc) and the rapid development of mass-market applications (such as in-vehicle navigation). However, the public is still largely unaware of how GNSS is currently being utilized by researchers across a wide range of scientific applications. The aim of this paper is to provide answers to public's basic questions on GNSS and thereby raise public awareness on the science and technology behind the nascent Galileo project; a European initiative to design, build and deploy a global satellite positioning system similar to the GPS.

  8. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  9. Germany's Option for a Moon Satellite

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Moon. The developed Moon orbiter is designed to carry the following four main instruments besides flexible communication abilities: • slewable HDTV camera combined with a high gain antenna that allows receiving lunar television using a commercially available satellite TV dish on Earth • sensor imaging infrared spectrometer for mineralogy of lunar silicates and lunar surface temperature measurements • camera for detection and monitoring of impact flashes in visible light (VIS) on lunar night side caused by meteoroid impact events • camera technology test for interplanetary navigation and planetary approach navigation. This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. Due to the fact, that the satellite would be built by the private sector, the mission costs would remain low. Otherwise the scientific and public output would be high using that satellite bus for the instruments contributed by DLR.

  10. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  11. Autonomous navigation using lunar beacons

    NASA Technical Reports Server (NTRS)

    Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.

    1983-01-01

    The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.

  12. Satellite orbit determination using quantum correlation technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Sun, Fuping; Zhu, Xinhui; Jia, Xiaolin

    2018-03-01

    After the presentation of second-order correlation ranging principles with quantum entanglement, the concept of quantum measurement is introduced to dynamic satellite precise orbit determination. Based on the application of traditional orbit determination models for correcting the systematic errors within the satellite, corresponding models for quantum orbit determination (QOD) are established. This paper experiments on QOD with the BeiDou Navigation Satellite System (BDS) by first simulating quantum observations of 1 day arc-length. Then the satellite orbits are resolved and compared with the reference precise ephemerides. Subsequently, some related factors influencing the accuracy of QOD are discussed. Furthermore, the accuracy for GEO, IGSO and MEO satellites increase about 20, 30 and 10 times, respectively, compared with the results from the resolution by measured data. Therefore, it can be expected that quantum technology may also bring delightful surprises to satellite orbit determination as have already emerged in other fields.

  13. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  14. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  15. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    NASA Astrophysics Data System (ADS)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted measurements as an additional inter-vehicle ranging measurement were also introduced. The algorithms and methods developed in this work are generally applicable to realize high-performance GPS-based navigation in partially obstructed environments. Navigation performance for AAR was quantified through covariance analysis, and it was shown that the stringent navigation requirements for this application are achievable. Finally, a real-time implementation of the algorithms was developed and successfully validated in autopiloted flight tests.

  16. GNSS receiver use-case development GPS-ABC workshop VI RTCA Washington, DC March 30, 2017.

    DOT National Transportation Integrated Search

    2017-03-30

    The purpose of this workshop was to discuss the results from testing of various categories of GPS/Global Navigation Satellite System (GNSS) receivers to include aviation (non-certified), cellular, general location/navigation, high precision and netwo...

  17. Collaboration in the UK on time transfer using the GLONASS system

    NASA Astrophysics Data System (ADS)

    Daly, P.; Knight, D. J. E.; Jefferies, R.; Swabey, B. R.

    1992-06-01

    Collaboration in the UK (United Kingdom) on the use of the GLONASS (Russian Global Space Navigation System) satellite navigation system for time transfer, and the main results obtained, are reported. The GLONASS clock stability and GLONASS system time has been monitored since 1988 within an accuracy of about +/- 50 ns. Current news of the GLONASS system is given, and measures towards improving accuracy are discussed.

  18. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    NASA Astrophysics Data System (ADS)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  19. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  20. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1990-01-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communication satellites.

  1. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  2. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    NASA Astrophysics Data System (ADS)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  3. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  4. Some Aspects of Artificial Bodies Stabilization and Orientation

    NASA Astrophysics Data System (ADS)

    Samardzija, B.; Segan, S.

    2012-12-01

    To increase energy resources, and thus the overall possibility of modern cosmic aircrafts, power supply was expanded by adding the (moving) wing area and antenna with complex orientation and design. It is clear that all of this, when there is a need to conduct a very accurate account of orbital elements of satellites, is a nightmare for the experts and scientists. In this paper we will give special attention to the system of stabilization and orientation of satellites, as well as to the importance of gyroscopic effects and the navigation systems of the artificial celestial bodies. Development of modified practical solutions based on knowledge and experience with gyroscopic effects is immeasurable.

  5. Forecast of the general aviation air traffic control environment for the 1980's

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.

    1976-01-01

    The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.

  6. Sun-Burned: Space Weather’s Impact On U.S. National Security

    DTIC Science & Technology

    2013-06-01

    for navigation, the wideband global satellite communications system used for secure links in multiple frequencies , the space-based infrared system...used for early warning missile detection, the advanced extremely high frequency used for jam resistant strategic communications , and the defense...NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for

  7. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  8. Reliability of Navigation Service Provided by the Global Positioning System

    DOT National Transportation Integrated Search

    1985-09-01

    The planned NAVSTAR/GPS satellite constellation of 18 satellites plus 3 active will provide excellent coverage over the continental United States (CONUS) if all are operating properly. This report examines the coverage under conditions of one satelli...

  9. Southwest U.S. Imagery (GOES-WEST) - Satellite Services Division / Office

    Science.gov Websites

    of Satellite Data Processing and Distribution Skip Navigation Link NESDIS banner image and link Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical Systems Product List

  10. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  11. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise

    2017-01-01

    Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  12. Fuzzy logic techniques for rendezvous and docking of two geostationary satellites

    NASA Technical Reports Server (NTRS)

    Ortega, Guillermo

    1995-01-01

    Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.

  13. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  14. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  15. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2013-12-01

    Galileo satellite navigation system signal, E1. L1C is also compatible with those signals planned for broadcast on Japan’s Quazi-Zenith Satellite...and Galileo constellations, further increasing the accuracy and availability of civil PNT solutions. GPS III December 2013 SAR April 16, 2014...vehicle- level core mate. The overall program continues to make progress on the GPS III Non-Flight Satellite Testbed (GNST), on SV01 development, and

  16. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-01-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  17. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  18. Relative Navigation Strategies for the Magnetopheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, Russell; Lee, Taesul; Long, Anne

    2004-01-01

    This paper evaluates several navigation approaches for the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of satellites flying in highly eccentric Earth orbits. For this investigation, inter-satellite separations of approximately 10 kilometers near apogee are used for the first two phases of the MMS mission. Navigation approaches were studied using ground station two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, and cross-link range measurements between the members of the formation. An absolute position accuracy of 15 kilometers or better can be achieved with most of the approaches studied, and a relative position accuracy of 100 meters or better can be achieved at apogee in several cases.

  19. 77 FR 6949 - Tracking and Data Relay Satellite System (TDRSS) Rates for Non-U.S. Government Customers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Space Telescope. A principal advantage of TDRSS is providing communications services, which previously... instead be placed on the Space Communications and Navigation Program (SCaN) Web site and updated... satellites and ground stations used by NASA for space communications near the Earth. The system was designed...

  20. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  1. The United Nations programme on space applications: priority thematic areas

    NASA Astrophysics Data System (ADS)

    Haubold, H.

    The Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held in 1999 with efforts to identify world wide benefits of developing space science and technology, particularly in the developing nations. One of the main vehicles to implement recommendations of UNISPACE III is the United Nations Programme on Space Applications of the Office for Outer Space Affairs at UN Headquarters in Vienna. Following a process of prioritization by Member States, the Programme focus its activities on (i) knowledge-based themes as space law and basic space science, (ii) application-based themes as disaster management, natural resources management, environmental monitoring, tele-health, and (iii) enabling technologies such as remote sensing satellites, communications satellites, global navigation satellite systems, and small satellites. Current activities of the Programme will be reviewed. Further information available at http://www.oosa.unvienna.org/sapidx.html

  2. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning

    PubMed Central

    Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald

    2017-01-01

    Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased. PMID:28368346

  3. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning.

    PubMed

    Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald

    2017-04-03

    Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased.

  4. Ground track maintenance for BeiDou IGSO satellites subject to tesseral resonances and the luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Li; Jiang, Chao; Hu, Min

    2017-02-01

    Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.

  5. 75 FR 47252 - Proposed Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...)/Global Navigation Satellite System (GNSS) equipment. This action would enhance safety and improve the... on the appropriate IFR En Route Low Altitude charts and would only be intended for use by GPS/GNSS...

  6. Optical Navigation Preparations for New Horizons Pluto Flyby

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.

    2012-01-01

    The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.

  7. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  8. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  9. Distribution of the GNSS-LEO occultation events over Egypt

    NASA Astrophysics Data System (ADS)

    Ghoniem, Ibrahim; Mousa, Ashraf El-Kutb; El-Fiky, Gamal

    2017-06-01

    The space-based GNSS RO technique is a promising tool for monitoring the Earth's atmosphere and ionosphere (Mousa et al., 2006). The current paper presents the distribution of the occultation events over Egypt using the operating LEO satellites and GNSS by its two operating systems. By the present research, Egypt could raise NWP Models efficiency by improving meteorological data quality. Twenty operating LEO missions (e.g. Argentinean SAC-C, European MetOp-A, German TerraSAR-X, Indian OceanSat-2, etc.) sent by different countries all over the world were used to derive the occultation events position through Egypt borders by receiving signal from the American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS). Approximately 20,000 km Altitude satellites are transmitting enormous number of rays by the day to approximately 800 km satellites passing by the Earth atmosphere. Our mission is to derive all of these rays position (start and end) by calculating satellites position by the time, determine the rays in the occultation case and derive the atmosphere tangent point position for all occultating rays on the Earth surface (Occultation Events).

  10. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence time for Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking, respectively. Moreover, the misleading information is about 2 % for all navigation phases that is considered less safe is not in immediate danger because the horizontal position error is less than the navigation alert limits.

  11. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  12. Laser range measurement for a satellite navigation scheme and mid-range path selection and obstacle avoidance. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Zuraski, G. D.

    1972-01-01

    The functions of a laser rangefinder on board an autonomous Martian roving vehicle are discussed. The functions are: (1) navigation by means of a passive satellite and (2) mid-range path selection and obstacle avoidance. The feasibility of using a laser to make the necessary range measurements is explored and a preliminary design is presented. The two uses of the rangefinder dictate widely different operating parameters making it impossible to use the same system for both functions.

  13. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  14. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.

  15. Satellite images for land cover monitoring - Navigating through the maze

    USGS Publications Warehouse

    Künzer, Claudia; Fosnight, Gene

    2001-01-01

    The focus of this publication is satellite systems for land cover monitoring. On the reverse is a table that compares a selection of these systems, whose data are globally available in a form suitable for land cover analysis. We hope the information presented will help you assess the utility of remotely sensed image to meet your needs.

  16. Research on the optimal structure configuration of dither RLG used in skewed redundant INS

    NASA Astrophysics Data System (ADS)

    Gao, Chunfeng; Wang, Qi; Wei, Guo; Long, Xingwu

    2016-05-01

    The actual combat effectiveness of weapon equipment is restricted by the performance of Inertial Navigation System (INS), especially in high reliability required situations such as fighter, satellite and submarine. Through the use of skewed sensor geometries, redundant technique has been applied to reduce the cost and improve the reliability of the INS. In this paper, the structure configuration and the inertial sensor characteristics of Skewed Redundant Strapdown Inertial Navigation System (SRSINS) using dithered Ring Laser Gyroscope (RLG) are analyzed. For the dither coupling effects of the dither gyro, the system measurement errors can be amplified either the individual gyro dither frequency is near one another or the structure of the SRSINS is unreasonable. Based on the characteristics of RLG, the research on coupled vibration of dithered RLG in SRSINS is carried out. On the principle of optimal navigation performance, optimal reliability and optimal cost-effectiveness, the comprehensive evaluation scheme of the inertial sensor configuration of SRINS is given.

  17. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    PubMed

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  18. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  19. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  20. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  1. Nimbus 6 Random Access Measurement System applications experiments

    NASA Technical Reports Server (NTRS)

    Cote, C. E. (Editor); Taylor, R. (Editor); Gilbert, E. (Editor)

    1982-01-01

    The advantages of a technique in which data collection platforms randomly transmit signal to a polar orbiting satellite, thus eliminating satellite interrogation are demonstrated in investigations of the atmosphere; oceanographic parameters; Arctic regions and ice conditions; navigation and position location; and data buoy development.

  2. Multi-GNSS orbit determination using satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  3. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  4. The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1994-01-01

    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  5. Spectral Measurements of Geosynchronous Satellites During Glint Season

    DTIC Science & Technology

    2015-10-18

    mechanical structures. 1. INTRODUCTION Man-made satellites serve a plethora of purposes from navigation to remote sensing. Geostationary orbits...in effect causing these satellites to appear fixed above the same point on earth. These geostationary satellites (GEOs) facilitate communications... Geostationary satellites are used for communication and navigation, among other purposes as mentioned above. By observing and characterizing the

  6. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced interoperability of GNSS services in the space domain. A separate paper presented at the conference covers the individual GNSS performance parameters for respective Space Service Volumes.

  7. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hsun; Chiang, Kai-Wei

    2016-06-01

    The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.

  8. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  9. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas

    PubMed Central

    2018-01-01

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites. PMID:29673230

  10. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    PubMed

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  11. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-15

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  12. Real-time synthetic vision cockpit display for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.

    1999-07-01

    Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

  13. Review of Available L-Band and VHF Aircraft Antennas for an Aircraft-Satellite Communications Link

    DOT National Transportation Integrated Search

    1971-05-01

    One of the problmes encountered in designing an aircraft to use a satellite system for communications (and for surveillance and navigation) is that of finding a suitable aircraft antenna. There is, at present, no antenna which will satisfy all requir...

  14. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1977-01-01

    To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.

  15. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  16. Special Features in the Structure of Resonant Perturbations of Uncontrollable Objects of Glonass and GPS Navigating Systems. Influence on the Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Tomilova, I. V.; Bordovitsyna, T. V.

    2017-08-01

    Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.

  17. Development of a GNSS Volcano Ash Plume Detector

    NASA Astrophysics Data System (ADS)

    Rainville, N.; Palo, S. E.; Larson, K. M.; Naik, S. R.

    2015-12-01

    Global Navigation Satellite Systems (GNSS), broadcast signals continuously from mid Earth orbit at a frequency near 1.5GHz. Of the four GNSS constellations, GPS and GLONASS are complete with more than 55 satellites in total. While GNSS signals are intended for navigation and timing, they have also proved to be useful for remote sensing applications. Reflections of the GNSS signals have been used to sense soil moisture, snow depth, and wind speed while refraction of the signals through the atmosphere has provided data on the electron density in the ionosphere as well as water vapor and temperature in the troposphere. Now analysis at the University of Colorado has shown that the attenuation of GNSS signals by volcanic ash plumes can be used to measure the presence and structure of the ash plume. This discovery is driving development of a distributed GNSS sensor network to complement existing optical and radar based ash plume monitoring systems. A GNSS based sensing system operating in L-band is unaffected by weather conditions or time of day. Additionally, the use of an existing signal source greatly reduces the per sensor cost and complexity compared to a radar system. However since any one measurement using this method provides only the total attenuation between the GNSS satellite and the receiver, full tomographic imaging of a plume requires a large number of sensors observing over a diversity of geometries. This presentation will provide an overview of the ongoing development of the GNSS sensor system. Evaluation of low priced commercial GNSS receivers will be discussed, as well as details on the inter sensor network. Based on analysis of existing GPS receivers near volcanic vents, the baseline configuration for an ash plume monitoring network is a 1km spaced ring of receivers 5km from the vent updating every 5 seconds. Preliminary data from field tests will be presented to show the suitability of the sensor system for this configuration near an active volcano.

  18. The Development of a Simulator System and Hardware Test Bed for Deep Space X-Ray Navigation

    NASA Astrophysics Data System (ADS)

    Doyle, Patrick T.

    2013-03-01

    Currently, there is a considerable interest in developing technologies that will allow using photon measurements from celestial x-ray sources for deep space navigation. The impetus for this is that many envisioned future space missions will require spacecraft to have autonomous navigation capabilities. For missions close to Earth, Global Navigation Satellite Systems (GNSS) such as GPS are readily available for use, but for missions far from Earth, other alternatives must be provided. While existing systems such as the Deep Space Network (DSN) can be used, latencies associated with servicing a fleet of vehicles may not be compatible with some autonomous operations requiring timely updates of their navigation solution. Because of their somewhat predictable emissions, pulsars are the ideal candidates for x-ray sources that can be used to provide key parameters for navigation. Algorithms and simulation tools that will enable designing and analyzing x-ray navigation concepts are presented. The development of a compact x-ray detector system is pivotal to the eventual deployment of such navigation systems. Therefore, results of a high altitude balloon test to evaluate the design of a compact x-ray detector system are described as well.

  19. Research on navigation of satellite constellation based on an asynchronous observation model using X-ray pulsar

    NASA Astrophysics Data System (ADS)

    Guo, Pengbin; Sun, Jian; Hu, Shuling; Xue, Ju

    2018-02-01

    Pulsar navigation is a promising navigation method for high-altitude orbit space tasks or deep space exploration. At present, an important reason for restricting the development of pulsar navigation is that navigation accuracy is not high due to the slow update of the measurements. In order to improve the accuracy of pulsar navigation, an asynchronous observation model which can improve the update rate of the measurements is proposed on the basis of satellite constellation which has a broad space for development because of its visibility and reliability. The simulation results show that the asynchronous observation model improves the positioning accuracy by 31.48% and velocity accuracy by 24.75% than that of the synchronous observation model. With the new Doppler effects compensation method in the asynchronous observation model proposed in this paper, the positioning accuracy is improved by 32.27%, and the velocity accuracy is improved by 34.07% than that of the traditional method. The simulation results show that without considering the clock error will result in a filtering divergence.

  20. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  1. Satellite data relay and platform locating in oceanography. Report of the In Situ Ocean Science Working Group

    NASA Technical Reports Server (NTRS)

    Chase, R.; Cote, C.; Davis, R. E.; Dugan, J.; Frame, D. D.; Halpern, D.; Kerut, E.; Kirk, R.; Mcgoldrick, L.; Mcwilliams, J. C.

    1983-01-01

    The present and future use of satellites to locate offshore platforms and relay data from in situ sensors to shore was examined. A system of the ARGOS type will satisfy the increasing demand for oceanographic information through data relay and platform location. The improved ship navigation provided by the Global Positioning System (GPS) will allow direct observation of currents from underway ships. Ocean systems are described and demand estimates on satellite systems are determined. The capabilities of the ARGOS system is assessed, including anticipated demand in the next decade.

  2. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    NASA Astrophysics Data System (ADS)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  3. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2

    PubMed Central

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-01-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters. PMID:26213514

  4. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2.

    PubMed

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-11-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4-6 times (10-15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters.

  5. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  6. GNSS satellite transmit power and its impact on orbit determination

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  7. Determination of motion extrema in multi-satellite systems

    NASA Astrophysics Data System (ADS)

    Allgeier, Shawn E.

    Spacecraft, or satellite formation flight has been a topic of interest dating back to the Gemini program of the 1960s. Traditionally space missions have been designed around large monolithic assets. Recent interest in low cost, rapid call up mission architectures structured around fractionated systems, small satellites, and constellations has spurred renewed efforts in spacecraft relative motion problems. While such fractionated, or multi-body systems may provide benefits in terms of risk mitigation and cost savings, they introduce new technical challenges in terms of satellite coordination. Characterization of satellite formations is a vital requirement for them to have utility to industry and government entities. Satellite formations introduce challenges in the form of constellation maintenance, inter-satellite communications, and the demand for more sophisticated guidance, navigation, and control systems. At the core of these challenges is the orbital mechanics which govern the resulting motion. New applications of algebraic techniques are applied to the formation flight problem, specifically Gröbner basis tools, as a means of determining extrema of certain quantities pertaining to formation flight. Specifically, bounds are calculated for the relative position components, relative speed, relative velocity components, and range rate. The position based metrics are relevant for planning formation geometry, particularly in constellation or Earth observation applications. The velocity metrics are relevant in the design of end game interactions for rendezvous and proximity operations. The range rate of one satellite to another is essential in the design of radio frequency hardware for inter-satellite communications so that the doppler shift can be calculated a priori. Range rate may also have utility in space based surveillance and space situational awareness concerns, such as cross tagging. The results presented constitute a geometric perspective and have utility to mission designers, particularly for missions involving rendezvous and proximity operations.

  8. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    PubMed Central

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-01-01

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164

  9. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    PubMed

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-09-02

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  10. Challenges in Measuring External Currents Driven by the Solar Wind-Magnetosphere Interaction

    NASA Technical Reports Server (NTRS)

    Le, Guan; Slavin, James A.; Pfaff, Robert F.

    2014-01-01

    In studying the Earth's geomagnetism, it has always been a challenge to separate magnetic fields from external currents originating from the ionosphere and magnetosphere. While the internal magnetic field changes very slowly in time scales of years and more, the ionospheric and magnetospheric current systems driven by the solar wind -magnetosphere interaction are very dynamic. They are intimately controlled by the ionospheric electrodynamics and ionospheremagnetosphere coupling. Single spacecraft observations are not able to separate their spatial and temporal variations, and thus to accurately describe their configurations. To characterize and understand the external currents, satellite observations require both good spatial and temporal resolutions. This paper reviews our observations of the external currents from two recent LEO satellite missions: Space Technology 5 (ST-5), NASA's first three-satellite constellation mission in LEO polar orbit, and Communications/Navigation Outage Forecasting System (C/NOFS), an equatorial satellite developed by US Air Force Research Laboratory. We present recommendations for future geomagnetism missions based on these observations.

  11. Analysis of Multi-Antenna GNSS Receiver Performance under Jamming Attacks.

    PubMed

    Vagle, Niranjana; Broumandan, Ali; Lachapelle, Gérard

    2016-11-17

    Although antenna array-based Global Navigation Satellite System (GNSS) receivers can be used to mitigate both narrowband and wideband electronic interference sources, measurement distortions induced by array processing methods are not suitable for high precision applications. The measurement distortions have an adverse effect on the carrier phase ambiguity resolution, affecting the navigation solution. Depending on the array attitude information availability and calibration parameters, different spatial processing methods can be implemented although they distort carrier phase measurements in some cases. This paper provides a detailed investigation of the effect of different array processing techniques on array-based GNSS receiver measurements and navigation performance. The main novelty of the paper is to provide a thorough analysis of array-based GNSS receivers employing different beamforming techniques from tracking to navigation solution. Two beamforming techniques, namely Power Minimization (PM) and Minimum Power Distortionless Response (MPDR), are being investigated. In the tracking domain, the carrier Doppler, Phase Lock Indicator (PLI), and Carrier-to-Noise Ratio (C/N₀) are analyzed. Pseudorange and carrier phase measurement distortions and carrier phase position performance are also evaluated. Performance analyses results from simulated GNSS signals and field tests are provided.

  12. Chaos in navigation satellite orbits caused by the perturbed motion of the Moon

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Alessi, Elisa Maria; Rossi, Alessandro; Valsecchi, Giovanni B.

    2015-06-01

    Numerical simulations carried out over the past decade suggest that the orbits of the Global Navigation Satellite Systems are unstable, resulting in an apparent chaotic growth of the eccentricity. Here, we show that the irregular and haphazard character of these orbits reflects a similar irregularity in the orbits of many celestial bodies in our Solar system. We find that secular resonances, involving linear combinations of the frequencies of nodal and apsidal precession and the rate of regression of lunar nodes, occur in profusion so that the phase space is threaded by a devious stochastic web. As in all cases in the Solar system, chaos ensues where resonances overlap. These results may be significant for the analysis of disposal strategies for the four constellations in this precarious region of space.

  13. Autonomous Navigation of a Satellite Cluster

    DTIC Science & Technology

    1990-12-01

    satellite’s velocity are determined by the Clohessy - Wiltshire equations I (these equations will be introduced in the next section) and take the form: (8:80...transition matrix, is based upon the Clohessy - Wiltshire equations of motion. These equations describe "the relative motion of two satellites when one is in a...discovery warranted a re-examination of the solutions to the Clohessy - Wiltshire equations. If the solutions for satellite #1 and #2 are subtracted

  14. Proceedings of the 20th International Symposium on Space Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  15. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory

    NASA Astrophysics Data System (ADS)

    de Oliveira Moraes, Alison; Muella, Marcio T. A. H.; de Paula, Eurico R.; de Oliveira, César B. A.; Terra, William P.; Perrella, Waldecir J.; Meibach-Rosa, Pâmela R. P.

    2018-04-01

    The ionospheric scintillation, generated by the ionospheric plasma irregularities, affects the radio signals that pass through it. Their effects are widely studied in the literature with two different approaches. The first one deals with the use of radio signals to study and understand the morphology of this phenomenon, while the second one seeks to understand and model how much this phenomenon interferes in the radio signals and consequently in the services to which these systems work. The interest of several areas, particularly to those that are life critical, has increased using the concept of satellite multi-constellation, which consists of receiving, processing and using data from different navigation and positioning systems. Although there is a vast literature analyzing the effects of ionospheric scintillation on satellite navigation systems, the number of studies using signals received from the Russian satellite positioning system (named GLONASS) is still very rare. This work presents for the first time in the Brazilian low-latitude sector a statistical analysis of ionospheric scintillation data for all levels of magnetic activities obtained by a set of scintillation monitors that receive signals from the GLONASS system. In this study, data collected from four stations were used in the analysis; Fortaleza, Presidente Prudente, São José dos Campos and Porto Alegre. The GLONASS L-band signals were analyzed for the period from December 21, 2012 to June 20, 2016, which includes the peak of the solar cycle 24 that occurred in 2014. The main characteristics of scintillation presented in this study include: (1) the statistical evaluation of seasonal and solar activity, showing the chances that an user on similar geophysical conditions may be susceptible to the effects of ionospheric scintillation; (2) a temporal analysis based on the local time distribution of scintillation at different seasons and intensity levels; and (3) the evaluation of number of simultaneously affected channels and its effects on the dilution of precision (DOP) for GNSS users are also presented in order to alert the timetables in which navigation will be most susceptible to such effects, as well as statistics on simultaneously affected channels. Relevant results about these statistical characteristics of scintillation are presented and analyzed providing relevant information about availability of a navigation system.

  16. Introductory Course on Satellite Navigation

    ERIC Educational Resources Information Center

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  17. Correlated-Data Fusion and Cooperative Aiding in GNSS-Stressed or Denied Environments

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Hamid

    A growing number of applications require continuous and reliable estimates of position, velocity, and orientation. Price requirements alone disqualify most traditional navigation or tactical-grade sensors and thus navigation systems based on automotive or consumer-grade sensors aided by Global Navigation Satellite Systems (GNSS), like the Global Positioning System (GPS), have gained popularity. The heavy reliance on GPS in these navigation systems is a point of concern and has created interest in alternative or back-up navigation systems to enable robust navigation through GPS-denied or stressed environments. This work takes advantage of current trends for increased sensing capabilities coupled with multilayer connectivity to propose a cooperative navigation-based aiding system as a means to limit dead reckoning error growth in the absence of absolute measurements like GPS. Each vehicle carries a dead reckoning navigation system which is aided by relative measurements, like range, to neighboring vehicles together with information sharing. Detailed architectures and concepts of operation are described for three specific applications: commercial aviation, Unmanned Aerial Vehicles (UAVs), and automotive applications. Both centralized and decentralized implementations of cooperative navigation-based aiding systems are described. The centralized system is based on a single Extended Kalman Filter (EKF). A decentralized implementation suited for applications with very limited communication bandwidth is discussed in detail. The presence of unknown correlation between the a priori state and measurement errors makes the standard Kalman filter unsuitable. Two existing estimators for handling this unknown correlation are Covariance Intersection (CI) and Bounded Covariance Inflation (BCInf) filters. A CI-based decentralized estimator suitable for decentralized cooperative navigation implementation is proposed. A unified derivation is presented for the Kalman filter, CI filter, and BCInf filter measurement update equations. Furthermore, characteristics important to the proper implementation of CI and BCInf in practice are discussed. A new covariance normalization step is proposed as necessary to properly apply CI or BCInf. Lastly, both centralized and decentralized implementations of cooperative aiding are analyzed and evaluated using experimental data in the three applications. In the commercial aviation study aircraft are simulated to use their Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Collision Avoidance System (TCAS) systems to cooperatively aid their on board INS during a 60 min GPS outage in the national airspace. An availability study of cooperative navigation as proposed in this work around representative United States airports is performed. Availabilities between 70-100% were common at major airports like LGA and MSP in a 30 nmi radius around the airport during morning to evening hours. A GPS-denied navigation system for small UAVs based on cooperative information sharing is described. Experimentally collected flight data from 7 small UAV flights are played-back to evaluate the performance of the navigation system. The results show that the most effective of the architectures can lead to 5+ minutes of navigation without GPS maintaining position errors less than 200 m (1-sigma). The automotive case study considers 15 minutes of automotive traffic (2,000 + vehicles) driving through a half-mile stretch of highway without access to GPS. Automotive radar coupled with Dedicated Short Range Communication (DSRC) protocol are used to implement cooperative aiding to a low-cost 2-D INS on board each vehicle. The centralized system achieves an order of magnitude reduction in uncertainty by aggressively aiding the INS on board each vehicle. The proposed CI-based decentralized estimator is demonstrated to be conservative and maintain consistency. A quantitative analysis of bandwidth requirements shows that the proposed decentralized estimator falls comfortably within modern connectivity capabilities. A naive implementation of the high-performance centralized estimator is also achievable, but it was demonstrated to be burdensome, nearing the bandwidth limits.

  18. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.

    PubMed

    Falco, Gianluca; Pini, Marco; Marucco, Gianluca

    2017-01-29

    Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performance improvements enabled by the tight integration, using low-cost sensors and a mass-market GNSS receiver. Performance is assessed through a series of tests carried out in real urban scenarios and is compared against commercial modules, operating in standalone mode or featuring loosely-coupled integrations. The paper describes the developed tight-integration algorithms with a terse mathematical model and assesses their efficacy from a practical perspective.

  19. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  20. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.

  1. Broadcast satellite service: The international dimension

    NASA Technical Reports Server (NTRS)

    Samara, Noah

    1991-01-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  2. Broadcast satellite service: The international dimension

    NASA Astrophysics Data System (ADS)

    Samara, Noah

    1991-09-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  3. GNSS Radio Occultation Observations as a data source for Ionospheric Assimilation: COSMIC-1 & COSMIC-2

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Kuo, Y. H.

    2014-12-01

    Since the pioneer GPS/MET mission, low Earth orbit (LEO) based global navigation satellite system (GNSS) Radio Occultation (RO) technique has been a powerful technique in ionosphere monitoring. After that, many LEO satellites were launched with RO payload, include: CHAMP , GRACE, SAC-C/D, COSMIC, C/NOFS, Metop-A/B, TerraSAR-X/TanDEM-X, and etc. COSMIC was the first constellation of satellites dedicated primarily to RO and delivering RO data in near real time. Currently in UCAR CDAAC, we process most of these missions' RO data for the community. Due to the success of COSMIC mission, a follow on mission called COSMIC-2 will be launched in 2016 and 2018, respectively. The COSMIC-2 RO data will be 4-6 times of COSMIC due to the doubled satellite and GNSS signals. In this paper we will describe: (1) Data process and quality in UCAR/CDAAC; (2) Ionospheric data assimilation results based on COSMIC data; (3) OSSE study for COSMIC-2.

  4. Precise Ionosphere Monitoring via a DSFH Satellite TT&C Link

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Guangxia; Li, Zhiqiang; Yue, Chao

    2014-11-01

    A phase-coherent and frequency-hopped PN ranging system was developed, originally for the purpose of anti-jamming TT&C (tracking, telemetry and telecommand) of military satellites of China, including the Beidou-2 navigation satellites. The key innovation in the synchronization of this system is the unambiguous phase recovery of direct sequence and frequency hopping (DSFH) spread spectrum signal and the correction of frequency-dependent phase rotation caused by ionosphere. With synchronization achieved, a TEC monitoring algorithm based on maximum likelihood (ML) principle is proposed and its measuring precision is analyzed through ground simulation, onboard confirmation tests will be performed when transionosphere DSFH links are established in 2014. The measuring precision of TEC exceeds that obtained from GPS receiver data because the measurement is derived from unambiguous carrier phase estimates, not pseudorange estimates. The observation results from TT&C stations can provide real time regional ionosphere TEC estimation.

  5. Satellite and ground radiotracking of elk

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.; Craighead, J. J.; Cote, C. E.; Buechner, H. K.

    1972-01-01

    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth.

  6. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  7. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    PubMed Central

    Troglia Gamba, Micaela; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-01-01

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests. PMID:26569242

  8. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  9. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands.

    PubMed

    Gamba, Micaela Troglia; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-11-10

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  10. Safety Arguments for Next Generation, Location Aware Computing

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2010-01-01

    Concerns over accuracy, availability, integrity, and continuity have limited the integration of Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) for safety-critical applications. More recent augmentation systems, such as the European Geostationary Navigation Overlay Service (EGNOS) and the North American Wide Area Augmentation System (WAAS) have begun to address these concerns. Augmentation architectures build on the existing GPS/GLONASS infrastructures to support location based services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance for aviation applications. During the next twelve months, the full certification of EGNOS for SoL applications is expected. This paper discusses similarities and differences between the safety assessment techniques used in Europe and North America.

  11. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  12. Refining the GPS Space Service Volume (SSV) and Building a Multi-GNSS SSV

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.

    2017-01-01

    The GPS (Global Positioning System) Space Service Volume (SSV) was first defined to protect the GPS main lobe signals from changes from block to block. First developed as a concept by NASA in 2000, it has been adopted for the GPS III block of satellites, and is being used well beyond the current specification to enable increased navigation performance for key missions like GOES-R. NASA has engaged the US IFOR (Interagency Forum Operational Requirements) process to adopt a revised requirement to protect this increased and emerging use. Also, NASA is working through the UN International Committee on GNSS (Global Navigation Satellite System) to develop an interoperable multi-GNSS SSV in partnership with all of the foreign GNSS providers.

  13. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1988-01-01

    The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.

  14. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    PubMed Central

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-01-01

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services) to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test. PMID:28009835

  15. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  16. Surface navigation on Mars with a Navigation Satellite

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  17. Fusion of navigational data in River Information Services

    NASA Astrophysics Data System (ADS)

    Kazimierski, W.

    2009-04-01

    River Information Services (RIS) is the complex system of solutions and services for inland shipping. It has been the scope of works carried out in most of European countries for last several years. There were also a few major pan-European projects like INDRIS or COMPRIS launched for these purposes. The main idea of RIS is to harmonize the activities of various companies, authorities and other users of inland waterways in Europe. In the last time growing activity in this area in Poland can be also noticed. The leading example can be the works carried out in Chair of Geoinformatics in Maritime University of Szczecin regarding RIS for the needs of Odra River. The Directive 2005/44/EC of European Parliament and Europe Council, followed by European Commission regulations, give precise guidelines on implementing RIS in Europe, stating the services that should be provided. Among them Traffic Information and Traffic Management services can be found. As per guidelines they should be based on tracking and tracing of ships in the inland waters. The results of tracking and tracing are Tactical Traffic Image and Strategic Traffic Image. The guidelines stated that, tracking and tracing system in RIS shall consist of various type sensors. The most important of them is thought to be Automatic Information System (AIS), and particularly its river version - Inland AIS. It is based on determining the position of ships by satellite positioning systems (mainly DGPS) and transmitting it to other users on radio VHF frequences. This guarantees usually high accuracy of data related to movement of ships (assuming proper functioning of system and ship's sensors), and gives the possibility of transmitting additional information about ship, like dimensions, port of destination, cargo, etc. However the other sensors that can be used for tracking shall not be forgotten. The most important of them are radar (traditionally used for tracking purposes in Vessel Traffic Systems) and video camera. Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself and the voyage, like dimensions, destination, etc. The second group is called dynamic data and contains all the information, which variability is important for creating Tactical Traffic Image. Both groups require different fusion algorithms, which take into consideration sources, update rate and method, accuracy and reliability. The article contains different issues related to navigational information fusion in River Information Services. It includes short description of structures and sources of navigational information and also the most popular integration methods. More detailed analysis was made for fusion of position derived from satellite systems (GPS) and from radar. The concept of tracking system, combining Inland AIS, radar and CCTV for the needs of RIS is introduced.

  18. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  19. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  20. Spatiotemporal cattle data - a plea for protocol standardization

    USDA-ARS?s Scientific Manuscript database

    It was not until the end of the 1990’s that animal born satellite receiver’s catapulted range cattle ecology into the 21st century world of microchip technology with all of its opportunities and challenges. With the global navigation satellite system (GNSS) insight into how cattle use a landscape i...

  1. On-board orbit determination for low thrust LEO-MEO transfer by Consider Kalman Filtering and multi-constellation GNSS

    NASA Astrophysics Data System (ADS)

    Menzione, Francesco; Renga, Alfredo; Grassi, Michele

    2017-09-01

    In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.

  2. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.

    PubMed

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-09-28

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  3. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor

    PubMed Central

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-01-01

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839

  4. A satellite constellation optimization for a regional GNSS remote sensing mission

    NASA Astrophysics Data System (ADS)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  5. GPS Navigation Results from the Low Power Transceiver CANDOS Experiment on STS-107

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Chris; Baraban, Dmitri; Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Savigation Demonstration on Shuttle (CANDOS) experiment flown on STS- 107. The CAkDOS experiment consisted of the Low Power Transceiver (LPT) that hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using the LPT's Tracking and Data Relay Satellite System (TDRSS) uplinh'downlink communications capabilit! . An overview of the LPT's navigation software and the GPS experiment timeline is presented. In addition. this paper discusses GEODE performance results. including comparisons ibith the Best Estimate of Trajectory (BET). N.ASA Johnson Space Center (JSC) real-time ground navigation vectors. and post-processed solutions using the Goddard Trajectory Determination System (GTDS).

  6. Fifth Annual Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Teles, J. (Editor)

    1980-01-01

    Various aspects of astrodynamics are considered including orbit calculations and trajectory determination. Other topics dealing with remote sensing systems, satellite navigation, and attitude control are included.

  7. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  8. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  9. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia-Pacific Region.

    PubMed

    Zhao, Qile; Wang, Chen; Guo, Jing; Liu, Xianglin

    2015-12-01

    In contrast to the US Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS) and the European Galileo, the developing Chinese BeiDou satellite navigation system (BDS) consists of not only Medium Earth Orbit (MEO), but also Geostationary Orbit (GEO) as well as Inclined Geosynchronous Orbit (IGSO) satellites. In this study, the Precise Point Positioning (PPP) and PPP with Integer Ambiguity Resolution (IAR) are obtained. The contributions of these three different types of BDS satellites to PPP in Asia-Pacific region are assessed using data from selected 20 sites over more than four weeks. By using various PPP cases with different satellite combinations, in general, the largest contribution of BDS IGSO among the three kinds of BDS satellites to the reduction of convergence time and the improvement of positioning accuracy, particularly in the east direction, is identified. These PPP cases include static BDS only solutions and static/kinematic ambiguity-float and -fixed PPP with the combination of GPS and BDS. The statistical results demonstrate that the inclusion of BDS GEO and MEO satellites can improve the observation condition and result in better PPP performance as well. When combined with GPS, the contribution of BDS to the reduction of convergence time is, however, not as significant as that of GLONASS. As far as the positioning accuracy is concerned, GLONASS improves the accuracy in vertical component more than BDS does, whereas similar improvement in horizontal component can be achieved by inclusion of BDS IGSO and MEO as GLONASS.

  10. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia–Pacific Region

    PubMed Central

    Zhao, Qile; Wang, Chen; Guo, Jing; Liu, Xianglin

    2015-01-01

    In contrast to the US Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS) and the European Galileo, the developing Chinese BeiDou satellite navigation system (BDS) consists of not only Medium Earth Orbit (MEO), but also Geostationary Orbit (GEO) as well as Inclined Geosynchronous Orbit (IGSO) satellites. In this study, the Precise Point Positioning (PPP) and PPP with Integer Ambiguity Resolution (IAR) are obtained. The contributions of these three different types of BDS satellites to PPP in Asia–Pacific region are assessed using data from selected 20 sites over more than four weeks. By using various PPP cases with different satellite combinations, in general, the largest contribution of BDS IGSO among the three kinds of BDS satellites to the reduction of convergence time and the improvement of positioning accuracy, particularly in the east direction, is identified. These PPP cases include static BDS only solutions and static/kinematic ambiguity-float and -fixed PPP with the combination of GPS and BDS. The statistical results demonstrate that the inclusion of BDS GEO and MEO satellites can improve the observation condition and result in better PPP performance as well. When combined with GPS, the contribution of BDS to the reduction of convergence time is, however, not as significant as that of GLONASS. As far as the positioning accuracy is concerned, GLONASS improves the accuracy in vertical component more than BDS does, whereas similar improvement in horizontal component can be achieved by inclusion of BDS IGSO and MEO as GLONASS. PMID:26633406

  11. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  12. Worldwide differential GPS for Space Shuttle landing operations

    NASA Technical Reports Server (NTRS)

    Loomis, Peter V. W.; Denaro, Robert P.; Saunders, Penny

    1990-01-01

    Worldwide differential Global Positioning System (WWDGPS) is viewed as an effective method of offering continuous high-quality navigation worldwide. The concept utilizes a network with as few as 33 ground stations to observe most of the error sources of GPS and provide error corrections to users on a worldwide basis. The WWDGPS real-time GPS tracking concept promises a threefold or fourfold improvement in accuracy for authorized dual-frequency users, and in addition maintains an accurate and current ionosphere model for single-frequency users. A real-time global tracking network also has the potential to reverse declarations of poor health on marginal satellites, increasing the number of satellites in the constellation and lessening the probability of GPS navigation outage. For Space Shuttle operations, the use of WWDGPS-aided P-code equipment promises performance equal to or better than other current landing guidance systems in terms of accuracy and reliability. This performance comes at significantly less cost to NASA, which will participate as a customer in a system designed as a commercial operation serving the global civil navigation community.

  13. Precise Point Positioning Based on BDS and GPS Observations

    NASA Astrophysics Data System (ADS)

    Gao, ZhouZheng; Zhang, Hongping; Shen, Wenbin

    2014-05-01

    BeiDou Navigation Satellite System (BDS) has obtained the ability applying initial navigation and precise point services for the Asian-Pacific regions at the end of 2012 with the constellation of 5 Geostationary Earth Orbit (GEO), 5 Inclined Geosynchronous Orbit (IGSO) and 4 Medium Earth Orbit (MEO). Till 2020, it will consist with 5 GEO, 3 IGSO and 27 MEO, and apply global navigation service similar to GPS and GLONASS. As we known, GPS precise point positioning (PPP) is a powerful tool for crustal deformation monitoring, GPS meteorology, orbit determination of low earth orbit satellites, high accuracy kinematic positioning et al. However, it accuracy and convergence time are influenced by the quality of pseudo-range observations and the observing geometry between user and Global navigation satellites system (GNSS) satellites. Usually, it takes more than 30 minutes even hours to obtain centimeter level position accuracy for PPP while using GPS dual-frequency observations only. In recent years, many researches have been done to solve this problem. One of the approaches is smooth pseudo-range by carrier-phase observations to improve pseudo-range accuracy. By which can improve PPP initial position accuracy and shorten PPP convergence time. Another sachems is to change position dilution of precision (PDOP) with multi-GNSS observations. Now, BDS has the ability to service whole Asian-Pacific regions, which make it possible to use GPS and BDS for precise positioning. In addition, according to researches on GNSS PDOP distribution, BDS can improve PDOP obviously. Therefore, it necessary to do some researches on PPP performance using both GPS observations and BDS observations, especially in Asian-Pacific regions currently. In this paper, we focus on the influences of BDS to GPS PPP mainly in three terms including BDS PPP accuracy, PDOP improvement and convergence time of PPP based on GPS and BDS observations. Here, the GPS and BDS two-constellation data are collected from BeiDou experimental tracking stations (BETS) built by Wuhan University. And BDS precise orbit and precise clock products are applied by GNSS center, Wuhan University. After an introduction about GPS+BDS PPP mathematical and the error correction modes, we analyze the influence of BDS to GPS PPP carefully with calculating results. The statistics results show that BDS PPP can reach centimeter level and BDS can improve PDOP obviously. Moreover, the convergence time and position stability of GPS+BDS PPP is better than that of GPS PPP.

  14. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  15. Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.

    2012-01-01

    Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.

  16. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  17. Relative Navigation Algorithms for Phase 1 of the MMS Formation

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, Russell; Gramling, Cheryl

    2003-01-01

    This paper evaluates several navigation approaches for the first phase of the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of four satellites in highly eccentric Earth orbits of approximately 1.2 by 12 Earth radii at an inclination of 10 degrees. The inter-satellite separation is approximately 10 kilometers near apogees. Navigation approaches were studied using ground station m g e =d two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, crosslink range measurements among the members flying in formation, and various combinations of these measurement types. An absolute position accuracy of 10 kilometers or better can be achieved with most of the approaches studied and a relative position accuracy of 100 meters or better can be achieved at apogee in some cases. Among the various approaches studied, the approaches that use a combination of GPS and crosslink measurements were found to be more reliable in terms of absolute and relative navigation accuracies and operational flexibility.

  18. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment

    PubMed Central

    Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen

    2015-01-01

    Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114

  19. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  20. Satellite Navigation Systems: Policy, Commercial and Technical Interaction.

    NASA Astrophysics Data System (ADS)

    Rycroft, M.

    2003-12-01

    This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6

  1. Navigation Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member's semi-major axis are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or vice versa. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  2. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    NASA Astrophysics Data System (ADS)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  3. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  4. Frequency stabilization for mobile satellite terminals via LORAN

    NASA Technical Reports Server (NTRS)

    Ernst, Gregory J.; Kee, Steven M.; Marquart, Robert C.

    1990-01-01

    Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented.

  5. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  6. Development of Rural Emergency Medical System (REMS) with Geospatial Technology in Malaysia

    NASA Astrophysics Data System (ADS)

    Ooi, W. H.; Shahrizal, I. M.; Noordin, A.; Nurulain, M. I.; Norhan, M. Y.

    2014-02-01

    Emergency medical services are dedicated services in providing out-of-hospital transport to definitive care or patients with illnesses and injuries. In this service the response time and the preparedness of medical services is of prime importance. The application of space and geospatial technology such as satellite navigation system and Geographical Information System (GIS) was proven to improve the emergency operation in many developed countries. In collaboration with a medical service NGO, the National Space Agency (ANGKASA) has developed a prototype Rural Emergency Medical System (REMS), focusing on providing medical services to rural areas and incorporating satellite based tracking module integrated with GIS and patience database to improve the response time of the paramedic team during emergency. With the aim to benefit the grassroots community by exploiting space technology, the project was able to prove the system concept which will be addressed in this paper.

  7. Assimilation of Radio Occultation Data From the Chinese Fengyun Meterological Satellite at GRAPES

    NASA Astrophysics Data System (ADS)

    LIU, Y.

    2016-12-01

    GNOS (GNSS Occultation Sounder) is a new radio occultation payload onboard the Chinese FY-3 series satellites, which probes the Earth's neutral atmosphere and the ionosphere. GNOS is capable of tracking the signals of both the Beidou (the Chinese navigation satellite system) and the GPS navigation satellite systems. The first FY-3C satellite with GNOS launch on 23 September 2013 successfully, and has more than 500 RO events daily, including approximately 400 GPS and 100 Beidou RO events. In this paper the data quality from FY3C GNOS, including GPS and Beidou radio accultation data, will be presented. The impact experiments of assimilating GNOS radio accultation refractivity profiles in GRAPES (Global and Regional Assimilation Prediction System) a new generation numerical model system of China Meteorological Administration, are also presented. Results show that the lowest probing height of 90% GNOS profile can reach 4KM away from the surface. The bias of GNOS refractivity profiles compared to reanalysis and radiosonde data is greater than those of COSMIC and GRAS, but after data quality control the standard deviation of GNOS refractivity is approximately 2%. The results of the GNOS assimilation experiments show that GNOS data can improve the analysis in the upper troposphere and lower stratosphere, particularly in the southern hemisphere and the ocean, which produce the neutral and positive impacts in GRAPES assimilation system. The combined impact of assimilating both GPS and Beidou GNOS radio occultation is greater than assimilating either instrument individually.

  8. Development of Algorithms and Programs for the Ray Nonlinear Radiotomography of the Ionosphere and Radiotomography Using Middle and High-Orbital Satellites.

    DTIC Science & Technology

    1995-01-01

    satellites is usefull, too. Such radiotomographic systems allow to search the structure of magnetosphere, protonosphere, etc, and to study the influence...of these mediums on navigation and connection systems in details. In connection with the experiments performed the questions arise concerning the...radiotomography is the ray refraction. Ignoration of refraction limits the resolving power of RT systems . Taking the refraction into account, it allows to

  9. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  10. Broadcasting GPS integrity information using Loran-C

    NASA Astrophysics Data System (ADS)

    Lo, Sherman Chih

    The United States Federal Aviation Administration (FAA) will adopt the Global Positioning System (GPS) as its primary navigation systems for aviation as stated by the Federal Radionavigation Plans (FRP) of 1996 and 1999. The FRP also proposes the reduction or termination of some existing radionavigation system in favor of GPS and satellite navigation. It may be beneficial to retain some of these existing terrestrial navigation systems if they can provide increased safety and redundancy to the GPS based architecture. One manner in which this can be done is by using or creating a data link on these existing radionavigation systems. These systems thus can provide both navigation and an additional broadcast of GPS integrity information. This thesis examines the use of terrestrial data links to provide Wide Area Augmentation System (WAAS) based GPS integrity information for aviation. The thesis focuses on using Loran-C to broadcast WAAS data. Analysis and experimental results demonstrating the capabilities of these designs are also discussed. Using Loran for this purpose requires increasing its data capacity. Many Loran modulation schemes are developed and analyzed. The data rates developed significantly increased the Loran data capacity. However, retaining compatibility with Loran legacy users resulted in data rates below the WARS data rate of 250 bps. As a result, this thesis also examines means of reducing the data requirements for WAAS information. While higher data rates offer improved performance and compatibility with WAAS, this thesis demonstrates that higher rates incur greater interference. Therefore, this work develops and considers a 108 bps and 167 bps Loran GPS integrity channel (LOGIC) design. The performance of the two designs illustrates some of the advantages and disadvantages of using a higher data rate. Analysis demonstrated means of maintaining integrity with these low data rate systems and determined the theoretical capabilities of the systems. The system was tested empirically by developing software that generated the LOGIC message and applied these messages to a GPS user. The resulting 108 bps and 167 bps systems demonstrated capability to provide lateral navigation/vertical navigation (LNAV/VNAV) and approach with vertical guidance (APV) respectively.

  11. Orbit determination using real tracking data from FY3C-GNOS

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lu, Chuanfang; Zhu, Jun; Ding, Huoping

    2017-08-01

    China is currently developing the BeiDou Navigation Satellite System, also known as BDS. The nominal constellation of BDS (regional), which had been able to provide preliminary regional positioning and navigation functions, was composed of fourteen satellites, including 5 GEO, 5 IGSO and 4 MEO satellites, and was realized by the end of 2013. Global navigation satellite system occultation sounder (GNOS) on board the Fengyun3C (FY3C) satellite, which is the first BDS/GPS compatible radio occultation (RO) sounder in the world, was launched on 23 September 2013. The GNOS instrument is capable of tracking up to 6 BeiDou satellites and more than 8 GPS satellites. We first present a quality analysis using 1-week onboard BDS/GPS measurements collected by GNOS. Satellite visibility, multipath combination and the ratio of cycle slips are analyzed. The analysis of satellite visibility shows that for one week the BDS receiver can track up to 6 healthy satellites. The analysis of multipath combinations (MPC) suggests more multipath present for BDS than GPS for the CA code (B1 MPC is 0.597 m, L1 MPC is 0.326 m), but less multipath for the P code (B2 MPC is 0.421 m, L2 MPC is 0.673 m). More cycle slips occur for the BDS than for the GPS receiver as shown by the ratio of total satellites/cycle slips observed over a 24 h period. Both the maximum value and average of the ratio of cycle slips based on BDS measurements is 72/50.29, which is smaller than 368/278.71 based on GPS measurements. Second, the results of reduced dynamic orbit determination using BDS/GPS code and phase measurements, standalone BDS SPP (Single Point Positioning) kinematic solution and real-time orbit determination using BDS/GPS code measurements are presented and analyzed. Using an overlap analysis, the orbit consistency of FY3C-GNOS is about 3.80 cm. The precision of BDS only solutions is about 22 cm. The precision of FY3C-GNOS orbit with the Helmert variance component estimation are improved slightly after the BDS observations are added for one week (October 10-16, 2013). In the three-dimensional direction, the orbit precision is respectively improved by 0.31 cm. BDS code observations already allow a standalone positioning with RMS accuracy of at least 22 m using BDS broadcast ephemeris, while the accuracy is at least 5 m using BDS precise ephemeris. The standard deviations of differences of real-time orbit determination with the Dynamic Model Compensation using BDS/GPS, GPS, and BDS code measurements are 1.24 m, 1.27 m and 6.67 m in three-dimensional direction, respectively. It can slightly improve convergence time for real-time orbit determination by 17 s after the BDS observations are added. And it can also slightly improve the accuracy of real-time orbit determination by 0.03 m. The results obtained in this paper are already rather promising.

  12. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  13. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  14. Definition study of land/sea civil user navigational location monitoring systems for NAVSTAR GPS: User requirements and systems concepts

    NASA Technical Reports Server (NTRS)

    Devito, D. M.

    1981-01-01

    A low-cost GPS civil-user mobile terminal whose purchase cost is substantially an order of magnitude less than estimates for the military counterpart is considered with focus on ground station requirements for position monitoring of civil users requiring this capability and the civil user navigation and location-monitoring requirements. Existing survey literature was examined to ascertain the potential users of a low-cost NAVSTAR receiver and to estimate their number, function, and accuracy requirements. System concepts are defined for low cost user equipments for in-situ navigation and the retransmission of low data rate positioning data via a geostationary satellite to a central computing facility.

  15. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    PubMed

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  16. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver

    PubMed Central

    Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-01-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879

  17. Time and Frequency Activities at the U.S. Naval Observatory

    DTIC Science & Technology

    2008-12-01

    USA (Institute of Navigation, Alexandria, Virginia). [22] D. Kirchner, 1999, “Two Way Satellite Time and Frequency Transfer ( TWSTFT ),” Review of...Shäfer, and A. Pawlitzki, 2005, “Development of Carrier- Phase-Based Two-Way Satellite Time and Frequency Transfer ( TWSTFT ),” in Proceedings of the 36th

  18. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  19. An Integrity Framework for Image-Based Navigation Systems

    DTIC Science & Technology

    2010-06-01

    Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter

  20. Stand-Alone and Hybrid Positioning Using Asynchronous Pseudolites

    PubMed Central

    Gioia, Ciro; Borio, Daniele

    2015-01-01

    global navigation satellite system (GNSS) receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite systems, where different pseudolites operate in an independent way. Asynchronous pseudolite systems require, however, dedicated strategies in order to properly integrate GNSS and pseudolite measurements. In this paper, several asynchronous pseudolite/GNSS integration strategies are considered: loosely- and tightly-coupled approaches are developed and combined with pseudolite proximity and receiver signal strength (RSS)-based positioning. The performance of the approaches proposed has been tested in different scenarios, including static and kinematic conditions. The tests performed demonstrate that the methods developed are effective techniques for integrating heterogeneous measurements from different sources, such as asynchronous pseudolites and GNSS. PMID:25609041

  1. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit differences are utilized to qualify the estimated orbits and clocks. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. For the current tracking network, deploying tracking stations on the eastern side, for example in New Zealand and/or in Hawaii, will significantly reduce along-track biases of GEOs on the same side. The involvement of MEOs and ambiguity-fixing also make the orbits better but rather moderate. Key words: BeiDou, precise orbit determination (POD), tracking network, ambiguity-fixing

  2. Application of GPS Measurements for Ionospheric and Tropospheric Modelling

    NASA Astrophysics Data System (ADS)

    Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio

    military navigation. The DOD's primary purposes were to use the system in precision weapon delivery and providing a capability that would help reverse the proliferation of navigation systems in military. Subsequently, it was very quickly realized that civil use and scientific utility would far outstrip military use. A variety of scientific applications are uniquely suited to precise positioning capabilities. The relatively high precision, low cost, mobility and convenience of GPS receivers make positioning attractive. The other applications being precise time measurement, surveying and geodesy purposes apart from orbit and attitude determination along with many user services. The system operates by transmitting radio waves from satellites to receivers on the ground, aircraft, or other satellites. These signals are used to calculate location very accurately. Standard Positioning Services (SPS) which restricts access to Coarse/Access (C/A) code and carrier signals on the L1 frequency only. The accuracy thus provided by SPS fall short of most of the accuracy requirements of users. The upper atmosphere is ionized by the ultra violet radiation from the sun. The significant errors in positioning can result when the signals are refracted and slowed by ionospheric conditions, the parameter of the ionosphere that produces most effects on GPS signals is the total number of electrons in the ionospheric propagation path. This integrated number of electrons, called Total Electron Content (TEC) varies, not only from day to night, time of the year and solar flux cycle, but also with geomagnetic latitude and longitude. Being plasma the ionosphere affects the radio waves propagating through it. Effects of scintillation on GPS satellite navigation systems operating at L1 (1.5754 GHz), L2 (1.2276 GHz) frequencies have not been estimated accurately. It is generally recognized that GPS navigation systems are vulnerable in the polar and especially in the equatorial region during the solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like aircraft for an effective use. In this paper brief description of GPS data utilization, Navigational message, orbit computation and precise orbit determination and Ionosphere and troposphere models are summarized. The methodology towards refining ionosphere model coefficients is presented. Some of the plots and results related to orbit determination are presented. The study demonstrated the feasibility of estimating ionosphere group delay at specific latitudes and could be improved through refining some of the model coefficients using GPS measurements. It is possible to accurately determine the tropospheric delay, which may be used for an aircraft in flight without access to real time meteorological information.

  3. Synchronized Position Hold, Engage, Reorient, Experimental Satellites

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Wilson, Edward; How, Jonathan; Sanenz-Otero, Alvar; Chamitoff, Gregory

    2009-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized spherical satellites. They will be used inside the space station to test a set of well-defined instructions for spacecraft performing autonomous rendezvous and docking maneuvers. Three free-flying spheres will fly within the cabin of the station, performing flight formations. Each satellite is self-contained with power, propulsion, computers and navigation equipment. The results are important for satellite servicing, vehicle assembly and formation flying spacecraft configurations. SPHERES is a testbed for formation flying by satellites, the theories and calculations that coordinate the motion of multiple bodies maneuvering in microgravity. To achieve this inside the ISS cabin, bowling-ball-sized spheres perform various maneuvers (or protocols), with one to three spheres operating simultaneously . The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) experiment will test relative attitude control and station-keeping between satellites, re-targeting and image plane filling maneuvers, collision avoidance and fuel balancing algorithms, and an array of geometry estimators used in various missions. SPHERES consists of three self-contained satellites, which are 18 sided polyhedrons that are 0.2 meter in diameter and weigh 3.5 kilograms. Each satellite contains an internal propulsion system, power, avionics, software, communications, and metrology subsystems. The propulsion system uses CO2, which is expelled through the thrusters. SPHERES satellites are powered by AA batteries. The metrology subsystem provides real-time position and attitude information. To simulate ground station-keeping, a laptop will be used to transmit navigational data and formation flying algorithms. Once these data are uploaded, the satellites will perform autonomously and hold the formation until a new command is given.

  4. Deep-space navigation applications of improved ground-based optical astrometry

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.

  5. A novel design of dual-channel optical system of star-tracker based on non-blind area PAL system

    NASA Astrophysics Data System (ADS)

    Luo, Yujie; Bai, Jian

    2016-07-01

    Star-tracker plays an important role in satellite navigation. Considering the satellites on near-Earth orbit, the system usually has two optical systems: one for observing the profile of Earth and the other for capturing the positions of stars. In this paper, we demonstrate a novel kind of dual-channel optical observation system of star-tracker with non-blind area PAL imaging system based on dichroic filter, which can combine both different observation channels into an integrated structure and realize the feature of miniaturization. According to the practical usage of star-tracker and the features of dichroic filter, we set the ultraviolet band as the PAL channel to observe the Earth with the FOV ranging from 40°-60°, and set the visible band as the front imaging channel to capture the stars far away from this system with the FOV ranging from 0°-20°. Consequently, the rays of both channels are converged on the same image plane, improving the efficiency of pixels of detector and reducing the weight and size of whole star-tracker system.

  6. GPS aiding of ocean current determination. [Global Positioning System

    NASA Technical Reports Server (NTRS)

    Mohan, S. N.

    1981-01-01

    The navigational accuracy of an oceangoing vessel using conventional GPS p-code data is examined. The GPS signal is transmitted over two carrier frequencies in the L-band at 1575.42 and 1227.6 MHz. Achievable navigational uncertainties of differenced positional estimates are presented as a function of the parameters of the problem, with particular attention given to the effect of sea-state, user equivalent range error, uncompensated antenna motion, varying delay intervals, and reduced data rate examined in the unaided mode. The unmodeled errors resulting from satellite ephemeris uncertainties are shown to be negligible for the GPS-NDS (Navigation Development) satellites. Requirements are met in relatively calm seas, but accuracy degradation by a factor of at least 2 must be anticipated in heavier sea states. The aided mode of operation is examined, and it is shown that requirements can be met by using an inertial measurement unit (IMU) to aid the GPS receiver operation. Since the use of an IMU would mean higher costs, direct Doppler from the GPS satellites is presented as a viable alternative.

  7. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  8. A collinearity diagnosis of the GNSS geocenter determination

    NASA Astrophysics Data System (ADS)

    Rebischung, Paul; Altamimi, Zuheir; Springer, Tim

    2014-01-01

    The problem of observing geocenter motion from global navigation satellite system (GNSS) solutions through the network shift approach is addressed from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, is therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. The inability of current GNSS, as opposed to satellite laser ranging, to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most Analysis Centers of the International GNSS Service, slightly amplify the collinearity of the geocenter coordinate, but their role remains secondary.

  9. An Optimized Method to Detect BDS Satellites’ Orbit Maneuvering and Anomalies in Real-Time

    PubMed Central

    Huang, Guanwen; Qin, Zhiwei; Zhang, Qin; Wang, Le; Yan, Xingyuan; Wang, Xiaolei

    2018-01-01

    The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites’ orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites’ orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017. PMID:29495638

  10. Satellite Application for Disaster Management Information Systems

    NASA Astrophysics Data System (ADS)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’, ‘’where’’ and ‘’how’’ small satellite data should be used by DMIS.

  11. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  12. A Recommendation on SLR Ranging to Future Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Labrecque, J. L.; Miller, J. J.; Pearlman, M.

    2008-12-01

    The multi-agency US Geodetic Requirements Working Group has recommended that Satellite Laser Retro- reflectors be installed on GPS III satellites as a principal component of the Positioning, Navigation, and Timing mandate of the Global Positioning System. The Working Group, which includes NASA, NGA, NOAA, NRL, USGS, and the USNO, echoes the Global Geodetic Observing System recommendation that SLR retro- reflectors be installed on all GNSS satellites. It is further recommended that the retro-reflectors conform to and hopefully exceed the minimum standard of the International Laser Ranging Service for retro-reflector cross sections of 100 million square meters for the HEO GNSS satellites to insure sufficiently accurate ranging by the global network of satellite laser ranging systems. The objective of this recommendation is to contribute to the improvement in the International Terrestrial Reference Frame, and its derivative the WGS84 reference frame, through continuing improvements in the characterization of the GPS orbits and clocks. Another objective is to provide an independent means of assessing the interoperability and accuracy of the GNSS systems and regional augmentation systems. The ranging to GNSS-mounted retro-reflectors will constitute a significant new means of space-based collocation to constrain the tie between the GPS and SLR networks that constitute over 50% of the data from which the ITRF is derived. The recommendation for the installation of SLR retro-reflectors aboard future GPS satellites is one of a number of efforts aimed at improving the accuracy and stability of ITRF. These steps are being coordinated with and supportive of the efforts of the GGOS and its services such at the VLBI2010 initiative, developing a next generation geodetic network, near real-time GPS positioning and EOP determination, and numerous efforts in the improvement of geodetic algorithms for GPS, SLR, VLBI, DORIS, and the determination of the ITRF. If past is prologue, the requirements of accuracy placed upon GNSS systems will continue to evolve at a factor of ten per decade for the lifetime of the GPS III, extending to 2025 and beyond. Global societal priorities such as sea level change measurement already require a factor of ten or more improvement in the accuracy and stability of the ITRF. Increasing accuracy requirements by civilian users for precision positioning and time keeping will certainly continue to grow at an exponential rate. The PNT accuracy of our GNSS systems will keep pace with these societal needs only if we equip the GNSS systems with the capability to identify and further reduce systematic errors.

  13. GNSS-SLR satellite co-location for the estimate of local ties

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal Dynamics Data Information System (CDDIS).

  14. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

    PubMed Central

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-01-01

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13 and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly. PMID:29495506

  15. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-02-27

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC 12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC 13 and much higher than VTEC 23 . Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly.

  16. Angle-of-Arrival Assisted GNSS Collaborative Positioning.

    PubMed

    Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan

    2016-06-20

    For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.

  17. Autonomous Navigation of USAF Spacecraft

    DTIC Science & Technology

    1983-12-01

    ASSEMBLY 21.LACn. THERM AL RADEARTOR ASEML 21.5 in REFERENC BASE PLATE JELECTRONICS REFERENMODULE ASSEMBLY (4 PLACES) PORRO PRISM & BASE MIRROR -24.25...involved in active satellite-to- satellite cracking for 14 days following one day of ground tracking. Earth geopotential resonance terms are the largest...rotates a prism at 9 rps such that optical signals are injected into each telescope parallel to the reielved starlight. The angle between tne two lines

  18. Defense Science Board Task Force on The Future of the Global Positioning System

    DTIC Science & Technology

    2005-10-01

    interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS satellites as soon as practicable to enable future flexibility in signal...its use increases in automobiles , it is becoming a significant factor in E-911-type situations, where emergency vehicles are dispatched to accident...mitigation for GPS against both intentional and unintentional interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS

  19. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  20. Time and Frequency Activities at the U.S. Naval Observatory

    DTIC Science & Technology

    2009-11-01

    Massachusetts, USA (Institute of Navigation, Alexandria, Virginia). [22] D. Kirchner, 1999, “Two Way Satellite Time and Frequency Transfer ( TWSTFT ...Piester, D., and Z. Jiang, 2009, “Two-Way Satellite Time and Frequency ( TWSTFT ) Transfer Calibration Constancy from Closure Sums,” in Proceedings of...Shäfer, and A. Pawlitzki, 2005, “Development of Carrier- Phase-Based Two-Way Satellite Time and Frequency Transfer ( TWSTFT ),” in Proceedings of the 36 th

  1. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100mW/cm2, which is largely exceed the disturbing threshold and therefore verify the feasibility of using this kind of laser disturbing the satellite-based detector. According to the results. using the similar laser power density absolutely saturate the requirements to laser disturbing satellite-based detector. If considering the peak power of pulsed laser, even decrease laser average power, it is also possible to damage the detector. This result will provide the reliable evidences to evaluate the effect of laser disturbing satellite-based detector.

  2. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Long, Anne; Carpenter, J. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  3. The Mathematics of the Global Positioning System.

    ERIC Educational Resources Information Center

    Nord, Gail D.; Jabon, David; Nord, John

    1997-01-01

    Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)

  4. Instrumentation for one-way satellite PTTI applications. [calibration and synchronization of clocks from navigation satellite

    NASA Technical Reports Server (NTRS)

    Osborne, A. E.

    1973-01-01

    A review of general principles and operational procedures illustrates how the typical passive user and omni receiving antenna can recover Precise Time and Time Interval (PTTI) information from a low altitude navigation satellite system for clock calibration and synchronization. Detailed discussions of concepts and theory of the receiver design are presented. The importance of RF correlation of the received and local PN encoded sequences is emphasized as a means of reducing delay uncertainties of the instrumentation to values compatible with nanosecond to submicrosecond PTTI objectives. Two receiver configurations were fabricated for use in satellite-to-laboratory experiments. In one receiver the delay-locked loop for PN signals synchronization used a dithered amplitude detection process while the second receiver used a complex sums phase detection method for measurement of delay error. The necessity for compensation of Doppler shift is discussed. Differences in theoretical signal acquisition and tracking performance of the design concepts are noted.

  5. PNT Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sands, Obed

    2017-01-01

    This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.

  6. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data

    PubMed Central

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-01-01

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone. PMID:26266764

  7. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data.

    PubMed

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-08-12

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone.

  8. GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation

    PubMed Central

    Li, Hong; Lu, Mingquan

    2017-01-01

    Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks. PMID:28665318

  9. GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation.

    PubMed

    Wang, Fei; Li, Hong; Lu, Mingquan

    2017-06-30

    Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks.

  10. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    NASA Astrophysics Data System (ADS)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to provide high quality location based services (tracking, tracing, alarming, messaging, group broadcasting, fleet management information) oriented to mass and business markets transport & mobility management. The GAUSS rationales for the proposed solution rely on the consideration that the existing and available systems are not capable to completely fulfil stringent requirements for the navigation and communication capabilities, in terms of integrity/continuity positioning and guarantee of performances, as those coming from classes of users in the inter-modality and specific personal info-mobility sectors.For the navigation functions, the use of GALILEO will ensure a guaranteed quality of service and adequate performances, in terms of accuracy and integrity, as required for safety and working condition improvements (such as restricted waterways - ports, coasts, rivers - and hazardous goods transportation). Furthermore, it also will enable to cope with liability and certification requirements that are needed for responsibility issues, in case of damages or accidents.From the communication viewpoint, the challenges reside on the usage of the UMTS. This enables to fit GAUSS into an open market place: avoiding proliferation of standards and adoption of open interfaces to be defined by the business interest. Furthermore, the GAUSS solution fully exploits the advantages coming from the usage of the satellite of offering solutions for effectively complement terrestrial based systems (fast and large coverage, economically viable set-up cost, efficient provisioning of broadcasting and multicasting features, gap filler capability).A comprehensive market analysis was carried out in the frame of the project, aimed at investigating the techno-economical viability for a possible commercial introduction of the proposed solution.This paper presents the output of the performed studies, resulting in a realistic picture of the GAUSS market:§ Identification of potential actors/players (operators, manufacturers, professional and mass market users, service providers, authorities, etc.)§ Competitive analysis§ Market size and segmentation, and GAUSS position in the market§ Business models§ Business plan and cost/benefit ratio§ Identification of market opportunities for services and applications, in view of the future GALILEO and S-UMTS.

  11. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  12. Accuracy Performance Evaluation of Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hu, Y. N.

    2017-03-01

    Accuracy is one of the key elements of the regional Beidou Navigation Satellite System (BDS) performance standard. In this paper, we review the definition specification and evaluation standard of the BDS accuracy. Current accuracy of the regional BDS is analyzed through the ground measurements and compared with GPS in terms of dilution of precision (DOP), signal-in-space user range error (SIS URE), and positioning accuracy. The Positioning DOP (PDOP) map of BDS around Chinese mainland is compared with that of GPS. The GPS PDOP is between 1.0-2.0 and does not vary with the user latitude and longitude, while the BDS PDOP varies between 1.5-5.0, and increases as the user latitude increases, and as the user longitude apart from 118°. The accuracies of the broadcast orbits of BDS are assessed by taking the precise orbits from International GNSS Service (IGS) as the reference, and by making satellite laser ranging (SLR) residuals. The radial errors of the BDS inclined geosynchronous orbit (IGSO) and medium orbit (MEO) satellites broadcast orbits are at the 0.5m level, which are larger than those of GPS satellites at the 0.2m level. The SLR residuals of geosynchronous orbit (GEO) satellites are 65.0cm, which are larger than those of IGSO, and MEO satellites, at the 50.0cm level. The accuracy of broadcast clock offset parameters of BDS is computed by taking the clock measurements of Two-way Satellite Radio Time Frequency Transfer as the reference. Affected by the age of broadcast clock parameters, the error of the broadcast clock offset parameters of the MEO satellites is the largest, at the 0.80m level. Finally, measurements of the multi-GNSS (MGEX) receivers are used for positioning accuracy assessment of BDS and GPS. It is concluded that the positioning accuracy of regional BDS is better than 10m at the horizontal component and the vertical component. The combined positioning accuracy of both systems is better than one specific system.

  13. KSC-2013-1243

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Badri Younes, NASA deputy associate administrator for Space Communications and Navigation, or SCaN, addresses agency social media followers on the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann

  14. Aeromechanics and Vehicle Configuration Demonstrations. Volume 3: A Hybrid Probabilistic Method for Estimate Design Margin

    DTIC Science & Technology

    2014-02-01

    infrastructure–satellites provide communications , remote sensing, radio -based navigation through the global positioning system, and world-wide, coordinated...to be expendable. For the Saturn V stages, #501 is the first Saturn V launched while #506 is the rocket used for the Apollo 11 mission after having...Air Force AGENCY ACRONYM(S) AFRL/RQHV 11 . SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RQ-WP-TR-2014-0005V3 12. DISTRIBUTION/AVAILABILITY

  15. Evaluation on the impact of IMU grades on BDS + GPS PPP/INS tightly coupled integration

    NASA Astrophysics Data System (ADS)

    Gao, Zhouzheng; Ge, Maorong; Shen, Wenbin; Li, You; Chen, Qijin; Zhang, Hongping; Niu, Xiaoji

    2017-09-01

    The unexpected observing environments in dynamic applications may lead to partial and/or complete satellite signal outages frequently, which can definitely impact on the positioning performance of the Precise Point Positioning (PPP) in terms of decreasing available satellite numbers, breaking the continuity of observations, and degrading PPP's positioning accuracy. Generally, both the Inertial Navigation System (INS) and the multi-constellation Global Navigation Satellite System (GNSS) can be used to enhance the performance of PPP. This paper introduces the mathematical models of the multi-GNSS PPP/INS Tightly Coupled Integration (TCI), and investigates its performance from several aspects. Specifically, it covers (1) the use of the BDS/GPS PPP, PPP/INS, and their combination; (2) three positioning modes including PPP, PPP/INS TCI, and PPP/INS Loosely Coupled Integration (LCI); (3) the use of four various INS systems named navigation grade, tactical grade, auto grade, and Micro-Electro-Mechanical-Sensors (MEMS) one; (4) three PPP observation scenarios including PPP available, partially available, and fully outage. According to the statistics results, (1) the positioning performance of the PPP/INS (either TCI or LCI) mode is insignificantly depended on the grade of inertial sensor, when there are enough available satellites; (2) after the complete GNSS outages, the TCI mode expresses both higher convergence speed and more accurate positioning solutions than the LCI mode. Furthermore, in the TCI mode, using a higher grade inertial sensor is beneficial for the PPP convergence; (3) under the partial GNSS outage situations, the PPP/INS TCI mode position divergence speed is also restrained significantly; and (4) the attitude determination accuracy of the PPP/INS integration is highly correlated with the grade of inertial sensor.

  16. The onset of dynamical instability and chaos in navigation satellite orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay; Daquin, Jérôme; Alessi, Elisa Maria; Valsecchi, Giovanni B.; Rossi, Alessandro; Deleflie, Florent

    2015-05-01

    Orbital resonances are ubiquitous in the Solar System and are harbingers for the onset of dynamical instability and chaos. It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Here we will show that the same underlying physical mechanism, the overlapping of secular resonances, responsible for the eventual destabilization of Mercury and recently proposed to explain the orbital architecture of extrasolar planetary systems (Lithwick Y., Wu Y., 2014, PNAS; Batygin K., Morbidelli A., Holman M.J., 2015, ApJ) is at the heart of the orbital instabilities of seemingly more mundane celestial bodies---the Earth's navigation satellites. We will demonstrate that the occurrence and nature of the secular resonances driving these dynamics depend chiefly on one aspect of the Moon's perturbed motion, the regression of the line of nodes. This talk will present analytical models that accurately reflect the true nature of the resonant interactions, and will show how chaotic diffusion is mediated by the web-like structure of secular resonances. We will also present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. The obtained results have remarkable practical applications for space debris mitigation and for satellite technology, and are both of essential dynamical and theoretical importance, with broad implications for planetary science.

  17. A relative navigation sensor for CubeSats based on LED fiducial markers

    NASA Astrophysics Data System (ADS)

    Sansone, Francesco; Branz, Francesco; Francesconi, Alessandro

    2018-05-01

    Small satellite platforms are becoming very appealing both for scientific and commercial applications, thanks to their low cost, short development times and availability of standard components and subsystems. The main disadvantage with such vehicles is the limitation of available resources to perform mission tasks. To overcome this drawback, mission concepts are under study that foresee cooperation between autonomous small satellites to accomplish complex tasks; among these, on-orbit servicing and on-orbit assembly of large structures are of particular interest and the global scientific community is putting a significant effort in the miniaturization of critical technologies that are required for such innovative mission scenarios. In this work, the development and the laboratory testing of an accurate relative navigation package for nanosatellites compliant to the CubeSat standard is presented. The system features a small camera and two sets of LED fiducial markers, and is conceived as a standard package that allows small spacecraft to perform mutual tracking during rendezvous and docking maneuvers. The hardware is based on off-the-shelf components assembled in a compact configuration that is compatible with the CubeSat standard. The image processing and pose estimation software was custom developed. The experimental evaluation of the system allowed to determine both the static and dynamic performances. The system is capable to determine the close range relative position and attitude faster than 10 S/s, with errors always below 10 mm and 2 deg.

  18. Design studies for a technology assessment receiver for global positioning system

    NASA Technical Reports Server (NTRS)

    Painter, J. H.

    1981-01-01

    The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.

  19. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  20. GPS/GLONASS Time Transfer with 20-Channel Dual GNSS Receiver

    NASA Technical Reports Server (NTRS)

    Daly, P.; Riley, S.

    1996-01-01

    One of the world's two global navigation systems, the Global Positioning System (GPS), is already fully operational (April 1994) and the other, the Global Navigation Satellite System (GLONASS) will become operational by the end of 1995 or early 1996. Each will offer, independently of the other, precise location and time transfer continuously anywhere in the world and indeed in space itself. Many potential users, in particular the civil aviation community, are keenly interested in a joint GPS/GLONASS operation since it would offer substantial advantages in defining and maintaining the integrity of the navigation aid. Results are presented on the characterization of GPS/GLONASS time comparison using a 20-channel dual receiver developed and constructed at the University of Leeds, UK.

  1. Status and Perspective of the IGS Multi-GNSS Experiment (MGEX)

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Montenbruck, Oliver; Weber, Robert; Hugentobler, Urs

    2013-04-01

    Following three decades, during which the Global Positioning System GPS has evolved from a military navigation system into an indispensable tool for geodetic research and global monitoring of the Earth, the world of satellite navigation has experienced dramatic changes over the past years. With GLONASS, a second global navigation system has achieved a fully operational status, GPS is introducing modernized civil and encrypted navigation signals, and a variety of new navigation constellations are being built-up in Asia and Europe. These include BeiDou, which has recently opened a regional navigation service in the Asia-Pacific region, Galileo, which now has four satellites in orbit, as well as QZSS, which offers a unique set of signals and service features. In recognition of a rapidly changing GNSS landscape, the International GNSS Service (IGS) has initiated the Multi-GNSS Experiment (MGEX - http://igs.org/mgex) as a platform for early familiarization with emerging navigation systems and to pave the way for a full-featured use thereof in a future multi-GNSS service. As a first step, MGEX has promoted the build-up of a new global network of GNSS monitoring stations, each tracking at least one new constellation (Galileo, BeiDou, or QZSS) on top of GPS, GLONASS and SBAS. By the end of 2012, approximately 50 stations contribute offline and/or real-time data to the MGEX network. To facilitate introduction of new standards (specifically RINEX3 observation and navigation data formats), distinct data archives are used even for those MGEX stations jointly contributing to the legacy IGS. Building-up on the new multi-GNSS network, the generation of associated orbit and clock products has started in the second quarter of 2012. At this stage, only Galileo and QZSS products are offered by selected MGEX Analysis Centers, but the addition of BeiDou is expected in 2013 as the MGEX network expands and new Analysis Centers join the data processing effort. Despite remarkable progress in the first year of the MGEX project, numerous challenges have still to be met before the new constellations can contribute to high-grade navigation and geodetic services. So far, only an immature knowledge of the new navigation satellites and the transmitted signals is available. Much work is left to fully characterize the multitude of inter-signal, inter-frequency and inter-system biases, as well as antenna phase patterns in both the space and user segment. Likewise, proper knowledge of spacecraft attitude control and radiation pressure models appears indispensable for a proper generation of highly-accurate orbit and clock products. Only then will users be able to fully benefit from the high potential of robust, wide-band, and high navigation signals as well as new generations of highly stable clocks offered by the new constellations. Within the presentation, the MGEX project will be introduced and the latest achievements in the network build-up, the product generation and related activities will be presented. Current challenges and necessary steps towards a full-features multi-GNSS service of the IGS will be identified.

  2. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    NASA Astrophysics Data System (ADS)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  3. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    95FEATURED RESEARCH 2006 NRL REVIEW Spacecraft Navigation Using X-ray Pulsars P.S. Ray, K.S. Wood, and B.F. Phlips E.O. Hulburt Center for Space...satellites and computes the range (technically pseudorange) to each satellite Pulsars are the collapsed remnants of massive stars that have become...relatively simple structure, pulsars are exceptionally stable rotators whose timing stability rivals that of conventional atomic clocks. A navigation

  4. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  5. A land-surface Testbed for EOSDIS

    NASA Technical Reports Server (NTRS)

    Emery, William; Kelley, Tim

    1994-01-01

    The main objective of the Testbed project was to deliver satellite images via the Internet to scientific and educational users free of charge. The main method of operations was to store satellite images on a low cost tape library system, visually browse the raw satellite data, access the raw data filed, navigate the imagery through 'C' programming and X-Windows interface software, and deliver the finished image to the end user over the Internet by means of file transfer protocol methods. The conclusion is that the distribution of satellite imagery by means of the Internet is feasible, and the archiving of large data sets can be accomplished with low cost storage systems allowing multiple users.

  6. Global Positioning System Time Transfer Receiver (GPS/TTR) prototype design and initial test evaluation

    NASA Technical Reports Server (NTRS)

    Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.

    1982-01-01

    Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.

  7. A TMS320-based modem for the aeronautical-satellite core data service

    NASA Astrophysics Data System (ADS)

    Moher, Michael L.; Lodge, John H.

    The International Civil Aviation Organization (ICAO) Future Air Navigation Systems (FANS) committee, the Airlines Electronics Engineering Committee (AEEC), and Inmarsat have been developing standards for an aeronautical satellite communications service. These standards encompass a satellite communications system architecture to provide comprehensive aeronautical communications services. Incorporated into the architecture is a core service capability, providing only low rate data communications, which all service providers and all aircraft earth terminals are required to support. In this paper an implementation of the physical layer of this standard for the low data rate core service is described. This is a completely digital modem (up to a low intermediate frequency). The implementation uses a single TMS320C25 chip for the transmit baseband functions of scrambling, encoding, interleaving, block formatting and modulation. The receiver baseband unit uses a dual processor configuration to implement the functions of demodulation, synchronization, de-interleaving, decoding and de-scrambling. The hardware requirements, the software structure and the algorithms of this implementation are described.

  8. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  9. Progress of BeiDou time transfer at NTSC

    NASA Astrophysics Data System (ADS)

    Guang, Wei; Dong, Shaowu; Wu, Wenjun; Zhang, Jihai; Yuan, Haibo; Zhang, Shougang

    2018-04-01

    Time transfer using global navigation satellite system (GNSS) is a primary method of remote atomic clock comparisons. As of today, there are four operational GNSS systems, namely GPS, GLONASS, Galileo and BeiDou Navigation Satellite System (BDS or BeiDou). All of them can continuously provide position, navigation and time services. This paper mainly focuses on the progress of BeiDou time transfer at the National Time Service Center, Chinese Academy of Sciences (NTSC). In order to realize the BeiDou common view (CV) time comparison, we developed the Rinex2CGGTTS software according to the guidelines of the Common GNSS Generic Time Transfer Standard, Version 2E (CGGTTS V2E). By comparing the solutions of the Rinex2CGGTTS software to the solutions of the sbf2cggtts software provided by the manufacturer of our multi-GNSS receiver, we found the sbf2cggtts (version 1.0.5) solutions contained biases in measurements to different BeiDou satellites. The biases are most likely caused by sbf2cggtts’ timing group delay corrections in data processing. The noise of the observation data is analyzed by code multipath and common clock difference. Finally, the BeiDou CV results are compared to the GPS/GLONASS/Galileo CV results between NTSC and three European UTC(k) laboratories, including Royal Observatory of Belgium (ORB), Real Institute y Observatory de la Armada (ROA), Research Institutes of Sweden (RISE or SP). For the comparisons of each baseline, we aligned the BeiDou/Galileo/GLONASS links to the calibrated GPS link with the double-difference method. The results show that the performance of BeiDou CV is correlated to the number of BeiDou satellites available in common view. With the current BeiDou constellation, the standard deviation of the differences between all BeiDou CV satellites averaging result and the GPS PPP result is 2.03 ns, 2.90 ns and 4.06 ns for ORB-NTSC, SP-NTSC and ROA-NTSC links respectively.

  10. The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications

    NASA Astrophysics Data System (ADS)

    Rose, Randy; Gleason, Scott; Ruf, Chris

    2014-10-01

    Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.

  11. ³Cat-3/MOTS Nanosatellite Mission for Optical Multispectral and GNSS-R Earth Observation: Concept and Analysis.

    PubMed

    Castellví, Jordi; Camps, Adriano; Corbera, Jordi; Alamús, Ramon

    2018-01-06

    The ³Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of ³Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution.

  12. Height modernization program and subsidence study in northern Ohio.

    DOT National Transportation Integrated Search

    2013-11-01

    This study is an initiative focused on establishing accurate, reliable heights using Global Navigation Satellite System (GNSS) technology in conjunction with traditional leveling, gravity, and modern remote sensing information. The traditional method...

  13. DOTD standards for GPS data collection accuracy : research project capsule.

    DOT National Transportation Integrated Search

    2013-12-01

    Global Navigational Satellite Systems (GNSS), which includes GPS technologies : maintained by the United States, are used extensively throughout government : and industry. These technologies continue to revolutionize positional data : collection acti...

  14. Satellite and lunar laser ranging in infrared

    NASA Astrophysics Data System (ADS)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  15. Fully autonomous navigation for the NASA cargo transfer vehicle

    NASA Technical Reports Server (NTRS)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  16. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  17. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  18. Global Positioning System (GPS): Current status and possible nursery uses

    Treesearch

    Dick Karsky

    2002-01-01

    The GPS (Global Positioning System) is a worldwide satellite-positioning system that was funded, installed, and continues to be operated by the U.S. Department of Defense. The navigation signals are provided free and can be used by anyone who has the equipment necessary to receive them.

  19. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  20. COMPASS Final Report: Lunar Relay Satellite (LRS)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

Top