Sample records for satisfiability modulo theories

  1. Satisfiability modulo theory and binary puzzle

    NASA Astrophysics Data System (ADS)

    Utomo, Putranto

    2017-06-01

    The binary puzzle is a sudoku-like puzzle with values in each cell taken from the set {0, 1}. We look at the mathematical theory behind it. A solved binary puzzle is an n × n binary array where n is even that satisfies the following conditions: (1) No three consecutive ones and no three consecutive zeros in each row and each column, (2) Every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each column, (3) Every two rows and every two columns must be distinct. The binary puzzle had been proven to be an NP-complete problem [5]. Research concerning the satisfiability of formulas with respect to some background theory is called satisfiability modulo theory (SMT). An SMT solver is an extension of a satisfiability (SAT) solver. The notion of SMT can be used for solving various problem in mathematics and industries such as formula verification and operation research [1, 7]. In this paper we apply SMT to solve binary puzzles. In addition, we do an experiment in solving different sizes and different number of blanks. We also made comparison with two other approaches, namely by a SAT solver and exhaustive search.

  2. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  3. How to Differentiate an Integer Modulo n

    ERIC Educational Resources Information Center

    Emmons, Caleb; Krebs, Mike; Shaheen, Anthony

    2009-01-01

    A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.

  4. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-05-01

    collaborative effort “ Adiabatic Quantum Computing Applications Research” (14-RI-CRADA-02) between the Information Directorate and Lock- 3 Algorithm 3...using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using satisfiability modulo theory (SMT) and corresponding SMT...methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using

  5. Remarks on Chern-Simons Invariants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnëv, Pavel

    2010-02-01

    The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

  6. Certified Satisfiability Modulo Theories (SMT) Solving for System Verification

    DTIC Science & Technology

    2017-01-01

    the compositionality of trustworthiness is also a critical capability: tools must be able to trust and use the results of other tools. One approach for...multiple reasoners to work together. Thus, the compositionality of trustworthiness is also a critical capability: tools must be able to trust and use the...level of confidence in the results returned by the underlying SMT solver. Unfortunately, obtaining the high level of trust required for, e.g., safety

  7. Rewriting Modulo SMT and Open System Analysis

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  8. Symbolically Modeling Concurrent MCAPI Executions

    NASA Technical Reports Server (NTRS)

    Fischer, Topher; Mercer, Eric; Rungta, Neha

    2011-01-01

    Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques.

  9. Towards a second law for Lovelock theories

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sayantani; Haehl, Felix M.; Kundu, Nilay; Loganayagam, R.; Rangamani, Mukund

    2017-03-01

    In classical general relativity described by Einstein-Hilbert gravity, black holes behave as thermodynamic objects. In particular, the laws of black hole mechanics can be interpreted as laws of thermodynamics. The first law of black hole mechanics extends to higher derivative theories via the Noether charge construction of Wald. One also expects the statement of the second law, which in Einstein-Hilbert theory owes to Hawking's area theorem, to extend to higher derivative theories. To argue for this however one needs a notion of entropy for dynamical black holes, which the Noether charge construction does not provide. We propose such an entropy function for the family of Lovelock theories, treating the higher derivative terms as perturbations to the Einstein-Hilbert theory. Working around a dynamical black hole solution, and making no assumptions about the amplitude of departure from equilibrium, we construct a candidate entropy functional valid to all orders in the low energy effective field theory. This entropy functional satisfies a second law, modulo a certain subtle boundary term, which deserves further investigation in non-spherically symmetric situations.

  10. Rewriting Modulo SMT

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar A.

    2013-01-01

    Combining symbolic techniques such as: (i) SMT solving, (ii) rewriting modulo theories, and (iii) model checking can enable the analysis of infinite-state systems outside the scope of each such technique. This paper proposes rewriting modulo SMT as a new technique combining the powers of (i)-(iii) and ideally suited to model and analyze infinite-state open systems; that is, systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism due to the system, and external non-determinism due to the environment. They are not amenable to finite-state model checking analysis because they typically are infinite-state. By being reducible to standard rewriting using reflective techniques, rewriting modulo SMT can both naturally model and analyze open systems without requiring any changes to rewriting-based reachability analysis techniques for closed systems. This is illustrated by the analysis of a real-time system beyond the scope of timed automata methods.

  11. A comparison of approaches for finding minimum identifying codes on graphs

    NASA Astrophysics Data System (ADS)

    Horan, Victoria; Adachi, Steve; Bak, Stanley

    2016-05-01

    In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.

  12. SimCheck: An Expressive Type System for Simulink

    NASA Technical Reports Server (NTRS)

    Roy, Pritam; Shankar, Natarajan

    2010-01-01

    MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.

  13. Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Morozov, A.

    2018-04-01

    R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.

  14. Fuzzy Logic Controller Stability Analysis Using a Satisfiability Modulo Theories Approach

    NASA Technical Reports Server (NTRS)

    Arnett, Timothy; Cook, Brandon; Clark, Matthew A.; Rattan, Kuldip

    2017-01-01

    While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.

  15. On a question of Brown, Douglas, and Fillmore

    NASA Astrophysics Data System (ADS)

    Kim, Jaewoong; Lee, Woo Young

    2007-12-01

    In this note we answer an old question of Brown, Douglas, and Fillmore [L. Brown, R.G. Douglas, P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, in: Proc. Conf. Operator Theory, in: Lecture Notes in Math., vol. 345, Springer, Berlin, 1973, pp. 58-128].

  16. Representation of natural numbers in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    2001-03-01

    This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less

  17. An organization of a digital subsystem for generating spacecraft timing and control signals

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1972-01-01

    A modulo-M counter (of clock pulses) is decomposed into parallel modulo-m sub i counters, where each m sub i is a prime power divisor of M. The modulo-p sub i counters are feedback shift registers which cycle through p sub i distinct states. By this organization, every possible nontrivial data frame subperiod and delayed subperiod may be derived. The number of clock pulses required to bring every modulo-p sub i counter to a respective designated state or count is determined by the Chinese remainder theorem. This corresponds to the solution of simultaneous congruences over relatively prime moduli.

  18. The golden ratio and Loshu-Fibonacci Diagram: novel research view on relationship of Chinese medicine and modern biology.

    PubMed

    Chen, Zhao-xue; Huang, Yun-kun; Sun, Ying

    2014-02-01

    Associating geometric arrangements of 9 Loshu numbers modulo 5, investigating property of golden rectangles and characteristics of Fibonacci sequence modulo 10 as well as the two subsequences of its modular sequence by modulo 5, the Loshu-Fibonacci Diagram is created based on strict logical deduction in this paper, which can disclose inherent relationship among Taiji sign, Loshu and Fibonacci sequence modulo 10 perfectly and unite such key ideas of holism, symmetry, holographic thought and yin-yang balance pursuit from Chinese medicine as a whole. Based on further analysis and reasoning, the authors discover that taking the golden ratio and Loshu-Fibonacci Diagram as a link, there is profound and universal association existing between researches of Chinese medicine and modern biology.

  19. System for generating timing and control signals

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Rousey, W. J.; Messner, A. (Inventor)

    1975-01-01

    A system capable of generating every possible data frame subperiod and delayed subperiod of a data frame of length of M clock pulse intervals (CPIs) comprised of parallel modulo-m sub i counters is presented. Each m sub i is a prime power divisor of M and a cascade of alpha sub i identical modulo-p sub i counters. The modulo-p sub i counters are feedback shift registers which cycle through p sub i distinct states. Every possible nontrivial data frame subperiod and delayed subperiod is derived and a specific CPI in the data frame is detected. The number of clock pulses required to bring every modulo-p sub i counter to a respective designated state or count is determined by the Chinese remainder theorem. This corresponds to the solution of simultaneous congruences over relatively prime moduli.

  20. Super-Laplacians and their symmetries

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Lindström, U.

    2017-05-01

    A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.

  1. Optimally Stopped Optimization

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2016-11-01

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark simulated annealing on a class of maximum-2-satisfiability (MAX2SAT) problems. We also compare the performance of a D-Wave 2X quantum annealer to the Hamze-Freitas-Selby (HFS) solver, a specialized classical heuristic algorithm designed for low-tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N =1098 variables, the D-Wave device is 2 orders of magnitude faster than the HFS solver, and, modulo known caveats related to suboptimal annealing times, exhibits identical scaling with problem size.

  2. Binomial Coefficients Modulo a Prime--A Visualization Approach to Undergraduate Research

    ERIC Educational Resources Information Center

    Bardzell, Michael; Poimenidou, Eirini

    2011-01-01

    In this article we present, as a case study, results of undergraduate research involving binomial coefficients modulo a prime "p." We will discuss how undergraduates were involved in the project, even with a minimal mathematical background beforehand. There are two main avenues of exploration described to discover these binomial…

  3. A limit for large R-charge correlators in N = 2 theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  4. Gauge backgrounds and zero-mode counting in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gives a self-contained introduction to the algebro-geometric concepts underlying our framework.

  5. Evidence for a hierarchical transcriptional circuit in Drosophila male germline involving testis-specific TAF and two gene-specific transcription factors, Mod and Acj6.

    PubMed

    Jiang, Mei; Gao, Zhengliang; Wang, Jian; Nurminsky, Dmitry I

    2018-01-01

    To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes. © 2017 Federation of European Biochemical Societies.

  6. Generalized continued fractions and ergodic theory

    NASA Astrophysics Data System (ADS)

    Pustyl'nikov, L. D.

    2003-02-01

    In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.

  7. Absolute phase estimation: adaptive local denoising and global unwrapping.

    PubMed

    Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen

    2008-10-10

    The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America

  8. Global and Local Translation Designs of Quantum Image Based on FRQI

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Tan, Canyun; Ian, Hou

    2017-04-01

    In this paper, two kinds of quantum image translation are designed based on FRQI, including global translation and local translation. Firstly, global translation is realized by employing adder modulo N, where all pixels in the image will be moved, and the circuit of right translation is designed. Meanwhile, left translation can also be implemented by using right translation. Complexity analysis shows that the circuits of global translation in this paper have lower complexity and cost less qubits. Secondly, local translation, consisted of single-column translation, multiple-columns translation and translation in the restricted area, is designed by adopting Gray code. In local translation, any parts of pixels in the image can be translated while other pixels remain unchanged. In order to lower complexity when the number of columns needing to be translated are more than one, multiple-columns translation is proposed, which has the approximate complexity with single-column translation. To perform multiple-columns translation, three conditions must be satisfied. In addition, all translations in this paper are cyclic.

  9. Algebraic cycles and local anomalies in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibred Calabi-Yau four-folds.

  10. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  11. Duality-symmetric supersymmetric Yang-Mills theory in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Hitoshi; Rajpoot, Subhash

    We formulate a duality-symmetric N=1 supersymmetric Yang-Mills theory in three dimensions. Our field content is (A{sub {mu}}{sup I},{lambda}{sup I},{phi}{sup I}), where the index I is for the adjoint representation of an arbitrary gauge group G. Our Hodge duality symmetry is F{sub {mu}{nu}}{sup I}=+{epsilon}{sub {mu}{nu}}{sup {rho}D}{sub {rho}{phi}}{sup I}. Because of this relationship, the presence of two physical fields A{sub {mu}}{sup I} and {phi}{sup I} within the same N=1 supermultiplet poses no problem. We can couple this multiplet to another vector multiplet (C{sub {mu}}{sup I},{chi}{sup I};B{sub {mu}{nu}}{sup I}) with 1+1 physical degrees of freedom modulo dim G. Thanks to peculiar couplings andmore » supersymmetry, the usual problem with an extra vector field in a nontrivial representation does not arise in our system.« less

  12. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  13. Standard random number generation for MBASIC

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1976-01-01

    A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.

  14. Unitary circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. The origin of this circular code X in genes is an open problem since its discovery in 1996. Here, we first show that the unitary circular codes (UCC), i.e. sets of one word, allow to generate unitary circular code motifs (UCC motifs), i.e. a concatenation of the same motif (simple repeats) leading to low complexity DNA. Three classes of UCC motifs are studied here: repeated dinucleotides (D + motifs), repeated trinucleotides (T + motifs) and repeated tetranucleotides (T + motifs). Thus, the D + , T + and T + motifs allow to retrieve, synchronize and maintain a frame modulo 2, modulo 3 and modulo 4, respectively, and their shifted frames (1 modulo 2; 1 and 2 modulo 3; 1, 2 and 3 modulo 4 according to the C 2 , C 3 and C 4 properties, respectively) in the DNA sequences. The statistical distribution of the D + , T + and T + motifs is analyzed in the genomes of eukaryotes. A UCC motif and its comp lementary UCC motif have the same distribution in the eukaryotic genomes. Furthermore, a UCC motif and its complementary UCC motif have increasing occurrences contrary to their number of hydrogen bonds, very significant with the T + motifs. The longest D + , T + and T + motifs in the studied eukaryotic genomes are also given. Surprisingly, a scarcity of repeated trinucleotides (T + motifs) in the large eukaryotic genomes is observed compared to the D + and T + motifs. This result has been investigated and may be explained by two outcomes. Repeated trinucleotides (T + motifs) are identified in the X motifs of low composition (cardinality less than 10) in the genomes of eukaryotes. Furthermore, identical trinucleotide pairs of the circular code X are preferentially used in the gene sequences of eukaryotes. These two results suggest that the unitary circular codes of trinucleotides may have been involved in the formation of the trinucleotide circular code X. Indeed, repeated trinucleotides in the X motifs in the genomes of eukaryotes may represent an intermediary evolution from repeated trinucleotides of cardinality 1 (T + motifs) in the genomes of eukaryotes up to the X motifs of cardinality 20 in the gene sequences of eukaryotes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Proceedings of the Second NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar (Editor)

    2010-01-01

    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.

  16. The recurrence sequences via Sylvester matrices

    NASA Astrophysics Data System (ADS)

    Karaduman, Erdal; Deveci, Ömür

    2017-07-01

    In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.

  17. Graphene-assisted multiple-input high-base optical computing

    PubMed Central

    Hu, Xiao; Wang, Andong; Zeng, Mengqi; Long, Yun; Zhu, Long; Fu, Lei; Wang, Jian

    2016-01-01

    We propose graphene-assisted multiple-input high-base optical computing. We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. An approach to implementing modulo 4 operations of three-input hybrid addition and subtraction of quaternary base numbers in the optical domain using multiple non-degenerate four-wave mixing (FWM) processes in graphene coated optical fiber device and (differential) quadrature phase-shift keying ((D)QPSK) signals is presented. We demonstrate 10-Gbaud modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) in the experiment. The measured optical signal-to-noise ratio (OSNR) penalties for modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) are measured to be less than 7 dB at a bit-error rate (BER) of 2 × 10−3. The BER performance as a function of the relative time offset between three signals (signal offset) is also evaluated showing favorable performance. PMID:27604866

  18. Final Scientific/Technical Report: Breakthrough Design and Implementation of Many-Body Theories for Electron Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Hirata

    2012-01-03

    This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less

  19. Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-11-01

    We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).

  20. Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers

    NASA Astrophysics Data System (ADS)

    Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong

    As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.

  1. Symmetrical treatment of "Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition", for major depressive disorders.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2016-01-01

    We previously presented a group theoretical model that describes psychiatric patient states or clinical data in a graded vector-like format based on modulo groups. Meanwhile, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5, the current version), is frequently used for diagnosis in daily psychiatric treatments and biological research. The diagnostic criteria of DSM-5 contain simple binominal items relating to the presence or absence of specific symptoms. In spite of its simple form, the practical structure of the DSM-5 system is not sufficiently systemized for data to be treated in a more rationally sophisticated way. To view the disease states in terms of symmetry in the manner of abstract algebra is considered important for the future systematization of clinical medicine. We provide a simple idea for the practical treatment of the psychiatric diagnosis/score of DSM-5 using depressive symptoms in line with our previously proposed method. An expression is given employing modulo-2 and -7 arithmetic (in particular, additive group theory) for Criterion A of a 'major depressive episode' that must be met for the diagnosis of 'major depressive disorder' in DSM-5. For this purpose, the novel concept of an imaginary value 0 that can be recognized as an explicit 0 or implicit 0 was introduced to compose the model. The zeros allow the incorporation or deletion of an item between any other symptoms if they are ordered appropriately. Optionally, a vector-like expression can be used to rate/select only specific items when modifying the criterion/scale. Simple examples are illustrated concretely. Further development of the proposed method for the criteria/scale of a disease is expected to raise the level of formalism of clinical medicine to that of other fields of natural science.

  2. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    NASA Astrophysics Data System (ADS)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with. ∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two.

  3. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  4. Implementacion de modulos constructivistas que atiendan "misconceptions" y lagunas conceptuales en temas de la fisica en estudiantes universitarios

    NASA Astrophysics Data System (ADS)

    Santacruz Sarmiento, Neida M.

    Este estudio se enfoco en los "misconception" y lagunas conceptuales en temas fundamentales de Fisica como son Equilibrio Termodinamico y Estatica de fluidos. En primer lugar se trabajo con la identificacion de "misconceptions" y lagunas conceptuales y se analizo en detalle la forma en que los estudiantes construyen sus propias teorias de fenomenos relacionados con los temas. Debido a la complejidad en la que los estudiantes asimilan los conceptos fisicos, se utilizo el metodo de investigacion mixto de tipo secuencial explicativo en dos etapas, una cuantitativa y otra cualitativa. La primera etapa comprendio cuatro fases: (1) Aplicacion de una prueba diagnostica para identificar el conocimiento previo y lagunas conceptuales. (2) Identificacion de "misconceptions" y lagunas del concepto a partir del conocimiento previo. (3) Implementacion de la intervencion por medio de modulos en el topico de Equilibrio Termodinamico y Estatica de Fluidos. (4) Y la realizacion de la pos prueba para analizar el impacto y la efectividad de la intervencion constructivista. En la segunda etapa se utilizo el metodo de investigacion cualitativo, por medio de una entrevista semiestructurada que partio de la elaboracion de un mapa conceptual y se finalizo con un analisis de datos conjuntamente. El desarrollo de este estudio permitio encontrar "misconceptions" y lagunas conceptuales a partir del conocimiento previo de los estudiantes participantes en los temas trabajados, que fueron atendidos en el desarrollo de las distintas actividades inquisitivas que se presentaron en el modulo constructivista. Se encontro marcadas diferencias entre la pre y pos prueba en los temas, esto se debio al requerimiento de habilidades abstractas para el tema de Estatica de Fluidos y al desarrollo intuitivo para el tema de Equilibrio Termodinamico, teniendo mejores respuestas en el segundo. Los participantes demostraron una marcada evolucion y/o cambio en sus estructuras de pensamiento, las pruebas estadisticas de t-pareada fueron significativas para ambos modulos a pesar que en la pos prueba no todos llegaron a la respuesta correcta. El analisis cualitativo de las respuestas de los participantes confirmo la dificultad de remover "misconception" y lagunas conceptuales.

  5. Nonlocal conservation laws of the constant astigmatism equation

    NASA Astrophysics Data System (ADS)

    Hlaváč, Adam; Marvan, Michal

    2017-03-01

    For the constant astigmatism equation, we construct a system of nonlocal conservation laws (an abelian covering) closed under the reciprocal transformations. The corresponding potentials are functionally independent modulo a Wronskian type relation.

  6. The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus.

    PubMed

    Padeken, Jan; Mendiburo, María José; Chlamydas, Sarantis; Schwarz, Hans-Jürgen; Kremmer, Elisabeth; Heun, Patrick

    2013-04-25

    Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Satisfaction of Hygiene and Motivation Needs of Teachers Who Resigned from Teaching.

    ERIC Educational Resources Information Center

    Frataccia, Enrico V.; Hennington, Iris

    The growing incidence of teacher burnout suggests that many teachers have difficulty in satisfying their needs and in deriving satisfaction from teaching. This study examined the needs that teachers appear to have difficulty in satisfying. The study is based on Herzberg's Hygiene-Motivation Theory. This theory, related to Maslow's Hierarchy of…

  8. Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zampiceni, John J.; Harper, Lon T.

    2002-01-01

    This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

  9. Redundancy of constraints in the classical and quantum theories of gravitation.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.

    1972-01-01

    It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.

  10. Space and time in the quantum universe.

    NASA Astrophysics Data System (ADS)

    Smolin, L.

    This paper is devoted to the problem of constructing a quantum theory that could describe a closed system - a quantum cosmology. The author argues that this problem is an aspect of a much older problem - that of how to eliminate from the physical theories "ideal elements", which are elements of the mathematical structure whose interpretation requires the existence of things outside the dynamical system described by the theory. This discussion is aimed at uncovering criteria that a theory of quantum cosmology must satisfy, if it is to give physically sensible predictions. The author proposes three such criteria and shows that conventional quantum cosmology can only satisfy them, if there is an intrinsic time coordinate on the phase space of the theory. It is shown that approaches based on correlations in the wave function, that do not use an inner product, cannot satisfy these criteria. As example, the author discusses the problem of quantizing a class of relational dynamical models invented by Barbour and Bertotti. The dynamical structure of these theories is closely analogous to general relativity, and the problem of their measurement theory is also similar. It is concluded that these theories can only be sensibly quantized if they contain an intrinsic time.

  11. New quantum codes derived from a family of antiprimitive BCH codes

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Ruihu; Lü, Liangdong; Guo, Luobin

    The Bose-Chaudhuri-Hocquenghem (BCH) codes have been studied for more than 57 years and have found wide application in classical communication system and quantum information theory. In this paper, we study the construction of quantum codes from a family of q2-ary BCH codes with length n=q2m+1 (also called antiprimitive BCH codes in the literature), where q≥4 is a power of 2 and m≥2. By a detailed analysis of some useful properties about q2-ary cyclotomic cosets modulo n, Hermitian dual-containing conditions for a family of non-narrow-sense antiprimitive BCH codes are presented, which are similar to those of q2-ary primitive BCH codes. Consequently, via Hermitian Construction, a family of new quantum codes can be derived from these dual-containing BCH codes. Some of these new antiprimitive quantum BCH codes are comparable with those derived from primitive BCH codes.

  12. Possible resonance effect of axionic dark matter in Josephson junctions.

    PubMed

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  13. On classical de Sitter and Minkowski solutions with intersecting branes

    NASA Astrophysics Data System (ADS)

    Andriot, David

    2018-03-01

    Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.

  14. The power of exact conditions in electronic structure theory

    NASA Astrophysics Data System (ADS)

    Bartlett, Rodney J.; Ranasinghe, Duminda S.

    2017-02-01

    Once electron correlation is included in an effective one-particle operator, one has a correlated orbital theory (COT). One such theory is Kohn-Sham density functional theory (KS-DFT), but there are others. Such methods have the prospect to redefine traditional Molecular Orbital (MO) theory by building a quantitative component upon its conceptual framework. This paper asks the question what conditions should such a theory satisfy and can this be accomplished? One such condition for a COT is that the orbital eigenvalues should satisfy an ionization theorem that generalizes Koopmans' approximation to the exact principal ionization potentials for every electron in a molecule. Guided by this principle, minimal parameterizations of KS-DFT are made that provide a good approximation to a quantitative MO theory.

  15. Motivating pharmacy employees.

    PubMed

    White, S J; Generali, J A

    1984-07-01

    Concepts from theories of motivation are used to suggest methods for improving the motivational environment of hospital pharmacy departments. Motivation--the state of being stimulated to take action to achieve a goal or to satisfy a need--comes from within individuals, but hospital pharmacy managers can facilitate motivation by structuring the work environment so that it satisfies employees' needs. Concepts from several theories of motivation are discussed, including McGregor's theory X and theory Y assumptions, Maslow's hierarchy of needs theory, Herzberg's motivation hygiene theory, and Massey's value system theory. Concepts from the Japanese style of management that can be used to facilitate motivation, such as quality circles, also are described. The autocratic, participative, and laissez faire styles of leadership are discussed in the context of the motivation theories, and suggested applications of theoretical concepts to practice are presented.

  16. Concurrent remote entanglement with quantum error correction against photon losses

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  17. Some Properties of Generalized Connections in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Velhinho, J. M.

    2002-12-01

    Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...

  18. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  19. Congruences for central factorial numbers modulo powers of prime.

    PubMed

    Wang, Haiqing; Liu, Guodong

    2016-01-01

    Central factorial numbers are more closely related to the Stirling numbers than the other well-known special numbers, and they play a major role in a variety of branches of mathematics. In the present paper we prove some interesting congruences for central factorial numbers.

  20. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  1. QCD unitarity constraints on Reggeon Field Theory

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-08-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  2. The Psychology of Conspiracy Theories.

    PubMed

    Douglas, Karen M; Sutton, Robbie M; Cichocka, Aleksandra

    2017-12-01

    What psychological factors drive the popularity of conspiracy theories , which explain important events as secret plots by powerful and malevolent groups? What are the psychological consequences of adopting these theories? We review the current research and find that it answers the first of these questions more thoroughly than the second. Belief in conspiracy theories appears to be driven by motives that can be characterized as epistemic (understanding one's environment), existential (being safe and in control of one's environment), and social (maintaining a positive image of the self and the social group). However, little research has investigated the consequences of conspiracy belief, and to date, this research does not indicate that conspiracy belief fulfills people's motivations. Instead, for many people, conspiracy belief may be more appealing than satisfying. Further research is needed to determine for whom, and under what conditions, conspiracy theories may satisfy key psychological motives.

  3. A Finite Abelian Group of Two-Letter Inversions

    ERIC Educational Resources Information Center

    Balbuena, Sherwin E.

    2015-01-01

    In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete…

  4. Efficient image enhancement using sparse source separation in the Retinex theory

    NASA Astrophysics Data System (ADS)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  5. The Psychology of Conspiracy Theories

    PubMed Central

    Douglas, Karen M.; Sutton, Robbie M.; Cichocka, Aleksandra

    2017-01-01

    What psychological factors drive the popularity of conspiracy theories, which explain important events as secret plots by powerful and malevolent groups? What are the psychological consequences of adopting these theories? We review the current research and find that it answers the first of these questions more thoroughly than the second. Belief in conspiracy theories appears to be driven by motives that can be characterized as epistemic (understanding one’s environment), existential (being safe and in control of one’s environment), and social (maintaining a positive image of the self and the social group). However, little research has investigated the consequences of conspiracy belief, and to date, this research does not indicate that conspiracy belief fulfills people’s motivations. Instead, for many people, conspiracy belief may be more appealing than satisfying. Further research is needed to determine for whom, and under what conditions, conspiracy theories may satisfy key psychological motives. PMID:29276345

  6. Scalar-tensor theories and modified gravity in the wake of GW170817

    NASA Astrophysics Data System (ADS)

    Langlois, David; Saito, Ryo; Yamauchi, Daisuke; Noui, Karim

    2018-03-01

    Theories of dark energy and modified gravity can be strongly constrained by astrophysical or cosmological observations, as illustrated by the recent observation of the gravitational wave event GW170817 and of its electromagnetic counterpart GRB 170817A, which showed that the speed of gravitational waves, cg , is the same as the speed of light, within deviations of order 10-15 . This observation implies severe restrictions on scalar-tensor theories, in particular theories whose action depends on second derivatives of a scalar field. Working in the very general framework of degenerate higher-order scalar-tensor (DHOST) theories, which encompass Horndeski and beyond Horndeski theories, we present the DHOST theories that satisfy cg=c . We then examine, for these theories, the screening mechanism that suppresses scalar interactions on small scales, namely the Vainshtein mechanism, and compute the corresponding gravitational laws for a nonrelativistic spherical body. We show that it can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation and can be constrained by present and future astrophysical observations.

  7. Refined gradient theory of scale-dependent superthin rods

    NASA Astrophysics Data System (ADS)

    Lurie, S. A.; Kuznetsova, E. L.; Rabinskii, L. N.; Popova, E. I.

    2015-03-01

    A version of the refined nonclassical theory of thin beams whose thickness is comparable with the scale characteristic of the material structure is constructed on the basis of the gradient theory of elasticity which, in contrast to the classical theory, contains some additional physical characteristics depending on the structure scale parameters and is therefore most appropriate for modeling the strains of scale-dependent systems. The fundamental conditions for the well-posedness of the gradient theories are obtained for the first time, and it is shown that some of the known applied gradient theories do not generally satisfy the well-posedness criterion. A version of the well-posed gradient strain theory which satisfies the symmetry condition is proposed. The well-posed gradient theory is then used to implement the method of kinematic hypotheses for constructing a refined theory of scale-dependent beams. The equilibrium equations of the refined theory of scale-dependent Timoshenko and Bernoulli beams are obtained. It is shown that the scale effects are localized near the beam ends, and therefore, taking the scale effects into account does not give any correction to the bending rigidity of long beams as noted in the previously published papers dealing with the scale-dependent beams.

  8. What is satisfying about satisfying events? Testing 10 candidate psychological needs.

    PubMed

    Sheldon, K M; Elliot, A J; Kim, Y; Kasser, T

    2001-02-01

    Three studies compared 10 candidate psychological needs in an attempt to determine which are truly most fundamental for humans. Participants described "most satisfying events" within their lives and then rated the salience of each of the 10 candidate needs within these events. Supporting self-determination theory postulates (Ryan & Deci, 2000)--autonomy, competence, and relatedness, were consistently among the top 4 needs, in terms of both their salience and their association with event-related affect. Self-esteem was also important, whereas self-actualization or meaning, physical thriving, popularity or influence, and money-luxury were less important. This basic pattern emerged within three different time frames and within both U.S. and South Korean samples and also within a final study that asked, "What's unsatisfying about unsatisfying events?" Implications for hierarchical theories of needs are discussed.

  9. On Fibonacci Numbers Which Are Elliptic Korselt Numbers

    DTIC Science & Technology

    2014-11-17

    1, where (a|p) denotes the Legendre symbol of a with respect to p, then the order of group of points on E modulo p denoted #E(Fp), equals p+1. In...Fibonacci sequence, polynomials and the Euler function”, Indag. Math. (N.S.) 17 (2006), 611–625. [8] F. Luca and I. E. Shparlinski, “On the counting

  10. Robust Modulo Remaindering and Applications in Radar and Sensor Signal Processing

    DTIC Science & Technology

    2015-08-27

    Chinese Remainder Theorem in FDD Systems, Science China -- Information Sciences, vol.55, no.7, pp. 1605 -1616, July 2012. 3) Y. Liu, X.-G. Xia, and H. L...Sciences, vol.55, no.7, pp. 1605 -1616, July 2012. 3) Y. Liu, X.-G. Xia, and H. L. Zhang, Distributed Space-Time Coding for Full-DuplexAsynchronous

  11. Stable cosmology in chameleon bigravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  12. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  13. Differential Models for B-Type Open-Closed Topological Landau-Ginzburg Theories

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi

    2018-05-01

    We propose a family of differential models for B-type open-closed topological Landau-Ginzburg theories defined by a pair (X,W), where X is any non-compact Calabi-Yau manifold and W is any holomorphic complex-valued function defined on X whose critical set is compact. The models are constructed at cochain level using smooth data, including the twisted Dolbeault algebra of polyvector-valued forms and a twisted Dolbeault category of holomorphic factorizations of W. We give explicit proposals for cochain level versions of the bulk and boundary traces and for the bulk-boundary and boundary-bulk maps of the Landau-Ginzburg theory. We prove that most of the axioms of an open-closed TFT (topological field theory) are satisfied on cohomology and conjecture that the remaining two axioms (namely non-degeneracy of bulk and boundary traces and the topological Cardy constraint) are also satisfied.

  14. Money Buys Financial Security and Psychological Need Satisfaction: Testing Need Theory in Affluence

    ERIC Educational Resources Information Center

    Howell, Ryan T.; Kurai, Mark; Tam, Leona

    2013-01-01

    The most prominent theory to explain the curvilinear relationship between income and subjective well-being (SWB) is need theory, which proposes that increased income and wealth can lead to increased well-being in poverty because money is used to satisfy basic physiological needs. The present study tests the tenets of need theory by proposing that…

  15. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  16. Analysis and Synthesis of Robust Data Structures

    DTIC Science & Technology

    1990-08-01

    1.3.2 Multiversion Software. .. .. .. .. .. .... .. ... .. ...... 5 1.3.3 Robust Data Structure .. .. .. .. .. .. .. .. .. ... .. ..... 6 1.4...context are 0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech- nique. * recovery blocks, which is an adaptation of...implementations using these features for such a hybrid approach. 1.3.2 Multiversion Software Avizienis [AC77] was the first to adapt NMR technique into

  17. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  18. Proof without Words: Squares Modulo 3

    ERIC Educational Resources Information Center

    Nelsen, Roger B.

    2013-01-01

    Using the fact that the sum of the first n odd numbers is n[superscript 2], we show visually that n[superscript 2] is the same as 0 (mod 3) when n is the same as 0 (mod 3), and n[superscript 2] is the same as 1 (mod 3) when n is the same as plus or minus 1 (mod 3).

  19. Spin cat state generation for quadrupolar nuclei in semiconductor quantum dots or defect centers

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun

    Implementing spin-based quantum information encoding schemes in semiconductors has a high priority. The so-called cat codes offer a paradigm that enables hardware-efficient error correction. Their inauguration to semiconductor-based nuclear magnetic resonance framework hinges upon the realization of coherent spin states (CSS). In this work, we show how the crucial superpositions of CSS can be generated for the nuclear spins. This is through the intrinsic electric quadrupole interaction involving a critical role by the biaxiality term that is readily available, as in strained heterostructures of semiconductors, or defect centers having nearby quadrupolar spins. The persistence of the cat states is achieved using a rotation pulse so as to harness the underlying fixed points of the classical Hamiltonian. We classify the two distinct types as polar- and equator-bound over the Bloch sphere with respect to principal axes. Their optimal performance as well as sensitivity under numerous parameter deviations are analyzed. Finally, we present how these modulo-2 cat states can be extended to modulo-4 by a three-pulse scheme. This work was supported by TUBITAK, The Scientific and Technological Research Council of Turkey through the project No. 114F409.

  20. Determining Diagonal Branches in Mine Ventilation Networks

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej

    2014-12-01

    The present paper discusses determining diagonal branches in a mine ventilation network by means of a method based on the relationship A⊗ PT(k, l) = M, which states that the nodal-branch incidence matrix A, modulo-2 multiplied by the transposed path matrix PT(k, l ) from node no. k to node no. l, yields the matrix M where all the elements in rows k and l - corresponding to the start and the end node - are 1, and where the elements in the remaining rows are 0, exclusively. If a row of the matrix M is to contain only "0" elements, the following condition has to be fulfilled: after multiplying the elements of a row of the matrix A by the elements of a column of the matrix PT(k, l), i.e. by the elements of a proper row of the matrix P(k, l ), the result row must display only "0" elements or an even number of "1" entries, as only such a number of "1" entries yields 0 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the path nodes level is 2 (apart from the nodes k and l, whose level is 1), then the number of "1" elements in a row has to be 0 or 2. If, in turn, the rows k and l of the matrix M are to contain only "1" elements, the following condition has to be fulfilled: after multiplying the elements of the row k or l of the matrix A by the elements of a column of the matrix PT(k, l), the result row must display an uneven number of "1" entries, as only such a number of "1" entries yields 1 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the level of the i and j path nodes is 1, then the number of "1" elements in a row has to be 1. The process of determining diagonal branches by means of this method was demonstrated using the example of a simple ventilation network with two upcast shafts and one downcast shaft. W artykule przedstawiono metodę wyznaczania bocznic przekątnych w sieci wentylacyjnej kopalni metodą bazującą na zależności A⊗PT(k, l) = M, która podaje, że macierz incydencji węzłowo bocznicowej A pomnożona modulo 2 przez transponowaną macierz ścieżek PT(k, l) od węzła nr k do węzła nr l daje w wyniku macierz M o takich własnościach że ma same jedynki w wierszach k i l, odpowiadającym węzłom początkowemu i końcowemu i same zera w pozostałych wierszach. Warunkiem na to, aby w wierszu macierzy M były same zera jest aby po pomnożeniu elementów wiersza macierzy A przez elementy kolumny macierzy PT(k, l), czyli przez elementy odpowiedniego wiersza macierzy P(k, l), w wierszu wynikowym były same zera lub parzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 0, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły ścieżki są stopnia 2 (oprócz węzłów k i l, które są stopnia 1), to liczba jedynek w wierszu musi być równa 0 lub 2. Natomiast warunkiem na to, aby w wierszach k i l macierzy M były same jedynki jest aby po pomnożeniu elementów wiersza k lub l macierzy A przez elementy kolumny macierzy PT(k, l) w wierszu wynikowym była nieparzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 1, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły k i j ścieżki są stopnia 1, to liczba jedynek w wierszu musi być równa 1. Wyznaczanie bocznic przekątnych tą metodą pokazano na przykładzie prostej sieci wentylacyjnej z dwoma szybami wydechowymi i jednym wdechowym.

  1. Integrable open spin chains from flavored ABJM theory

    NASA Astrophysics Data System (ADS)

    Bai, Nan; Chen, Hui-Huang; He, Song; Wu, Jun-Bao; Yang, Wen-Li; Zhu, Meng-Qi

    2017-08-01

    We compute the two-loop anomalous dimension matrix in the scalar sector of planar N=3 flavored ABJM theory. Using coordinate Bethe ansatz, we obtain the reflection matrices and confirm that the boundary Yang-Baxter equations are satisfied. This establishes the integrability of this theory in the scalar sector at the two-loop order.

  2. The Effect of Communicative Impediments on Interpersonal Attachment and Deviance

    ERIC Educational Resources Information Center

    Richardson, Nick J.; Barnum, Christopher C.

    2010-01-01

    This article introduces a theory describing the relationship between factors that increase social isolation and deviance. The theory is examined in the context of virtual visitation. We integrate social exchange, anomie, and strain theories to argue that as communication is impeded between two actors, the less satisfied either will be with the…

  3. Matter scattering in quadratic gravity and unitarity

    NASA Astrophysics Data System (ADS)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  4. On uniformly valid high-frequency far-field asymptotic solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.

    1986-01-01

    An asymptotic, large wave number approximation for the Helmholtz equation is derived. The theory is an extension of the geometric acoustic theory, and provides corrections to that theory in the form of multiplicative functions which satisfy parabolic equations. A simple example is used both to illustrate failure of the geometric theory for large propagation distances, and to show the improvement obtained by use of the new theory.

  5. One-way transformation of information

    DOEpatents

    Cooper, James A.

    1989-01-01

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.

  6. New paradoxes of risky decision making.

    PubMed

    Birnbaum, Michael H

    2008-04-01

    During the last 25 years, prospect theory and its successor, cumulative prospect theory, replaced expected utility as the dominant descriptive theories of risky decision making. Although these models account for the original Allais paradoxes, 11 new paradoxes show where prospect theories lead to self-contradiction or systematic false predictions. The new findings are consistent with and, in several cases, were predicted in advance by simple "configural weight" models in which probability-consequence branches are weighted by a function that depends on branch probability and ranks of consequences on discrete branches. Although they have some similarities to later models called "rank-dependent utility," configural weight models do not satisfy coalescing, the assumption that branches leading to the same consequence can be combined by adding their probabilities. Nor do they satisfy cancellation, the "independence" assumption that branches common to both alternatives can be removed. The transfer of attention exchange model, with parameters estimated from previous data, correctly predicts results with all 11 new paradoxes. Apparently, people do not frame choices as prospects but, instead, as trees with branches.

  7. Coaching for a winning dental team.

    PubMed

    Schwartz, S

    2000-08-15

    In 1943, Abraham Maslow, the "father of humanistic psychology," formulated his "Hierarchy of Needs Theory." Maslow proposed people have needs that must be satisfied, and these needs will motivate until they are satisfied. The needs are arranged in a hierarchy or pyramid ranging from basic needs to higher needs with an individual needing to satisfy a lower need before a higher need can motivate. The five needs of the hierarchy are: physiological needs, safety needs, social needs, esteem needs, and self-actualization. This article discusses adaptation of the hierarchy of needs to the dental practice to motivate staff to perform at a higher level.

  8. Novel third-order Lovelock wormhole solutions

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.

    2016-06-01

    In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.

  9. Survey and Results: Most-Used Theory Texts in U.S. Colleges and Universities.

    ERIC Educational Resources Information Center

    Killam, Rosemary; And Others

    The task of choosing the right text(s) for an undergraduate music theory program is difficult, at best. Sixty-seven U.S. institutions of higher learning offering graduate degrees in music theory were surveyed to determine what undergraduate textbooks were used, how long they have been used, and how satisfied the schools were with the texts. The…

  10. Quantization of Poisson Manifolds from the Integrability of the Modular Function

    NASA Astrophysics Data System (ADS)

    Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.

    2014-10-01

    We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.

  11. Ideas, Creencias, Actitudes. Primer Modulo de una Serie para Maestros de Escuela Elemental (Ideas, Beliefs, Attitudes. First Module of a Series for Elementary Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide for teachers, in English and Spanish, examines the role of stereotypes within the context of contemporary beliefs, ideas, and attitudes. A pre-test and post-test are included to measure the user's awareness of stereotypes. Object lessons cover the following topics: (1) definition of stereotypes; (2) racial and ethnic stereotypes; (3)…

  12. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  13. Por Que Rosa No Es Valiente? Cuarto Modulo de una Serie para Maestros de Escuela Elemental (Why Isn't Rosie Brave? Fourth Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide in English and Spanish provides teachers with methods for identifying textbook bias and stereotyping. A pre-test and post-test designed to measure awareness of textbook stereotypes are included. Four object lessons discuss the function of repetition, cumulative effect, omission, and distortion in reinforcing stereotypes, especially…

  14. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    PubMed

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  15. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  16. Three-dimensional unsteady lifting surface theory in the subsonic range

    NASA Technical Reports Server (NTRS)

    Kuessner, H. G.

    1985-01-01

    The methods of the unsteady lifting surface theory are surveyed. Linearized Euler's equations are simplified by means of a Galileo-Lorentz transformation and a Laplace transformation so that the time and the compressibility of the fluid are limited to two constants. The solutions to this simplified problem are represented as integrals with a differential nucleus; these results in tolerance conditions, for which any exact solution must suffice. It is shown that none of the existing three-dimensional lifting surface theories in subsonic range satisfy these conditions. An oscillating elliptic lifting surface which satisfies the tolerance conditions is calculated through the use of Lame's functions. Numerical examples are calculated for the borderline cases of infinitely stretched elliptic lifting surfaces and of circular lifting surfaces. Out of the harmonic solutions any such temporal changes of the down current are calculated through the use of an inverse Laplace transformation.

  17. Lovelock branes

    NASA Astrophysics Data System (ADS)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2017-10-01

    We study the problem of finding brane-like solutions to Lovelock gravity, adopting a general approach to establish conditions that a lower dimensional base metric must satisfy in order that a solution to a given Lovelock theory can be constructed in one higher dimension. We find that for Lovelock theories with generic values of the coupling constants, the Lovelock tensors (higher curvature generalizations of the Einstein tensor) of the base metric must all be proportional to the metric. Hence, allowed base metrics form a subclass of Einstein metrics. This subclass includes so-called ‘universal metrics’, which have been previously investigated as solutions to quantum-corrected field equations. For specially tuned values of the Lovelock couplings, we find that the Lovelock tensors of the base metric need to satisfy fewer constraints. For example, for Lovelock theories with a unique vacuum there is only a single such constraint, a case previously identified in the literature, and brane solutions can be straightforwardly constructed.

  18. Job satisfaction and motivation: how do we inspire employees?

    PubMed

    Alshallah, Sahar

    2004-01-01

    Productivity is defined as the efficient and effective use of resources with minimum waste and effort to achieve outcome. We live in a world that has limited resources. The health care industry faces this limitation more than any other industry. With these challenges facing health care administrators, the concept of productivity, job satisfaction and motivation become very important. Employee satisfaction and retention have always been an important issue for physicians, medical centers and businesses in general. Conventional human resources theories, developed some 50 years ago by Maslow and Herzberg, suggest that satisfied employees tend to be more productive, creative and committed to their employers. People are essential to productivity. The success of productivity improvement strategy is dependent on employee commitment, job satisfaction, skills, and motivation. Maslow's theory consists of a 5-level pyramid: physiologic or basic survival; physical and mental safety; sense of belonging; accomplishment, creativity, and growth; and self-actualization. Herzberg's theory suggests there are 2 groups of factors: hygiene (which satisfy) and motivation. The terms "job satisfaction" and "motivation" have, in my experience, become used interchangeably. There is a difference. Job satisfaction is an individual's emotional response to his or her current job condition, while motivation is the driving force to pursue and satisfy one's needs. Maslow and Herzberg's theories can be easily applied to the workplace. Managers can help employees achieve overall job satisfaction, which, with the employee's internal motivation drive, increase performance on the job.

  19. A Pathway to Learner Autonomy: A Self-Determination Theory Perspective

    ERIC Educational Resources Information Center

    Hu, Pingying; Zhang, Jiaxiu

    2017-01-01

    Concepts of learner autonomy and the self-determination theory provided a theoretical rationale for the action program for learner autonomy. The action program incorporated satisfying learners' basic psychological needs into English Foreign Language (EFL) course education. The action program was implemented for one academic year. Both qualitative…

  20. Cross-Cultural Differences in Childrearing Goals.

    ERIC Educational Resources Information Center

    Hoffman, Lois Wladis

    1988-01-01

    Data from eight countries were analyzed to explore hypotheses about cross-cultural differences in childrearing patterns. Particular attention is given to LeVine's and Kohn's theories, and Hoffman and Hoffman's new theory that contends that children satisfy certain parental needs and that the satisfaction of specific needs affects parents'…

  1. System-of-Systems Acquisition: Alignment and Collaboration

    DTIC Science & Technology

    2011-10-11

    motivational theory as well as empirical evidence, such as the Eureka case. Maslow’s motivational theory ( Maslow , 1943) supports the = = ^Åèìáëáíáçå=oÉëÉ...externalities a new source of market failure? Research in Law and Economics, 17, 1–22. Maslow , A. H. (1943). A theory of human motivation . Psychological...of satisfied needs are motivated by peer recognition. Lawrence and Nohria (2002) identify a four drives theory of individual motivation :

  2. Shaping a valued learning journey: Student satisfaction with learning in undergraduate nursing programs, a grounded theory study.

    PubMed

    Smith, Morgan R; Grealish, Laurie; Henderson, Saras

    2018-05-01

    Student satisfaction is a quality measure of increasing importance in undergraduate programs, including nursing programs. To date theories of student satisfaction have focused primarily on students' perceptions of the educational environment rather than their perceptions of learning. Understanding how students determine satisfaction with learning is necessary to facilitate student learning across a range of educational contexts and meet the expectations of diverse stakeholders. To understand undergraduate nursing students' satisfaction with learning. Constructivist grounded theory methodology was used to identify how nursing students determined satisfaction with learning. Two large, multi-campus, nursing schools in Australia. Seventeen demographically diverse undergraduate nursing students studying different stages of a three year program participated in the study. Twenty nine semi-structured interviews were conducted. Students were invited to describe situations where they had been satisfied or dissatisfied with their learning. A constructivist grounded theory approach was used to analyse the data. Students are satisfied with learning when they shape a valued learning journey that accommodates social contexts of self, university and nursing workplace. The theory has three phases. Phase 1 - orienting self to valued learning in the pedagogical landscape; phase 2 - engaging with valued learning experiences across diverse pedagogical terrain; and phase 3 - recognising valued achievement along the way. When students experience a valued learning journey they are satisfied with their learning. Student satisfaction with learning is unique to the individual, changes over time and maybe transient or sustained, mild or intense. Finding from the research indicate areas where nurse academics may facilitate satisfaction with learning in undergraduate nursing programs while mindful of the expectations of other stakeholders such as the university, nurse registering authorities, employers and the receivers of nursing care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Integrand reduction for two-loop scattering amplitudes through multivariate polynomial division

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2013-04-01

    We describe the application of a novel approach for the reduction of scattering amplitudes, based on multivariate polynomial division, which we have recently presented. This technique yields the complete integrand decomposition for arbitrary amplitudes, regardless of the number of loops. It allows for the determination of the residue at any multiparticle cut, whose knowledge is a mandatory prerequisite for applying the integrand-reduction procedure. By using the division modulo Gröbner basis, we can derive a simple integrand recurrence relation that generates the multiparticle pole decomposition for integrands of arbitrary multiloop amplitudes. We apply the new reduction algorithm to the two-loop planar and nonplanar diagrams contributing to the five-point scattering amplitudes in N=4 super Yang-Mills and N=8 supergravity in four dimensions, whose numerator functions contain up to rank-two terms in the integration momenta. We determine all polynomial residues parametrizing the cuts of the corresponding topologies and subtopologies. We obtain the integral basis for the decomposition of each diagram from the polynomial form of the residues. Our approach is well suited for a seminumerical implementation, and its general mathematical properties provide an effective algorithm for the generalization of the integrand-reduction method to all orders in perturbation theory.

  4. Interpretation for scales of measurement linking with abstract algebra

    PubMed Central

    2014-01-01

    The Stevens classification of levels of measurement involves four types of scale: “Nominal”, “Ordinal”, “Interval” and “Ratio”. This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; ‘Abelian modulo additive group’ for “Ordinal scale” accompanied with ‘zero’, ‘Abelian additive group’ for “Interval scale”, and ‘field’ for “Ratio scale”. Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected. PMID:24987515

  5. Interpretation for scales of measurement linking with abstract algebra.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-01-01

    THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: "Nominal", "Ordinal", "Interval" and "Ratio". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for "Ordinal scale" accompanied with 'zero', 'Abelian additive group' for "Interval scale", and 'field' for "Ratio scale". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected.

  6. Information Theoretic Characterization of Physical Theories with Projective State Space

    NASA Astrophysics Data System (ADS)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyres, Philip C.; Lü, Yongchao; Martone, Mario

    Coulomb branch chiral rings of N = 2 SCFTs are conjectured to be freely generated. While no counter-example is known, no direct evidence for the conjecture is known either. We initiate a systematic study of SCFTs with Coulomb branch chiral rings satisfying non-trivial relations, restricting our analysis to rank 1. The main result of our study is that (rank-1) SCFTs with non-freely generated CB chiral rings when deformed by relevant deformations, always flow to theories with non-freely generated CB rings. This implies that if they exist, they must thus form a distinct subset under RG flows. We also nd manymore » interesting characteristic properties that these putative theories satisfy which may be helpful in proving or disproving their existence using other methods.« less

  8. Los Rizos y el Beisbol. Septimo Modulo de una Serie para Maestros de Escuela Elemental. (Curls and Baseball. Seventh Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide for teachers, in English and Spanish, examines how assigned sex roles affect grade school girls in competitive sports, simple games, pastimes, and other extracurricular activities. A pre-test and post-test are included to measure the user's awareness of sexual stereotypes. Five object lessons cover the following topics: (1) myths that…

  9. Viva La Diferencia! Segundo Modulo de una Serie para Maestros de Escuela Elemental (Long Live the Difference! Second Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide, in English and Spanish, is designed to provide teachers with a scientific basis for identifying myths and distortions about men and women. A pre-test and post-test are included to measure the user's awareness of stereotypes. Object lessons address the following areas: (1) common sexual stereotypes; (2) sexual functions; (3) the…

  10. Personality Module. Test Booklet. Test Items for Booklets 1, 2, 3=Modulo de personalidad. Libro de prueba. Itemes de prueba para los libros 1, 2, 3.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  11. Irregularities and Forecast Studies of Equatorial Spread

    DTIC Science & Technology

    2016-07-13

    less certain and requires investigation. It should be possible to observe the Faraday rotation of the signals received at Jicamarca. This is another...indication of the line-integrated electron number 9 DISTRIBUTION A: Distribution approved for public release. density. Like the phase delay, the Faraday ...angle is a modulo-two-pi quantity that is best used to constrain the time evolution of the ionosphere. Both the Faraday angle and the phase delay are

  12. Can Self-Determination Theory Explain What Underlies the Productive, Satisfying Learning Experiences of Collectivistically Oriented Korean Students?

    ERIC Educational Resources Information Center

    Jang, Hyungshim; Reeve, Johnmarshall; Ryan, Richard M.; Kim, Ahyoung

    2009-01-01

    Recognizing recent criticisms concerning the cross-cultural generalizability of self-determination theory (SDT), the authors tested the SDT view that high school students in collectivistically oriented South Korea benefit from classroom experiences of autonomy support and psychological need satisfaction. In Study 1, experiences of autonomy,…

  13. Current conserving theory at the operator level

    NASA Astrophysics Data System (ADS)

    Yuan, Jiangtao; Wang, Yin; Wang, Jian

    The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.

  14. String theory origin of constrained multiplets

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Vercnocke, Bert; Wrase, Timm

    2016-09-01

    We study the non-linearly realized spontaneously broken supersymmetry of the (anti-)D3-brane action in type IIB string theory. The worldvolume fields are one vector A μ , three complex scalars ϕ i and four 4d fermions λ 0, λ i. These transform, in addition to the more familiar {N}=4 linear supersymmetry, also under 16 spontaneously broken, non-linearly realized supersymmetries. We argue that the worldvolume fields can be packaged into the following constrained 4d non-linear {N}=1 multiplets: four chiral multiplets S, Y i that satisfy S 2 = SY i =0 and contain the worldvolume fermions λ 0 and λ i ; and four chiral multiplets W α , H i that satisfy S{W}_{α }=S{overline{D}}_{overset{\\cdotp }{α }}{overline{H}}^{overline{imath}}=0 and contain the vector A μ and the scalars ϕ i . We also discuss how placing an anti-D3-brane on top of intersecting O7-planes can lead to an orthogonal multiplet Φ that satisfies S(Φ -overline{Φ})=0 , which is particularly interesting for inflationary cosmology.

  15. The Unengaged Mind: Defining Boredom in Terms of Attention.

    PubMed

    Eastwood, John D; Frischen, Alexandra; Fenske, Mark J; Smilek, Daniel

    2012-09-01

    Our central goal is to provide a definition of boredom in terms of the underlying mental processes that occur during an instance of boredom. Through the synthesis of psychodynamic, existential, arousal, and cognitive theories of boredom, we argue that boredom is universally conceptualized as "the aversive experience of wanting, but being unable, to engage in satisfying activity." We propose to map this conceptualization onto underlying mental processes. Specifically, we propose that boredom be defined in terms of attention. That is, boredom is the aversive state that occurs when we (a) are not able to successfully engage attention with internal (e.g., thoughts or feelings) or external (e.g., environmental stimuli) information required for participating in satisfying activity, (b) are focused on the fact that we are not able to engage attention and participate in satisfying activity, and (c) attribute the cause of our aversive state to the environment. We believe that our definition of boredom fully accounts for the phenomenal experience of boredom, brings existing theories of boredom into dialogue with one another, and suggests specific directions for future research on boredom and attention. © The Author(s) 2012.

  16. Unification Principle and a Geometric Field Theory

    NASA Astrophysics Data System (ADS)

    Wanas, Mamdouh I.; Osman, Samah N.; El-Kholy, Reham I.

    2015-08-01

    In the context of the geometrization philosophy, a covariant field theory is constructed. The theory satisfies the unification principle. The field equations of the theory are constructed depending on a general differential identity in the geometry used. The Lagrangian scalar used in the formalism is neither curvature scalar nor torsion scalar, but an alloy made of both, the W-scalar. The physical contents of the theory are explored depending on different methods. The analysis shows that the theory is capable of dealing with gravity, electromagnetism and material distribution with possible mutual interactions. The theory is shown to cover the domain of general relativity under certain conditions.

  17. Dona Ana No Esta Aqui. Sexto Modulo de una Serie para Maestros de Escuela Elemental (Dona Ana Isn't Here. Sixth Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide in English and Spanish examines the roles assigned to women in social studies textbooks and the omission of women from history books. It analyzes the topics, textbooks, pictures, and narrations in use, and offers alternatives to these biased materials. A pre-test and post-test are included to measure the user's awareness of textbook…

  18. Monotonic sequences related to zeros of Bessel functions

    NASA Astrophysics Data System (ADS)

    Lorch, Lee; Muldoon, Martin

    2008-12-01

    In the course of their work on Salem numbers and uniform distribution modulo 1, A. Akiyama and Y. Tanigawa proved some inequalities concerning the values of the Bessel function J 0 at multiples of π, i.e., at the zeros of J 1/2. This raises the question of inequalities and monotonicity properties for the sequences of values of one cylinder function at the zeros of another such function. Here we derive such results by differential equations methods.

  19. AN/TAC-1 demultiplexer circuit card assembly

    NASA Astrophysics Data System (ADS)

    Krueger, Paul J.

    1989-01-01

    This report describes the design, operation, and testing of the AN/TAC-1 demultiplexer subassembly. It demultiplexes the 6144 kb/s digital data stream received over fiber optic cable or tropo satellite support radio, and converts it into 2 digital groups and 16 digital channels. Timing recovery is accomplished by generating a 18432 kHz master clock synchronized to the incoming data. This master clock is divided modulo two to generate the proper group and loop timing.

  20. Reduction of Flow Diagrams to Unfolded Form Modulo Snarls.

    DTIC Science & Technology

    1987-04-14

    the English name of the Greek letter zeta.) 1.) An unintelligent canonical method called the Ŗ-level crossbar/pole" representation (3cp). This... Second , it will make these pictorial representations (all of which go by the name fC. Even though this is an abuse of language , it is in the spirit...received an M.S. degree In computer and communications sciences from the University of Michigan. Bs Is currently teaching a course on assembly language

  1. Economic Organization Module. Test Booklet. Test Items for Booklets 1, 2, 3=Libro de prueba. Modulo de organizacion economica. Itemes de prueba para los libros 1, 2, 3.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  2. Environment Module. Test Booklet. Test Items for Booklets 1, 2, 3, 4=Libro de prueba. Modulo del medio ambiente. Itemes de prueba para los libros 1, 2, 3, 4.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and are designed to help students understand some major human problems and make sound, responsive decisions to…

  3. The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.

    PubMed

    Dias, José M B; Leitao, José M N

    2002-01-01

    This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.

  4. Ways by Which Comparable Income Affects Life Satisfaction in Hong Kong

    ERIC Educational Resources Information Center

    Cheung, Chau-kiu; Leung, Kwan-kwok

    2008-01-01

    Proponents of social equality attribute low life satisfaction to income inequality in society, an inequality which occurs when most people have relatively low income and only a few have high income. In contrast, range-frequency theory and other social comparison theories predict that when most people have low income, they are satisfied because of…

  5. Beyond the Systems Approach to Family Therapy: An Ecological Perspective.

    ERIC Educational Resources Information Center

    Coleman, Paul R.; Griffith, Mariellen

    A brief review of systems theory provides a rationale for an underlying theoretical model within which systems theory can be more completely understood. The essence of the model is that persons are the major unit of study because the available means of satisfying "basic needs" define and shape interaction patterns in the family as in other human…

  6. The Impact of Item Position Change on Item Parameters and Common Equating Results under the 3PL Model

    ERIC Educational Resources Information Center

    Meyers, Jason L.; Murphy, Stephen; Goodman, Joshua; Turhan, Ahmet

    2012-01-01

    Operational testing programs employing item response theory (IRT) applications benefit from of the property of item parameter invariance whereby item parameter estimates obtained from one sample can be applied to other samples (when the underlying assumptions are satisfied). In theory, this feature allows for applications such as computer-adaptive…

  7. Three dimensional elements with Lagrange multipliers for the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Rok; Lee, Byung-Chai

    2018-07-01

    Three dimensional mixed elements for the modified couple stress theory are proposed. The C1 continuity for the displacement field, which is required because of the curvature term in the variational form of the theory, is satisfied weakly by introducing a supplementary rotation as an independent variable and constraining the relation between the rotation and the displacement with a Lagrange multiplier vector. An additional constraint about the deviatoric curvature is also considered for three dimensional problems. Weak forms with one constraint and two constraints are derived, and four elements satisfying convergence criteria are developed by applying different approximations to each field of independent variables. The elements pass a [InlineEquation not available: see fulltext.] patch test for three dimensional problems. Numerical examples show that the additional constraint could be considered essential for the three dimensional elements, and one of the elements is recommended for practical applications via the comparison of the performances of the elements. In addition, all the proposed elements can represent the size effect well.

  8. Softened gravity and the extension of the standard model up to infinite energy

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; Isidori, Gino; Salvio, Alberto; Strumia, Alessandro

    2015-02-01

    Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than 1011 GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfill these properties, we classify 4- dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions g 1 = 0, M t = 186 GeV, M τ = 0, M h = 163 GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

  9. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  10. Chiral symmetry and π - π scattering in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; ...

    2014-11-14

    The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less

  11. Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated

    DOE PAGES

    Argyres, Philip C.; Lü, Yongchao; Martone, Mario

    2017-06-27

    Coulomb branch chiral rings of N = 2 SCFTs are conjectured to be freely generated. While no counter-example is known, no direct evidence for the conjecture is known either. We initiate a systematic study of SCFTs with Coulomb branch chiral rings satisfying non-trivial relations, restricting our analysis to rank 1. The main result of our study is that (rank-1) SCFTs with non-freely generated CB chiral rings when deformed by relevant deformations, always flow to theories with non-freely generated CB rings. This implies that if they exist, they must thus form a distinct subset under RG flows. We also nd manymore » interesting characteristic properties that these putative theories satisfy which may be helpful in proving or disproving their existence using other methods.« less

  12. Theories for the origin of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Daily, W. D.; Dyal, P.

    1979-01-01

    This paper reviews the major theories which have been proposed to explain the remanent magnetism found in the lunar crust. A total of nine different mechanisms for lunar magnetism are discussed and evaluated in light of the theoretical and experimental constraints pertinent to lunar magnetism. It is concluded that none of these theories in their present state of development satisfy all the known constraints. However, the theories which agree best with the present understanding of the moon are meteorite impact magnetization, thermoelectric dynamo field generation, and an early solar wind field.

  13. Momentum constraints as integrability conditions for the Hamiltonian constraint in general relativity.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.; Teitelboim, C.

    1972-01-01

    It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.

  14. Fairy-Tale Physics Farewell to Reality Bankrupting Physics: Baggott-Unzicker-Jones Critiques Shame Physics' Shameless Media-Hype P.R. Spin-Doctoring Touting Sci-Fi Veracity-Abandonment ``Show-Biz'' Spectacle: Caveat Emptor!!!

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2014-03-01

    Baggott[Farewell to Reality: How Fairy-Tale Physics Betrayed Search For Scientific Truth]-Unzicker [Bankrupting Physics: How Top Scientists Are Gambling Away Credibility] shame physics shameless rock-star media-hype P.R. spin-doctoring veracity-abandoning touting sci-fi show-biz aided by online proliferation of uncritical pop-sci science-writers verbal diarrhea, all spectacle vs little truth, lacking Kant-Popper skepticism/ falsification, lemming-like stampedes to truth abandonment, qualified by vague adverbs: might, could, should, may,...vs factual is! Physics, motivated by financial greed, swept up in its very own hype, touts whatever next big thing/cutting-edge bombast ad infinitum/ad nauseum, turning it into mere trendy carney sideshow, full of fury(FOF) but signifying absolutely nothing! Witness: GIGO claims string-theory holographic-universe causes cuprates optical conductivity; failed Anderson RVB cuprates theory vs. Keimer discovery all cuprates ``paramagnons'' bosons aka Overhauser SDWs; Overbye NYT holographic-universe jargonial-obfuscation comments including one from APS journals editor-in-chief re. its unintelligibility, FOF but signifying absolutely nothing INTELLIGIBLE!; Bak/BNL SOC tad late rediscovery of F =ma mere renaming of Siegel acoustic-emission!; 2007 physics Nobel-prize Fert-Gruenberg rediscovery of Siegel[JMMM 7,312(78); https://www.flickr.com/search/?q = GIANT-MAGNETORESISTANCE] GMR. Each trendy latest big thing modulo lack of prior attribution aka out and out bombastic chicanery! Siegel caveat emptor ``Buzzwordism, Bandwagonism, Sloganeering for Fun Profit Survival Ego'' sociological-dysfunctionality thrives!

  15. Fairy-Tale Physics Farewell to Reality Bankrupting Physics: Baggott-Unzicker-Jones Critiques Shame Physics' Shameless Media-Hype P.R. Spin-Doctoring Touting Sci-Fi Veracity-Abandonment ``Show-Biz'' Spectacle: Caveat Emptor!!!

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2014-03-01

    Baggott[Farewell to Reality: How Fairy-Tale Physics Betrayed Search For Scientific Truth]-Unzicker [Bankrupting Physics: How Top Scientists Are Gambling Away Credibility] shame physics shameless rock-star media-hype P.R. spin-doctoring veracity-abandoning touting sci-fi show-biz aided by online proliferation of uncritical pop-sci science-writers verbal diarrhea, all spectacle vs little truth, lacking Kant-Popper skepticism/falsification, lemming-like stampedes to truth abandonment, qualified by vague adverbs: might, could, should, may,...vs factual is! Physics, motivated by financial greed, swept up in its very own hype, touts whatever next big thing/cutting-edge bombast ad infinitum/ad nauseum, turning it into mere trendy carney sideshow, full of fury(FOF) but signifying absolutely nothing! Witness: GIGO claims string-theory holographic-universe causes cuprates optical conductivity; failed Anderson RVB cuprates theory vs. Keimer discovery all cuprates ``paramagnons'' bosons aka Overhauser SDWs; Overbye NYT holographic-universe jargonial-obfuscation comments including one from APS journals editor-in-chief re. its unintelligibility, FOF but signifying absolutely nothing INTELLIGIBLE!; Bak/BNL SOC tad late rediscovery of F =ma mere renaming of Siegel acoustic-emission!; 2007 physics Nobel-prize Fert-Gruenberg rediscovery of Siegel[JMMM 7,312(78); https://www.flickr.com/search/?q=GIANT-MAGNETORESISTANCE] GMR. Each trendy latest big thing modulo lack of prior attribution aka out and out bombastic chicanery! Siegel caveat emptor ``Buzzwordism, Bandwagonism, Sloganeering for Fun Profit Survival Ego'' sociological-dysfunctionality thrives!

  16. The Generalized Optic Acceleration Cancellation Theory of Catching

    ERIC Educational Resources Information Center

    McLeod, Peter; Reed, Nick; Dienes, Zoltan

    2006-01-01

    The generalized optic acceleration cancellation (GOAC) theory of catching proposes that the path of a fielder running to catch a ball is determined by the attempt to satisfy 2 independent constraints. The 1st is to keep the angle of elevation of gaze to the ball increasing at a decreasing rate. The 2nd is to control the rate of horizontal rotation…

  17. Does Extrinsic Goal Framing Enhance Extrinsic Goal-Oriented Individuals' Learning and Performance? An Experimental Test of the Match Perspective versus Self-Determination Theory

    ERIC Educational Resources Information Center

    Vansteenkiste, Maarten; Timmermans, Tinneke; Lens, Willy; Soenens, Bart; Van den Broeck, Anja

    2008-01-01

    Previous work within self-determination theory has shown that experimentally framing a learning activity in terms of extrinsic rather than intrinsic goals results in poorer conceptual learning and performance, presumably because extrinsic goal framing detracts attention from the learning activity and is less directly satisfying of basic…

  18. Investigating Students' Perceived Discipline Relevance Subsequent to Playing Educational Computer Games: A Personal Interest and Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Sorebo, Oystein; Haehre, Reidar

    2012-01-01

    The purpose of this study is to explain students' perceived relevance of playing an educational game as a means for development of discipline competence. Based on self-determination theory and the concept of personal interest, we propose that: Satisfying students' basic needs for competence, autonomy, and relatedness when playing educational games…

  19. The Boundary Layers in Fluids with Little Friction

    NASA Technical Reports Server (NTRS)

    Blasius, H.

    1950-01-01

    The vortices forming in flowing water behind solid bodies are not represented correctly by the solution of the potential theory nor by Helmholtz's jets. Potential theory is unable to satisfy the condition that the water adheres at the wetted bodies, and its solutions of the fundamental hydrodynamic equations are at variance with the observation that the flow separates from the body at a certain point and sends forth a highly turbulent boundary layer into the free flow. Helmholtz's theory attempts to imitate the latter effect in such a way that it joins two potential flows, jet and still water, nonanalytical along a stream curve. The admissibility of this method is based on the fact that, at zero pressure, which is to prevail at the cited stream curve, the connection of the fluid, and with it the effect of adjacent parts on each other, is canceled. In reality, however, the pressure at these boundaries is definitely not zero, but can even be varied arbitrarily. Besides, Helmholtz's theory with its potential flows does not satisfy the condition of adherence nor explain the origin of the vortices, for in all of these problems, the friction must be taken into account on principle, according to the vortex theorem.

  20. Green's Functions in Space and Time.

    ERIC Educational Resources Information Center

    Rowe, E. G. Peter

    1979-01-01

    Gives a sketch of some topics in distribution theory that is technically simple, yet provides techniques for handling the partial differential equations satisfied by the most important Green's functions in physics. (Author/GA)

  1. Performance Analysis of IEEE 802.11g Waveform Transmitted Over a Fading Channel with Pulse-Noise Interference

    DTIC Science & Technology

    2006-06-01

    called packet binary convolutional code (PBCC), was included as an option for performance at rate of either 5.5 or 11 Mpbs. The second offshoot...and the code rate is r k n= . A general convolutional encoder can be implemented with k shift-registers and n modulo-2 adders. Higher rates can be...derived from lower rate codes by employing “ puncturing .” Puncturing is a procedure for omitting some of the encoded bits in the transmitter (thus

  2. Universal Relation among the Many-Body Chern Number, Rotation Symmetry, and Filling

    NASA Astrophysics Data System (ADS)

    Matsugatani, Akishi; Ishiguro, Yuri; Shiozaki, Ken; Watanabe, Haruki

    2018-03-01

    Understanding the interplay between the topological nature and the symmetry property of interacting systems has been a central matter of condensed matter physics in recent years. In this Letter, we establish nonperturbative constraints on the quantized Hall conductance of many-body systems with arbitrary interactions. Our results allow one to readily determine the many-body Chern number modulo a certain integer without performing any integrations, solely based on the rotation eigenvalues and the average particle density of the many-body ground state.

  3. Passive demodulation of miniature fiber-optic-based interferometric sensors using a time-multiplexing technique.

    PubMed

    Santos, J L; Jackson, D A

    1991-08-01

    A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.

  4. Una Escoba para Ana, Cien Oficios para Juan. Quinto Modulo de una Serie para Maestros de Escuela Elemental. (A Broom for Anna, A Hundred Jobs for John. Fifth Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide for teachers, in English and Spanish, examines the stereotyped work roles assigned to men and women. The guide examines educational materials that perpetuate these roles and presents teaching alternatives which reinforce students' self esteem and confidence. A pre-test and post-test are included to measure the user's awareness of…

  5. Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Takeo

    2012-08-15

    We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.

  6. Por Que Mami No Puede Cambiar una Goma? Tercer Modulo de una Serie para Maestros de Escuela Elemental. (Why Can't Mommy Change a Flat Tire? Third Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide for teachers, in English and Spanish, examines the role parents play in the socialization of sex roles. A pre-test and post test are included to measure the user's awareness of sexual stereotyping. Five object lessons cover the following topics: (1) stereotypes which exist prior to a baby's birth; (2) behavioral standards on which…

  7. Culture and Social Organization Module. Test Booklet. Test Items for Booklets 1, 2, 3, 4=Libro de prueba. Modulo de cultura y organizacion social. Itemes de prueba para los libros 1, 2, 3, 4.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and are designed to help students understand some major human problems and make sound, responsive decisions to…

  8. Moving toward more perfect unions: daily and long-term consequences of approach and avoidance goals in romantic relationships.

    PubMed

    Impett, Emily A; Gordon, Amie M; Kogan, Aleksandr; Oveis, Christopher; Gable, Shelly L; Keltner, Dacher

    2010-12-01

    In 2 daily experience studies and a laboratory study, the authors test predictions from approach-avoidance motivational theory to understand how dating couples can maintain feelings of relationship satisfaction in their daily lives and over the course of time. Approach goals were associated with increased relationship satisfaction on a daily basis and over time, particularly when both partners were high in approach goals. Avoidance goals were associated with decreases in relationship satisfaction over time, and people were particularly dissatisfied when they were involved with a partner with high avoidance goals. People high in approach goals and their partners were rated as relatively more satisfied and responsive to a partner's needs by outside observers in the lab, whereas people with high avoidance goals and their partners were rated as less satisfied and responsive. Positive emotions mediated the link between approach goals and daily satisfaction in both studies, and responsiveness to the partner's needs was an additional behavioral mechanism in Study 2. Implications of these findings for approach-avoidance motivational theory and for the maintenance of satisfying relationships over time are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. Yang-Mills gauge conditions from Witten's open string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Haidong; Siegel, Warren

    2007-02-15

    We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.

  10. Wormhole solutions in f(R) gravity satisfying energy conditions

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-10-01

    Without reference to exotic sources construction of viable wormholes in Einstein’s general relativity remained ever a myth. With the advent of modified theories, however, specifically the f(R) theory, new hopes arose for the possibility of such objects. From this token, we construct traversable wormholes in f(R) theory supported by a fluid source which respects at least the weak energy conditions. We provide an example (Example 1) of asymptotically flat wormhole in f(R) gravity without ghosts.

  11. Does horizon entropy satisfy a quantum null energy conjecture?

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald

    2016-12-01

    A modern version of the idea that the area of event horizons gives 4G times an entropy is the Hubeny-Rangamani causal holographic information (CHI) proposal for holographic field theories. Given a region R of a holographic QFTs, CHI computes A/4G on a certain cut of an event horizon in the gravitational dual. The result is naturally interpreted as a coarse-grained entropy for the QFT. CHI is known to be finitely greater than the fine-grained Hubeny-Rangamani-Takayanagi (HRT) entropy when \\partial R lies on a Killing horizon of the QFT spacetime, and in this context satisfies other non-trivial properties expected of an entropy. Here we present evidence that it also satisfies the quantum null energy condition (QNEC), which bounds the second derivative of the entropy of a quantum field theory on one side of a non-expanding null surface by the flux of stress-energy across the surface. In particular, we show CHI to satisfy the QNEC in 1  +  1 holographic CFTs when evaluated in states dual to conical defects in AdS3. This surprising result further supports the idea that CHI defines a useful notion of coarse-grained holographic entropy, and suggests unprecedented bounds on the rate at which bulk horizon generators emerge from a caustic. To supplement our motivation, we include an appendix deriving a corresponding coarse-grained generalized second law for 1  +  1 holographic CFTs perturbatively coupled to dilaton gravity.

  12. Relaxation approximation in the theory of shear turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1995-01-01

    Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.

  13. Yangian Symmetry and Integrability of Planar N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Beisert, Niklas; Garus, Aleksander; Rosso, Matteo

    2017-04-07

    In this Letter, we establish Yangian symmetry of planar N=4 supersymmetric Yang-Mills theory. We prove that the classical equations of motion of the model close onto themselves under the action of Yangian generators. Moreover, we propose an off-shell extension of our statement, which is equivalent to the invariance of the action and prove that it is exactly satisfied. We assert that our relationship serves as a criterion for integrability in planar gauge theories by explicitly checking that it applies to the integrable Aharony-Bergman-Jafferis-Maldacena theory but not to the nonintegrable N=1 supersymmetric Yang-Mills theory.

  14. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  15. The Relationship between Employer Endorsement of Continuing Education and Training and Work and Study Performance: A Hong Kong Case Study

    ERIC Educational Resources Information Center

    Hung, Humphry; Wong, Yiu Hing

    2007-01-01

    Based on psychological contract theory and expectancy disconfirmation theory, we posit that if employers support their staff by endorsing their continuing education and training, these employees will in turn be more satisfied and will perform better not only in their studies but also in their jobs. We also propose that such an endorsement will…

  16. T-Duality for Orientifolds and Twisted KR-Theory

    NASA Astrophysics Data System (ADS)

    Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan

    2014-08-01

    D-brane charges in orientifold string theories are classified by the KR-theory of Atiyah. However, this is assuming that all O-planes have the same sign. When there are O-planes of different signs, physics demands a "KR-theory with a sign choice" which up until now has not been studied by mathematicians (with the unique exception of Moutuou, who did not have a specific application in mind). We give a definition of this theory and compute it for orientifold theories compactified on S 1 and T 2. We also explain how and why additional "twisting" is implemented. We show that our results satisfy all possible T-duality relationships for orientifold string theories on elliptic curves, which will be studied further in subsequent work.

  17. Foliated eight-manifolds for M-theory compactification

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Lazaroiu, Calin Iuliu

    2015-01-01

    We characterize compact eight-manifolds M which arise as internal spaces in flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation of M which carries a leafwise G 2 structure, such that the O'Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G 2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C * algebra is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of is dense in M.

  18. Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models

    NASA Astrophysics Data System (ADS)

    de Alfaro, V.; Filippov, A. T.

    2010-01-01

    We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.

  19. Drag Minimization for Wings and Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Fuller, Franklyn B

    1958-01-01

    The minimization of inviscid fluid drag is studied for aerodynamic shapes satisfying the conditions of linearized theory, and subject to imposed constraints on lift, pitching moment, base area, or volume. The problem is transformed to one of determining two-dimensional potential flows satisfying either Laplace's or Poisson's equations with boundary values fixed by the imposed conditions. A general method for determining integral relations between perturbation velocity components is developed. This analysis is not restricted in application to optimum cases; it may be used for any supersonic wing problem.

  20. Judgment and decision making.

    PubMed

    Mellers, B A; Schwartz, A; Cooke, A D

    1998-01-01

    For many decades, research in judgment and decision making has examined behavioral violations of rational choice theory. In that framework, rationality is expressed as a single correct decision shared by experimenters and subjects that satisfies internal coherence within a set of preferences and beliefs. Outside of psychology, social scientists are now debating the need to modify rational choice theory with behavioral assumptions. Within psychology, researchers are debating assumptions about errors for many different definitions of rationality. Alternative frameworks are being proposed. These frameworks view decisions as more reasonable and adaptive that previously thought. For example, "rule following." Rule following, which occurs when a rule or norm is applied to a situation, often minimizes effort and provides satisfying solutions that are "good enough," though not necessarily the best. When rules are ambiguous, people look for reasons to guide their decisions. They may also let their emotions take charge. This chapter presents recent research on judgment and decision making from traditional and alternative frameworks.

  1. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE PAGES

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    2017-04-18

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  2. Fuzzy sets, rough sets, and modeling evidence: Theory and Application. A Dempster-Shafer based approach to compromise decision making with multiattributes applied to product selection

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre

    1992-01-01

    The Dempster-Shafer theory of evidence is applied to a multiattribute decision making problem whereby the decision maker (DM) must compromise with available alternatives, none of which exactly satisfies his ideal. The decision mechanism is constrained by the uncertainty inherent in the determination of the relative importance of each attribute element and the classification of existing alternatives. The classification of alternatives is addressed through expert evaluation of the degree to which each element is contained in each available alternative. The relative importance of each attribute element is determined through pairwise comparisons of the elements by the decision maker and implementation of a ratio scale quantification method. Then the 'belief' and 'plausibility' that an alternative will satisfy the decision maker's ideal are calculated and combined to rank order the available alternatives. Application to the problem of selecting computer software is given.

  3. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  4. Decision and Game Theory for Security

    NASA Astrophysics Data System (ADS)

    Alpcan, Tansu; Buttyán, Levente; Baras, John S.

    Attack--defense trees are used to describe security weaknesses of a system and possible countermeasures. In this paper, the connection between attack--defense trees and game theory is made explicit. We show that attack--defense trees and binary zero-sum two-player extensive form games have equivalent expressive power when considering satisfiability, in the sense that they can be converted into each other while preserving their outcome and their internal structure.

  5. Molecular Dynamics Simulation Studies of Fracture in Two Dimensions

    DTIC Science & Technology

    1980-05-01

    reversibility of trajectories. The microscopic elastic constants, dispersion relation and phonon spectrum of the system were determined by lattice dynamics. These... linear elasticity theory of a two-dimensional crack embedded in an infinite medium. System con- sists of 436 particles arranged in a tri- angular lattice ...satisfying these demands. In evaluating the mechanical energy of his model, Griffith used a result from linear elasticity theory, namely that for any body

  6. Weber's gravitational force as static weak field approximation

    NASA Astrophysics Data System (ADS)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  7. An infinite swampland of U(1) charge spectra in 6D supergravity theories

    NASA Astrophysics Data System (ADS)

    Taylor, Washington; Turner, Andrew P.

    2018-06-01

    We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.

  8. Synthesis of robust nonlinear autopilots using differential game theory

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1991-01-01

    A synthesis technique for handling unmodeled disturbances in nonlinear control law synthesis was advanced using differential game theory. Two types of modeling inaccuracies can be included in the formulation. The first is a bias-type error, while the second is the scale-factor-type error in the control variables. The disturbances were assumed to satisfy an integral inequality constraint. Additionally, it was assumed that they act in such a way as to maximize a quadratic performance index. Expressions for optimal control and worst-case disturbance were then obtained using optimal control theory.

  9. Science, Technology, and Warfare. Proceedings of the Military History Symposium (3rd) Held at the United States Air Force Academy (Colorado Springs, Colorado) on 8-9 May 1969

    DTIC Science & Technology

    1970-09-01

    between science-technology and warfare. The stereotyped theory of a linear relationship between science, technology, and warfare satisfies the facts...therefore discarded piecemeal. Only with Mahan’s theory did this condition change. Morison then considers the opposite problem today: one in which the...1938), 1:531. = A s is now very well known, the impetus theory expounded with variations by all the most important writers on philosophy of motion

  10. Design Criteria for the Future of Flight Controls. Proceedings of the Flight Dynamics Laboratory Flying Qualities and Flight Control Symposium 2-5 March 1982.

    DTIC Science & Technology

    1982-07-01

    robustness of the closed-loop system as compared to state feedback. The observer theory of Luenberger specifies the conditions that must be satisfied for...No. ID-17SI-F-l, October 1963. 8. Rynaski, E. G. and Whitbeck, R. F.: "The Theory and Application of Linear Optimal Control," Calspan Report No. IH...pilots tend to control them open-loop. Frequencies much beyond 10 rad/sec are generally beyond pilots’ control capability. Control theory indicates a need

  11. Self-accelerating universe in scalar-tensor theories after GW170817

    NASA Astrophysics Data System (ADS)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  12. Auxilio, Socorro! Salvame! Los Esterioripos de la Mujer en la Television. Octavo Modulo de una Serie para Maestros de Escuela Elemental. Fara Usar con la Grabacion (Help! Help! Save me! Sexual Stereotyping of Women. Eighth Module of a Series for Elementary School Teachers. Audiotape Transcriptions).

    ERIC Educational Resources Information Center

    Garcia Ramis, Magali, Ed.; And Others

    This guide in English and Spanish provides information for teachers concerning the roles assigned to women in television, and the stereotypes on which these roles are based. The guide contains a pre-test and a post-test to measure the user's awareness of sexual stereotyping. Four object lessons examine: (1) the traditional role of women on…

  13. Simulated Assessment of Interference Effects in Direct Sequence Spread Spectrum (DSSS) QPSK Receiver

    DTIC Science & Technology

    2014-03-27

    bit error rate BPSK binary phase shift keying CDMA code division multiple access CSI comb spectrum interference CW continuous wave DPSK differential... CDMA ) and GPS systems which is a Gold code. This code is generated by a modulo-2 operation between two different preferred m-sequences. The preferred m...10 SNR Sim (dB) S N R O ut ( dB ) SNR RF SNR DS Figure 3.26: Comparison of input S NRS im and S NROut of the band-pass RF filter (S NRRF) and

  14. Extended Closed-form Expressions for the Robust Symmetrical Number System Dynamic Range and an Efficient Algorithm for its Computation

    DTIC Science & Technology

    2014-01-01

    and distance between all of the vector ambiguity pairs for the combined N−sequences. To simplify our derivation, we define the center of ambiguity (COA...modulo N . The resulting structure of the N sequences ensures that two successive RSNS vectors (paired terms from all N sequences) when considered...represented by a vector , Xh = [x1,h, x2,h, . . . , xN,h] T , of N paired integers from each se- quence at h. For example, a left-shifted, three-sequence

  15. Application of the Bootstrap Methods in Factor Analysis.

    ERIC Educational Resources Information Center

    Ichikawa, Masanori; Konishi, Sadanori

    1995-01-01

    A Monte Carlo experiment was conducted to investigate the performance of bootstrap methods in normal theory maximum likelihood factor analysis when the distributional assumption was satisfied or unsatisfied. Problems arising with the use of bootstrap methods are highlighted. (SLD)

  16. Application of the strongly coupled-mode theory to integrated optical devices

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A theory for strongly coupled waveguides is discussed and applied to two- and three-waveguide couplers and optical wavelength filters. This theory makes use of an exact analytical relation governing the coupling coefficients and the overlap integrals. It removes almost all of the constraints imposed by a simpler and approximate coupled-mode theory by Marcatili (1986). It also satisfies the energy conservation and the reciprocity theorem self-consistently. Very good numerical results with the overlap integral as large as 49 percent are shown. The applications to electrooptical modulators, power dividers, power transfer devices, and optical filters are all presented with numerical results.

  17. The model for self-dual chiral bosons as a Hodge theory

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker; Mandal, Bhabani Prasad

    2011-09-01

    We consider (1+1) dimensional theory for a single self-dual chiral boson as a classical model for gauge theory. Using the Batalin-Fradkin-Vilkovisky (BFV) technique, the nilpotent BRST and anti-BRST symmetry transformations for this theory have been studied. In this model other forms of nilpotent symmetry transformations like co-BRST and anti-co-BRST, which leave the gauge-fixing part of the action invariant, are also explored. We show that the nilpotent charges for these symmetry transformations satisfy the algebra of the de Rham cohomological operators in differential geometry. The Hodge decomposition theorem on compact manifold is also studied in the context of conserved charges.

  18. Ranking Specific Sets of Objects.

    PubMed

    Maly, Jan; Woltran, Stefan

    2017-01-01

    Ranking sets of objects based on an order between the single elements has been thoroughly studied in the literature. In particular, it has been shown that it is in general impossible to find a total ranking - jointly satisfying properties as dominance and independence - on the whole power set of objects. However, in many applications certain elements from the entire power set might not be required and can be neglected in the ranking process. For instance, certain sets might be ruled out due to hard constraints or are not satisfying some background theory. In this paper, we treat the computational problem whether an order on a given subset of the power set of elements satisfying different variants of dominance and independence can be found, given a ranking on the elements. We show that this problem is tractable for partial rankings and NP-complete for total rankings.

  19. Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing

    2018-04-01

    Quantum entanglement as a special resource inspires various distinct applications in quantum information processing. Unfortunately, it is NP-hard to detect general quantum entanglement using Bell testing. Our goal is to investigate quantum entanglement with white noises that appear frequently in experiment and quantum simulations. Surprisingly, for almost all multipartite generalized Greenberger-Horne-Zeilinger states there are entangled noisy states that satisfy all linear Bell inequalities consisting of full correlations with dichotomic inputs and outputs of each local observer. This result shows generic undetectability of mixed entangled states in contrast to Gisin's theorem of pure bipartite entangled states in terms of Bell nonlocality. We further provide an accessible method to show a nontrivial set of noisy entanglement with small number of parties satisfying all general linear Bell inequalities. These results imply typical incompleteness of special Bell theory in explaining entanglement.

  20. A Bell-type theorem without hidden variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2003-09-12

    It is shown that no theory that satisfies certain premises can exclude faster-than-light influences. The premises include neither the existence of hidden variables nor counterfactual definiteness, nor any premise that effectively entails the general existence of outcomes of unperformed local measurements. All the premises are compatible with Copenhagen philosophy and the principles and predictions of relativistic quantum field theory. The present proof is contrasted with an earlier one with the same objective.

  1. The Changing Role of Money as a Motivator.

    DTIC Science & Technology

    1982-04-23

    61). Abraham Maslow advanced the theory that man is motivated by a hierachy of needs . Maslow classified human needs into a pyramidal structure as...theory, man strives to fill these needs in their order of hierachy , with the basic phsiological needs being satis- fied first. The physiological and safety... needs are most closely asso- ciated with the desire for money. vowever, as a person moves up through the hierachy , the ability of money to satisfy

  2. Monkeys choose as if maximizing utility compatible with basic principles of revealed preference theory

    PubMed Central

    Pastor-Bernier, Alexandre; Plott, Charles R.; Schultz, Wolfram

    2017-01-01

    Revealed preference theory provides axiomatic tools for assessing whether individuals make observable choices “as if” they are maximizing an underlying utility function. The theory evokes a tradeoff between goods whereby individuals improve themselves by trading one good for another good to obtain the best combination. Preferences revealed in these choices are modeled as curves of equal choice (indifference curves) and reflect an underlying process of optimization. These notions have far-reaching applications in consumer choice theory and impact the welfare of human and animal populations. However, they lack the empirical implementation in animals that would be required to establish a common biological basis. In a design using basic features of revealed preference theory, we measured in rhesus monkeys the frequency of repeated choices between bundles of two liquids. For various liquids, the animals’ choices were compatible with the notion of giving up a quantity of one good to gain one unit of another good while maintaining choice indifference, thereby implementing the concept of marginal rate of substitution. The indifference maps consisted of nonoverlapping, linear, convex, and occasionally concave curves with typically negative, but also sometimes positive, slopes depending on bundle composition. Out-of-sample predictions using homothetic polynomials validated the indifference curves. The animals’ preferences were internally consistent in satisfying transitivity. Change of option set size demonstrated choice optimality and satisfied the Weak Axiom of Revealed Preference (WARP). These data are consistent with a version of revealed preference theory in which preferences are stochastic; the monkeys behaved “as if” they had well-structured preferences and maximized utility. PMID:28202727

  3. Monkeys choose as if maximizing utility compatible with basic principles of revealed preference theory.

    PubMed

    Pastor-Bernier, Alexandre; Plott, Charles R; Schultz, Wolfram

    2017-03-07

    Revealed preference theory provides axiomatic tools for assessing whether individuals make observable choices "as if" they are maximizing an underlying utility function. The theory evokes a tradeoff between goods whereby individuals improve themselves by trading one good for another good to obtain the best combination. Preferences revealed in these choices are modeled as curves of equal choice (indifference curves) and reflect an underlying process of optimization. These notions have far-reaching applications in consumer choice theory and impact the welfare of human and animal populations. However, they lack the empirical implementation in animals that would be required to establish a common biological basis. In a design using basic features of revealed preference theory, we measured in rhesus monkeys the frequency of repeated choices between bundles of two liquids. For various liquids, the animals' choices were compatible with the notion of giving up a quantity of one good to gain one unit of another good while maintaining choice indifference, thereby implementing the concept of marginal rate of substitution. The indifference maps consisted of nonoverlapping, linear, convex, and occasionally concave curves with typically negative, but also sometimes positive, slopes depending on bundle composition. Out-of-sample predictions using homothetic polynomials validated the indifference curves. The animals' preferences were internally consistent in satisfying transitivity. Change of option set size demonstrated choice optimality and satisfied the Weak Axiom of Revealed Preference (WARP). These data are consistent with a version of revealed preference theory in which preferences are stochastic; the monkeys behaved "as if" they had well-structured preferences and maximized utility.

  4. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.

    PubMed

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-09

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.

  5. Bekenstein inequalities and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Peñafiel, M. L.; Falciano, F. T.

    2017-12-01

    Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that Maxwell's electrodynamics satisfies all three inequalities. We investigate the validity of these relations in the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them. However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical meaning and the relationship between these inequalities, and in particular, we analyze the connection between the energy-angular momentum inequality and causality.

  6. Truth-Valued-Flow Inference (TVFI) and its applications in approximate reasoning

    NASA Technical Reports Server (NTRS)

    Wang, Pei-Zhuang; Zhang, Hongmin; Xu, Wei

    1993-01-01

    The framework of the theory of Truth-valued-flow Inference (TVFI) is introduced. Even though there are dozens of papers presented on fuzzy reasoning, we think it is still needed to explore a rather unified fuzzy reasoning theory which has the following two features: (1) it is simplified enough to be executed feasibly and easily; and (2) it is well structural and well consistent enough that it can be built into a strict mathematical theory and is consistent with the theory proposed by L.A. Zadeh. TVFI is one of the fuzzy reasoning theories that satisfies the above two features. It presents inference by the form of networks, and naturally views inference as a process of truth values flowing among propositions.

  7. Systems Models for Transportation Problems : Volume 2. An Introduction to Urban Center Modeling.

    DOT National Transportation Integrated Search

    1976-03-01

    Our thermodynamic theory considers the problem of attempting to formalize in a modeling sense what might be done in an urban economy, wherein transportation planning and other institutionalized requirements of the domain are also to be satisfied, and...

  8. Attention to fat- and thin-related words in body-satisfied and body-dissatisfied women before and after thin model priming.

    PubMed

    Tobin, Leah N; Sears, Christopher R; Zumbusch, Alicia S; von Ranson, Kristin M

    2018-01-01

    Understanding the cognitive processes underlying body dissatisfaction provides important information on the development and perpetuation of eating pathology. Previous research suggests that body-dissatisfied women process weight-related information differently than body-satisfied women, but the precise nature of these processing differences is not yet understood. In this study, eye-gaze tracking was used to measure attention to weight-related words in body-dissatisfied (n = 40) and body-satisfied (n = 38) women, before and after exposure to images of thin fashion models. Participants viewed 8-second displays containing fat-related, thin-related, and neutral words while their eye fixations were tracked and recorded. Based on previous research and theory, we predicted that body-dissatisfied women would attend to fat-related words more than body-satisfied women and would attend to thin-related words less. It was also predicted that exposure to thin model images would increase self-rated body dissatisfaction and heighten group differences in attention. The results indicated that body-dissatisfied women attended to both fat- and thin-related words more than body-satisfied women and that exposure to thin models did not increase this effect. Implications for cognitive models of eating disorders are discussed.

  9. Attention to fat- and thin-related words in body-satisfied and body-dissatisfied women before and after thin model priming

    PubMed Central

    Sears, Christopher R.; Zumbusch, Alicia S.; von Ranson, Kristin M.

    2018-01-01

    Understanding the cognitive processes underlying body dissatisfaction provides important information on the development and perpetuation of eating pathology. Previous research suggests that body-dissatisfied women process weight-related information differently than body-satisfied women, but the precise nature of these processing differences is not yet understood. In this study, eye-gaze tracking was used to measure attention to weight-related words in body-dissatisfied (n = 40) and body-satisfied (n = 38) women, before and after exposure to images of thin fashion models. Participants viewed 8-second displays containing fat-related, thin-related, and neutral words while their eye fixations were tracked and recorded. Based on previous research and theory, we predicted that body-dissatisfied women would attend to fat-related words more than body-satisfied women and would attend to thin-related words less. It was also predicted that exposure to thin model images would increase self-rated body dissatisfaction and heighten group differences in attention. The results indicated that body-dissatisfied women attended to both fat- and thin-related words more than body-satisfied women and that exposure to thin models did not increase this effect. Implications for cognitive models of eating disorders are discussed. PMID:29447251

  10. Exact solution of matricial Φ23 quantum field theory

    NASA Astrophysics Data System (ADS)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  11. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  12. Sexual values as the key to maintaining satisfying sex after prostate cancer treatment: the physical pleasure-relational intimacy model of sexual motivation.

    PubMed

    Beck, Andrea M; Robinson, John W; Carlson, Linda E

    2013-11-01

    Sexual dysfunction is the most significant long lasting effect of prostate cancer (PrCa) treatment. Despite the many medical treatments for erectile dysfunction, many couples report that they are dissatisfied with their sexual relationship and eventually cease sexual relations altogether. We sought to understand what distinguishes successful couples from those who are not successful in adjusting to changes in sexual function subsequent to PrCa treatment. Ten couples who maintained satisfying sexual intimacy after PrCa treatment and seven couples that did not were interviewed conjointly and individually. Interviews were transcribed and analyzed using grounded theory methodology. The theory that resulted suggests that individuals are motivated to engage in sex primarily because of physical pleasure and relational intimacy. The couples who valued sex primarily for relational intimacy were more likely to successfully adjust to changes in sexual function than those who primarily valued sex for physical pleasure. The attributes of acceptance, flexibility, and persistence helped sustain couples through the process of adjustment. Based on these findings, a new theory, the Physical Pleasure-Relational Intimacy Model of Sexual Motivation (PRISM) is presented. The results elucidate the main motives for engaging in sexual activity-physical pleasure and/or relational intimacy-as a determining factor in the successful maintenance of satisfying sexual intimacy after PrCa treatment. The PRISM model predicts that couples who place a greater value on sex for relational intimacy will better adjust to the sexual challenges after PrCa treatment than couples who place a lower value on sex for relational intimacy. Implications of the model for counselling are discussed. This model remains to be tested in future research.

  13. Modified gravity (MOG), the speed of gravitational radiation and the event GW170817/GRB170817A

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Moffat, J. W.; Toth, V. T.

    2018-05-01

    Modified gravity (MOG) is a covariant, relativistic, alternative gravitational theory whose field equations are derived from an action that supplements the spacetime metric tensor with vector and scalar fields. Both gravitational (spin 2) and electromagnetic waves travel on null geodesics of the theory's one metric. MOG satisfies the weak equivalence principle and is consistent with observations of the neutron star merger and gamma ray burster event GW170817/GRB170817A.

  14. The Moderating Effect of Job Satisfaction on Physicians' Motivation to Adhere to Financially Incentivized Clinical Practice Guidelines.

    PubMed

    Waddimba, Anthony C; Beckman, Howard B; Mahoney, Thomas L; Burgess, James F

    2017-04-01

    We examined moderating effects of professional satisfaction on physicians' motivation to adhere to diabetes guidelines associated with pay-for-performance incentives. We merged cross-sectional survey data on attitudes, from 156 primary physicians, with prospective medical record-sourced data on guideline adherence and census data on ambulatory-care population characteristics. We examined moderating effects by testing theory-driven models for satisfied versus discontented physicians, using partial least squares structural equation modeling. Results show that attitudes motivated, while norms suppressed, adherence to guidelines among discontented physicians. Separate models for satisfied versus discontented physicians revealed motivational differences. Satisfied physicians disregarded intrinsic and extrinsic influences and biases. Discontented physicians, alienated by social pressure, favored personal inclinations. To improve adherence to guidelines among discontented physicians, incentives should align with personal attitudes and incorporate promotional campaigns countering resentment of peer and organizational pressure.

  15. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  16. General split helicity gluon tree amplitudes in open twistor string theory

    NASA Astrophysics Data System (ADS)

    Dolan, Louise; Goddard, Peter

    2010-05-01

    We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].

  17. Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)

    DTIC Science & Technology

    2013-09-01

    of the deformation twinning: nucleation, growth (into, e.g., lenticular shapes), lattice rotation (satisfying the mirror symmetry), the attendant...Nucleation and subsequent growth into lenticular shapes is realistically captured. • Stress-strain responses accompanied by serration and overall softening

  18. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

    PubMed Central

    Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.

    2010-01-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238

  19. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE PAGES

    Zhang, Guanghua; Flint, Rebecca

    2017-12-27

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  20. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  1. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanghua; Flint, Rebecca

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  3. A coupled mode formulation by reciprocity and a variational principle

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A coupled mode formulation for parallel dielectric waveguides is presented via two methods: a reciprocity theorem and a variational principle. In the first method, a generalized reciprocity relation for two sets of field solutions satisfying Maxwell's equations and the boundary conditions in two different media, respectively, is derived. Based on the generalized reciprocity theorem, the coupled mode equations can then be formulated. The second method using a variational principle is also presented for a general waveguide system which can be lossy. The results of the variational principle can also be shown to be identical to those from the reciprocity theorem. The exact relations governing the 'conventional' and the new coupling coefficients are derived. It is shown analytically that the present formulation satisfies the reciprocity theorem and power conservation exactly, while the conventional theory violates the power conservation and reciprocity theorem by as much as 55 percent and the Hardy-Streifer (1985, 1986) theory by 0.033 percent, for example.

  4. A synthesis theory for the externally excited adaptive system /EEAS/

    NASA Technical Reports Server (NTRS)

    Horowitz, I. M.; Smay, J. W.; Shapiro, A.

    1974-01-01

    The externally excited adaptive system (EEAS) is a two-degree-of-freedom feedback system with a nonlinearity which is saturated hard by an external periodic signal. Under certain conditions, the EEAS responds quasi-linearly to command and plant disturbance signals, permitting the development of a quantitative synthesis theory for satisfying system tolerances despite large plant uncertainty. The great advantage of the EEAS is its zero sensitivity to plant gain variations, a property it shares with the self-oscillating adaptive system (SOAS). The EEAS is, however, more flexible than the SOAS in satisfying the quasi-linearity constraints. The essential difference is that in the EEAS the loop transmission bandwidth is not rigorously tied to the 'carrier' signal, as it is in the SOAS. There is a class of problems for which the EEAS is superior to the purely linear system, which in turn is superior to the SOAS. The superiority of the EEAS over the SOAS is especially marked in the case of significant plant disturbances, which generally vitiate a SOAS design.

  5. Sandwiched Rényi divergence satisfies data processing inequality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beigi, Salman

    2013-12-15

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo informationmore » defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem.« less

  6. Causal holographic information does not satisfy the linearized quantum focusing condition

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald; Qi, Marvin

    2018-04-01

    The Hubeny-Rangamani causal holographic information (CHI) defined by a region R of a holographic quantum field theory (QFT) is a modern version of the idea that the area of event horizons might be related to an entropy. Here the event horizon lives in a dual gravitational bulk theory with Newton's constant G bulk, and the relation involves a factor of 4 G bulk. The fact that CHI is bounded below by the von Neumann entropy S suggests that CHI is coarse-grained. Its properties could thus differ markedly from those of S. In particular, recent results imply that when d ≤ 4 holographic QFTs are perturbatively coupled to d-dimensional gravity, the combined system satisfies the so-called quantum focusing condition (QFC) at leading order in the new gravitational coupling G d when the QFT entropy is taken to be that of von Neumann. However, by studying states dual to spherical bulk (anti-de Sitter) Schwarschild black holes in the conformal frame for which the boundary is a (2 + 1)-dimensional de Sitter space, we find the QFC defined by CHI is violated even when perturbing about a Killing horizon and using a single null congruence. Since it is known that a generalized second law (GSL) holds in this context, our work demonstrates that the QFC is not required in order for an entropy, or an entropy-like quantity, to satisfy such a GSL.

  7. A pilot study for the analysis of dream reports using Maslow's need categories: an extension to the emotional selection hypothesis.

    PubMed

    Coutts, Richard

    2010-10-01

    The emotional selection hypothesis describes a cyclical process that uses dreams to modify and test select mental schemas. An extension is proposed that further characterizes these schemas as facilitators of human need satisfaction. A pilot study was conducted in which this hypothesis was tested by assigning 100 dream reports (10 randomly selected from 10 dream logs at an online web site) to one or more categories within Maslow's hierarchy of needs. A "match" was declared when at least two of three judges agreed both for category and for whether the identified need was satisfied or thwarted in the dream narrative. The interjudge reliability of the judged needs was good (92% of the reports contained at least one match). The number of needs judged as thwarted did not differ significantly from the number judged as satisfied (48 vs. 52%, respectively). The six "higher" needs (belongingness, esteem, cognitive, aesthetic, self-actualization, and transcendence) were scored significantly more frequently (81%) than were the two lowest or "basic" needs (physiological and safety, 19%). Basic needs were also more likely to be judged as thwarted, while higher needs were more likely to be judged as satisfied. These findings are discussed in the context of Maslow's hierarchy of needs as a framework for investigating theories of dream function, including the emotional selection hypothesis and other contemporary dream theories.

  8. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  9. Techniques for Computing the DFT Using the Residue Fermat Number Systems and VLSI

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1985-01-01

    The integer complex multiplier and adder over the direct sum of two copies of a finite field is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed for the DFT can be reduced substantially over the previous approach. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  10. Factoring 51 and 85 with 8 qubits

    PubMed Central

    Geller, Michael R.; Zhou, Zhongyuan

    2013-01-01

    We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates. PMID:24162074

  11. Factoring 51 and 85 with 8 qubits.

    PubMed

    Geller, Michael R; Zhou, Zhongyuan

    2013-10-28

    We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates.

  12. ID-based encryption scheme with revocation

    NASA Astrophysics Data System (ADS)

    Othman, Hafizul Azrie; Ismail, Eddie Shahril

    2017-04-01

    In 2015, Meshram proposed an efficient ID-based cryptographic encryption based on the difficulty of solving discrete logarithm and integer-factoring problems. The scheme was pairing free and claimed to be secure against adaptive chosen plaintext attacks (CPA). Later, Tan et al. proved that the scheme was insecure by presenting a method to recover the secret master key and to obtain prime factorization of modulo n. In this paper, we propose a new pairing-free ID-based encryption scheme with revocation based on Meshram's ID-based encryption scheme, which is also secure against Tan et al.'s attacks.

  13. Squeezed states: A geometric framework

    NASA Technical Reports Server (NTRS)

    Ali, S. T.; Brooke, J. A.; Gazeau, J.-P.

    1992-01-01

    A general definition of squeezed states is proposed and its main features are illustrated through a discussion of the standard optical coherent states represented by 'Gaussian pure states'. The set-up involves representations of groups on Hilbert spaces over homogeneous spaces of the group, and relies on the construction of a square integrable (coherent state) group representation modulo a subgroup. This construction depends upon a choice of a Borel section which has a certain permissible arbitrariness in its selection; this freedom is attributable to a squeezing of the defining coherent states of the representation, and corresponds in this way to a sort of gauging.

  14. Newman-Penrose constants of the Kerr-Newman metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Xuefei; Shang Yu; Bai Shan

    The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.

  15. Perturbative quantum gravity as a double copy of gauge theory.

    PubMed

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  16. Superselection Structure of Massive Quantum Field Theories in 1+1 Dimensions

    NASA Astrophysics Data System (ADS)

    Müger, Michael

    We show that a large class of massive quantum field theories in 1+1 dimensions, characterized by Haag duality and the split property for wedges, does not admit locally generated superselection sectors in the sense of Doplicher, Haag and Roberts. Thereby the extension of DHR theory to 1+1 dimensions due to Fredenhagen, Rehren and Schroer is vacuous for such theories. Even charged representations which are localizable only in wedge regions are ruled out. Furthermore, Haag duality holds in all locally normal representations. These results are applied to the theory of soliton sectors. Furthermore, the extension of localized representations of a non-Haag dual net to the dual net is reconsidered. It must be emphasized that these statements do not apply to massless theories since they do not satisfy the above split property. In particular, it is known that positive energy representations of conformally invariant theories are DHR representations.

  17. Lecture Series "Boundary Layer Theory". Part I - Laminar Flows. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    In the lecture series starting today author want to give a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. A great many considerations of aerodynamics are based on the ideal fluid, that is the frictionless incompressibility and fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid, (potential theory) has been made possible. Actual liquids and gases satisfy the condition of incomressibility rather well if the velocities are not extremely high or, more accurately, if they are small in comparison with sonic velocity. For air, for instance, the change in volume due to compressibility amounts to about 1 percent for a velocity of 60 meters per second. The hypothesis of absence of friction is not satisfied by any actual fluid; however, it is true that most technically important fluids, for instance air and water, have a very small friction coefficient and therefore behave in many cases almost like the ideal frictionless fluid. Many flow phenomena, in particular most cases of lift, can be treated satisfactorily, - that is, the calculations are in good agreement with the test results, -under the assumption of frictionless fluid. However, the calculations with frictionless flow show a very serious deficiency; namely, the fact, known as d'Alembert's paradox, that in frictionless flow each body has zero drag whereas in actual flow each body experiences a drag of greater or smaller magnitude. For a long time the theory has been unable to bridge this gap between the theory of frictionless flow and the experimental findings about actual flow. The cause of this fundamental discrepancy is the viscosity which is neglected in the theory of ideal fluid; however, in spite of its extraordinary smallness it is decisive for the course of the flow phenomena.

  18. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  19. Generalized contexts and consistent histories in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Laura, Roberto

    2014-05-01

    We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times.

  20. Modeling and Performance Optimization of Large-Scale Data-Communication Networks.

    DTIC Science & Technology

    1981-06-01

    IT-17, no. 1, pp. 71-76, 1971. 12. Y. Ho, M. Kastner, and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr...modifies the flow assignment to satisfy end-to-end delay constraints. 3.2.1 Rationale for Min-Hop Strategr The Min-Hop algorithm proposed in this...Prentice-Hall, 1980. Ho, Y., M. Kostner and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr., vol. AC-23, pp

  1. Asymptotic stability estimates near an equilibrium point

    NASA Astrophysics Data System (ADS)

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2017-07-01

    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.

  2. Chordwise and compressibility corrections to slender-wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma

    1952-01-01

    Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.

  3. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    PubMed

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  4. Theory of some laser noise effects.

    NASA Technical Reports Server (NTRS)

    Wang, Y. K.; Lamb, W. E., Jr.

    1973-01-01

    A simple version of the semiclassical theory is applied to the shot effect. Considerations of thermal noise reported by Lamb (1965) are extended to take into account amplitude fluctuations. The laser is considered to be a lossy cavity of the Fabry-Perot type in single-mode operation with a circular frequency driven by an inverted population of active atoms. The electric field is taken to be transverse to the cavity axis. The amplitude and phase are assumed to be slowly varying functions which satisfy two self-consistency equations.

  5. Neurological and neuropsychological consequences of electrical and lightning shock: review and theories of causation

    PubMed Central

    Andrews, Christopher J.; Reisner, Andrew D.

    2017-01-01

    Injuries from lightning and electrical injuries involve multiple systems of the body, however neurological symptoms are very widely reported. A disabling neuropsychological syndrome is also noted. This paper presents a comprehensive review of neurological and neuropsychological symptoms. Partial theories of causation for these injuries have been advanced, however, there is no convincing explanation for both delay in onset of symptoms and also the genesis of the neuropsychological syndrome. A theory of causation is proposed which satisfies both these constraints. This theory suggests circulating hormones such as cortisol, together with nitric oxide and oxidant free radicals from glutamatergic hyper-stimulation, act on tissues remote from the injury path including the hippocampus. This theory opens a research path to explore treatment options. PMID:28616016

  6. The Use of Maslow's Model in History

    ERIC Educational Resources Information Center

    Hubbs, Hugh

    1978-01-01

    Explains how Abraham Maslow's theory of the hierarchy of human needs can explain the success of medieval society which lasted 300 years. Based on sequential fulfillment of physical needs, security, affiliation, esteem, and self-fulfillment, the model can also illustrate how modern governments satisfy citizens' needs. (AV)

  7. A Geometrical Application of Number Theory

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    Any quadruple of natural numbers {a, b, c, d} is called a "Pythagorean quadruple" if it satisfies the relationship "a[superscript 2] + b[superscript 2] + c[superscript 2]". This "Pythagorean quadruple" can always be identified with a rectangular box of dimensions "a greater than 0," "b greater than…

  8. Statistical foundations of liquid-crystal theory: II: Macroscopic balance laws.

    PubMed

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media.

  9. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513

  10. Satisfaction with social networks: an examination of socioemotional selectivity theory across cohorts.

    PubMed

    Lansford, J E; Sherman, A M; Antonucci, T C

    1998-12-01

    This study examines L. L. Carstensen's (1993, 1995) socioemotional selectivity theory within and across three cohorts spanning 4 decades. Socioemotional selectivity theory predicts that as individuals age, they narrow their social networks to devote more emotional resources to fewer relationships with close friends and family. Data from 3 cohorts of nationally representative samples were analyzed to determine whether respondents' satisfaction with the size of their social networks differed by age, cohort, or both. Results support socioemotional selectivity theory: More older adults than younger adults were satisfied with the current size of their social networks rather than wanting larger networks. These findings are consistent across all cohorts. Results are discussed with respect to social relationships across the life course.

  11. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  12. Elliptic genera and 3d gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, Nathan; Cheng, Miranda C. N.; Kachru, Shamit

    Here, we describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K 3, product manifolds, certain simple families of Calabi–Yau hypersurfaces, and symmetric products of the “Monster CFT”. We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions, we attempt to quantify themore » fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.« less

  13. Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100

    Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less

  14. Elliptic genera and 3d gravity

    DOE PAGES

    Benjamin, Nathan; Cheng, Miranda C. N.; Kachru, Shamit; ...

    2016-03-30

    Here, we describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K 3, product manifolds, certain simple families of Calabi–Yau hypersurfaces, and symmetric products of the “Monster CFT”. We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions, we attempt to quantify themore » fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.« less

  15. Expectancy Theory in Media and Message Selection.

    ERIC Educational Resources Information Center

    Van Leuven, Jim

    1981-01-01

    Argues for reversing emphasis on uses and gratifications research in favor of an expectancy model which holds that selection of a particular medium depends on (1) the expectation that the choice will be followed by a message of interest and (2) the importance of that message in satisfying user's values. (PD)

  16. Making Plans for Future Success: A Timeline Tool Feasibility Study

    ERIC Educational Resources Information Center

    Weiss, Josie A.; Harris, Donna M.

    2018-01-01

    Many adolescents have hopes of college graduation, independent living, and satisfying careers. Career preparation is an important component that can facilitate these desires. However, many adolescents do not achieve these hopes in their desired timeframes due to interruptions, such as unplanned pregnancies. As illustrated by the Theory of…

  17. Applicability of Herzberg's Motivator-Hygiene Theory in Studying Academic Motivation.

    ERIC Educational Resources Information Center

    Magoon, Robert A.; James, Aaron

    1978-01-01

    Forty-one community college students were asked to recall one college-related event which made them feel good and one which made them feel bad, and provide additional information about each. Results were analyzed using Herzberg's methods to identify factors related to student motivation, as "satisfiers" or "dissatisfiers" and…

  18. Job Satisfaction of High School Journalism Educators.

    ERIC Educational Resources Information Center

    Dvorak, Jack; Phillips, Kay D.

    Four research questions are posed to explore the job satisfaction of high school journalism educators. A national random sample of 669 respondents shows that journalism educators are generally satisfied with their jobs--more so than teachers in other disciplines. Multiple regression analysis using Herzberg's motivation-hygiene theory as a…

  19. Motivation, Professional Development, and the Experienced Music Teacher

    ERIC Educational Resources Information Center

    Angeline, Vincent R.

    2014-01-01

    Drawing from inquiry on human motivation can serve to inform seasoned educators in questing for a more individualized form of professional development. Experienced music teachers who have moved beyond the formative stages benefit from crafting self-defined experiences that satisfy needs-based states. Research in self-determination theory reveals…

  20. Student Satisfaction with Online Learning: Is It a Psychological Contract?

    ERIC Educational Resources Information Center

    Dziuban, Charles; Moskal, Patsy; Thompson, Jessica; Kramer, Lauren; DeCantis, Genevieve; Hermsdorfer, Andrea

    2015-01-01

    The authors explore the possible relationship between student satisfaction with online learning and the theory of psychological contracts. The study incorporates latent trait models using the image analysis procedure and computation of Anderson and Rubin factors scores with contrasts for students who are satisfied, ambivalent, or dissatisfied with…

  1. Independent Events in Elementary Probability Theory

    ERIC Educational Resources Information Center

    Csenki, Attila

    2011-01-01

    In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): If the n events E[subscript 1],…

  2. A New Look at School Failure and School Success.

    ERIC Educational Resources Information Center

    Glasser, William

    1997-01-01

    The cause of school and marriage failure is that most people practice stimulus-response psychology. Choice theory helps nurture the warm, supportive human relationships that students need for school success and couples need for marital success. Satisfying four basic psychological needs (for belonging, power, freedom, and fun) helps humans create…

  3. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  4. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  5. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  6. Dynamic density functional theory with hydrodynamic interactions: theoretical development and application in the study of phase separation in gas-liquid systems.

    PubMed

    Kikkinides, E S; Monson, P A

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  7. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikkinides, E. S.; Monson, P. A.

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less

  8. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  9. Health-promotion theories in nutritional interventions for community-dwelling older adults: a systematic review.

    PubMed

    Raffaele, Barbara; Matarese, Maria; Alvaro, Rosaria; De Marinis, Maria Grazia

    2017-01-01

    To identify theories applied in interventions promoting healthy nutrition among community-dwelling older adults and determine the efficacy of theories in changing knowledge, attitudes, and behaviors. The PubMed, PsycINFO, Embase, and ERIC databases were searched for English articles from January 1990 to December 2015. Mono or multicomponent randomized controlled trial studies were included, whereas research on nutritional interventions related to acute or chronic diseases were excluded. Eight articles satisfied the inclusion criteria. Only three articles referred explicitly to health promotion theories. Nutritional programs varied in terms of contents, outcomes, lengths of interventions and follow-up. Pooling the results and identifying the most effective theories were therefore impossible. Although researchers and practitioners recognize the significance of theoretical models in guiding the health-promoting interventions, referring to a theoretical model for such interventions is still relatively recent.

  10. A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    Two sets of coupled-mode equations for multiwaveguide systems are derived using a generalized reciprocity relation; one set for a lossless system, and the other for a general lossy or lossless system. The second set of equations also reduces to those of the first set in the lossless case under the condition that the transverse field components are chosen to be real. Analytical relations between the coupling coefficients are shown and applied to the coupling of mode equations. It is shown analytically that these results satisfy exactly both the reciprocity theorem and power conservation. New orthogonal relations between the supermodes are derived in matrix form, with the overlap integrals taken into account.

  11. A variational principle for compressible fluid mechanics. Discussion of the one-dimensional theory

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    The second law of thermodynamics is used as a variational statement to derive a numerical procedure to satisfy the governing equations of motion. The procedure, based on numerical experimentation, appears to be stable provided the CFL condition is satisfied. This stability is manifested no matter how severe the gradients (compression or expansion) are in the flow field. For reasons of simplicity only one dimensional inviscid compressible unsteady flow is discussed here; however, the concepts and techniques are not restricted to one dimension nor are they restricted to inviscid non-reacting flow. The solution here is explicit in time. Further study is required to determine the impact of the variational principle on implicit algorithms.

  12. Analytical Derivation of Power Laws in Firm Size Variables from Gibrat's Law and Quasi-inversion Symmetry: A Geomorphological Approach

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki; Watanabe, Tsutomu

    2014-03-01

    We start from Gibrat's law and quasi-inversion symmetry for three firm size variables (i.e., tangible fixed assets K, number of employees L, and sales Y) and derive a partial differential equation to be satisfied by the joint probability density function of K and L. We then transform K and L, which are correlated, into two independent variables by applying surface openness used in geomorphology and provide an analytical solution to the partial differential equation. Using worldwide data on the firm size variables for companies, we confirm that the estimates on the power-law exponents of K, L, and Y satisfy a relationship implied by the theory.

  13. Get the Message: Punishment Is Satisfying If the Transgressor Responds to Its Communicative Intent.

    PubMed

    Funk, Friederike; McGeer, Victoria; Gollwitzer, Mario

    2014-08-01

    Results from three studies demonstrate that victims' justice-related satisfaction with punishment is influenced by the kind of feedback they receive from offenders after punishment. In contrast to previous studies that found a discrepancy between anticipated and experienced satisfaction from punishment (Carlsmith, Wilson, & Gilbert, 2008), participants were able to accurately predict their satisfaction when made aware of the presence or absence of offender feedback acknowledging the victim's intent to punish. Results also indicate that victims were most satisfied when offender feedback not only acknowledged the victim's intent to punish but also indicated a positive moral change in the offender's attitude toward wrongdoing. These findings indicate that punishment per se is neither satisfying nor dissatisfying but that it is crucial to take its communicative functions and its effects on the offender into account. Implications for psychological and philosophical theories on punishment motives as well as implications for justice procedures are discussed. © 2014 by the Society for Personality and Social Psychology, Inc.

  14. Forcing function modeling for flow induced vibration

    NASA Technical Reports Server (NTRS)

    Fleeter, Sanford

    1993-01-01

    The fundamental forcing function unsteady aerodynamics for application to turbomachine blade row forced response are considered, accomplished through a series of experiments performed in a rotating annular cascade and a research axial flow turbine. In particular, the unsteady periodic flowfields downstream of rotating rows of perforated plates, airfoils and turbine blade rows are measured with a cross hot-wire and an unsteady total pressure probe. The unsteady velocity and static pressure fields were then analyzed harmonically and split into vortical and potential gusts, accomplished by developing a gust splitting analysis which includes both gust unsteady static pressure and velocity data. The perforated plate gusts closely were found to be linear theory vortical gusts, satisfying the vortical gust constraints. The airfoil and turbine blade row generated velocity perturbations did not satisfy the vortical gust constraints. However, the decomposition of the unsteady flow field separated the data into a propagating vortical component which satisfied these vortical gust constraints and a decaying potential component.

  15. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  16. Λ scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  17. Leading-order classical Lagrangians for the nonminimal standard-model extension

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  18. FIBER OPTICS: Ray invariants and wave equations for transverse modes in three-dimensional graded-index waveguides

    NASA Astrophysics Data System (ADS)

    Voevodin, V. G.; Morozov, A. N.; Stepanov, V. E.

    1992-09-01

    A theory of the second ray invariant is proposed using the theory of plane Frenet curves. Its existence requires that the coordinate dependence of the refractive index in the waveguide cross section should satisfy the regularity condition: curves of equal refractive index differ only by an amount which can be obtained using an isotropic scaling transformation. The theoretical conclusions are illustrated using the example of waveguides having the generalized refractive index distribution n ( r ) = n [ (x/ a) + (y/ b)q].

  19. Averaging principle for second-order approximation of heterogeneous models with homogeneous models.

    PubMed

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-11-27

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ε(2)) equivalent to the outcome of the corresponding homogeneous model, where ε is the level of heterogeneity. We then use this averaging principle to obtain new results in queuing theory, game theory (auctions), and social networks (marketing).

  20. Application of information theory to the design of line-scan imaging systems

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.

    1981-01-01

    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.

  1. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    PubMed

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  2. Averaging principle for second-order approximation of heterogeneous models with homogeneous models

    PubMed Central

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-01-01

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ɛ2) equivalent to the outcome of the corresponding homogeneous model, where ɛ is the level of heterogeneity. We then use this averaging principle to obtain new results in queuing theory, game theory (auctions), and social networks (marketing). PMID:23150569

  3. Robin problems with a general potential and a superlinear reaction

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2017-09-01

    We consider semilinear Robin problems driven by the negative Laplacian plus an indefinite potential and with a superlinear reaction term which need not satisfy the Ambrosetti-Rabinowitz condition. We prove existence and multiplicity theorems (producing also an infinity of smooth solutions) using variational tools, truncation and perturbation techniques and Morse theory (critical groups).

  4. Analytical Methods in Search Theory

    DTIC Science & Technology

    1979-11-01

    X, t ) ,I pick g(x,t;E), *(x,tjc) and find the b necessary to satisfy the search equation. SOLUTION: This is an audience participation problem. It...Cnstotiaticon G11trant,’ ’I pp 2110 Path lestegsls,’ to pp., Jun IBM Iltetteol Pepsi pp., Ott 1313 (Tt o besubmitoet lot pubtinatteon l t Messino, Daidit

  5. The Decline of Academic Motivation during Adolescence: An Accelerated Longitudinal Cohort Analysis on the Effect of Psychological Need Satisfaction

    ERIC Educational Resources Information Center

    Gnambs, Timo; Hanfstingl, Barbara

    2016-01-01

    Adolescents typically exhibit a marked decline in academic intrinsic motivation throughout their school careers. Following self-determination theory, it is hypothesised that traditional school environments insufficiently satisfy three basic psychological needs of youths during maturation, namely the needs for autonomy, competence and relatedness.…

  6. Retirement and Marital Decision Making: Effects on Retirement Satisfaction

    ERIC Educational Resources Information Center

    Szinovacz, Maximiliane E.; Davey, Adam

    2005-01-01

    This study explores how partner's employment and pre-retirement decision-making structures affect retirement satisfaction, using pooled data from Waves 1 to 4 of the Health and Retirement Surveys. Based on resource theory, the analyses indicate that retired husbands are least satisfied if their wives remain employed and had more say in decisions…

  7. Enhancing Life Satisfaction by Government Accountability in China

    ERIC Educational Resources Information Center

    Cheung, Chau-kiu; Leung, Kwan-kwok

    2007-01-01

    Finding the rationale for democracy requires not merely a conceptual task but also an empirical study. One rationale is that democracy maximizes people's happiness by satisfying everyone. A further qualification of this is that democracy minimizes the maximum regret of the disadvantaged. This is compatible with the protection theory of government,…

  8. Is Satisfying College Students the Same as Decreasing Their Dissatisfaction? AIR 1998 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Danielson, Cherry

    This pilot study sought to investigate the possibility that college student satisfaction and dissatisfaction were not opposites and to provide a framework for considering the relationships between satisfaction, dissatisfaction, and motivation. The guiding model for the study was Herzberg's two-factor theory of organizational psychology. Conducted…

  9. Moving beyond "Mozert": Toward a Democratic Theory of Education

    ERIC Educational Resources Information Center

    Kessel, Alisa

    2015-01-01

    Most liberal political theorists of education argue that it is better to teach students to tolerate diversity, than to protect the potentially illiberal commitments of some members of the political communities. In fact, neither approach is wholly satisfying, yet they remain the focus of much political theorizing about education. This article…

  10. When Using the Mean is Meaningless: Examples from Probability Theory and Cardiology.

    ERIC Educational Resources Information Center

    Liebovitch, Larry S.; Todorov, Angelo T.; Wood, Mark A.; Ellenbogen, Kenneth A.

    This chapter describes how the mean of fractal processes does not exist and is not a meaningful measure of some data. It discusses how important it is to stay open to the possibility that sometimes analytic techniques fail to satisfy some assumptions on which the mean is based. (KHR)

  11. Interpersonal Relations: A Choice-Theoretic Framework.

    ERIC Educational Resources Information Center

    Couvillion, L. Michael; Eckstein, Daniel G.

    The microeconomic theory relating to utility and cost is applied to the "risk," and the possible "payoff" relative to relationships with others. A good measure of utility is the need or want-satisfying power of an alternative. For the analysis of interpersonal relationships, the needs delineated by Maslow (i.e. food, shelter, belongingness, love,…

  12. Fixed point theorems and dissipative processes

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Lopes, O.

    1972-01-01

    The deficiencies of the theories that characterize the maximal compact invariant set of T as asymptotically stable, and that some iterate of T has a fixed point are discussed. It is shown that this fixed point condition is always satisfied for condensing and local dissipative T. Applications are given to a class of neutral functional differential equations.

  13. Posters that Foster Cognition in the Classroom: Multimedia Theory Applied to Educational Posters

    ERIC Educational Resources Information Center

    Hubenthal, Michael; O'Brien, Thomas; Taber, John

    2011-01-01

    Despite a decline in popularity within US society, posters continue to hold a prominent place within middle and high school science classrooms. Teachers' demand is satisfied by governmental and non-profit science organizations that produce and disseminate posters as tangible products resulting from their research, and instruments to communicate…

  14. An Introductory Course: The Vector Space Theory of Matter

    ERIC Educational Resources Information Center

    Matsen, F. A.

    1972-01-01

    A course for superior freshmen for both science and liberal arts majors that satisfies the freshman chemistry requirement is discussed. It has been taught for six years and utilizes the new math'' which is based on the elementary concept of a set. A syllabus for the two semesters is included. (DF)

  15. The Relation between Balanced Need Satisfaction and Adolescents' Motivation in Physical Education

    ERIC Educational Resources Information Center

    Mouratidis, Athanasios; Barkoukis, Vassilis; Tsorbatzoudis, Charalambos

    2015-01-01

    Self-determination theory posits that satisfaction of the needs for autonomy, competence and relatedness represents the basic nutriments for humans' optimal functioning. It also postulates that with greater the degree to which these three needs are equally satisfied, the quality of motivation is further enhanced. Yet, this premise has remained…

  16. An Examination of Relationships between Psychosocial Satisfaction Scales in an Online Student Learning Environment

    ERIC Educational Resources Information Center

    Bookout, James Marshall, Jr.

    2010-01-01

    Research suggests that students who are satisfied with their learning experiences are typically successful and there is a fundamental theory that suggests if the expectations of students are achieved they will be return customers. This study examined the relationships between the psychosocial satisfaction scales in an online student learning…

  17. Empathy and Child Neglect: A Theoretical Model

    ERIC Educational Resources Information Center

    De Paul, Joaquin; Guibert, Maria

    2008-01-01

    Objective: To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect…

  18. Quantum Locality, Rings a Bell?: Bell's Inequality Meets Local Reality and True Determinism

    NASA Astrophysics Data System (ADS)

    Sánchez-Kuntz, Natalia; Nahmad-Achar, Eduardo

    2018-01-01

    By assuming a deterministic evolution of quantum systems and taking realism into account, we carefully build a hidden variable theory for Quantum Mechanics (QM) based on the notion of ontological states proposed by 't Hooft (The cellular automaton interpretation of quantum mechanics, arXiv:1405.1548v3, 2015; Springer Open 185, https://doi.org/10.1007/978-3-319-41285-6, 2016). We view these ontological states as the ones embedded with realism and compare them to the (usual) quantum states that represent superpositions, viewing the latter as mere information of the system they describe. Such a deterministic model puts forward conditions for the applicability of Bell's inequality: the usual inequality cannot be applied to the usual experiments. We build a Bell-like inequality that can be applied to the EPR scenario and show that this inequality is always satisfied by QM. In this way we show that QM can indeed have a local interpretation, and thus meet with the causal structure imposed by the Theory of Special Relativity in a satisfying way.

  19. Behavior of the maximum likelihood in quantum state tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis L.; Blume-Kohout, Robin

    2018-02-01

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

  20. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Nishiura, T.; Kawano, H.; Hosoda, H.; Nishida, M.

    2012-06-01

    Competition between the invariant plane (IP) condition at the habit plane, the twin orientation relation (OR) and the kinematic compatibility (KC) at the junction plane (JP) of self-accommodated B19‧ martensite in Ti-Ni was investigated via the geometrically nonlinear theory to understand the habit plane variant (HPV) clusters presented in Parts I and II of this work. As the IP condition cannot be satisfied simultaneously with KC, an additional rotation Q is necessary to form compatible JPs for all HPV pairs. The rotation J necessary to form the exact twin OR between the major correspondence variants (CVs) in each HPV was also examined. The observed HPV cluster was not the cluster with the smallest Q but the one satisfying Q = J with a { ? 1}B19‧ type I twin at JP. Both Q and J are crucial to understanding the various HPV clusters in realistic transformations. Finally, a scheme for the ideal HPV cluster composed of six HPVs is also proposed.

  1. Behavior of the maximum likelihood in quantum state tomography

    DOE PAGES

    Blume-Kohout, Robin J; Scholten, Travis L.

    2018-02-22

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  2. Behavior of the maximum likelihood in quantum state tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Aindriú; Mazumdar, Anupam; Koshelev, Alexey S., E-mail: a.conroy@lancaster.ac.uk, E-mail: alexey@ubi.pt, E-mail: a.mazumdar@lancaster.ac.uk

    Einstein's General theory of relativity permits spacetime singularities, where null geodesic congruences focus in the presence of matter, which satisfies an appropriate energy condition. In this paper, we provide a minimal defocusing condition for null congruences without assuming any ansatz -dependent background solution. The two important criteria are: (1) an additional scalar degree of freedom, besides the massless graviton must be introduced into the spacetime; and (2) an infinite derivative theory of gravity is required in order to avoid tachyons or ghosts in the graviton propagator. In this regard, our analysis strengthens earlier arguments for constructing non-singular bouncing cosmologies withinmore » an infinite derivative theory of gravity, without assuming any ansatz to solve the full equations of motion.« less

  4. Energy flow in non-equilibrium conformal field theory

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  5. Microwave anisotropies in the light of the data from the COBE satellite

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1993-01-01

    The recent measurement of anisotropies in the cosmic microwave background by the Cosmic Background Explorer (COBE) satellite and the recent South Pole experiment offer an excellent opportunity to probe cosmological theories. We test a class of theories in which the universe today is flat and matter dominated, and primordial perturbations are adiabatic parameterized by an index n. In this class of theories the predicted signal in the South Pole experiment depends on n, the Hubble constant, and the baryon density. For n = 1 a large region of this parameter space is ruled out, but there is still a window open which satisfies constraints from COBE, the South Pole experiment, and big bang nucleosynthesis.

  6. Stagewise cognitive development: an application of catastrophe theory.

    PubMed

    van der Maas, H L; Molenaar, P C

    1992-07-01

    In this article an overview is given of traditional methodological approaches to stagewise cognitive developmental research. These approaches are evaluated and integrated on the basis of catastrophe theory. In particular, catastrophe theory specifies a set of common criteria for testing the discontinuity hypothesis proposed by Piaget. Separate criteria correspond to distinct methods used in cognitive developmental research. Such criteria are, for instance, the detection of spurts in development, bimodality of test scores, and increased variability of responses during transitional periods. When a genuine stage transition is present, these criteria are expected to be satisfied. A revised catastrophe model accommodating these criteria is proposed for the stage transition in cognitive development from the preoperational to the concrete operational stage.

  7. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.

    PubMed

    Zou, J; Saven, J G

    2000-02-11

    A self-consistent theory is presented that can be used to estimate the number and composition of sequences satisfying a predetermined set of constraints. The theory is formulated so as to examine the features of sequences having a particular value of Delta=E(f)-(u), where E(f) is the energy of sequences when in a target structure and (u) is an average energy of non-target structures. The theory yields the probabilities w(i)(alpha) that each position i in the sequence is occupied by a particular monomer type alpha. The theory is applied to a simple lattice model of proteins. Excellent agreement is observed between the theory and the results of exact enumerations. The theory provides a quantitative framework for the design and interpretation of combinatorial experiments involving proteins, where a library of amino acid sequences is searched for sequences that fold to a desired structure. Copyright 2000 Academic Press.

  8. The quantum null energy condition in curved space

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Koeller, Jason; Marolf, Donald

    2017-11-01

    The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.

  9. Higher Curvature Gravity from Entanglement in Conformal Field Theories.

    PubMed

    Haehl, Felix M; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-18

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  10. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  11. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  12. Some Preliminary Notes on an Empirical Test of Freud's Theory on Depression.

    PubMed

    Desmet, Mattias

    2013-01-01

    A review of the literature indicates that empirical researchers have difficulty translating Freud's theory on depression into appropriate research questions and hypotheses. In their attempt to do so, the level of complexity in Freud's work is often lost. As a result, what is empirically tested is no more than a caricature of the original theory. To help researchers avoid such problems, this study presents a conceptual analysis of Freud's theory of depression as it is presented in Mourning and Melancholia (Freud, 1917). In analyzing Freud's theory on the etiology of depression, it is essential to differentiate between (1) an identification with the satisfying and frustrating aspects of the love object, (2) the inter- and an intrapersonal loss of the love object, and (3) conscious and unconscious dynamics. A schematic representation of the mechanism of depression is put forward and a research design by which this schema can be empirically investigated is outlined.

  13. Nonplanar wing load-line and slender wing theory

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1977-01-01

    Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.

  14. An equilibrium method for prediction of transverse shear stresses in a thick laminated plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, R. Z.

    1986-01-01

    First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.

  15. Is wave-particle objectivity compatible with determinism and locality?

    PubMed

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R

    2014-09-26

    Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.

  16. Is wave–particle objectivity compatible with determinism and locality?

    PubMed Central

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B.; Terno, Daniel R.

    2014-01-01

    Wave–particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions. PMID:25256419

  17. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    DOE PAGES

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N = 2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. Wemore » show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Finally, surface terms play a crucial role in this identification.« less

  18. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N = 2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. Wemore » show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Finally, surface terms play a crucial role in this identification.« less

  19. The Quantified Characterization Method of the Micro-Macro Contacts of Three-Dimensional Granular Materials on the Basis of Graph Theory.

    PubMed

    Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing

    2017-08-03

    We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.

  20. The New Computers and Writing Course at the University of Texas at Austin: Context and Theory.

    ERIC Educational Resources Information Center

    Rouzie, Albert

    The new "Computers and Writing" course implemented by the division of rhetoric and composition at the University of Texas at Austin is an elective second-year writing course that satisfies the university's requirement for writing component courses. In this course, instructors and students generate and apply rhetorical terminology and…

  1. Segment-based Mass Customization: An Exploration of a New Conceptual Marketing Framework.

    ERIC Educational Resources Information Center

    Jiang, Pingjun

    2000-01-01

    Suggests that the concept of mass customization should be seen as an integral part of market segmentation theory which offers the best way to satisfy consumers' unique needs and wants while yielding profits to companies. Proposes a new concept of "segment-based based mass customization," and offers a series of propositions which are…

  2. "Quality Circles": A Strategy for Personal and Curriculum Development. Coombe Lodge Working Paper. Information Bank Number 1803.

    ERIC Educational Resources Information Center

    Field, M. J.; Harrison, A. B.

    Quality circles attempt to satisfy both task and personal needs through staff involvement in solving work-related problems. This paper summarizes quality circle theory, applies it to school settings, and suggests a framework for introducing the process to educational institutions. After briefly defining quality circles, the article presents two…

  3. On the Interface of Probabilistic and PDE Methods in a Multifactor Term Structure Theory

    ERIC Educational Resources Information Center

    Mamon, Rogemar S.

    2004-01-01

    Within the general framework of a multifactor term structure model, the fundamental partial differential equation (PDE) satisfied by a default-free zero-coupon bond price is derived via a martingale-oriented approach. Using this PDE, a result characterizing a model belonging to an exponential affine class is established using only a system of…

  4. Supporting Young Artists in Making Connections: Moving from Mere Recognition to Perceptive Art Experiences

    ERIC Educational Resources Information Center

    Richards, Rosemary Doris

    2018-01-01

    Four young Australian children participated in research in which they shared their photographs and narratives of art experiences in their homes, early childhood centre and school. Drawing on Dewey's theories on art as experience, this article analyses some of the ways these 4- and 5-year-old children enjoyed satisfying art experiences, primarily…

  5. Thermodynamics and the structure of quantum theory

    NASA Astrophysics Data System (ADS)

    Krumm, Marius; Barnum, Howard; Barrett, Jonathan; Müller, Markus P.

    2017-04-01

    Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference.

  6. Autonomy in chimpanzees.

    PubMed

    Beauchamp, Tom L; Wobber, Victoria

    2014-04-01

    Literature on the mental capacities and cognitive mechanisms of the great apes has been silent about whether they can act autonomously. This paper provides a philosophical theory of autonomy supported by psychological studies of the cognitive mechanisms that underlie chimpanzee behavior to argue that chimpanzees can act autonomously even though their psychological mechanisms differ from those of humans. Chimpanzees satisfy the two basic conditions of autonomy: (1) liberty (the absence of controlling influences) and (2) agency (self-initiated intentional action), each of which is specified here in terms of conditions of understanding, intention, and self-control. In this account, chimpanzees make knowledge-based choices reflecting a richly information-based and socially sophisticated understanding of the world. Finally, two major theories of autonomy (Kantian theory and two-level theory) are rejected as too narrow to adequately address these issues, necessitating the modifications made in the present approach.

  7. Wess-Zumino consistency condition for entanglement entropy.

    PubMed

    Banerjee, Shamik

    2012-07-06

    In this Letter, we consider the variation of the entanglement entropy of a region as the shape of the entangling surface is changed. We show that the variation satisfies a Wess-Zumino-like integrability condition in field theories which can be consistently coupled to gravity. In this case, the "anomaly" is localized on the entangling surface. The solution of the integrability condition should give all the nontrivial finite local terms which can appear in the variation of the entanglement entropy. The answers depend on the intrinsic and extrinsic geometry of the entangling surface, but the form does not depend on the details of the field theory. The coefficients, which multiply the purely geometric contributions, will depend on the particular details of the field theory.

  8. Multicomponent lattice Boltzmann model from continuum kinetic theory.

    PubMed

    Shan, Xiaowen

    2010-04-01

    We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.

  9. On partially massless theory in 3 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei; Laboratoire Charles Coulomb UMR 5221, CNRS, Place Eugène Bataillon, F-34095, Montpellier; Deffayet, Cédric

    2015-03-24

    We analyze the first-order formulation of the ghost-free bigravity model in three-dimensions known as zwei-dreibein gravity. For a special choice of parameters, it was argued to have an additional gauge symmetry and give rise to a partially massless theory. We provide a thorough canonical analysis and identify that whether the theory becomes partially massless depends on the form of the stability condition of the secondary constraint responsible for the absence of the ghost. Generically, it is found to be an equation for a Lagrange multiplier implying that partially massless zwei-dreibein gravity does not exist. However, for special backgrounds this conditionmore » is identically satisfied leading to the presence of additional symmetries, which however disappear at quadratic order in perturbations.« less

  10. On partially massless theory in 3 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei; Deffayet, Cédric, E-mail: salexand@univ-montp2.fr, E-mail: deffayet@iap.fr

    2015-03-01

    We analyze the first-order formulation of the ghost-free bigravity model in three-dimensions known as zwei-dreibein gravity. For a special choice of parameters, it was argued to have an additional gauge symmetry and give rise to a partially massless theory. We provide a thorough canonical analysis and identify that whether the theory becomes partially massless depends on the form of the stability condition of the secondary constraint responsible for the absence of the ghost. Generically, it is found to be an equation for a Lagrange multiplier implying that partially massless zwei-dreibein gravity does not exist. However, for special backgrounds this conditionmore » is identically satisfied leading to the presence of additional symmetries, which however disappear at quadratic order in perturbations.« less

  11. Nonextensive kinetic theory and H-theorem in general relativity

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  12. Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory

    NASA Astrophysics Data System (ADS)

    Miwa, Akitsugu; Sugita, Kazuhiro

    2017-09-01

    We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.

  13. A non-asymptotic homogenization theory for periodic electromagnetic structures

    PubMed Central

    Tsukerman, Igor; Markel, Vadim A.

    2014-01-01

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912

  14. A coupled problem of finite deformation and flow in porous media

    NASA Astrophysics Data System (ADS)

    Moussa, A. B.

    1980-06-01

    A theory for deformation and two phase flow in porous media was developed. Equations of balance of mass, momentum, moment of momentum and energy for each constituent were postulated. These led to equivalent balance equations for the mixture as a whole to which an entropy production inequality was also postulated. The formulation was then applied to the silage material. A constitutive theory was developed for the mixture. General appropriate constitutive assumptions were suggested and made to satisfy the axiom of material objectivity and entropy production inequality. Material incompressibility was defined and introduced into the general form of constitutive relations.

  15. Determinism, independence, and objectivity are incompatible.

    PubMed

    Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R

    2015-02-13

    Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.

  16. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  17. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  18. Symmetric Trajectories for the 2N-Body Problem with Equal Masses

    NASA Astrophysics Data System (ADS)

    Terracini, Susanna; Venturelli, Andrea

    2007-06-01

    We consider the problem of 2 N bodies of equal masses in mathbb{R}^3 for the Newtonian-like weak-force potential r -σ, and we prove the existence of a family of collision-free nonplanar and nonhomographic symmetric solutions that are periodic modulo rotations. In addition, the rotation number with respect to the vertical axis ranges in a suitable interval. These solutions have the hip-hop symmetry, a generalization of that introduced in [19], for the case of many bodies and taking account of a topological constraint. The argument exploits the variational structure of the problem, and is based on the minimization of Lagrangian action on a given class of paths.

  19. Entanglement properties of boundary state and thermalization

    NASA Astrophysics Data System (ADS)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  20. Raney Distributions and Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng

    2015-03-01

    Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.

  1. Controlled-Root Approach To Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A.; Thomas, J. Brooks

    1995-01-01

    Performance tailored more flexibly and directly to satisfy design requirements. Controlled-root approach improved method for analysis and design of digital phase-locked loops (DPLLs). Developed rigorously from first principles for fully digital loops, making DPLL theory and design simpler and more straightforward (particularly for third- or fourth-order DPLL) and controlling performance more accurately in case of high gain.

  2. A Mathematical Model of the Illinois Interlibrary Loan Network: Project Report Number 2.

    ERIC Educational Resources Information Center

    Rouse, William B.; And Others

    The development of a mathematical model of the Illinois Library and Information Network (ILLINET) is described. Based on queueing network theory, the model predicts the probability of a request being satisfied, the average time from the initiation of a request to the receipt of the desired resources, the costs, and the processing loads. Using a…

  3. Emotional Contagion in the Classroom: The Impact of Teacher Satisfaction and Confirmation on Perceptions of Student Nonverbal Classroom Behavior

    ERIC Educational Resources Information Center

    Houser, Marian L.; Waldbuesser, Caroline

    2017-01-01

    Teachers appreciate nonverbally responsive students, but what is missing is an understanding of the direct influence of teachers' self-perceptions on their perceptions of how engaged their students are in class. Using the emotional contagion theory as a lens, this study examines the premise that satisfied instructors expect students to mirror…

  4. Metallic and antiferromagnetic fixed points from gravity

    NASA Astrophysics Data System (ADS)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  5. Determining the Value of Communications: The Development of a Theory and Three-Dimensional Scalar Model for Evaluating and Assigning Values to Communications Relating to Adult Education

    ERIC Educational Resources Information Center

    Koerber, Robert C.

    2011-01-01

    Strengthening the association between education and communication is difficult due to the scarcity of educationally initiated research into the mechanics of communication. Most of the existing communication research is domiciled in the departments of sociology, psychology, anthropology, journalism and business. Many educators are satisfied in…

  6. Error-correcting codes in computer arithmetic.

    NASA Technical Reports Server (NTRS)

    Massey, J. L.; Garcia, O. N.

    1972-01-01

    Summary of the most important results so far obtained in the theory of coding for the correction and detection of errors in computer arithmetic. Attempts to satisfy the stringent reliability demands upon the arithmetic unit are considered, and special attention is given to attempts to incorporate redundancy into the numbers themselves which are being processed so that erroneous results can be detected and corrected.

  7. Modeling the Internal Structure of Mars Using Normal Mode Relaxation Theory

    NASA Astrophysics Data System (ADS)

    Pithawala, T. M.; Ghent, R. R.; Bills, B. G.

    2010-12-01

    We seek to resolve an apparent paradox between two sets of observations, which seem to suggest quite different thermal structures for the deep interior of Mars. The orbit of Phobos is observed to be accelerating along-track at a rate of (273.4 ± 1.2) 10^(-5) deg/yr^(2), which implies that the orbit is shrinking at (4.03 ± 0.03) cm/yr, and losing energy at a rate of 3.4 MW. The most likely sink for that energy is tidal dissipation within Mars, seemingly requiring a warm interior. However, static support of the gravity and topography of Mars requires a thick elastic lithosphere, indicating a relatively cool (and therefore stiff) mantle. Using normal mode relaxation theory we model the internal viscosity structure of Mars by analyzing its response to tidal forcing from Phobos. We investigate spherical axisymmetric layered viscoelastic models, seeking to satisfy what is known about planetary differentiation, to support large-scale topography via a thick elastic lithosphere, and to yield the observed tidal dissipation rate. We present a family of 4-layer models (core, mantle, lithosphere, and thin weak layer) that satisfy these constraints, and discuss the implications for Mars’ internal structure.

  8. MADM-based smart parking guidance algorithm

    PubMed Central

    Li, Bo; Pei, Yijian; Wu, Hao; Huang, Dijiang

    2017-01-01

    In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by considering three representative decision factors (i.e., walk duration, parking fee, and the number of vacant parking spaces) and various preferences of drivers. In this paper, the expected number of vacant parking spaces is regarded as an important attribute to reflect the difficulty degree of finding available parking spaces, and a queueing theory-based theoretical method was proposed to estimate this expected number for candidate parking facilities with different capacities, arrival rates, and service rates. The effectiveness of the MADM-based parking guidance algorithm was investigated and compared with a blind search-based approach in comprehensive scenarios with various distributions of parking facilities, traffic intensities, and user preferences. Experimental results show that the proposed MADM-based algorithm is effective to choose suitable parking resources to satisfy users’ preferences. Furthermore, it has also been observed that this newly proposed Markov Chain-based availability attribute is more effective to represent the availability of parking spaces than the arrival rate-based availability attribute proposed in existing research. PMID:29236698

  9. A Mathematical Basis for the Safety Analysis of Conflict Prevention Algorithms

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Butler, Ricky W.; Munoz, Cesar A.; Dowek, Gilles

    2009-01-01

    In air traffic management systems, a conflict prevention system examines the traffic and provides ranges of guidance maneuvers that avoid conflicts. This guidance takes the form of ranges of track angles, vertical speeds, or ground speeds. These ranges may be assembled into prevention bands: maneuvers that should not be taken. Unlike conflict resolution systems, which presume that the aircraft already has a conflict, conflict prevention systems show conflicts for all maneuvers. Without conflict prevention information, a pilot might perform a maneuver that causes a near-term conflict. Because near-term conflicts can lead to safety concerns, strong verification of correct operation is required. This paper presents a mathematical framework to analyze the correctness of algorithms that produce conflict prevention information. This paper examines multiple mathematical approaches: iterative, vector algebraic, and trigonometric. The correctness theories are structured first to analyze conflict prevention information for all aircraft. Next, these theories are augmented to consider aircraft which will create a conflict within a given lookahead time. Certain key functions for a candidate algorithm, which satisfy this mathematical basis are presented; however, the proof that a full algorithm using these functions completely satisfies the definition of safety is not provided.

  10. Parity in knot theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manturov, Vassily O

    2010-06-29

    In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtualmore » knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.« less

  11. Buckling Analysis of Angle-ply Composite and Sandwich Plates by Combination of Geometric Stiffness Matrix

    NASA Astrophysics Data System (ADS)

    Zhen, Wu; Wanji, Chen

    2007-05-01

    Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.

  12. Quasi-degenerate perturbation theory using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  13. Lagrangian dynamics for classical, Brownian, and quantum mechanical particles

    NASA Astrophysics Data System (ADS)

    Pavon, Michele

    1996-07-01

    In the framework of Nelson's stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton's principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical-like equations.

  14. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    NASA Astrophysics Data System (ADS)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  15. Gedanken densities and exact constraints in density functional theory.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  16. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    NASA Technical Reports Server (NTRS)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  17. Implementation of Complexity Analyzing Based on Additional Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Na; Liang, Yanhong; Liu, Fang

    According to the Complexity Theory, there is complexity in the system when the functional requirement is not be satisfied. There are several study performances for Complexity Theory based on Axiomatic Design. However, they focus on reducing the complexity in their study and no one focus on method of analyzing the complexity in the system. Therefore, this paper put forth a method of analyzing the complexity which is sought to make up the deficiency of the researches. In order to discussing the method of analyzing the complexity based on additional effect, this paper put forth two concepts which are ideal effect and additional effect. The method of analyzing complexity based on additional effect combines Complexity Theory with Theory of Inventive Problem Solving (TRIZ). It is helpful for designers to analyze the complexity by using additional effect. A case study shows the application of the process.

  18. Dark matter relics and the expansion rate in scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less

  19. Particle-hole symmetry and composite fermions in fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh

    2018-05-01

    We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.

  20. Momentum conserving defects in affine Toda field theories

    NASA Astrophysics Data System (ADS)

    Bristow, Rebecca; Bowcock, Peter

    2017-05-01

    Type II integrable defects with more than one degree of freedom at the defect are investigated. A condition on the form of the Lagrangian for such defects is found which ensures the existence of a conserved momentum in the presence of the defect. In addition it is shown that for any Lagrangian satisfying this condition, the defect equations of motion, when taken to hold everywhere, can be extended to give a Bäcklund transformation between the bulk theories on either side of the defect. This strongly suggests that such systems are integrable. Momentum conserving defects and Bäcklund transformations for affine Toda field theories based on the A n , B n , C n and D n series of Lie algebras are found. The defect associated with the D 4 affine Toda field theory is examined in more detail. In particular classical time delays for solitons passing through the defect are calculated.

  1. An Application of the Theory of Moments to Euclidean Relativistic Quantum Mechanical Scattering

    NASA Astrophysics Data System (ADS)

    Aiello, Gordon J.

    One recipe for mathematically formulating a relativistic quantum mechanical scattering theory utilizes a two-Hilbert space approach, denoted by H and H0, upon each of which a unitary representation of the Poincare Lie group is given. Physically speaking, H models a complicated interacting system of particles one wishes to understand, and H 0 an associated simpler (i.e., free/noninteracting) structure one uses to construct "asymptotic boundary conditions" on so-called scattering states in H. Simply put, H 0 is an attempted idealization of H one hopes to realize in the large time limits t → +/-infinity. The above considerations lead to the study of the existence of strong limits of operators of the form eiHtJeiH 0t, where H and H0 are self-adjoint generators of the time translation subgroup of the unitary representations of the Poincare group on H and H0, and J is a contrived mapping from H0 into H that provides the internal structure of the scattering asymptotes. The existence of said limits in the context of Euclidean quantum theories (satisfying precepts known as the Osterwalder-Schrader axioms) depends on the choice of J and leads to a marvelous connection between this formalism and a beautiful area of classical mathematical analysis known as the Stieltjes moment problem, which concerns the relationship between numerical sequences {mun}n=0infinity and the existence/uniqueness of measures alpha(x) on the half-line satisfying (n/a).

  2. From grid cells and visual place cells to multimodal place cell: a new robotic architecture

    PubMed Central

    Jauffret, Adrien; Cuperlier, Nicolas; Gaussier, Philippe

    2015-01-01

    In the present study, a new architecture for the generation of grid cells (GC) was implemented on a real robot. In order to test this model a simple place cell (PC) model merging visual PC activity and GC was developed. GC were first built from a simple “several to one” projection (similar to a modulo operation) performed on a neural field coding for path integration (PI). Robotics experiments raised several practical and theoretical issues. To limit the important angular drift of PI, head direction information was introduced in addition to the robot proprioceptive signal coming from the wheel rotation. Next, a simple associative learning between visual place cells and the neural field coding for the PI has been used to recalibrate the PI and to limit its drift. Finally, the parameters controlling the shape of the PC built from the GC have been studied. Increasing the number of GC obviously improves the shape of the resulting place field. Yet, other parameters such as the discretization factor of PI or the lateral interactions between GC can have an important impact on the place field quality and avoid the need of a very large number of GC. In conclusion, our results show our GC model based on the compression of PI is congruent with neurobiological studies made on rodent. GC firing patterns can be the result of a modulo transformation of PI information. We argue that such a transformation may be a general property of the connectivity from the cortex to the entorhinal cortex. Our model predicts that the effect of similar transformations on other kinds of sensory information (visual, tactile, auditory, etc…) in the entorhinal cortex should be observed. Consequently, a given EC cell should react to non-contiguous input configurations in non-spatial conditions according to the projection from its different inputs. PMID:25904862

  3. Renormalization group method based on the ionization energy theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006

    2011-03-15

    Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less

  4. Some Preliminary Notes on an Empirical Test of Freud’s Theory on Depression

    PubMed Central

    Desmet, Mattias

    2012-01-01

    A review of the literature indicates that empirical researchers have difficulty translating Freud’s theory on depression into appropriate research questions and hypotheses. In their attempt to do so, the level of complexity in Freud’s work is often lost. As a result, what is empirically tested is no more than a caricature of the original theory. To help researchers avoid such problems, this study presents a conceptual analysis of Freud’s theory of depression as it is presented in Mourning and Melancholia (Freud, 1917). In analyzing Freud’s theory on the etiology of depression, it is essential to differentiate between (1) an identification with the satisfying and frustrating aspects of the love object, (2) the inter- and an intrapersonal loss of the love object, and (3) conscious and unconscious dynamics. A schematic representation of the mechanism of depression is put forward and a research design by which this schema can be empirically investigated is outlined. PMID:23675357

  5. Disformal invariance of curvature perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; White, Jonathan, E-mail: motohashi@kicp.uchicago.edu, E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformallymore » related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.« less

  6. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  7. Computer program for calculating aerodynamic characteristics of upper-surface-blowing and over-wing-blowing configurations

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Fillman, G. L.; Fox, C. H., Jr.

    1977-01-01

    The program is based on the inviscid wing-jet interaction theory of Lan and Campbell, and the jet entrainment theory of Lan. In the interaction theory, the flow perturbations are computed both inside and outside the jet, separately, and then matched on the jet surface to satisfy the jet boundary conditions. The jet Mach number is allowed to be different from the free stream value (Mach number nonuniformity). These jet boundary conditions require that the static pressure be continuous across the jet surface which must always remain as a stream surface. These conditions, as well as the wing-surface tangency condition, are satisified only in the linearized sense. The detailed formulation of these boundary conditions is based on the quasi-vortex-lattice method of Lan.

  8. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  9. Sine-gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization

    NASA Astrophysics Data System (ADS)

    Kirillov, A. I.

    1995-11-01

    Using the theory of Dirichlet forms, we prove the existence of a distribution-valued diffusion process such that the Nelson measure of a field with a bounded interaction density is its invariant probability measure. A Langevin equation in mathematically correct form is formulated which is satisfied by the process. The drift term of the equation is interpreted as a renormalized Euclidean current operator.

  10. The phenomena of police fantasies, leg fetish, and father identification in a homosexual male.

    PubMed

    Baltazar, K K

    1997-01-01

    The relationship of police fantasies and leg fetish to identification with the father in a homosexual male. To describe two manifestations of identification with the father in a male homosexual. The author's clinical work. It is important to decode current behavior in light of theory and past history, to help clients move from potentially destructive behavior to satisfying interpersonal interactions.

  11. Learning about Academic Ability and the College Drop-Out Decision. NBER Working Paper No. 14810

    ERIC Educational Resources Information Center

    Stinebrickner, Todd R.; Stinebrickner, Ralph

    2009-01-01

    We use unique data to examine how college students from low income families form expectations about academic ability and to examine the role that learning about ability and a variety of other factors play in the college drop-out decision. From the standpoint of satisfying a central implication from the theory of drop-out, we find that…

  12. Palatini variation of curvature-squared action and gravitational collapse

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman

    1991-01-01

    It is shown that Palatini variation of a class of gravitational actions based on a quadratic generalization of the Einstein-Hilbert action results in a metric-incompatible theory of gravity but one that satisfies Birkhoff's theorem. The usual fourth-order field equations are replaced by two second-order equations. Application of the field equations to a model of freely falling dust are discussed.

  13. Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity.

    PubMed

    Olmo, Gonzalo J; Rubiera-Garcia, D; Sanchis-Alepuz, Helios

    We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Bousso, Raphael

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concretemore » realization through its landscape of metastable vacua.« less

  15. Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Sahoo, P. K.

    2018-01-01

    Wormholes are tunnels connecting two different points in space-time. In Einstein's general relativity theory, wormholes are expected to be filled by exotic matter, i.e., matter that does not satisfy the energy conditions and may have negative density. We propose, in this paper, the achievement of wormhole solutions with no need for exotic matter. In order to achieve so, we consider a gravity theory that starts from linear and quadratic terms on the trace of the energy-momentum tensor in the gravitational action. We show that by following this formalism, it is possible, indeed, to obtain nonexotic matter wormhole solutions.

  16. The Coriolis field

    NASA Astrophysics Data System (ADS)

    Costa, L. Filipe; Natário, José

    2016-05-01

    We present a pedagogical discussion of the Coriolis field, emphasizing its not-so-well-understood aspects. We show that this field satisfies the field equations of the so-called Newton-Cartan theory, a generalization of Newtonian gravity that is covariant under changes of arbitrarily rotating and accelerated frames. Examples of solutions of this theory are given, including the Newtonian analogue of the Gödel universe. We discuss how to detect the Coriolis field by its effect on gyroscopes, of which the gyrocompass is an example. Finally, using a similar framework, we discuss the Coriolis field generated by mass currents in general relativity, and its measurement by the gravity probe B and LAGEOS/LARES experiments.

  17. JacketSE: An Offshore Wind Turbine Jacket Sizing Tool; Theory Manual and Sample Usage with Preliminary Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick

    This manual summarizes the theory and preliminary verifications of the JacketSE module, which is an offshore jacket sizing tool that is part of the Wind-Plant Integrated System Design & Engineering Model toolbox. JacketSE is based on a finite-element formulation and on user-prescribed inputs and design standards' criteria (constraints). The physics are highly simplified, with a primary focus on satisfying ultimate limit states and modal performance requirements. Preliminary validation work included comparing industry data and verification against ANSYS, a commercial finite-element analysis package. The results are encouraging, and future improvements to the code are recommended in this manual.

  18. Poisson equation for the Mercedes diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-03-01

    The Mercedes diagram has four trivalent vertices which are connected by six links such that they form the edges of a tetrahedron. This three-loop Feynman diagram contributes to the {D}12{{ R }}4 amplitude at genus one in type II string theory, where the vertices are the points of insertion of the graviton vertex operators, and the links are the scalar propagators on the toroidal worldsheet. We obtain a modular invariant Poisson equation satisfied by the Mercedes diagram, where the source terms involve one- and two-loop Feynman diagrams. We calculate its contribution to the {D}12{{ R }}4 amplitude.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Martin; Hastings, Alan; Smith, Matthew J.

    We develop a theory for residence times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Forster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of residence time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory is consistent with the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the carbon cycle, which is a simplified version of the Carnegie–Ames–Stanfordmore » approach (CASA) model.« less

  20. A simple cosmology with a varying fine structure constant.

    PubMed

    Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João

    2002-01-21

    We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.

  1. Initial singularity and pure geometric field theories

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  2. The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Frey, Kimberly

    The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum mathematics in a sense which parallels the foundational role of classical set theory in classical mathematics. One immediate application of the quantum set theory we develop is to provide a foundation on which to construct quantum natural numbers, which are the quantum analog of the classical counting numbers. It turns out that in a special class of models, there exists a 1-1 correspondence between the quantum natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great confidence in our quantum set theory, but indicates the naturalness of such models for quantum theory itself. We go on to develop a Peano-like arithmetic for these new "numbers," as well as consider some of its consequences. Finally, we conclude by summarizing our results, and discussing directions for future work.

  3. IIB duals of D = 3 {N} = 4 circular quivers

    NASA Astrophysics Data System (ADS)

    Assel, Benjamin; Bachas, Costas; Estes, John; Gomis, Jaume

    2012-12-01

    We construct the type-IIB AdS4 ⋉ K supergravity solutions which are dual to the three-dimensional {N} = 4 superconformal field theories that arise as infrared fixed points of circular-quiver gauge theories. These superconformal field theories are labeled by a triple ( {ρ, hat{ρ},L} ) subject to constraints, where ρ and hat{ρ} are two partitions of a number N, and L is a positive integer. We show that in the limit of large L the localized five- branes in our solutions are effectively smeared, and these type-IIB solutions are dual to the near-horizon geometry of M-theory M2-branes at a {{{{{{C}}^4}}} / {{( {{Z_k}× {Z_{widehat{k}}}} )}} .} orbifold singularity. Our IIB solutions resolve the singularity into localized five-brane throats, without breaking the conformal symmetry. The constraints satisfied by the triple ( {ρ, hat{ρ},L} ) , together with the enhanced non-abelian flavour symmetries of the superconformal field theories are precisely reproduced by the type-IIB supergravity solutions. As a bonus, we uncover a novel type of "orbifold equivalence" between different quantum field theories and provide quantitative evidence for this equivalence.

  4. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing "central dogma" for future molecular/genetic biology remains to be explored.

  5. Periodic binary sequence generators: VLSI circuits considerations

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1984-01-01

    Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.

  6. A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.

    2016-01-01

    Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.

  7. Reliable computation from contextual correlations

    NASA Astrophysics Data System (ADS)

    Oestereich, André L.; Galvão, Ernesto F.

    2017-12-01

    An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.

  8. Complexity transitions in global algorithms for sparse linear systems over finite fields

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.

    2002-09-01

    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.

  9. History dependent quantum walk on the cycle with an unbalanced coin

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2015-06-01

    Recently, a new model of quantum walk, utilizing recycled coins, was introduced; however little is yet known about its properties. In this paper, we study its behavior on the cycle graph. In particular, we will consider its time averaged distribution and how it is affected by the walk's "memory parameter"-a real parameter, between zero and eight, which affects the walk's coin flip operator. Despite an infinite number of different parameters, our analysis provides evidence that only a few produce non-uniform behavior. Our analysis also shows that the initial state, and cycle size modulo four all affect the behavior of this walk. We also prove an interesting relationship between the recycled coin model and a different memory-based quantum walk recently proposed.

  10. Separating OR, SUM, and XOR Circuits☆

    PubMed Central

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.

    2017-01-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n3/2/log2n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis. PMID:28529379

  11. Solutions of the KPI equation with smooth initial data

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.

    1994-06-01

    The solution $u(t,x,y)$ of the Kadomtsev--Petviashvili I (KPI) equation with given initial data $u(0,x,y)$ belonging to the Schwartz space is considered. No additional special constraints, usually considered in literature, as $\\int\\!dx\\,u(0,x,y)=0$ are required to be satisfied by the initial data. The problem is completely solved in the framework of the spectral transform theory and it is shown that $u(t,x,y)$ satisfies a special evolution version of the KPI equation and that, in general, $\\partial_t u(t,x,y)$ has different left and right limits at the initial time $t=0$. The conditions of the type $\\int\\!dx\\,u(t,x,y)=0$, $\\int\\!dx\\,xu_y(t,x,y)=0$ and so on (first, second, etc. `constraints') are dynamically generated by the evolution equation for $t\

  12. Eisenstein type series for Calabi-Yau varieties

    NASA Astrophysics Data System (ADS)

    Movasati, Hossein

    2011-06-01

    In this article we introduce an ordinary differential equation associated to the one parameter family of Calabi-Yau varieties which is mirror dual to the universal family of smooth quintic three folds. It is satisfied by seven functions written in the q-expansion form and the Yukawa coupling turns out to be rational in these functions. We prove that these functions are algebraically independent over the field of complex numbers, and hence, the algebra generated by such functions can be interpreted as the theory of (quasi) modular forms attached to the one parameter family of Calabi-Yau varieties. Our result is a reformulation and realization of a problem of Griffiths around seventies on the existence of automorphic functions for the moduli of polarized Hodge structures. It is a generalization of the Ramanujan differential equation satisfied by three Eisenstein series.

  13. Comments on real tachyon vacuum solution without square roots

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo

    2018-01-01

    We analyze the consistency of a recently proposed real tachyon vacuum solution without square roots in open bosonic string field theory. We show that the equation of motion contracted with the solution itself is satisfied. Additionally, by expanding the solution in the basis of the curly ℒ0 and the traditional L 0 eigenstates, we evaluate numerically the vacuum energy and obtain a result in agreement with Sen's conjecture.

  14. Gauged twistor spinors and symmetry operators

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2017-03-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  15. Community and Contribution: Factors Motivating Students to Participate in an Extra-Curricular Online Activity and Implications for Learning

    ERIC Educational Resources Information Center

    Reeves, Tony; Gomm, Phil

    2015-01-01

    The human desire to join and participate in communities can be seen as an attempt to satisfy some of our universal human needs. The theory of communities of practice has been widely used to explain how and why humans participate in multiple communities, and a key requirement of a community of practice (CoP) is that members engage in "joint…

  16. Semi-quantitative spectrographic analysis and rank correlation in geochemistry

    USGS Publications Warehouse

    Flanagan, F.J.

    1957-01-01

    The rank correlation coefficient, rs, which involves less computation than the product-moment correlation coefficient, r, can be used to indicate the degree of relationship between two elements. The method is applicable in situations where the assumptions underlying normal distribution correlation theory may not be satisfied. Semi-quantitative spectrographic analyses which are reported as grouped or partly ranked data can be used to calculate rank correlations between elements. ?? 1957.

  17. The Role of the Counterfactually Satisfied Desire in the Lag between False-Belief and False-Emotion Attributions in Children Aged 4-7

    ERIC Educational Resources Information Center

    Bradmetz, Joel; Schneider, Roland

    2004-01-01

    A robust lag was evidenced between the attribution to an individual of a false belief about the world and the attribution of the false emotion associated with this false belief (Bradmetz & Schneider, 1999). This lag was unexpected in the frame of current theories of mind which consider that emotion has a rational cognitive basis. The present paper…

  18. Almost-Quantum Correlations Violate the No-Restriction Hypothesis

    NASA Astrophysics Data System (ADS)

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-01

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  19. Independent events in elementary probability theory

    NASA Astrophysics Data System (ADS)

    Csenki, Attila

    2011-07-01

    In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): If the n events E 1, E 2, … , E n are jointly independent then any two events A and B built in finitely many steps from two disjoint subsets of E 1, E 2, … , E n are also independent. The operations 'union', 'intersection' and 'complementation' are permitted only when forming the events A and B. Here we examine this statement from the point of view of elementary probability theory. The approach described here is accessible also to users of probability theory and is believed to be novel.

  20. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.

  1. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  2. Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.

  3. The Role of Reformulation in the Automatic Design of Satisfiability Procedures

    NASA Technical Reports Server (NTRS)

    VanBaalen, Jeffrey

    1992-01-01

    Recently there has been increasing interest in the problem of knowledge compilation (Selman & Kautz91). This is the problem of identifying tractable techniques for determining the consequences of a knowledge base. We have developed and implemented a technique, called DRAT, that given a theory, i.e., a collection of firstorder clauses, can often produce a type of decision procedure for that theory that can be used in the place of a general-purpose first-order theorem prover for determining many of the consequences of that theory. Hence, DRAT does a type of knowledge compilation. Central to the DRAT technique is a type of reformulation in which a problem's clauses are restated in terms of different nonlogical symbols. The reformulation is isomorphic in the sense that it does not change the semantics of a problem.

  4. Ocean tides for satellite geodesy

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  5. Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Alazzawi, Sabina; Lechner, Gandalf

    2017-09-01

    We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.

  6. Microdosimetry and Katz's track structure theory. I. One-hit detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaider, M.

    1990-10-01

    A microdosimetric treatment of the response of one-hit detectors to radiation is formulated and compared with the model proposed by R. Katz, S. C. Sharma, and M. Homayoonfar within the framework of their track-structure theory. It is shown that radial dose distributions (on which the track structure theory is based) are generally poor substitutes for the exact microdosimetric distributions except when (a) the target is much larger than the radial extent of the track or (b) the effective specific energy in the target (alpha z) is negligibly small. Since neither one of these conditions is generally satisfied, it is suggestedmore » that a meaningful search for one-hit detectors be based on a microdosimetric description of the stochastics of energy deposition. An analysis of the phi x-174 bacteriophage inactivation data is presented.« less

  7. Almost-Quantum Correlations Violate the No-Restriction Hypothesis.

    PubMed

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-18

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  8. Encouraging intrinsic motivation in the clinical setting: teachers' perspectives from the self-determination theory.

    PubMed

    Orsini, C; Evans, P; Binnie, V; Ledezma, P; Fuentes, F

    2016-05-01

    Self-determination theory postulates that the three basic psychological needs of autonomy, competence and relatedness have to be satisfied for students to achieve intrinsic motivation and internalisation of autonomous self-regulation towards academic activities. Consequently, the influence of the clinical teaching environment becomes crucial when satisfying these needs, particularly when promoting or diminishing students' intrinsic motivation. The aim of this study was to describe and understand how clinical teachers encourage intrinsic motivation in undergraduate dental students based on the three basic psychological needs described by the self-determination theory. A qualitative case study approach was adopted, and data were collected through semistructured interviews with nine experienced undergraduate clinical teachers of one dental school in Santiago, Chile. Interview transcripts were analysed by two independent reviewers using a general inductive approach. Several themes emerged outlining teaching strategies and behaviours. These themes included the control of external motivators; gradual transference of responsibility; identification and encouragement of personal interests; timely and constructive feedback; delivery of a vicarious learning experience; teamwork, team discussion, and presence of a safe environment, amongst others. Overall, teachers stressed the relevance of empowering, supporting and building a horizontal relationship with students. Our findings regarding dental education expand on the research outcomes from other health professions about how teachers may support students to internalise behaviours. An autonomy-supportive environment may lead students to value and engage in academic activities and eventually foster the use of an autonomy-supportive style to motivate their patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Two-parameter partially correlated ground-state electron density of some light spherical atoms from Hartree-Fock theory with nonintegral nuclear charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.

    2007-05-15

    Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.

  10. Einstein-Yang-Mills scattering amplitudes from scattering equations

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-01-01

    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.

  11. Single charge exchange between hydrogen-like projectiles and hydrogen atom: the post version of the BDW-4B approximation

    NASA Astrophysics Data System (ADS)

    Azizan, Sh; Shojaei, F.; Fathi, R.

    2016-04-01

    The post version of the four-body Born distorted wave method (BDW-4B) is applied to calculate the total cross section for single electron exchange in the collision of hydrogen-like projectiles with hydrogen atom. The post form of transition amplitude is obtained in terms of two-dimensional real integrals which can be computed numerically. This second-order theory which satisfies the correct boundary conditions is used for the collision of {{H}}, {{H}}{{{e}}}+, {{L}}{{{i}}}2+, {{{B}}}4+, {{{C}}}5+ with hydrogen atoms at intermediate and high impact energies. The validity of our results is assessed in comparison with available experimental data and other theories.

  12. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  13. Inner mechanics of three-dimensional black holes.

    PubMed

    Detournay, Stéphane

    2012-07-20

    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.

  14. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  15. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    PubMed

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  16. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  17. Constraints on Horndeski theory using the observations of Nordtvedt effect, Shapiro time delay and binary pulsars

    NASA Astrophysics Data System (ADS)

    Hou, Shaoqi; Gong, Yungui

    2018-03-01

    Alternative theories of gravity not only modify the polarization contents of the gravitational wave, but also affect the motions of the stars and the energy radiated away via the gravitational radiation. These aspects leave imprints in the observational data, which enables the test of general relativity and its alternatives. In this work, the Nordtvedt effect and the Shapiro time delay are calculated in order to constrain Horndeski theory using the observations of lunar laser ranging experiments and Cassini time-delay data. The effective stress-energy tensor is also obtained using the method of Isaacson. Gravitational wave radiation of a binary system is calculated, and the change of the period of a binary system is deduced for the elliptical orbit. These results can be used to set constraints on Horndeski theory with the observations of binary systems, such as PSR J1738 + 0333. Constraints have been obtained for some subclasses of Horndeski theory, in particular, those satisfying the gravitational wave speed limits from GW170817 and GRB 170817A.

  18. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  19. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  20. HOTCFGM-1D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Through-Thickness Functionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    1998-01-01

    The objective of this three-year project was to develop and deliver to NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer codes, for the analysis, optimization and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, blisk blades). To satisfy this objective, a quasi one-dimensional version of the higher-order theory, HOTCFGM-1D, and four computer codes based on this theory, for the analysis, design and optimization of cylindrical structural components functionally graded in the radial direction were developed. The theory is applicable to thin multi-phased composite shell/cylinders subjected to macroscopically axisymmetric thermomechanical and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial and circumferential directions, and arbitrarily distributed in the radial direction, thereby allowing functional grading of the internal reinforcement in this direction.

  1. Charged Vaidya solution satisfies weak energy condition

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumyabrata; Ganguli, Suman; Virmani, Amitabh

    2016-07-01

    The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori (Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f( R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m( v) is proportional to the charge function q( v). When the proportionality constant ν = q(v)/m(v) lies in between zero and one, we show that the surface where the external stress-tensor vanishes is spacelike and lies in between the inner and outer apparent horizons.

  2. Strategic Technology Investment Analysis: An Integrated System Approach

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2010-01-01

    Complex technology investment decisions within NASA are increasingly difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Due to a restricted science budget environment and numerous required technology developments, the investment decisions need to take into account not only the functional impact on the program goals, but also development uncertainties and cost variations along with maintaining a healthy workforce. This paper describes an approach for optimizing and qualifying technology investment portfolios from the perspective of an integrated system model. The methodology encompasses multi-attribute decision theory elements and sensitivity analysis. The evaluation of the degree of robustness of the recommended portfolio provides the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy nontechnical constraints. The methodology is presented in the context of assessing capability development portfolios for NASA technology programs.

  3. Spin foam models for quantum gravity from lattice path integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonzom, Valentin

    2009-09-15

    Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case,more » the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.« less

  4. A study of accurate exchange-correlation functionals through adiabatic connection

    NASA Astrophysics Data System (ADS)

    Singh, Rabeet; Harbola, Manoj K.

    2017-10-01

    A systematic way of improving exchange-correlation energy functionals of density functional theory has been to make them satisfy more and more exact relations. Starting from the initial generalized gradient approximation (GGA) functionals, this has culminated into the recently proposed SCAN (strongly constrained and appropriately normed) functional that satisfies several known constraints and is appropriately normed. The ultimate test for the functionals developed is the accuracy of energy calculated by employing them. In this paper, we test these exchange-correlation functionals—the GGA hybrid functionals B3LYP and PBE0 and the meta-GGA functional SCAN—from a different perspective. We study how accurately these functionals reproduce the exchange-correlation energy when electron-electron interaction is scaled as αVee with α varying between 0 and 1. Our study reveals interesting comparison between these functionals and the associated difference Tc between the interacting and the non-interacting kinetic energy for the same density.

  5. A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph Kirk

    1987-01-01

    The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.

  6. Development and testing of two lifestyle interventions for persons with chronic mild-to-moderate traumatic brain injury: Acceptability and feasibility.

    PubMed

    Bay, Esther; Ribbens-Grimm, Christine; Chan, Roxane R

    2016-05-01

    This clinical methods discursive highlights the development, piloting, and evaluation of two group interventions designed for persons who experienced chronic traumatic brain injury (TBI). Intervention science for this population is limited and lacking in rigor. Our innovative approach to customize existing interventions and develop parallel delivery methods guided by Allostatic Load theory is presented and preliminary results described. Overall, parallel group interventions delivered by trained leaders with mental health expertise were acceptable and feasible for persons who reported being depressed, stressed, and symptomatic. They reported being satisfied with the overall programs and mostly satisfied with the individual classes. Attendance was over the anticipated 70% expected rate and changes in daily living habits were reported by participants. These two group interventions show promise in helping persons to self manage their chronic stress and symptomatology. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Parental Involvement with College Students in Germany, Hong Kong, Korea, and the United States

    PubMed Central

    Fingerman, Karen L.; Cheng, Yen-Pi; Kim, Kyungmin; Fung, Helene H.; Han, Gyounghae; Lang, Frieder R.; Lee, Wonkyung; Wagner, Jenny

    2014-01-01

    Rates of college attendance have increased throughout the world. This study asked whether students across nations experience high involvement with parents (frequent contact and support) and how satisfied they are with parental involvement. College students from four major Western and Asian economies participated: Germany (n = 458), Hong Kong (n = 276), Korea (n = 257), and the United States (n = 310). Consistent with solidarity theory, students across nations reported frequent contact with parents and receiving several forms of social support (e.g., practical, emotional, and advice) every month. Multilevel models revealed Asian students received more frequent parental support than German or US students, but were less satisfied with that support. Students in Hong Kong resided with parents more often and gave more support to parents than students in other cultures. Discussion focuses on cultural (i.e., filial obligation) and structural (i.e., coresidence) factors explaining parental involvement. PMID:27594722

  8. Boundary States and Broken Bulk Symmetries in WAr Minimal Models

    NASA Astrophysics Data System (ADS)

    Caldeira, Alexandre F.; Wheater, J. F.

    We review the free-field formalism for boundary states. The multi-component free-field formalism is then used to study the boundary states of (p',p) rational conformal field theories having a W symmetry of the type Ar. We show how the classification of primary fields for these models is obtained by demanding modular covariance of cylinder amplitudes and that the resulting modular S matrix satisfies all the necessary conditions. Basis states satisfying the boundary conditions are found in the form of coherent states and as expected we find that W violating states can be found for all these models. We construct consistent physical boundary states for all the rank 2 (p + 1,p) models (of which the already known case of the 3-state Potts model is the simplest example) and find that the W violating sector possesses a direct analogue of the Verlinde formula.

  9. Nursing directors' leadership styles and faculty members' job satisfaction in Taiwan.

    PubMed

    Chen, Hsiu-Chin; Baron, Mark

    2006-10-01

    Nursing leaders in Taiwan seldom receive the leadership training necessary to lead an academic organization. As a result, leaders may experience burn out, and dissatisfaction among faculty may increase. This study examined nursing faculty members' perceptions of nursing directors' leadership and their job satisfaction levels to understand how perceptions of leadership styles related to job satisfaction in Taiwan. This descriptive, correlational, cross-sectional study used self-administered questionnaires. Transformational leadership theory supported the research framework. Nine schools with nursing programs awarding diplomas to students participated in this study. A total of 175 questionnaires were returned (72% response rate). The findings indicated that Taiwan's nursing directors tend to display transformational leadership more frequently in their workplaces and that Taiwan's nursing faculty members are moderately satisfied in their jobs. In addition, nursing faculty in Taiwan are more satisfied with directors who practice the leadership style of attributed idealized influence.

  10. Enhancing The Science Collection Capability Of Nasas Lunar Reconnaissance Orbiter (LRO)

    DTIC Science & Technology

    2017-12-01

    dog-leg maneuver. The optimal control concept can be used to automate maneuver design with bright object avoidance. 6.1 Introduction Attitude maneuver...plan can be executed and the science objectives satisfied, rapid slew maneuvers are developed using optimal control theory. A key challenge to the...rapid slew is meeting operational constraints, which are treated as path constraints in optimal control . It is shown that the slew time for a payload

  11. Self-adjointness of deformed unbounded operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  12. A viable logarithmic f(R) model for inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, M.; Khalil, S.; Salah, M.

    2016-08-18

    Inflation in the framework of f(R) modified gravity is revisited. We study the conditions that f(R) should satisfy in order to lead to a viable inflationary model in the original form and in the Einstein frame. Based on these criteria we propose a new logarithmic model as a potential candidate for f(R) theories aiming to describe inflation consistent with observations from Planck satellite (2015). The model predicts scalar spectral index 0.9615

  13. Crowdsourced Formal Verification: A Business Case Analysis Toward a Human-Centered Business Model

    DTIC Science & Technology

    2015-06-01

    literacycampaignmc.org/wp-content/uploads/2011/11/ Compressed-State-of-Literacy-MC1.pdf Ryan , R. M., & Deci , E. L. (2000). Self - determination theory and the...crowd- sourced formal verification games provide intrinsic motivation. Ryan and Deci (2000) sum- marized three needs that drive the intrinsic motivation...competence, relatedness, and au- tonomy. Therefore, such games have to embrace the self - determination of the customers. Games, per se, can satisfy

  14. Application of nonlinear transformations to automatic flight control

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Su, R.; Hunt, L. R.

    1984-01-01

    The theory of transformations of nonlinear systems to linear ones is applied to the design of an automatic flight controller for the UH-1H helicopter. The helicopter mathematical model is described and it is shown to satisfy the necessary and sufficient conditions for transformability. The mapping is constructed, taking the nonlinear model to canonical form. The performance of the automatic control system in a detailed simulation on the flight computer is summarized.

  15. Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel, E-mail: marcel.novaes@gmail.com

    2015-10-15

    We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.

  16. Non-Abelian Berry phase, instantons, and N=(0,4) supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laia, Joao N.

    2010-12-15

    In supersymmetric quantum mechanics, the non-Abelian Berry phase is known to obey certain differential equations. Here we study N=(0,4) systems and show that the non-Abelian Berry connection over R{sup 4n} satisfies a generalization of the self-dual Yang-Mills equations. Upon dimensional reduction, these become the tt* equations. We further study the Berry connection in N=(4,4) theories and show that the curvature is covariantly constant.

  17. [Research on population theory must be integrated with China's reality].

    PubMed

    Qian, X

    1983-05-29

    This article is based upon a speech delivered by the author to a conference on population theory in memory of the centennial celebration of the death of Karl Marx. The conference was organized by the Institute of Population Theory of the Chinese People's University. According to the author, the only correct way to study population theory is to use the Marxist population theory as a guiding principle and integrate it with China's reality, and the format of dogmatism should not be adopted. The work on population theory studies should be established on a political and scientific foundation. The Chinese people should have a clear understanding of the goal of limiting China's population figure to under 1.2 billion at the end of this century. To reach this goal, the general public must be educated and understand to close relationship between family planning and the economic and social development of all of China. Family planning is a absolute necessity for the fundamental interests of China as a nation and as a people. Technical personnel and scientific theorists should be trained and organized in order that their work may satisfy the needs of China's reality. Family planning work should also be handled according to China's current situation.

  18. Several foundational and information theoretic implications of Bell’s theorem

    NASA Astrophysics Data System (ADS)

    Kar, Guruprasad; Banik, Manik

    2016-08-01

    In 1935, Albert Einstein and two colleagues, Boris Podolsky and Nathan Rosen (EPR) developed a thought experiment to demonstrate what they felt was a lack of completeness in quantum mechanics (QM). EPR also postulated the existence of more fundamental theory where physical reality of any system would be completely described by the variables/states of that fundamental theory. This variable is commonly called hidden variable and the theory is called hidden variable theory (HVT). In 1964, John Bell proposed an empirically verifiable criterion to test for the existence of these HVTs. He derived an inequality, which must be satisfied by any theory that fulfill the conditions of locality and reality. He also showed that QM, as it violates this inequality, is incompatible with any local-realistic theory. Later it has been shown that Bell’s inequality (BI) can be derived from different set of assumptions and it also find applications in useful information theoretic protocols. In this review, we will discuss various foundational as well as information theoretic implications of BI. We will also discuss about some restricted nonlocal feature of quantum nonlocality and elaborate the role of Uncertainty principle and Complementarity principle in explaining this feature.

  19. Secure multi-party quantum summation based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  20. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion

    PubMed Central

    Zhao, Guangyu; Ruan, Shigui

    2011-01-01

    We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c* are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c*. PMID:21572575

  1. Concurrent error detecting codes for arithmetic processors

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1979-01-01

    A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.

  2. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-12-01

    This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.

  3. A novel method for multifactorial bio-chemical experiments design based on combinational design theory.

    PubMed

    Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan

    2017-01-01

    Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.

  4. Inverse bootstrapping conformal field theories

    NASA Astrophysics Data System (ADS)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  5. Automorphic properties of low energy string amplitudes in various dimensions

    NASA Astrophysics Data System (ADS)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2010-04-01

    This paper explores the moduli-dependent coefficients of higher-derivative interactions that appear in the low-energy expansion of the four-supergraviton amplitude of maximally supersymmetric string theory compactified on a d torus. These automorphic functions are determined for terms up to order ∂6R4 and various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various logarithms, although the string theory expressions are finite. This analysis includes intriguing representations of SL(d) and SO(d,d) Eisenstein series in terms of toroidally compactified one and two-loop string and supergravity amplitudes.

  6. Mechanics of active surfaces

    NASA Astrophysics Data System (ADS)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  7. Sakata-Taketani spin-0 theory with external field interactions - Lagrangian formalism and causal properties

    NASA Technical Reports Server (NTRS)

    Guertin, R. F.; Wilson, T. L.

    1977-01-01

    To illustrate that a relativistic field theory need not be manifestly covariant, Lorentz-invariant Lagrangian densities are constructed that yield the equation satisfied by an interacting (two-component) Sakata-Taketani spin-0 field. Six types of external field couplings are considered, two scalars, two vectors, an antisymmetric second-rank tensor, and a symmetric second-rank tensor, with the results specialized to electromagnetic interactions. For either of the two second-rank couplings, the equation is found to describe noncausal wave propagation, a property that is apparent from the dependence of the coefficients of the space derivatives on the external field; in contrast, the noncausality of the corresponding manifestly covariant Duffin-Kemmer-Petiau spin-0 equation is not so obvious. The possibilities for generalizing the results to higher spin theories involving only the essential 2(2J + 1) components for a particle with a definite spin J and mass m are discussed in considerable detail.

  8. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  9. The Mathematics of Dispatchability, Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2016-01-01

    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently, it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, dispatchability has considerable theoretical as well as practical significance. One thing that hampers further work in this area is the underdeveloped theory. Moreover, the existing foundation is inadequate in certain respects. In this paper, we develop a new mathematical theory of dispatchability and its relationship to execution. We also provide several characterizations of dispatchability, including characterizations in terms of the structural properties of the STN graph. This facilitates the potential application of the theory to other areas.

  10. The Mathematics of Dispatchability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2016-01-01

    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, the dispatchability property has both theoretical and practical interest. One thing that hampers further work in this area is the underdeveloped theory. The existing definitions are expressed in terms of algorithms, and are less suitable for mathematical proofs. In this paper, we develop a new formal theory of dispatchability in terms of execution sequences. We exploit this to prove a characterization of dispatchability involving the structural properties of the STN graph. This facilitates the potential application of the theory to uncertainty reasoning.

  11. Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás; Barausse, Enrico

    2016-11-01

    Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.

  12. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  13. Affordances and Landscapes: Overcoming the Nature–Culture Dichotomy through Niche Construction Theory

    PubMed Central

    Heras-Escribano, Manuel; De Pinedo-García, Manuel

    2018-01-01

    In this paper we reject the nature–culture dichotomy by means of the idea of affordance or possibility for action, which has important implications for landscape theory. Our hypothesis is that, just as the idea of affordance can serve to overcome the subjective–objective dichotomy, the ideas of landscape and ecological niche, properly defined, would allow us to also transcend the nature–culture dichotomy. First, we introduce an overview of landscape theory, emphasizing processual landscape theory as the most suitable approach for satisfying both cultural and naturalist approaches. After that, we introduce the idea of affordance and we analyze a tension between sociocultural and transcultural affordances (affordances that depend on cultural conventions and affordances that depend on lawful information and bodily aspects of agents). This tension has various implications for landscape theory and ecological niches. Our proposal is that sociocultural and transcultural aspects of affordances could be systematically accommodated if we apply niche construction theory (the theory that explains the process by which organisms modify their selective environments) as a methodological framework for explaining the emergence of ecological niches. This approach will lead us to an integrative account of landscapes as the products of the interaction between human and environmental elements, making it a clear example of a concept that transcends the nature–culture dichotomy. PMID:29375426

  14. Affordances and Landscapes: Overcoming the Nature-Culture Dichotomy through Niche Construction Theory.

    PubMed

    Heras-Escribano, Manuel; De Pinedo-García, Manuel

    2017-01-01

    In this paper we reject the nature-culture dichotomy by means of the idea of affordance or possibility for action, which has important implications for landscape theory. Our hypothesis is that, just as the idea of affordance can serve to overcome the subjective-objective dichotomy, the ideas of landscape and ecological niche, properly defined, would allow us to also transcend the nature-culture dichotomy. First, we introduce an overview of landscape theory, emphasizing processual landscape theory as the most suitable approach for satisfying both cultural and naturalist approaches. After that, we introduce the idea of affordance and we analyze a tension between sociocultural and transcultural affordances (affordances that depend on cultural conventions and affordances that depend on lawful information and bodily aspects of agents). This tension has various implications for landscape theory and ecological niches. Our proposal is that sociocultural and transcultural aspects of affordances could be systematically accommodated if we apply niche construction theory (the theory that explains the process by which organisms modify their selective environments) as a methodological framework for explaining the emergence of ecological niches. This approach will lead us to an integrative account of landscapes as the products of the interaction between human and environmental elements, making it a clear example of a concept that transcends the nature-culture dichotomy.

  15. Equitability, mutual information, and the maximal information coefficient.

    PubMed

    Kinney, Justin B; Atwal, Gurinder S

    2014-03-04

    How should one quantify the strength of association between two random variables without bias for relationships of a specific form? Despite its conceptual simplicity, this notion of statistical "equitability" has yet to receive a definitive mathematical formalization. Here we argue that equitability is properly formalized by a self-consistency condition closely related to Data Processing Inequality. Mutual information, a fundamental quantity in information theory, is shown to satisfy this equitability criterion. These findings are at odds with the recent work of Reshef et al. [Reshef DN, et al. (2011) Science 334(6062):1518-1524], which proposed an alternative definition of equitability and introduced a new statistic, the "maximal information coefficient" (MIC), said to satisfy equitability in contradistinction to mutual information. These conclusions, however, were supported only with limited simulation evidence, not with mathematical arguments. Upon revisiting these claims, we prove that the mathematical definition of equitability proposed by Reshef et al. cannot be satisfied by any (nontrivial) dependence measure. We also identify artifacts in the reported simulation evidence. When these artifacts are removed, estimates of mutual information are found to be more equitable than estimates of MIC. Mutual information is also observed to have consistently higher statistical power than MIC. We conclude that estimating mutual information provides a natural (and often practical) way to equitably quantify statistical associations in large datasets.

  16. Measuring Integrated Information from the Decoding Perspective

    PubMed Central

    Oizumi, Masafumi; Amari, Shun-ichi; Yanagawa, Toru; Fujii, Naotaka; Tsuchiya, Naotsugu

    2016-01-01

    Accumulating evidence indicates that the capacity to integrate information in the brain is a prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness provides a mathematical approach to quantifying the information integrated in a system, called integrated information, Φ. Integrated information is defined theoretically as the amount of information a system generates as a whole, above and beyond the amount of information its parts independently generate. IIT predicts that the amount of integrated information in the brain should reflect levels of consciousness. Empirical evaluation of this theory requires computing integrated information from neural data acquired from experiments, although difficulties with using the original measure Φ precludes such computations. Although some practical measures have been previously proposed, we found that these measures fail to satisfy the theoretical requirements as a measure of integrated information. Measures of integrated information should satisfy the lower and upper bounds as follows: The lower bound of integrated information should be 0 and is equal to 0 when the system does not generate information (no information) or when the system comprises independent parts (no integration). The upper bound of integrated information is the amount of information generated by the whole system. Here we derive the novel practical measure Φ* by introducing a concept of mismatched decoding developed from information theory. We show that Φ* is properly bounded from below and above, as required, as a measure of integrated information. We derive the analytical expression of Φ* under the Gaussian assumption, which makes it readily applicable to experimental data. Our novel measure Φ* can generally be used as a measure of integrated information in research on consciousness, and also as a tool for network analysis on diverse areas of biology. PMID:26796119

  17. Stability of the Einstein static universe in Einstein-Cartan theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  18. Chaotic Expansions of Elements of the Universal Enveloping Superalgebra Associated with a Z2-graded Quantum Stochastic Calculus

    NASA Astrophysics Data System (ADS)

    Eyre, T. M. W.

    Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as We establish an analogue of this formula in the form of a chaotic decomposition for Z2-graded theories of quantum stochastic calculus based on the natural coalgebra structure of the universal enveloping superalgebra.

  19. A feminist challenge to practices of medicine.

    PubMed

    Wallace, K A

    1994-01-01

    Susan Sherwin's No Longer Patient: Feminist Ethics and Health Care is a readable book that is accessible to a wide range of medical practitioners. It presupposes no prior training in ethics or feminism (and for just this reason, it may be somewhat less satisfying, although not necessarily less useful, for philosophers). The book is a feminist bioethics primer that introduces medical practitioners to issues that feminist theory makes prominent and that illuminate tensions in the structure and practice of medicine.

  20. Holographic turbulence in a large number of dimensions

    NASA Astrophysics Data System (ADS)

    Rozali, Moshe; Sabag, Evyatar; Yarom, Amos

    2018-04-01

    We consider relativistic hydrodynamics in the limit where the number of spatial dimensions is very large. We show that under certain restrictions, the resulting equations of motion simplify significantly. Holographic theories in a large number of dimensions satisfy the aforementioned restrictions and their dynamics are captured by hydrodynamics with a naturally truncated derivative expansion. Using analytic and numerical techniques we analyze two and three-dimensional turbulent flow of such fluids in various regimes and its relation to geometric data.

  1. Unsolved Problems in Evolutionary Theory

    DTIC Science & Technology

    1967-01-01

    finding the probability of survival of a single new mutant). Most natural populations probably satisfy these conditions , as is illustrated by the...Ykl) of small quantities adding to zero. Then under suitable conditions on the function f(x), (3) xi + Yi,t+i = fi(x) + YE yjfi(tf) + O(y yt...It is clear that a sufficient condition for the point x to be locally stable is that all the roots of the matrix, (4) (a j) = ____ should have moduli

  2. Static solutions for fourth order gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William

    2010-11-15

    The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.

  3. Holographic CBK relation

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Tukhashvili, Giorgi

    2018-07-01

    The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.

  4. A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.

  5. Renormalization group independence of Cosmological Attractors

    NASA Astrophysics Data System (ADS)

    Fumagalli, Jacopo

    2017-06-01

    The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.

  6. Response to “Comment on ‘Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set’” [J. Chem. Phys. 140, 177103 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu; Harrison, Robert J.

    2014-05-07

    The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.

  7. Living with ghosts in Lorentz invariant theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2013-01-01

    We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We providemore » an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.« less

  8. An Improved Suite of Object Oriented Software Measures

    NASA Technical Reports Server (NTRS)

    Neal, Ralph D.; Weistroffer, H. Roland; Coppins, Richard J.

    1997-01-01

    In the pursuit of ever increasing productivity, the need to be able to measure specific aspects of software is generally agreed upon. As object oriented programming languages are becoming more and more widely used, metrics specifically designed for object oriented software are required. In recent years there has been an explosion of new, object oriented software metrics proposed in the literature. Unfortunately, many or most of these proposed metrics have not been validated to measure what they claim to measure. In fact, an analysis of many of these metrics shows that they do not satisfy basic properties of measurement theory, and thus their application has to be suspect. In this paper ten improved metrics are proposed and are validated using measurement theory.

  9. Non-Gaussianities in multifield DBI inflation with a waterfall phase transition

    NASA Astrophysics Data System (ADS)

    Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro

    2012-10-01

    We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.

  10. Quasistatic Evolution in Perfect Plasticity for General Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Solombrino, Francesco

    2014-04-01

    Inspired by some recent developments in the theory of small-strain heterogeneous elastoplasticity, we both revisit and generalize the formulation of the quasistatic evolutionary problem in perfect plasticity given by Francfort and Giacomini (Commun Pure Appl Math, 65:1185-1241, 2012). We show that their definition of the plastic dissipation measure is equivalent to an abstract one, where it is defined as the supremum of the dualities between the deviatoric parts of admissible stress fields and the plastic strains. By means of this abstract definition, a viscoplastic approximation and variational techniques from the theory of rate-independent processes give the existence of an evolution satisfying an energy-dissipation balance and consequently Hill's maximum plastic work principle for an abstract and very large class of yield conditions.

  11. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  12. Linear decentralized systems with special structure. [for twin lift helicopters

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1982-01-01

    Certain fundamental structures associated with linear systems having internal symmetries are outlined. It is shown that the theory of finite-dimensional algebras and their representations are closely related to such systems. It is also demonstrated that certain problems in the decentralized control of symmetric systems are equivalent to long-standing problems of linear systems theory. Even though the structure imposed arose in considering the problems of twin-lift helicopters, any large system composed of several identical intercoupled control systems can be modeled by a linear system that satisfies the constraints imposed. Internal symmetry can be exploited to yield new system-theoretic invariants and a better understanding of the way in which the underlying structure affects overall system performance.

  13. Amplitudes on plane waves from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2017-11-01

    In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

  14. Maslow and the motivation hierarchy: measuring satisfaction of the needs.

    PubMed

    Taormina, Robert J; Gao, Jennifer H

    2013-01-01

    For each of the 5 needs in Maslow's motivational hierarchy (physiological, safety-security, belongingness, esteem, and self-actualization), operational definitions were developed from Maslow's theory of motivation. New measures were created based on the operational definitions (1) to assess the satisfaction of each need, (2) to assess their expected correlations (a) with each of the other needs and (b) with four social and personality measures (i.e., family support, traditional values, anxiety/worry, and life satisfaction), and (3) to test the ability of the satisfaction level of each need to statistically predict the satisfaction level of the next higher-level need. Psychometric tests of the scales conducted on questionnaire results from 386 adult respondents from the general population lent strong support for the validity and reliability of all 5 needs measures. Significant positive correlations among the scales were also found; that is, the more each lower-level need was satisfied, the more the next higher-level need was satisfied. Additionally, as predicted, family support, traditional values, and life satisfaction had significant positive correlations with the satisfaction of all 5 needs, and the anxiety/worry facet of neuroticism had significant negative correlations with the satisfaction of all the needs. Multiple regression analyses revealed that the satisfaction of each higher-level need was statistically predicted by the satisfaction of the need immediately below it in the hierarchy, as expected from Maslow's theory.

  15. Testing the Neutral Theory of Biodiversity with Human Microbiome Datasets.

    PubMed

    Li, Lianwei; Ma, Zhanshan Sam

    2016-08-16

    The human microbiome project (HMP) has made it possible to test important ecological theories for arguably the most important ecosystem to human health-the human microbiome. Existing limited number of studies have reported conflicting evidence in the case of the neutral theory; the present study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community samples, we discovered that only 49 communities (less than 1%) satisfied the neutral theory, and concluded that human microbial communities are not neutral in general. The 49 positive cases, although only a tiny minority, do demonstrate the existence of neutral processes. We realize that the traditional doctrine of microbial biogeography "Everything is everywhere, but the environment selects" first proposed by Baas-Becking resolves the apparent contradiction. The first part of Baas-Becking doctrine states that microbes are not dispersal-limited and therefore are neutral prone, and the second part reiterates that the freely dispersed microbes must endure selection by the environment. Therefore, in most cases, it is the host environment that ultimately shapes the community assembly and tip the human microbiome to niche regime.

  16. Testing the Neutral Theory of Biodiversity with Human Microbiome Datasets

    PubMed Central

    Li, Lianwei; Ma, Zhanshan (Sam)

    2016-01-01

    The human microbiome project (HMP) has made it possible to test important ecological theories for arguably the most important ecosystem to human health—the human microbiome. Existing limited number of studies have reported conflicting evidence in the case of the neutral theory; the present study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community samples, we discovered that only 49 communities (less than 1%) satisfied the neutral theory, and concluded that human microbial communities are not neutral in general. The 49 positive cases, although only a tiny minority, do demonstrate the existence of neutral processes. We realize that the traditional doctrine of microbial biogeography “Everything is everywhere, but the environment selects” first proposed by Baas-Becking resolves the apparent contradiction. The first part of Baas-Becking doctrine states that microbes are not dispersal-limited and therefore are neutral prone, and the second part reiterates that the freely dispersed microbes must endure selection by the environment. Therefore, in most cases, it is the host environment that ultimately shapes the community assembly and tip the human microbiome to niche regime. PMID:27527985

  17. Hebb and Cattell: The Genesis of the Theory of Fluid and Crystallized Intelligence

    PubMed Central

    Brown, Richard E.

    2016-01-01

    Raymond B. Cattell is credited with the development of the theory of fluid and crystallized intelligence. The genesis of this theory is, however, vague. Cattell, in different papers, stated that it was developed in 1940, 1941 or 1942. Carroll (1984, Multivariate Behavioral Research, 19, 300-306) noted the similarity of Cattell's theory to “Hebb's notion of two types of intelligence,” which was presented at the 1941 APA meeting, but the matter has been left at that. Correspondence between Cattell, Donald Hebb and George Humphrey of Queen's University, Kingston, Ontario, however, indicates that Cattell adopted Hebb's ideas of intelligence A and B and renamed them. This paper describes Hebb's two types of intelligence, and shows how Cattell used them to develop his ideas of crystallized and fluid intelligence. Hebb and Cattell exchanged a number of letters before Cattell's paper was rewritten in such a way that everyone was satisfied. This paper examines the work of Hebb and Cattell on intelligence, their correspondence, the development of the ideas of fluid and crystallized intelligence, and why Cattell (1943, p. 179) wrote that “Hebb has independently stated very clearly what constitutes two thirds of the present theory.” PMID:28018191

  18. Hebb and Cattell: The Genesis of the Theory of Fluid and Crystallized Intelligence.

    PubMed

    Brown, Richard E

    2016-01-01

    Raymond B. Cattell is credited with the development of the theory of fluid and crystallized intelligence. The genesis of this theory is, however, vague. Cattell, in different papers, stated that it was developed in 1940, 1941 or 1942. Carroll (1984, Multivariate Behavioral Research, 19, 300-306) noted the similarity of Cattell's theory to "Hebb's notion of two types of intelligence," which was presented at the 1941 APA meeting, but the matter has been left at that. Correspondence between Cattell, Donald Hebb and George Humphrey of Queen's University, Kingston, Ontario, however, indicates that Cattell adopted Hebb's ideas of intelligence A and B and renamed them. This paper describes Hebb's two types of intelligence, and shows how Cattell used them to develop his ideas of crystallized and fluid intelligence. Hebb and Cattell exchanged a number of letters before Cattell's paper was rewritten in such a way that everyone was satisfied. This paper examines the work of Hebb and Cattell on intelligence, their correspondence, the development of the ideas of fluid and crystallized intelligence, and why Cattell (1943, p. 179) wrote that "Hebb has independently stated very clearly what constitutes two thirds of the present theory."

  19. Verification of fault-tolerant clock synchronization systems. M.S. Thesis - College of William and Mary, 1992

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1993-01-01

    A critical function in a fault-tolerant computer architecture is the synchronization of the redundant computing elements. The synchronization algorithm must include safeguards to ensure that failed components do not corrupt the behavior of good clocks. Reasoning about fault-tolerant clock synchronization is difficult because of the possibility of subtle interactions involving failed components. Therefore, mechanical proof systems are used to ensure that the verification of the synchronization system is correct. In 1987, Schneider presented a general proof of correctness for several fault-tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider's proof by using the mechanical proof system EHDM. This proof ensures that any system satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchronization. The utility of Shankar's mechanization of Schneider's theory for the verification of clock synchronization systems is explored. Some limitations of Shankar's mechanically verified theory were encountered. With minor modifications to the theory, a mechanically checked proof is provided that removes these limitations. The revised theory also allows for proven recovery from transient faults. Use of the revised theory is illustrated with the verification of an abstract design of a clock synchronization system.

  20. A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades

    NASA Technical Reports Server (NTRS)

    McCarthy, Thomas Robert

    1996-01-01

    A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.

  1. Birth Territory: a theory for midwifery practice.

    PubMed

    Fahy, Kathleen M; Parratt, Jenny Anne

    2006-07-01

    The theory of Birth Territory describes, explains and predicts the relationships between the environment of the individual birth room, issues of power and control, and the way the woman experiences labour physiologically and emotionally. The theory was synthesised inductively from empirical data generated by the authors in their roles as midwives and researchers. It takes a critical post-structural feminist perspective and expands on some of the ideas of Michel Foucault. Theory synthesis was also informed by current research about the embodied self and the authors' scholarship in the fields of midwifery, human biology, sociology and psychology. In order to demonstrate the significance of the theory, it is applied to two clinical stories that both occur in hospital but are otherwise different. This analysis supports the central proposition that when midwives use 'midwifery guardianship' to create and maintain the ideal Birth Territory then the woman is most likely to give birth naturally, be satisfied with the experience and adapt with ease in the post-birth period. These benefits together with the reduction in medical interventions also benefit the baby. In addition, a positive Birth Territory is posited to have a broader impact on the woman's partner, family and society in general.

  2. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: Towards category theory-like systematization of molecular/genetic biology

    PubMed Central

    2014-01-01

    Background Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. Results We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation ‘Dj’ corresponding to a DNA sequence but based on the five-letter base set; also, ‘Dj’s are expressed graphically. Insertions and deletions of a series of letters ‘E’ are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by ‘Dj◦B(j→k) = Dk’ (or ‘Rj◦B(j→k) = Rk’). Based on the operations of this group, two types of groups—a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases—are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical “central dogma” via a category theory-like way is presented for future developments. Conclusions Despite the large incompleteness of our methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing “central dogma” for future molecular/genetic biology remains to be explored. PMID:24885369

  3. Formally exact integral equation theory of the exchange-only potential in density functional theory: Refined closure approximation

    NASA Astrophysics Data System (ADS)

    March, N. H.; Nagy, Á.

    A fonnally exact integral equation theory for the exchange-only potential Vx(r) in density functional theory was recently set up by Howard and March [I.A. Howard, N.H. March, J. Chem. Phys. 119 (2003) 5789]. It involved a `closure' function P(r) satisfying the exact sum rule ∫ P(r) dr = 0. The simplest choice P(r) = 0 recovers then the approximation proposed by Della Sala and Görling [F. Della Sala, A. Görling, J. Chem. Phys. 115 (2001) 5718] and by Gritsenko and Baerends [O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 64 (2001) 042506]. Here, refined choices of P(r) are proposed, the most direct being based on the KLI (Krieger-Li-Iafrate) approximation. A further choice given some attention is where P(r) involves frontier orbital properties. In particular, the introduction of the LUMO (lowest unoccupied molecular) orbital, along with the energy separation between HOMO (highest occupied molecular orbital) and LUMO levels, should prove a significant step beyond current approximations to the optimized potential method, all of which involve only single-particle occupied orbitals.

  4. Dark Energy after GW170817 and GRB170817A.

    PubMed

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-22

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few×10^{-15}. We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  5. Quantum non-objectivity from performativity of quantum phenomena

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-12-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.

  6. On anthropic solutions of the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Banks, Tom; Dine, Michael; Motl, Lubos

    2001-01-01

    Motivated by recent work of Bousso and Polchinski (BP), we study theories which explain the small value of the cosmological constant using the anthropic principle. We argue that simultaneous solution of the gauge hierarchy problem is a strong constraint on any such theory. We exhibit three classes of models which satisfy these constraints. The first is a version of the BP model with precisely two large dimensions. The second involves 6-branes and antibranes wrapped on supersymmetric 3-cycles of Calabi-Yau manifolds, and the third is a version of the irrational axion model. All of them have possible problems in explaining the size of microwave background fluctuations. We also find that most models of this type predict that all constants in the low energy lagrangian, as well as the gauge groups and representation content, are chosen from an ensemble and cannot be uniquely determined from the fundamental theory. In our opinion, this significantly reduces the appeal of this kind of solution of the cosmological constant problem. On the other hand, we argue that the vacuum selection problem of string theory might plausibly have an anthropic, cosmological solution.

  7. Motivation and placebos: do different mechanisms occur in different contexts?

    PubMed

    Hyland, Michael E

    2011-06-27

    This paper challenges the common assumption that the mechanisms underlying short-term placebo paradigms (where there is no motivation for health improvement) and long-term placebo paradigms (where patients value improvement in their health) are the same. Three types of motivational theory are reviewed: (i) classical placebo motivation theory that the placebo response results from the desire for therapeutic improvement; (ii) goal activation model that expectancy-driven placebo responses are enhanced when the placebo response satisfies an activated goal; and (iii) motivational concordance model that the placebo response is the consequence of concordance between the placebo ritual and significant intrinsic motives. It is suggested that current data are consistent with the following theory: response expectancy, conditioning and goal activation are responsible for short-term placebo effects but long-term therapeutic change is achieved through the effects of goal satisfaction and affect on the inflammatory response system and hypothalamic-pituitary-adrenal axis. Empirical predictions of this new theory are outlined, including ways in which placebo effects can be combined with other psychologically mediated effects on short-term and long-term psychological and physiological state.

  8. Motivation and placebos: do different mechanisms occur in different contexts?

    PubMed Central

    Hyland, Michael E.

    2011-01-01

    This paper challenges the common assumption that the mechanisms underlying short-term placebo paradigms (where there is no motivation for health improvement) and long-term placebo paradigms (where patients value improvement in their health) are the same. Three types of motivational theory are reviewed: (i) classical placebo motivation theory that the placebo response results from the desire for therapeutic improvement; (ii) goal activation model that expectancy-driven placebo responses are enhanced when the placebo response satisfies an activated goal; and (iii) motivational concordance model that the placebo response is the consequence of concordance between the placebo ritual and significant intrinsic motives. It is suggested that current data are consistent with the following theory: response expectancy, conditioning and goal activation are responsible for short-term placebo effects but long-term therapeutic change is achieved through the effects of goal satisfaction and affect on the inflammatory response system and hypothalamic–pituitary–adrenal axis. Empirical predictions of this new theory are outlined, including ways in which placebo effects can be combined with other psychologically mediated effects on short-term and long-term psychological and physiological state. PMID:21576140

  9. Abelian Toda field theories on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  10. Global Optimal Trajectory in Chaos and NP-Hardness

    NASA Astrophysics Data System (ADS)

    Latorre, Vittorio; Gao, David Yang

    This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.

  11. Dark Energy after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-01

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few ×10-15 . We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  12. Entropy, a Unifying Concept: from Physics to Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino; Tsallis, Alexandra C.

    Together with classical, relativistic and quantum mechanics, as well as Maxwell electromagnetism, Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the main theories of contemporary physics. This theory primarily concerns inanimate matter, and at its generic foundation we find nonlinear dynamical systems satisfying the ergodic hypothesis. This hypothesis is typically guaranteed for systems whose maximal Lyapunov exponent is positive. What happens when this crucial quantity is zero instead? We suggest here that, in what concerns thermostatistical properties, we typically enter what in some sense may be considered as a new world — the world of living systems — . The need emerges, at least for many systems, for generalizing the basis of BG statistical mechanics, namely the Boltzmann-Gibbs-von Neumann-Shannon en-tropic functional form, which connects the oscopic, thermodynamic quantity, with the occurrence probabilities of microscopic configurations. This unifying approach is briefly reviewed here, and its widespread applications — from physics to cognitive psychology — are overviewed. Special attention is dedicated to the learning/memorizing process in humans and computers. The present observations might be related to the gestalt theory of visual perceptions and the actor-network theory.

  13. Local phase space and edge modes for diffeomorphism-invariant theories

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2018-02-01

    We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.

  14. On a viable first-order formulation of relativistic viscous fluids and its applications to cosmology

    NASA Astrophysics Data System (ADS)

    Disconzi, Marcelo M.; Kephart, Thomas W.; Scherrer, Robert J.

    We consider a first-order formulation of relativistic fluids with bulk viscosity based on a stress-energy tensor introduced by Lichnerowicz. Choosing a barotropic equation-of-state, we show that this theory satisfies basic physical requirements and, under the further assumption of vanishing vorticity, that the equations of motion are causal, both in the case of a fixed background and when the equations are coupled to Einstein's equations. Furthermore, Lichnerowicz's proposal does not fit into the general framework of first-order theories studied by Hiscock and Lindblom, and hence their instability results do not apply. These conclusions apply to the full-fledged nonlinear theory, without any equilibrium or near equilibrium assumptions. Similarities and differences between the approach explored here and other theories of relativistic viscosity, including the Mueller-Israel-Stewart formulation, are addressed. Cosmological models based on the Lichnerowicz stress-energy tensor are studied. As the topic of (relativistic) viscous fluids is also of interest outside the general relativity and cosmology communities, such as, for instance, in applications involving heavy-ion collisions, we make our presentation largely self-contained.

  15. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model.

    PubMed

    Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G

    2012-06-01

    Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.

  16. An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves

    PubMed Central

    Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing

    2014-01-01

    Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181

  17. A m-ary linear feedback shift register with binary logic

    NASA Technical Reports Server (NTRS)

    Perlman, M. (Inventor)

    1973-01-01

    A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.

  18. Taking a vector supermultiplet apart: Alternative Fayet-Iliopoulos-type terms

    NASA Astrophysics Data System (ADS)

    Kuzenko, Sergei M.

    2018-06-01

    Starting from an Abelian N = 1 vector supermultiplet V coupled to conformal supergravity, we construct from it a nilpotent real scalar Goldstino superfield V of the type proposed in arxiv:arXiv:1702.02423. It contains only two independent component fields, the Goldstino and the auxiliary D-field. The important properties of this Goldstino superfield are: (i) it is gauge invariant; and (ii) it is super-Weyl invariant. As a result, the gauge prepotential can be represented as V = V + V, where V contains only one independent component field, modulo gauge degrees of freedom, which is the gauge one-form. Making use of V allows us to introduce new Fayet-Iliopoulos-type terms, which differ from the one proposed in arxiv:arXiv:1712.08601 and share with the latter the property that gauged R-symmetry is not required.

  19. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less

  20. Fermions tunneling from the Horowitz-Strominger Dilaton black hole

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zeng, Xiaoxiong

    2009-06-01

    Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.

  1. Nucleon Momentum and Spin Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Y. M.

    We construct a gauge invariant canonical momentum operator which satisfies the canonical commutation relation to resolve the old controversy on the canonical versus kinematic momentum of a charged particle in gauge theories. With this we show how to obtain the gauge independent momentum and spin decompositions of composite particles to those of the constituents in QED and QCD, which has been thought to be impossible. Moerover, we show that there are two logically acceptable nucleom momentum and spin decompositions, depending on which gluons we identify as the constituent of nucleons.

  2. Cosmological constant in scale-invariant theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.

    2011-10-01

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  3. Theory of ion-matrix-sheath dynamics

    NASA Astrophysics Data System (ADS)

    Kos, L.; Tskhakaya, D. D.

    2018-01-01

    The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.

  4. Chess games: a model for RNA based computation.

    PubMed

    Cukras, A R; Faulhammer, D; Lipton, R J; Landweber, L F

    1999-10-01

    Here we develop the theory of RNA computing and a method for solving the 'knight problem' as an instance of a satisfiability (SAT) problem. Using only biological molecules and enzymes as tools, we developed an algorithm for solving the knight problem (3 x 3 chess board) using a 10-bit combinatorial pool and sequential RNase H digestions. The results of preliminary experiments presented here reveal that the protocol recovers far more correct solutions than expected at random, but the persistence of errors still presents the greatest challenge.

  5. Matrix Models and A Proof of the Open Analog of Witten's Conjecture

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Tessler, Ran J.

    2017-08-01

    In a recent work, R. Pandharipande, J. P. Solomon and the second author have initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers satisfies the open KdV equations. In this paper we prove this conjecture. Our proof goes through a matrix model and is based on a Kontsevich type combinatorial formula for the intersection numbers that was found by the second author.

  6. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  7. Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole

    NASA Astrophysics Data System (ADS)

    He, Xiao-Kai; Liu, Wen-Biao

    2007-08-01

    Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour-Ruffini method is more concise and understandable.

  8. Bridging the Gap Between Theory and Practice: Structure and Randomization in Large Scale Combinatorial Search

    DTIC Science & Technology

    2012-01-17

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...world problems. Our work brings together techniques from constraint programming, mathematical programming, and satisfiability in a symbiotic way to...power-­‐law  search  tree  model  for  complete  or  exact  methods     (See [9] for a detailed description of this work and

  9. A General Model of Production: Theory and Application

    DTIC Science & Technology

    1984-01-01

    It may be verified that X2 , - (o.1) and y2a, -,O and thus dearly the nets {x2,), LA ,,) satisfy the conditions of Proposition (3.4.6) but violate the...and (4-1d) are identical. This example shows thai, two See ,ao La a a oWBO Y=1921. >........................... *’*** . . . 89 /00- aa b (a) Detailed...intensities. 4.3.1. Constructing the Domain of the Aggregate Operating Intensity L_., A represent an aggregate activity. As notation, let EA min El, LA

  10. Anomaly inflow on QCD axial domain-walls and vortices

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Imaki, Shota

    2018-06-01

    We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.

  11. Gravity from entanglement and RG flow in a top-down approach

    NASA Astrophysics Data System (ADS)

    Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.

    2018-05-01

    The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.

  12. BPS Z{sub N} string tensions, sine law and Casimir scaling, and integrable field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneipp, Marco A. C.; International Centre for Theoretical Physics

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G{yields}U(1){sup r}{yields}C{sub G}, with C{sub G} being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, wemore » show that for each of the two vacua the ratio of the tensions of the BPS Z{sub N} strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K{sub ij} and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories.« less

  13. Properties of C-metric spaces

    NASA Astrophysics Data System (ADS)

    Croitoru, Anca; Apreutesei, Gabriela; Mastorakis, Nikos E.

    2017-09-01

    The subject of this paper belongs to the theory of approximate metrics [23]. An approximate metric on X is a real application defined on X × X that satisfies only a part of the metric axioms. In a recent paper [23], we introduced a new type of approximate metric, named C-metric, that is an application which satisfies only two metric axioms: symmetry and triangular inequality. The remarkable fact in a C-metric space is that a topological structure induced by the C-metric can be defined. The innovative idea of this paper is that we obtain some convergence properties of a C-metric space in the absence of a metric. In this paper we investigate C-metric spaces. The paper is divided into four sections. Section 1 is for Introduction. In Section 2 we recall some concepts and preliminary results. In Section 3 we present some properties of C-metric spaces, such as convergence properties, a canonical decomposition and a C-fixed point theorem. Finally, in Section 4 some conclusions are highlighted.

  14. Weyl current, scale-invariant inflation, and Planck scale generation

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2017-02-08

    Scalar fields,more » $$\\phi$$ i, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including M P=0; (ii) the $$\\phi$$ i have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K($$\\phi$$ i)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. Finally, these models are governed by a global Weyl scale symmetry and its conserved current, K μ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.« less

  15. Mathematical theory of exchange-driven growth

    NASA Astrophysics Data System (ADS)

    Esenturk, Emre

    2018-07-01

    Exchange-driven growth is a process in which pairs of clusters interact by exchanging single unit of mass at a time. The rate of exchange is given by an interaction kernel which depends on the masses of the two interacting clusters. In this paper we establish the fundamental mathematical properties of the mean field rate equations of this process for the first time. We find two different classes of behavior depending on whether is symmetric or not. For the non-symmetric case, we prove global existence and uniqueness of solutions for kernels satisfying . This result is optimal in the sense that we show for a large class of initial conditions and kernels satisfying the solutions cannot exist. On the other hand, for symmetric kernels, we prove global existence of solutions for ( while existence is lost for ( In the intermediate regime we can only show local existence. We conjecture that the intermediate regime exhibits finite-time gelation in accordance with the heuristic results obtained for particular kernels.

  16. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  17. Entanglement of purification through holographic duality

    NASA Astrophysics Data System (ADS)

    Umemoto, Koji; Takayanagi, Tadashi

    2018-06-01

    The gauge/gravity correspondence discovered two decades ago has had a profound influence on how the basic laws in physics should be formulated. In spite of the predictive power of holographic approaches (for example, when they are applied to strongly coupled condensed-matter physics problems), the fundamental reasons behind their success remain unclear. Recently, the role of quantum entanglement has come to the fore. Here we explore a quantity that connects gravity and quantum information in the light of the gauge/gravity correspondence. This is given by the minimal cross-section of the entanglement wedge that connects two disjoint subsystems in a gravity dual. In particular, we focus on various inequalities that are satisfied by this quantity. They suggest that it is a holographic counterpart of the quantity called entanglement of purification, which measures a bipartite correlation in a given mixed state. We give a heuristic argument that supports this identification based on a tensor network interpretation of holography. This predicts that the entanglement of purification satisfies the strong superadditivity for holographic conformal field theories.

  18. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration

    NASA Technical Reports Server (NTRS)

    Peretti, L. F.; Dowell, E. H.

    1992-01-01

    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  19. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  20. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

Top