NASA Technical Reports Server (NTRS)
Wasilewski, P. J.; Obryan, M. V.
1994-01-01
The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.
Transition to Turbulent Dynamo Saturation
NASA Astrophysics Data System (ADS)
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-01
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.
Transition to Turbulent Dynamo Saturation.
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-17
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2×10^{-5}. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm≃10^{-3}, which explains why it has been overlooked by numerical studies so far.
Saturation of the turbulent dynamo.
Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S
2015-08-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
NASA Astrophysics Data System (ADS)
Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet
2018-02-01
Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.
Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji
2018-01-01
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.
Macroscopic behavior and microscopic magnetic properties of nanocarbon
NASA Astrophysics Data System (ADS)
Lähderanta, E.; Ryzhov, V. A.; Lashkul, A. V.; Galimov, D. M.; Titkov, A. N.; Matveev, V. V.; Mokeev, M. V.; Kurbakov, A. I.; Lisunov, K. G.
2015-06-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1-7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below 50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, Bc (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, Ms, and the blocking temperature, Tb, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of Bc and Ms are noticeably increased.
The Ivrea zone as a model for the distribution of magnetization in the continental crust
NASA Technical Reports Server (NTRS)
Wasilewski, P.; Fountain, D. M.
1982-01-01
Units are identified within the Ivrea zone of northern Italy exhibiting magnetic susceptibilities greater than 0.0005 cgs, saturation magnetization values above 0.009 emu/cu cm, and Curie points as high as 570-580 C. Amphibolites from the granulite-amphibolite facies transition, and the mafic-ultramafic granulite facies lithologies exhibit high values of initial susceptibility and saturation remanence, are laterally continuous, and may be considered as a deep crustal source for long-wavelength anomalies in low-geothermal gradient areas. Evidence is presented which suggests that such mafic-ultramafic bodies as those exposed in the Toce valley were synmetamorphic additions to the base of the crust.
Large linear magnetoresistance in topological crystalline insulator Pb{sub 0.6}Sn{sub 0.4}Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roychowdhury, Subhajit; Ghara, Somnath; Guin, Satya N.
2016-01-15
Classical magnetoresistance generally follows the quadratic dependence of the magnetic field at lower field and finally saturates when field is larger. Here, we report the large positive non-saturating linear magnetoresistance in topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. Magnetoresistance value as high as ∼200% was achieved at 3 K at magnetic field of 9 T. Linear magnetoresistance observed in Pb{sub 0.6}Sn{sub 0.4}Te is mainly governed by the spatial fluctuation carrier mobility due to distortions in the current paths in inhomogeneous conductor. - Graphical abstract: Largemore » non-saturating linear magnetoresistance has been evidenced in topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. - Highlights: • Large non-saturating linear magnetoresistance was achieved in the topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te. • Highest magnetoresistance value as high as ~200% was achieved at 3 K at magnetic field of 9 T. • Linear magnetoresistance in Pb{sub 0.6}Sn{sub 0.4}Te is mainly governed by the spatial fluctuation of the carrier mobility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong T; Burress, Timothy A; Tolbert, Leon M
2009-01-01
This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux atmore » high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.« less
NASA Astrophysics Data System (ADS)
Berasategi, Joanes; Gomez, Ainara; Mounir Bou-Ali, M.; Gutiérrez, Jon; Barandiarán, Jose Manuel; Beketov, Igor V.; Safronov, Aleksander P.; Kurlyandskaya, Galina V.
2018-04-01
Iron magnetic nanoparticles were produced by the technique of the electric explosion of a wire (EEW). The major crystalline phase (95 ± 1%) was α-Fe with lattice parameter a = 0.2863(3) nm. The size of the coherent diffraction domains of this phase was 77 ± 3 nm. The EEW MNPs presented a large saturation magnetization value, reaching about 87% of the saturation magnetization of the bulk iron. EEW NMPs demonstrated an improved magnetic performance when used in magnetorheological (MR) fluids with respect to the commercial carbonyl iron particles (CIPs) micron-sized particles studied for comparison. The MR fluids composed with the EEW nanoparticles showed larger yield stress values than those with CIP micron-sized particles, so proving that the EEW MNPs have a high potential for MR fluids applications.
Comparative magnetic measurements on social insects
NASA Astrophysics Data System (ADS)
Ferreira, Jandira; Cernicchiaro, Geraldo; Winklhofer, Michael; Dutra, Humberto; de Oliveira, Paulo S.; S. Esquivel, Darci M.; Wajnberg, Eliane
2005-03-01
Biogenic magnetite has been detected in several species of social insects and may well form the basis of a magnetic sensory system in these animals, although other physiological functions are possible, too. We report here on hysteresis measurements on honeybees ( Apis mellifera) and the termite Neocapritermes opacus. The ratio of saturation remanence to saturation magnetization, Jrs/ Js, was determined as 0.11 (0.15) in bees (termite), the coercive force Hc as 90 (50 Oe). The magnetic remanence is generally low (of the order of 10 -6 emu per individual). The values obtained are similar to the ones reported previously on a migratory ant species, which suggests that biomineralization of magnetic material in social insects may underlie a generic process.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.
2018-03-01
The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong T; Burress, Timothy A; Hsu, John S
2009-01-01
This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at highmore » speed, which was developed for the traction motor of a hybrid electric vehicle.« less
NASA Astrophysics Data System (ADS)
Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.
2017-01-01
Perpendicularly magnetized microparticles offer the ability to locally apply high torques on soft matter under an applied magnetic field. These particles are engineered to have a zero remanence magnetic configuration via synthetic antiferromagnetic coupling using a Ru coupling interlayer. The flexibility offered by the top down thin film fabrication process in a CoFeB/Pt perpendicular thin film is demonstrated by using the Pt interlayer thicknesses in a Pt/Ru/Pt antiferromagnetic coupling multilayer to tune the applied magnetic field value of the easy axis spin-flip transition to saturation and hence the field value at which the magnetic particles are magnetically activated via a distinct transition to saturation. The importance of a Ta buffer layer on the magnetic behavior of the stack is shown. While Au capping layers are desirable for biotechnology applications, we demonstrate that they can drastically change the nucleation and propagation of domains in the film, thereby altering the reversal behavior of the thin film. The effect of Au underlayers on a multilayer thin film composed of repeated motifs of a synthetic antiferromagnetic building block is also investigated.
Does the Hall Effect Solve the Flux Pileup Saturation Problem?
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2010-01-01
It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.
Vanarthos, W J; Pope, T L; Monu, J U
1994-12-01
To test the diagnostic value of T1 spin-echo and T1 fat-saturated magnetic resonance images (MRIs), we reviewed axial T1-weighted images with and without fat saturation in 20 patients with clinically suspected chondromalacia of the patella. All scans were obtained on 1.5-MR units. The scans were randomly ordered and reviewed independently at different times by two radiologists without knowledge of the arthroscopy results. The sensitivity of the individual techniques for detecting grade 3 or 4 chondromalacia patellae was 92% for fat-saturated axial T1-weighted images alone, and 67% for axial T1-weighted images without fat saturation. The sensitivity of the combined techniques was 100% for grades 3 and 4 and 90% for all grades (0 to 4). Chondromalacia patellae is diagnosed more accurately by using T1 fat saturation than by using T1 spin-echo images. With a combination of the two techniques, accuracy is 90% to 100%.
NASA Astrophysics Data System (ADS)
Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter
2014-11-01
Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.
Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan
2018-01-01
Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.
NASA Astrophysics Data System (ADS)
Tabakovic, Ibro; Venkatasamy, Venkatram
2018-04-01
The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.
Magnetization of InAs parabolic quantum dot: An exact diagonalization approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aswathy, K. M., E-mail: aswathykm20@gmail.com; Sanjeev Kumar, D.
2016-04-13
The magnetization of two electron InAs quantum dot has been studied as a function of magnetic field. The electron-electron interaction has been taken into account by using exact diagonalization method numerically. The magnetization at zero external magnetic field is zero and increases in the negative direction. There is also a paramagnetic peak where the energy levels cross from singlet state to triplet state. Finally, the magnetization falls again to even negative values and saturates.
NASA Astrophysics Data System (ADS)
Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji
2018-04-01
This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.
NASA Astrophysics Data System (ADS)
Shanaghi, A.
2012-02-01
Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol-gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.
NASA Astrophysics Data System (ADS)
Rehman, Khalid Mehmood Ur; Liu, Xiansong; Li, Mingling; Jiang, Shuai; Wu, Yingchun; Zhang, Cong; Liu, Chaocheng; Meng, Xiangyu; Li, Haohao
2017-03-01
M-type hexaferrite Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powder and magnets existed to ready according to the conventional ceramic reaction method. X-ray difractometer was used to study the phase compositions of the calcites powder samples. There was a single magnetoplumbite segment in the calcanei magnetic powder with the intensification of x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13. The influence of yttrium aggregation on attractive possessions of the magnets was studied scientifically. The magnetic properties of the magnets were measured by a magnetic properties test instrument (VSM). The saturation magnetization (σs) and coercivity (Hcj) of the Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powders with different Yttrium aggregation (x) were determined. The saturation magnetization (σs) was decreased whereas coercivity (Hcj) was increased. The magnetic properties of the magnet at x=0.13 reached the maximum values.
Strain and Ni substitution induced ferromagnetism in LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi
2018-05-01
We have grown epitaxial strained films of LaCoO3 and LaCo0.7Ni0.3O3 on LaAlO3 (100) substrate via pulsed laser deposition. Superconducting quantum interference device magnetization measurements show that, unlike its bulk counterpart, the ground state of the strained LaCoO3 on LAO is ferromagnetic. The saturation magnetization has been found increase strongly from a value of 118 emu/cm3 to 350 emu/ cm3 for Ni substituted thin film. Present study reveals that strain can stabilize FM order in these thin films down to low temperature, which can further be tuned to higher saturation magnetization with the Ni substitution.
Swift, Andrew J; Rajaram, Smitha; Campbell, Michael J; Hurdman, Judith; Thomas, Steve; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2014-01-01
There are limited data on the prognostic value of cardiovascular magnetic resonance measurements in idiopathic pulmonary arterial hypertension, with no studies investigating the impact of correction of cardiovascular magnetic resonance indices for age and sex on prognostic value. Consecutive patients with idiopathic pulmonary arterial hypertension underwent cardiovascular magnetic resonance imaging at 1.5T. Steady-state free precession cardiac volumes and mass measurements were corrected for age, sex, and body surface area according to reference data and prognostic significance assessed. A total of 80 patients with idiopathic pulmonary arterial hypertension were identified, and 23 patients died during the mean follow-up of 32±14 months. Corrected for age, sex, and body surface area, right ventricular end-systolic volume (P=0.004) strongly predicted mortality, independent of World Health Organization functional class, mean right atrial pressure, cardiac index, and mixed venous oxygen saturations. Consideration should be given to correcting cardiovascular magnetic resonance measures for age, sex, and body surface area, particularly given the changing demographics of patients with idiopathic pulmonary arterial hypertension. Corrected right ventricular end-systolic volume is a strong prognostic marker in idiopathic pulmonary arterial hypertension, independent of invasively derived measurements, mean right atrial pressure cardiac index, and mixed venous oxygen saturations.
Stepanow, Sebastian; Honolka, Jan; Gambardella, Pietro; Vitali, Lucia; Abdurakhmanova, Nasiba; Tseng, Tzu-Chun; Rauschenbach, Stephan; Tait, Steven L; Sessi, Violetta; Klyatskaya, Svetlana; Ruben, Mario; Kern, Klaus
2010-09-01
The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 mu(B), respectively.
Effect of pressure on magnetic properties of mixed ferro-ferrimagnet (Ni0.38Mn0.62)3[Cr(CN)6]2.zH2O
NASA Astrophysics Data System (ADS)
Zentková, M.; Mihalik, M.; Arnold, Z.; Kamarád, J.
2010-01-01
We present the results of magnetization measurements performed on the ferro-ferrimagnetic (Ni0.38Mn0.62)3[Cr(CN)6]2.zH2O molecule-based magnet under pressures up to 0.8 GPa. Both antiferromagnetic JAF and ferromagnetic interaction JF are present in this magnet and temperature dependence of magnetization μ(T) exhibits the compensation temperature Tcomp at which the sign of the magnetization is reversed. Our results indicate that JAF dominates. The Curie temperature TC of the magnet increases with applied pressure, dTC/dp = 10.6 KGPa-1, due to strengthened JAF. The increase of the JAF is attributed to the enhanced value of the single electron overlapping integral S and the energy gap Δ of the mixed molecular orbitals t2g (Mn2+) and t2g (CrIII) induced by pressure. Magnetization processes are also affected by pressure: magnetization saturates at higher magnetic field and saturated magnetization is reduced. The compensation temperature Tcomp decreases under pressure.
Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders
NASA Astrophysics Data System (ADS)
Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming
2018-05-01
Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.
NASA Astrophysics Data System (ADS)
Gholizadeh, Ahmad; Jafari, Elahe
2017-01-01
In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe3+-ion concentration due to the presence of Fe4+ and Fe2+ ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere.
NASA Astrophysics Data System (ADS)
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Ravichandran, K.
2018-05-01
Heusler Alloy based Cr2CoSi nanoparticles were synthesized by using ball milling. X-ray diffractions studies were used to characterize the crystal structure of Cr2CoSi nanoparticles and magnetic properties were studied using VSM. XRD data analysis confirms the Heusler alloy phase showing the L21 structure. Magnetic properties are measured for synthesized samples having coercivity Hc = 389 Oe, with high saturation magnetization value Ms = 8.64 emu/g and remenance value Mr = 2.93 emu/g. Synthesized Heusler alloy Cr2CoSi nanoparticles can be potential materials for use in Spin polarized based spin sensors, spin devices, magnetic sensors and transducer applications.
Adsorption Removal of Environmental Hormones of Dimethyl Phthalate Using Novel Magnetic Adsorbent.
Chang, Chia-Chi; Tseng, Jyi-Yeong; Ji, Dar-Ren; Chiu, Chun-Yu; Lu, De-Sheng; Chang, Ching-Yuan; Yuan, Min-Hao; Chang, Chiung-Fen; Chiou, Chyow-San; Chen, Yi-Hung; Shie, Je-Lueng
2015-01-01
Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g(-1) with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04-6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g(-1), respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol(-1), indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption.
Delayed demagnetization jumps in (NdDy)(FeCo)B magnets in a steady-state magnetic field
NASA Astrophysics Data System (ADS)
L'vova, G. L.; Kirman, M. V.; Koplak, O. V.; Kucheryaev, V. V.; Valeev, R. A.; Piskorskii, V. P.; Morgunov, R. B.
2017-11-01
Spontaneous demagnetization jumps are observed in sintered magnets (Nd0.6Dy0.4)16(Fe0.77Co0.23)78B6 in a constant magnetic field after a sharp decrease in an external magnetic field from the value corresponding to the saturation to a value close to the coercive force. It is shown that the number of the magnetization jumps is proportional to their amplitudes. A low value of the autocorrelation coefficient between the jump amplitude and the time of its appearance ( R < 0.1) demonstrate the stochasticity of the jumps. It is found that the spectral jump density is independent of the frequency, i.e., a white magnetic noise is observed. The distribution of the magnetic field gradient has been obtained near the sample surface that makes it possible to distinguish domains and the grain magnetization in the dependence on the direction of the texturing of the sintered magnet.
Frustrated spin chains in strong magnetic field: Dilute two-component Bose gas regime
NASA Astrophysics Data System (ADS)
Kolezhuk, A. K.; Heidrich-Meisner, F.; Greschner, S.; Vekua, T.
2012-02-01
We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta ±Q, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around ±Q. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.
Magnetic anisotropies and magnetic switching in Co films
NASA Astrophysics Data System (ADS)
Bland, J. A. C.; Baird, M. J.; Leung, H. T.; Ives, A. J. R.; Mackay, K. D.; Hughes, H. P.
1992-07-01
We have used the magneto-optical Kerr effect to investigate the role of the substrate and growth conditions in determining the magnetic switching behaviour of Co films in the thickness range 100-200 Å supported by GaAs(001) and Si(111) substrates. We discuss the anisotropic magnetic hysteresis behaviour observed for Co/GaAs and Co/Si films in terms of coherent rotation of the magnetisation vector during magnetic switching. Equivalent films supported by glass substrates are found to be almost isotropic in-plane. The in-plane coercive and saturation fields are observed to lie in the range 20-80 Oe but perpendicular saturation fields of 25 and 19 kOe are found for the Co/Si and Co/GaAs systems respectively which substantially exceed the demagnetising field in each case. The measured perpendicular anisotropy fields differ strongly from the values for hcp and bcc Co and are attributed to the details of the interface and film structure. We also report strongly frequency dependent magnetic switching behaviour in these Co films.
Atomistic modelling of magnetic nano-granular thin films
NASA Astrophysics Data System (ADS)
Agudelo-Giraldo, J. D.; Arbeláez-Echeverry, O. D.; Restrepo-Parra, E.
2018-03-01
In this work, a complete model for studying the magnetic behaviour of polycrystalline thin films at nanoscale was processed. This model includes terms as exchange interaction, dipolar interaction and various types of anisotropies. For the first term, exchange interaction dependence of the distance n was used with purpose of quantify the interaction, mainly in grain boundaries. The third term includes crystalline, surface and boundary anisotropies. Special attention was paid to the disorder vector that determines the loss of cubic symmetry in the crystalline structure. For the case of the dipolar interaction, a similar implementation of the fast multiple method (FMM) was performed. Using these tools, modelling and simulations were developed varying the number of grains, and the results obtained presented a great dependence of the magnetic properties on this parameter. Comparisons between critical temperature and magnetization of saturation depending on the number of grains were performed for samples with and without factors as the surface and boundary anisotropies, and the dipolar interaction. It was observed that the inclusion of these parameters produced a decrease in the critical temperature and the magnetization of saturation; furthermore, in both cases, including and not including the disorder parameters, not only the critical temperature, but also the magnetization of saturation exhibited a range of values that also depend on the number of grains. This presence of a critical interval is due to each grain can transit toward the ferromagnetic state at different values of critical temperature. The processes of Zero field cooling (ZFC), Field cooling (FCC) and field cooling in warming mode (FCW) were necessary for understanding the mono-domain regime around of transition temperature, due to the high probabilities of a Super-paramagnetic (SPM) state.
Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Vlahos, L.
1987-01-01
The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.
TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet
NASA Astrophysics Data System (ADS)
Early, R. A.; Cobb, J. K.
1985-04-01
The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations.
Magnetic anisotropy and order parameter in nanostructured CoPt particles
NASA Astrophysics Data System (ADS)
Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.
2013-10-01
The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.
Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Uto, H.; Shimokawa, T.; Nakano, M.; Fukunaga, H.; Suzuki, K.
2013-06-01
Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing citric acid concentration. The lowest coercivity value of 240 A/m was obtained at a citric acid concentration of 100 g/L. The plating bath with this citric acid concentration enabled us to obtain Fe-Co films with high saturation magnetizations and smooth surface morphologies.
Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.
Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz
2011-12-23
The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.
Nondestructive Evaluation and Underwater Repair of Composite Structures
2008-06-01
virtually required with coatings in excess of 200 mm because of magnetic field losses [31]. This method has been effectively used in the underwater...Environmental Effects 42 flexural and fatigue degradation under saturated conditions, 0.6% weight [53]. Figure 14, shows the difference between saturated and...blasting and grit blasting plus chemical etching have the most pronounced effects , achieving nearly 60% relative to the highest achieved value [30, 71
High magnetic field magnetization of a new triangular lattice antiferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, H. D.; Stritzinger, Laurel Elaine Winter; Harrison, Neil
2017-03-23
In CsV(MoO 4) 2, the magnetic V 3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO 4) 2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Willmore » it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V 3+ (3d 2) ions. Apparently we need higher field to reach 1/3 value or full moment.« less
NASA Astrophysics Data System (ADS)
Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre
2016-03-01
Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.
NASA Astrophysics Data System (ADS)
Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd
2017-11-01
This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.
Structural and magnetic characterization of Ti doped cobalt ferrite (CoFe2O4)
NASA Astrophysics Data System (ADS)
Pal, Jaswinder; Kumar, Sunil; Kaur, Randeep; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
Synthesis of Co1-xTixFe2O4 solid solutions for 0.1≤x≤0.4 using the solid-state-reaction rate has been done. The prepared samples were characterized by using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). Magnetic studies have been done using Vibrating Sample Magnetometer (VSM). XRD confirmed that Cobalt Ferrite spinel cubic structure in all prepared samples. The lattice parameter `a' increases with increase in the concentration of Ti. SEM micrograph shows good grain growth in all samples. Magnetic Study reveals that the M-H curves of all the prepared samples taken at room temperature are very well saturated. The maximum value of remnant magnetization (Mr ˜13.9 emu/g) and saturation magnetization (Ms ˜74.4 emu/g) has been observed for x =0.2 sample. Coercivity does not show any regular variation with increase in the molar concentration of Ti in CoFe2O4 at A-site.
Ni substitution effect on magnetic and transport properties in metallic ferromagnet Co3Sn2S2
NASA Astrophysics Data System (ADS)
Kubodera, Takashi; Okabe, Hirotaka; Kamihara, Yoichi; Matoba, Masanori
2006-05-01
We investigated the magnetic and transport properties of polycrystalline (Co1-xNix)3Sn2S2(0⩽x⩽1) to ascertain the magnetism of the new metallic ferromagnet Co3Sn2S2. In Co3Sn2S2 magnetization does not saturate up to 5.5 T at 10 K, and the estimated saturation moment ( ps) is small ( ≅0.2μB per Co atom). In ( Co1-xNix)3Sn2S2, the electrical resistivity shows metallic behavior without a hump but has a kink at TC. The TC and magnetic susceptibility gradually decrease with increasing x, and there is no antiferromagnetic phase throughout the full range of composition. These results indicate that Co3Sn2S2 is a weak itinerant ferromagnet; while, the same order of the Rhodes-Wohlfarth pc/ps value as CoS2 suggests the existence of a localized moment.
NASA Astrophysics Data System (ADS)
Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.
2017-01-01
We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.
Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method
NASA Astrophysics Data System (ADS)
Souza, João B., Jr.; Varanda, Laudemir C.
2018-02-01
A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called ‘therapeutic window’ (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Schwarze, Gene E.
1999-01-01
100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.
Study of magnetic domain evolution in an auxetic plane of Galfenol using Kerr microscopy
NASA Astrophysics Data System (ADS)
Raghunath, Ganesh; Flatau, Alison B.
2015-05-01
Galfenol (FexGa100-x), a magnetostrictive alloy (3/2λ 110-400 ppm) of Iron and Gallium exhibits an in-plane auxetic response in the ⟨110⟩ crystallographic direction. Negative Poisson's ratios have been observed in response to application of stress fields, where values of as low as -0.7 have been reported for compositions of greater than roughly 20% Ga [Zhang et al., J. Appl. Phys. 108(2), 023513 (2010)] and in response to application of magnetic fields, where values of as low as -2.5 have been reported to be expected for compositions of less than roughly 20% Ga [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)]. Several models have been proposed to understand these two distinct phenomena. Galfenol samples with less than 20% Ga also exhibit an unusual response to an increasing magnetic field applied along the ⟨110⟩ direction. The longitudinal strain which increases initially with applied field experiences a dip (until ˜10 mT) before increasing again to reach saturation. The transverse strain increases and reaches a maximum value (at the same field of ˜10 mT) and then drops from the maximum by 5%-10% as magnetic saturation is approached [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)].This work deals with discussing the evolution of magnetic domains in a 16 at. % Ga single crystal Galfenol sample when subjected to magnetic fields in the ⟨110⟩ direction in the (100) plane. The magnetic domains on the surface of mechanically polished Galfenol samples were imaged using Magneto-Optic Kerr Effect microscopy. Simultaneously, the strains along the longitudinal and transverse ⟨110⟩ directions were recorded using a bi-directional strain gauge rosette mounted on the unpolished bottom surface of the planar samples. The energy from the applied magnetic field is expected to grow the ⟨110⟩ oriented domains at the expense of domains oriented along all other directions. But since the plane has an easy ⟨100⟩ axis, we expect the domains to orient along the easy direction before saturating along the applied magnetic field direction. A correlation between the images recorded and the strains observed will be used to understand this shift of domains and bump in strain at low fields.
Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalzov, I. V.; Brown, B. P.; Schnack, D. D.
2011-03-15
The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMRODmore » code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.« less
Corrosion behavior of magnetic ferrite coating prepared by plasma spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui
Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less
NASA Astrophysics Data System (ADS)
Jain, Richa; Luthra, Vandna; Gokhale, Shubha
2018-06-01
Fe3-xRExO4 (RE = Er, Dy and Gd) nanoparticles with x varying from 0 to 0.1 were synthesized using co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and UV-Vis spectroscopy techniques. TEM images reveal round shaped particles of ∼8-14 nm diameter in case of undoped magnetite (Fe3O4) nanoparticles whereas there is evolution of rod like structures by the doping of RE ions with aspect ratio in the range of 6-16. The room temperature saturation magnetization (Ms) values show gradual increase with doping till a critical doping level which is found to depend on the ionic radius of dopant ion (x = 0.01 for Er, 0.03 for Dy and 0.04 for Gd). There is a variation in the maximum value of saturation magnetization which is directly proportional to the number of unpaired 4f electrons in the dopant element. Low temperature magnetization study, carried out at 5 K and 120 K reveal an increase in the value of Ms as well as coercivity. The direct bandgaps calculated from UV-Visible data are found to decrease with increasing number of unpaired electrons in the dopant ions.
Enhancement of Magnetization in Y3Fe5O12 Epitaxial Thin Films
NASA Astrophysics Data System (ADS)
Brangham, Jack T.; Gallagher, James C.; Yang, Angela S.; White, Shane P.; Adur, Rohan; Ruane, Willam T.; Esser, Bryan D.; Page, Michael R.; Hammel, P. Chris; McComb, David W.; Yang, Fengyuan
The ability to generate pure spin currents has applications in telecommunications, radar, and spin-based logic. Y3Fe5O12 (YIG) is one of the best materials for dynamic generation of spin currents due to its low damping, narrow ferromagnetic resonance (FMR) linewidth, and insulating behavior. We grow stoichiometric, high quality, epitaxial YIG thin films with thicknesses ranging from 4 to 250 nm on Gd3Ga5O12 by off-axis magnetron sputtering and characterize the YIG films by various techniques. The temperature dependence of the saturation magnetization was independently measured by in-plane vibrating sample magnetometry, out-of-plane magnetic shape anisotropy, and angular-dependent FMR absorption from 10 K to the Curie temperature of 530 K. The room temperature saturation magnetization was also measured with frequency dependent FMR. All measurements show a magnetization enhancement of 15% or greater when compared to reported magnetization values of bulk YIG crystals. We speculate this is due to suppression of the long wavelength magnons due to the finite size of the films.
Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy
NASA Astrophysics Data System (ADS)
Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping
2017-09-01
We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8 ± 0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog
2017-08-01
We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.
Power flow control using distributed saturable reactors
Dimitrovski, Aleksandar D.
2016-02-13
A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.
Cascade of Magnetic Field Induced Spin Transitions in LaCoO3
NASA Astrophysics Data System (ADS)
Altarawneh, M. M.; Chern, G.-W.; Harrison, N.; Batista, C. D.; Uchida, A.; Jaime, M.; Rickel, D. G.; Crooker, S. A.; Mielke, C. H.; Betts, J. B.; Mitchell, J. F.; Hoch, M. J. R.
2012-07-01
We present magnetization and magnetostriction studies of LaCoO3 in magnetic fields approaching 100 T. In contrast with expectations from single-ion models, the data reveal two distinct first-order transitions and well-defined magnetization plateaus. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by interactions between different electronic configurations of Co3+ ions. We propose a model that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.
NASA Astrophysics Data System (ADS)
Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph
2011-08-01
In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.
d -zero magnetism in nanoporous amorphous alumina membranes
NASA Astrophysics Data System (ADS)
Esmaeily, Amir Sajad; Venkatesan, M.; Sen, S.; Coey, J. M. D.
2018-05-01
Nanoporous alumina membranes produced by mild or hard anodization have a controllable pore surface area up to 400 times that of the membrane itself. They exhibit a temperature-independent and almost anhysteretic saturating response to a magnetic field up to temperatures of 300 K or more. The magnetism, which cannot be explained by the ˜1 ppm of transition-metal impurities present in the membranes, increases with the area of the open nanopores, reaching values of 0.6 Bohr magnetons per square nanometer for mild anodization and 8 Bohr magnetons per square nanometer for the faster hard anodization process. Crystallization of the membrane or treatment with salicylic acid can destroy 90% of the magnetism. The effect is therefore linked with the surfaces of the open pores in the amorphous A l2O3 . Possible explanations in terms of electrons associated with oxygen vacancies (F or F+ centers) are considered. It is concluded that the phenomenon involved is likely to be saturating giant orbital paramagnetism, rather than any sort of collective ferromagnetic spin order.
Ogawa, Ryo; Kido, Tomoyuki; Nakamura, Masashi; Kido, Teruhito; Kurata, Akira; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Miyagawa, Masao; Mochizuki, Teruhito
2017-03-01
We evaluated the T1 values of segments and slices and the reproducibility in healthy controls, using saturation recovery single-shot acquisition (SASHA) at 3T magnetic resonance imaging. Moreover, we examined the difference in T1 values between hypertrophic cardiomyopathy (HCM) and healthy controls, and compared those with late gadolinium enhancement (LGE). Twenty-one HCM patients and 10 healthy controls underwent T1 mapping before and after contrast administration. T1 values were measured in 12 segments. Native T1 values were significantly longer in HCM than in healthy controls [1373 ms (1312-1452 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Even in HCM segments without LGE, native T1 values were significantly longer than in healthy control segments [1366 ms (1300-1439 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Using a cutoff value of 1327 ms for septal native T1 values, we differentiated between HCM and healthy controls with 95% sensitivity, 90% specificity, 94% accuracy, and an area under the curve of 0.95. Native T1 values using a SASHA at 3T could differentiate HCM from healthy controls. Moreover, native T1 values have the potential to detect abnormal myocardium that cannot be identified adequately by LGE in HCM.
Effects of heat treatment on crystallographic and magnetic properties of magnetic steels
NASA Astrophysics Data System (ADS)
Battistini, L.; Benasciutti, R.; Tassi, A.
1994-05-01
The keeper and the head of a modern electrovalve for electronic injection can be succesfully realized using AISI 430 ferromagnetic steel. Important improvements in the performance of the device, mainly in terms of its regularity and energy savings, are possible by means of a better comprehension of the origins of the steel's magnetic properties. The magnetic behaviour of the AISI 430 steel upon different heat treatments was investigated, looking for the best compromise between time saving in the heat treatments and the ensuing magnetic properties of the material. In particular, the relationships between the structural effects of the heat treatments and the magnetic behaviour of the samples were studied. Values of the coercive force Hc, residual induction Br, maximum permeability μ max and the approach to saturation values for H and B were determined by mean of a computerized permeameter, based on a Sanford-Bennet closed yoke for differently shaped samples.
Performance investigation on DCSFCL considering different magnetic materials
NASA Astrophysics Data System (ADS)
Yuan, Jiaxin; Zhou, Hang; Zhong, Yongheng; Gan, Pengcheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao
2018-05-01
In order to protect high voltage direct current (HVDC) system from destructive consequences caused by fault current, a novel concept of HVDC system fault current limiter (DCSFCL) was proposed previously. Since DCSFCL is based on saturable core reactor theory, iron core becomes the key to the final performance of it. Therefore, three typical kinds of soft magnetic materials were chosen to find out their impact on performances of DCSFCL. Different characteristics of materials were compared and their theoretical deductions were carried out, too. In the meanwhile, 3D models applying those three materials were built separately and finite element analysis simulations were performed to compare these results and further verify the assumptions. It turns out that materials with large saturation flux density value Bs like silicon steel and short demagnetization time like ferrite might be the best choice for DCSFCL, which can be a future research direction of magnetic materials.
NASA Astrophysics Data System (ADS)
Singh, M.
2017-12-01
The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability characteristics. Sufficient conditions for the avoidance of overstability are also obtained.
Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3
NASA Astrophysics Data System (ADS)
He, C.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2011-04-01
We have studied epitaxially grown superlattices of CaRuO3/CaMnO3 as well as an alloy film of CaMn0.5Ru0.5O3 on (001) SrTiO3 substrates. In contrast to previous experiments, we have studied CRO/CMO superlattices with a constant CRO thickness and variable CMO thickness. All superlattices exhibit Curie temperatures (TC) of 110 K. The saturated magnetization per interfacial Mn cation has been found to be 1.1 μB/Mn ion. The TC's of the superlattices are much lower than the TC of the alloy film while the saturated magnetization values are larger than that of the alloy film. These observations suggest that interdiffusion alone cannot account for ferromagnetism in the superlattices and that double exchange induced FM must play a role at the interfaces.
Frustrated magnetism in the spin–chain metal Yb 2Fe 12P 7
Baumbach, Ryan E.; Hamlin, James J.; Janoschek, Marc; ...
2016-01-08
Here, magnetization measurements for magnetic fieldsmore » $${{\\mu}_{0}}H$$ up to 60 T are reported for the noncentrosymmetric spin–chain metal Yb 2Fe 12P 7. These measurements reveal behavior that is consistent with Ising-like spin chain magnetism that produces pronounced spin degeneracy. In particular, we find that although a Brillouin field dependence is observed in M( H) for $$H\\bot ~c$$ with a saturation moment that is close to the expected value for free ions of Yb 3+, non-Brillouin-like behavior is seen for $$H~\\parallel ~c$$ with an initial saturation moment that is nearly half the free ion value. In addition, hysteretic behavior that extends above the ordering temperature $${{T}_{\\text{M}}}$$ is seen for $$H~\\parallel ~c$$ but not for $$H~\\bot ~c$$ , suggesting out-of-equilibrium physics. This point of view is strengthened by the observation of a spin reconfiguration in the ordered state for $$H~\\parallel ~c$$ which is only seen for $$T\\leqslant {{T}_{\\text{M}}}$$ and after polarizing the spins. Together with the heat capacity data, these results suggest that the anomalous low temperature phenomena that were previously reported are driven by spin degeneracy that is related to the Ising-like one dimensional chain-like configuration of the Yb ions.« less
New insight in magnetic saturation behavior of nickel hierarchical structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng
2017-09-01
It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.
Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses
NASA Astrophysics Data System (ADS)
Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan
2017-01-01
The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.
CORE SATURATION BLOCKING OSCILLATOR
Spinrad, R.J.
1961-10-17
A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)
NASA Astrophysics Data System (ADS)
Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.
2017-09-01
This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.
Broadening microwave absorption via a multi-domain structure
NASA Astrophysics Data System (ADS)
Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan
2017-04-01
Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.
Effect of pressure on the magnetic properties of TM3[Cr(CN)6]2·12H2O
NASA Astrophysics Data System (ADS)
Zentková, M.; Arnold, Z.; Kamarád, J.; Kavecanský, V.; Lukácová, M.; Mat'aš, S.; Mihalik, M.; Mitróová, Z.; Zentko, A.
2007-07-01
We present the results of magnetization and AC susceptibility measurements performed on ferrimagnetic Mn32+[CrIII(CN)6]2·12H2O and ferromagnetic Ni32+[CrIII(CN)6]2·12H2O systems under pressures up to 0.9 GPa in a commercial SQUID magnetometer. The magnetization process is affected by pressure: magnetization saturates at higher magnetic field, saturated magnetization μs of Ni3[Cr(CN)6]2 is reduced and almost unaffected for Mn3[Cr(CN)6]2 at low temperatures. The Curie temperature TC of Mn3[Cr(CN)6]2 increases with the applied pressure, ΔTC/Δp = 25.5 K GPa-1, due to a strengthened super-exchange antiferromagnetic interaction JAF, but it is not affected significantly in the case of Ni3[Cr(CN)6]2 with a dominant ferromagnetic JF super-exchange interaction. The increase in the JAF interaction is attributed to the enhanced value of the single electron overlapping integral S and the energy gap Δ of the mixed molecular orbitals t2g (Mn2+) and t2g (CrIII) induced by pressure.
Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Kusaka, T.; Maeda, C.
1985-01-01
The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying.
Saturable inductor and transformer structures for magnetic pulse compression
Birx, Daniel L.; Reginato, Louis L.
1990-01-01
Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.
Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially
NASA Astrophysics Data System (ADS)
Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar
2017-01-01
Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.
Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors
Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir
2016-01-01
Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783
Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.
Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir
2016-04-21
Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.
NASA Astrophysics Data System (ADS)
Song, Dongsheng; Li, Zi-An; Caron, Jan; Kovács, András; Tian, Huanfang; Jin, Chiming; Du, Haifeng; Tian, Mingliang; Li, Jianqi; Zhu, Jing; Dunin-Borkowski, Rafal E.
2018-04-01
Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization MS by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of MS inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
A new adjustable gains for second order sliding mode control of saturated DFIG-based wind turbine
NASA Astrophysics Data System (ADS)
Bounadja, E.; Djahbar, A.; Taleb, R.; Boudjema, Z.
2017-02-01
The control of Doubly-Fed induction generator (DFIG), used in wind energy conversion, has been given a great deal of interest. Frequently, this control has been dealt with ignoring the magnetic saturation effect in the DFIG model. The aim of the present work is twofold: firstly, the magnetic saturation effect is accounted in the control design model; secondly, a new second order sliding mode control scheme using adjustable-gains (AG-SOSMC) is proposed to control the DFIG via its rotor side converter. This scheme allows the independent control of the generated active and reactive power. Conventionally, the second order sliding mode control (SOSMC) applied to the DFIG, utilize the super-twisting algorithm with fixed gains. In the proposed AG-SOSMC, a simple means by which the controller can adjust its behavior is used. For that, a linear function is used to represent the variation in gain as a function of the absolute value of the discrepancy between the reference rotor current and its measured value. The transient DFIG speed response using the aforementioned characteristic is compared with the one determined by using the conventional SOSMC controller with fixed gains. Simulation results show, accurate dynamic performances, quicker transient response and more accurate control are achieved for different operating conditions.
Possible quadrupolar nematic phase in the frustrated spin chain LiCuSbO4: An NMR investigation
NASA Astrophysics Data System (ADS)
Bosiočić, M.; Bert, F.; Dutton, S. E.; Cava, R. J.; Baker, P. J.; Požek, M.; Mendels, P.
2017-12-01
The frustrated one-dimensional quantum magnet LiCuSbO4 is a rare realization of the J1-J2 spin chain model with an easily accessible saturation field, formerly estimated at 12 T. Exotic multipolar nematic phases were theoretically predicted in such compounds just below the saturation field, but without unambiguous experimental observation so far. In this paper we present extensive experimental research on the compound in a wide temperature (30 mK to 300 K) and field (0-13.3 T) range by muon spin rotation (μ SR ), 7Li nuclear magnetic resonance (NMR), and magnetic susceptibility (SQUID). μ SR experiments in zero magnetic field demonstrate the absence of long-range 3D ordering down to 30 mK. Together with former heat capacity data [Dutton et al., Phys. Rev. Lett. 108, 187206 (2012), 10.1103/PhysRevLett.108.187206], magnetic susceptibility measurements suggest a short-range-correlated vector chiral phase in the field range 0-4 T. At the intermediate-field values (5-12 T), the system enters a 3D-ordered spin density wave phase with 0.75 μB per copper site at lowest temperatures (125 mK), estimated by NMR. At still higher field, the magnetization is found to be saturated above 13 T where the spin lattice T1-1 relaxation reveals a spin gap estimated at 3.2(2) K. We narrow down the possibility of observing a multipolar nematic phase to the range 12.5-13 T.
Li, J. C.; Diamond, P. H.
2017-03-23
Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\
Multiple resonance peaks of FeCo thin films with NiFe underlayer
NASA Astrophysics Data System (ADS)
Zhong, Xiaoxi; Soh, Wee Tee; Phuoc, Nguyen N.; Liu, Ying; Ong, C. K.
2015-01-01
Under zero external magnetic fields, single-layer FeCo thin films exhibit no ferromagnetic resonance (FMR) peaks, while multiple FMR peaks were obtained by growing FeCo thin films on NiFe underlayers with various thicknesses up to 50 nm. Comprehensive investigations of the dynamic magnetic properties and origin of the peaks were conducted through measurements of microwave permeability via a shorted microstrip perturbation technique. Through fitted values of saturation magnetization Ms, uniaxial anisotropy HKsta, and rotatable anisotropy HKrot extracted from the FMR experiments, it was found that two of the three resonance peaks originate from FeCo, and the third from NiFe. The two magnetic phases of FeCo grains are found to have different values of HKrot and explained by the exchange interaction between FeCo and NiFe grains.
Quantum metallicity on the high-field side of the superconductor-insulator transition.
Baturina, T I; Strunk, C; Baklanov, M R; Satta, A
2007-03-23
We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.
NASA Astrophysics Data System (ADS)
Ali, Akbar; Grössinger, R.; Imran, Muhammad; Khan, M. Ajmal; Elahi, Asmat; Akhtar, Majid Niaz; Mustafa, Ghulam; Khan, Muhammad Azhar; Ullah, Hafeez; Murtaza, Ghulam; Ahmad, Mukhtar
2017-02-01
Polycrystalline W-type hexagonal ferrites with chemical formulae Ba0.5Sr0.5 Co2- x Me x Fe16O27 ( x = 0, 0.5, Me = Mn, Mg, Zn, Ni) have been prepared using sol-gel autocombustion. It has been reported in our earlier published work that all the samples exhibit a single-phase W-type hexagonal structure which was confirmed by x-ray diffraction (XRD) analysis. The values of bulk density lie in the range of 4.64-4.78 g/cm3 for all the samples which are quite high as compared to those for other types of hexaferrites. It was also observed that Zn-substituted ferrite reflects the highest (14.7 × 107 Ω-cm) whereas Mn-substituted ferrite has the lowest (11.3 × 107 Ω-cm) values of direct current (DC) electrical resistivity. The observed values of saturation magnetization ( M s) are found to be in the range of 62.01-68.7 emu/g depending upon the type of cation substitution into the hexagonal lattice. All the samples exhibit a typical soft magnetic character with low values of coercivity ( H c) that are in the range of 26-85 Oe. These ferrites may be promising materials for microwave absorbers due to their higher saturation magnetization and low coercivities. Both the dielectric constant and tangent loss decrease with increasing frequency in the lower frequency region and become constant in the higher frequency region. The much lower dielectric constant obtained in this study makes the investigated ferrites very useful for high-frequency applications, i.e. dielectric resonators and for camouflaging military targets such as ships, tanks and aircrafts, etc.
Shape, size, and distribution of magnetic particles in Bjurbole chondrules
NASA Technical Reports Server (NTRS)
Nava, David F.
1994-01-01
Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.
Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.
Lee, Chung-Hyo
2018-02-01
We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordani, Gholam Reza, E-mail: gordani@gmail.com; Mohseni, Marzieh; Ghasemi, Ali
2016-04-15
Highlights: • High frequency properties of substituted W-type Sr-hexaferrite. • Saturation magnetization of samples is decreased with increasing of dopants content. • The ferrite sample covers about 6 GHz of bandwidth in K{sub u} band. • The optimum substituted samples can be used as a potential magnetic loss material. • Sample contain x = 0.4 of dopants have shown greater than 90% of reflection loss. - Abstract: Substituted W-type hexaferrite nanoparticles of SrZn{sub 2−x}Co{sub x/2}Ni{sub x/2}Fe{sub 16}O{sub 27} were synthesized by a chemical co-precipitation method. The X-ray diffraction results confirmed that W-type ferrite was identified as the main phase inmore » whole samples in the range of x = 0–0.4. According to magnetic hysteresis loops, with increasing of substituted cations, saturation of magnetization increased and coercivity decreased due to crystalline site occupation of Zn with Ni and Co cations. The microwave reflection loss analysis results in the K{sub u} band (12–18 GHz) show that the highest value of reflection loss of samples was −29.11 dB at frequency of 14.57 GHz with an absorption bandwidth of more than 6 GHz by choosing reflection loss value of −10 dB as a reference. The results indicate that, the sample with appropriate amount of substituted cations hold great promise for microwave device applications.« less
Preparation and Characterization of an Amphipathic Magnetic Nanosphere
Ji, Yongsheng; Lv, Ruihong; Xu, Zhigang; Zhao, Chuande; Zhang, Haixia
2014-01-01
The amphipathic magnetic nanospheres were synthesized using C8 and polyethylene glycol as ligands. Their morphology, structure, and composition were characterized by transmission electron microscope, Fourier transform infrared, and elementary analysis. The prepared materials presented uniform sphere with size distribution about 200 nm. The magnetic characteristics of magnetic nanomaterials were measured by vibrating sample magnetometer. The target products had a saturation magnetization value of 50 emu g−1 and superparamagnetism. The adsorption capability was also studied by static tests, and the material was applied to enrich benzenesulfonamide from calf serum. The results exhibited that the C8-PEG phase owned better adsorption capability, biocompatible property, and dispersivity in aqueous samples. PMID:24729917
Cooling a magnetic nanoisland by spin-polarized currents.
Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M
2014-08-15
We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.
NASA Astrophysics Data System (ADS)
Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan
2018-02-01
Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Xuejian; Li, Ji; Liu, Mei; Xu, Shichong; Li, Haibo
2017-12-01
NiAlxFe2-xO4/SiO2 (0 ≤ x ≤ 1.0) nanocomposite films deposited on Si(1 0 0) substrates were prepared by a sol-gel spin-coating method. The influences of Al3+ content and annealing temperature on the structural and electromagnetic properties of the nanocomposite films were investigated. The results indicated that NiAlxFe2-xO4 in the nanocomposite films crystallized after annealing at 1073 K and above. When the doping content x increased from 0 to 1.0, the lattice constants and the average crystallite sizes of the NiAlxFe2-xO4 nanoparticles decreased. The saturation magnetization and coercivity of the films were inversely proportional to the Al3+ content. The maximum value of saturation magnetization (361.6 emu/cm3) and the minimum value of coercivity (18.6 kA/m) were obtained for x of 0.2. When the annealing temperature increased from 1073 to 1473 K, the lattice constant and the average crystallite size of the NiAl0.2Fe1.8O4 nanoparticles increased from 0.8322 to 0.8349 nm and 4 to 28 nm, respectively, and the saturation magnetization and coercivity of the films increased from 214.8 to 464.5 emu/cm3 and 8.2 to 26.9 kA/m, respectively. Moreover, the DC resistivity of the films increased with increasing Al3+ content and annealing temperature.
Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles
NASA Astrophysics Data System (ADS)
Krajewski, Marcin; Brzozka, Katarzyna; Tokarczyk, Mateusz; Kowalski, Grzegorz; Lewinska, Sabina; Slawska-Waniewska, Anna; Lin, Wei Syuan; Lin, Hong Ming
2018-07-01
The main objective of this work is to study the influence of thermal oxidation on the chemical composition and magnetic properties of iron nanoparticles which were manufactured in a simple chemical reduction of Fe3+ ions coming from iron salt with sodium borohydride. The annealing processing was performed in an argon atmosphere containing the traces of oxygen to avoid spontaneous oxidation of iron at temperatures ranging from 200 °C to 800 °C. The chemical composition and magnetic properties of as-prepared and thermally-treated nanoparticles were determined by means of X-ray diffractometry, Raman spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometry. Due to the magnetic interactions, the investigated iron nanoparticles tended to create the dense aggregates which were difficult to split even at low temperatures. This caused that there was no empty space between them, which led to their partial sintering at elevated temperatures. These features hindered their precise morphological observations using the electron microscopy techniques. The obtained results show that the annealing process up to 800 °C resulted in a progressive change in the chemical composition of as-prepared iron nanoparticles which was associated with their oxidation. As a consequence, their magnetic properties also depended on the annealing temperature. For instance, considering the values of saturation magnetization, its highest value was recorded for the as-prepared nanoparticles at 1 T and it equals 149 emu/g, while the saturation point for nanoparticles treated at 600 °C and higher temperatures was not reached even at the magnetic field of about 5 T. Moreover, a significant enhancement of coercivity was observed for the iron nanoparticles annealed over 600 °C.
NASA Astrophysics Data System (ADS)
Denisova, E. A.; Kuzovnikova, L. A.; Iskhakov, R. S.; Bukaemskiy, A. A.; Eremin, E. V.; Nemtsev, I. V.
2014-05-01
The evolution of the magnetic properties of composite Al2O3/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al2O3 granules were coated with a Co95P5 shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al2O3 powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.
Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite.
Gore, Shyam K; Mane, Rajaram S; Naushad, Mu; Jadhav, Santosh S; Zate, Manohar K; Alothman, Z A; Hui, Biz K N
2015-04-14
The influence of Bi(3+)-doping on the magnetic and Mössbauer properties of cobalt ferrite (CoFe2O4), wherein the Fe(3+) ions are replaced by the Bi(3+) ions to form CoBixFe2-xO4 ferrites, where x = 0.0, 0.05, 0.1, 0.15 or 0.2, has been investigated. The structural and morphological properties of undoped and doped ferrites, synthesized chemically through a self-igniting sol-gel method, are initially screened using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions are confirmed from the Mössbauer spectroscopy analysis. The effect of Bi(3+)-doping on the magnetic properties of CoFe2O4 ferrite is examined from the vibrating sample magnetometry spectra. Saturation magnetization and coercivity values are increased initially and then decreased, as result of Bi(3+)-doping. The obtained results with improved saturation magnetization (from 26.36 to 44.96 emu g(-1)), coercivity (from 1457 to 1863 Oe) and remanence magnetization (from 14.48 to 24.63 emu g(-1)) on 0.1-0.15 mol Bi(3+)-doping of CoBixFe2-xO4 demonstrate the usefulness for magnetic recording and memory devices.
Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.
Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H
2012-02-10
We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.
Magnetism of californium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nave, S.E.; Moore, J.R.; Spaar, M.T.
1984-01-01
Magnetic susceptibility measurements have been made on samples of californium-249 metal having the dhcp crystal structure. At temperatures between 100K and 300K and at fields up to 50 kilogauss, the samples exhibit Curie-Weiss behavior with 3 samples giving a magnetic moment per atom of ..mu../sub eff/ = 10.6 +- 0.2 ..mu../sub B/ and paramagnetic Weiss temperatures, theta/sub p/, in the range of -2K to -41K. These values of ..mu../sub eff/ are in good agreement with the value expected (10.62..mu../sub B/) for a free-ion 5f/sup 9/ configuration based on an L-S coupling scheme and Hund's Rule. A fourth sample gives themore » values ..mu../sub eff/ = 9.7 +- 0.2..mu../sub B/ and theta/sub p/ = -41K. At low temperatures the samples exhibit an ordered magnetic transition to a state with a saturated moment of 6.1 ..mu../sub B//atom when extrapolated to infinitely-high field. The low temperature ordered phase exists at temperatures below T/sub c/ = 51 +- 2K as determined from constant magnetization plots. 2 references, 3 figures.« less
NASA Astrophysics Data System (ADS)
Tran, Ngo; Kim, Deok Hyeon; Lee, Bo Wha
2018-03-01
BaFe11CoO19 hexaferrites were prepared by using a co-precipitation method and heat treatment. By changing the ion molar ratio of (Fe + Co)/Ba = ( x + 1)/1, we found a clear difference in the crystalline structural and magnetic properties. Particularly, the magnetic properties became optimal at x = 11 - 13 based on the saturation magnetization and coercivity values. The effects of heat treatment on the morphological, structural and magnetic properties were assessed. With the results of thermal gravimetric analyses, X-ray diffraction patterns, and magnetic-field-dependent magnetization, we found that M-type hexaferrite nanocrystals start being formed at a temperature of 650°C, which was much lower than temperatures reported previously.
Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling
NASA Astrophysics Data System (ADS)
González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.
1998-04-01
We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.
Magnetic behaviour studies on nanocrystalline cobalt ferrite by employing the Arrott plot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajnish, E-mail: rajnishiitr15@gmail.com; Kar, Manoranjan, E-mail: mano@iitp.ac.in
Vibrating Sample Magnetometer (VSM) has been used to analyze the magnetic behavior of ferrimagnetic material (CoFe{sub 2}O{sub 4}) synthesized by the citric acid modified sol-gel method. X-ray diffraction (XRD) pattern confirms the phase purity of the sample. Its magnetic measurement has been carried out at room temperature in the field range ±1.5T. The magnetocrystalline anisotropy and saturation magnetization of CoFe{sub 2}O{sub 4} are two important parameters which need to be studied for exploring its technological applications like memory device, magnetic sensors etc. Law of Approach (LA) to saturation and the Arrott plot analysis have been carried out to obtain themore » saturation magnetization. The difference in the saturation magnetization obtained from the two methods gives the qualitative understanding of magnetocrystalline anisotropy and lattice strain present in the sample. The present study explores a new way of analyzing magnetic hysteresis loop of nanocrystalline cobalt ferrite.« less
CoPtB(O) alloy films as new perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, K.; Hayakawa, M.; Ohmori, H.
In search of new hard magnetic materials with high saturation magnetization and large coercivity, a comprehensive study was made on numerous Co- and CoPt-base crystalline alloys by means of sputtering techniques. It revealed that a newly found CoPtB(O) alloy system possessed excellent hard magnetic properties with remarkably large perpendicular coercivity and high saturation magnetization. This new alloy film, deposited onto room temperature substrates, shows the magnetic properties of 4{pi}{ital M}{sub {ital s}}=12 kG, {ital H}{sup {perpendicular}}{sub {ital c}}=4000 Oe, and perpendicular anisotropy field {ital H}{sub {ital k}}=22 kOe. These values are superior to those of prevailing materials such as CoCrmore » perpendicular and CoPt or CoNi longitudinal recording media. The typical composition is Co{sub 69}Pt{sub 20}B{sub 6}O{sub 5} (at. %), and oxygen plays a momentous role on the coercivity in this alloy film. As a magnetic recording medium, a write/read experiment of this film shows that the readout signal has a +9 dB peak-to-peak amplitude compared with that of metal particle tape at 1 {mu}m wavelength and has +10 dB compared with that of a CoCr perpendicular medium at 0.5 {mu}m wavelength.« less
NASA Astrophysics Data System (ADS)
Vigneswari, T.; Raji, P.
2017-01-01
It is a truism that a sequence of calcium doped nickel ferrite (with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoparticles are combined by co-precipitation technique. X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) scrutinize the formation of single-phase inverse spinel structure in all the compositions. The lattice framework increases with the increase in calcium concentration and it exhibits the development of unit cell. Crystallite size in the range of 22-34 nm is viewed and also augmented the level of calcium. The elemental composition of pure and calcium doped nickel ferrite has been procured from Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Energy Dispersive X-ray analysis (EDX). It is interesting to note that the substitution of calcium increasingly exerts influence on the magnetic characteristics. These observations paved the way for the room temperature of magnetization measurements. The saturation magnetization and the experimental value of magnetic moment are noticed to enlarge initially up to x = 0.2, and then decrease incessantly with increase in the Ca content x. The increase and the decrease of saturation magnetization have widely been expounded by Neel's collinear two-sublattice model and Yafet-Kittel (Y-K) three-sub lattice model.
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A
2016-02-01
Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.
[The water content reference material of water saturated octanol].
Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan
2011-03-01
The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.
Guo, Peizhi; Lv, Meng; Han, Guangting; Wen, Changna; Wang, Qianbin; Li, Hongliang; Zhao, Xiusong
2016-09-29
Hierarchical colloidal nanocrystal assemblies (CNAs) of ZnFe₂O₄ have been synthesized controllably by a solvothermal method. Hollow ZnFe₂O₄ spheres can be formed with the volume ratios of ethylene glycol to ethanol of 1:4 in the starting systems, while solid ZnFe₂O₄ CNAs are obtained by adjusting the volume proportion of ethylene glycol to ethanol from 1:2 to 2:1. Magnetometric measurement data showed that the ZnFe₂O₄ CNAs obtained with the volume ratios of 1:2 and 1:1 exhibited weak ferromagnetic behavior with high saturation magnetization values of 60.4 and 60.3 emu·g -1 , respectively. However, hollow spheres showed a saturation magnetization value of 52.0 emu·g -1 , but the highest coercivity among all the samples. It was found that hollow spheres displayed the best ability to adsorb Congo red dye among all the CNAs. The formation mechanisms of ZnFe₂O₄ CNAs, as well as the relationship between their structure, crystallite size, and properties were discussed based on the experimental results.
The Moho as a magnetic boundary
NASA Technical Reports Server (NTRS)
Wasilewski, P. J.; Thomas, H. H.; Mayhew, M. A.
1979-01-01
Magnetic data are presented for mantle derived rocks: peridtites from St. Pauls rocks, dunite xenoliths from the kaupulehu flow in Hawaii, as well as peridolite, dunite and eclogite xenoliths from Roberts Victor, Dutoitspan, Kilbourne Hole, and San Carlos diatremes. The rocks are paramagnetic or very weakly ferromagnetic at room temperature. Saturation magnetization values range from 0.013 emu/gm to less than 0.001 emu/gm. A review of pertinent literature dealing with analysis of the minerals in mantle xenoliths provides evidence that metals and primary Fe3O4 are absent, and that complex CR, Mg, Al, and Fe spinels dominate the oxide mineralogy. All of the available evidence supports the magnetic results, indicating that the seismic MOHO is a magnetic boundary.
Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix
NASA Astrophysics Data System (ADS)
de Morais, J. E. V.; de Castro, A. J. N.; Oliveira, R. G. M.; do Carmo, F. F.; Sales, A. J. M.; Sales, J. C.; Silva, M. A. S.; Gouveia, D. X.; Costa, M. M.; Rodrigues, A. R.; Sombra, A. S. B.
2018-04-01
LiFe5O8 (LFO) spinel-like material has been studied for use in ferrite resonator antennas (FRAs). Antenna parameters such as gain and return loss were greatly affected when an external magnetic field was applied to the FRA. The temperature coefficient of the resonant frequency (τ f ) for the FRA presented a value of - 482.16 ppm/°C. The magnetic hysteresis results showed that the LFO was a soft ferrite, considering the values of the remanent magnetization (M r = 5.95 emu g-1), coercive field (0.76 mT), and saturation magnetization (32.15 emu g-1). The magnetodielectric resonator presented a tuning effect in the resonant frequency as a function of the external magnetic field. The antenna bandwidth was also affected by the presence of the magnetic field. LFO is a soft ferrite with applications in microwave circuits, antennas, and devices for operation at microwave frequencies due to its magnetization and demagnetization properties. Impedance study revealed increasing conductivity from room to higher temperature with low activation energy (0.36 eV).
NASA Astrophysics Data System (ADS)
Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu
2018-03-01
M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.
NASA Astrophysics Data System (ADS)
Palihawadana-Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman M.; Naik, Ratna
2017-01-01
Magnetic hyperthermia (MHT), where localized heating is generated when magnetic nanoparticles (MNPs) are subjected to a radiofrequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. The efficiency of heat generation depends on the magnetic properties of MNPs, such as saturation magnetization (Ms) and magnetic anisotropy (K), as well as the particle size distribution and magnetic dipolar interactions. We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution (14 ± 4 nm) and saturation magnetization (70 ± 2 emu/g of Fe3O4) but very different specific absorption rates (SAR) of ˜110 W/g and ˜40 W/g at room temperature (measured with an ac magnetic field amplitude of 240 Oe and a frequency of 375 kHz). This observed reduction in SAR has been explained by taking into account the dipolar interactions and the distribution of the magnetic core size of MNPs in ferrofluids. The HT ferrofluid shows a higher effective dipolar interaction and a wider distribution of the magnetic core size of MNPs compared to those of the CP ferrofluid. We have fitted the temperature dependent SAR data using the linear response theory, incorporating an effective dipolar interaction, to determine the magnetic anisotropy constant of MNPs prepared by CP (22 ± 2 kJ/m3) and HT (26 ± 2 kJ/m3) synthesis methods. These values are in good agreement with the magnetic anisotropy constant determined using frequency and temperature dependent magnetic susceptibility data obtained on powder samples.
Low-frequency quadrupole impedance of undulators and wigglers
Blednykh, A.; Bassi, G.; Hidaka, Y.; ...
2016-10-25
An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less
New measurements of photospheric magnetic fields in late-type stars and emerging trends
NASA Technical Reports Server (NTRS)
Saar, S. H.; Linsky, J. L.
1986-01-01
The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Yang, T. W.; Shen, D.; Chen, K. L.; Chen, J. M.; Liao, S. H.; Chieh, J. J.; Yang, H. C.; Wang, L. M.
2017-03-01
This paper reports a bioassay of alpha-fetoprotein (AFP) concentration achieved via the measurement of blocking temperature (TB). Biofunctionalized magnetic nanoparticles (BMNs) consisting of anti-alpha-fetoprotein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4 were prepared and then conjugated with AFP biotargets. It was found that both the saturation magnetization and value of TB increased with the concentration of the associated AFP. Furthermore, the dependence of TB of the samples on magnetic field agreed with the interparticle interaction model. Thus, this study demonstrated a platform to detect biomarkers by characterizing TB with a sensitivity limit of 20 ppb of AFP. The promising results obtained for this bioassay can be attributed to the interparticle interactions and Néel motions of magnetic moments in the BMNs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayner, Chhatrasal; Kar, Kamal K., E-mail: kamalkk@iitk.ac.in; Department of Mechanical Engineering, Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016
Polycrystalline lead selenide (PbSe) doped with copper (Cu) and nickel (Ni) was prepared to understand its magnetic behaviour and Raman activity. The processing conditions, influence of dopants (magnetically active and non-active) and their respective compositions on the magnetic properties and Raman active mode were studied. A surprising/anomalous room temperature ferromagnetism (hysteresis loop) is noticed in bulk diamagnetic PbSe, which is found to be natural or inherent characteristic of material, and depends on the crystallite size, dopant, and developed strain due to dopant/defects. The magnetic susceptibility (−1.71 × 10{sup −4} emu/mol Oe) and saturated magnetic susceptibility (−2.74 × 10{sup −4} emu/mol Oe) are found tomore » be higher than the earlier reported value (diamagnetic: −1.0 × 10{sup −4} emu/mol Oe) in bulk PbSe. With increase of Cu concentration (2% to 10%) in PbSe, the saturated magnetic susceptibility decreases from −1.22 × 10{sup −4} to −0.85 × 10{sup −4} emu/mol Oe. Whereas for Ni dopant, the saturated magnetic susceptibility increases to −2.96 × 10{sup −4} emu/mol Oe at 2% Ni doped PbSe. But it further decreases with dopant concentration. In these doped PbSe, the shifting of longitudinal (LO) phonon mode was also studied by the Raman spectroscopy. The shifting of LO mode is found to be dopant dependent, and the frequency shift of LO mode is associated with the induced strain that created by the dopants and vacancies. This asymmetry in LO phonon mode (peak shift and shape) may be due to the intraband electronic transition of dopants. The variation in magnetic susceptibility and Raman shifts are sensitive to crystallite size, nature of dopant, concentration of dopants, and induced strain due to dopants.« less
Ferromagnetic resonance in bulk nanocrystalline Ni
NASA Astrophysics Data System (ADS)
Prakash Madduri, P. V.; Mathew, S. P.; Kaul, S. N.
2018-03-01
A detailed lineshape analysis of the ferromagnetic resonance (FMR) spectra taken on pulse electrodeposited nanocrystalline (nc-) Ni sheets (with the average crystallite size, d, varying from 10 nm to 40 nm) at temperatures ranging from 113 K to 325 K yield accurate values for saturation magnetization, Ms (T), Landé splitting factor, g, anisotropy field, Hk (T) , resonance field, Hres , and FMR linewidth, ΔHpp (T) . Thermally-excited spin-wave (SW) excitations completely account for Ms (T) and the SW description of Ms (T) gives the values for the saturation magnetization and spin-wave stiffness at absolute zero of temperature, i.e., Ms (0) and D0 , for nc-Ni samples of different d that are in excellent agreement with the corresponding values deduced previously from an elaborate SW analysis of the bulk magnetization data. While Ms (0) varies with d as Ms (0) d - 3 / 2,D0 follows the power law D0 ∼d 4 / 3 . The angular variations of Hres in the 'in-plane' as well as 'out-of-plane' sample configurations, demonstrate that the main contribution to Hk (T) comes from the cubic magnetocrystalline anisotropy. The exchange-conductivity mechanism describes the observed thermal decline of ΔHpp reasonably well but fails to explain the very large magnitude of ΔHpp at any given temperature. By comparison, the Landau-Lifshitz-Gilbert (LLG) damping gives a much greater contribution to ΔHpp but the LLG contribution is relatively insensitive to temperature.
Damping effects of magnetic fluids of various saturation magnetization (abstract)
NASA Astrophysics Data System (ADS)
Chagnon, Mark
1990-05-01
Magnetic fluids have been widely accepted for use in loudspeaker voice coil gaps as viscous dampers and liquid coolants. When applied properly to a voice coil in manufacturing of the loudspeaker, dramatic improvement in frequency response and power handling is observed. Over the past decade, a great deal of study has been given to the effects of damping as a function of fluid viscosity. It is known that the apparent viscosity of a magnetic fluid increases as a function of applied magnetic field, and that the viscosity versus field relationship approximate that of the magnetization versus applied field. At applied magnetic field strength sufficient to cause magnetic saturation of the fluid, no further increase in viscosity with increased magnetic field is observed. In order to provide a better understanding of the second order magnetoviscous damping effects in magnetic fluids used in voice coils and to provide a better loudspeaker design criterion using magnetic fluids, we have studied the effect on damping of several magnetic fluids of the same O field viscosity and of varying saturation magnetization. Magnetic fluids with saturation magnetization ranging from 50 to 450 G and 100 cps viscosity at O applied field were injected into the voice coil gap of a standard midrange loudspeaker. The frequency response over the entire dynamic range of the speaker was measured. The changes in frequency response versus fluid magnetization are reported.
Finite-element modeling and micromagnetic modeling of perpendicular writers
NASA Astrophysics Data System (ADS)
Heinonen, Olle; Bozeman, Steven P.
2006-04-01
We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.
The work studies the effect of magnetic circuit saturation on the synchronous inductive reactance of the armature. A practical method is given for...calculating synchronized parameters in saturating synchronized machines with additional clearances and machines with superconducting excitation windings.
Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg
2014-10-01
To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.
2015-05-07
Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specificmore » absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.« less
A GLOBAL GALACTIC DYNAMO WITH A CORONA CONSTRAINED BY RELATIVE HELICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, A.; Mangalam, A., E-mail: avijeet@iiap.res.in, E-mail: mangalam@iiap.res.in
We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism. The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state solutions ofmore » the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final structure of the global magnetic field and the saturated value of the turbulence parameter α{sub m}, even before solving the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona. The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of 1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has only a weak impact on the dynamo operation.« less
Thermal effect on structural and magnetic properties of Fe78B13Si9 annealed amorphous ribbons
NASA Astrophysics Data System (ADS)
Soltani, Mohamed Larbi; Touares, Abdelhay; Aboki, Tiburce A. M.; Gasser, Jean-Georges
2017-08-01
In the present work, we study the influence of thermal treatments on the magnetic properties of as-quenched and pre-crystallized Fe78Si9B13 after stress relaxation. The crystallization behavior of amorphous and treated Fe78Si9B13 ribbons was revisited. The measurements were carried out by means of Differential Scanning Calorimetry, by X-ray diffraction and by Vibrating Sample Magnetometer, Susceptometer and fluxmeter. Relaxed samples were heated in the resistivity device up to 700°C and annealed near the onset temperature about 420°C for respectively 1, 3, 5, 8 hours. In as-quenched samples, two transition points occur at about 505°C and 564°C but in relaxed sample, the transition points have been found about 552°C and 568°C. Kinetics of crystallization was deduced for all studied samples. Annealing of the as-purchased ribbon shows the occurrence of α-Fe and tetragonal Fe3B resulting from the crystallization of the remaining amorphous phase. The effects on magnetic properties were pointed out by relating the structural evolution of the samples. The magnetic measurements show that annealing change the saturation magnetization and the coercive magnetic field values, hence destroying the good magnetic properties of the material. The heat treatment shows that the crystallization has greatly altered the shape of the cycles and moved the magnetic saturation point of the samples. The effect of treatment on the magneto-crystalline anisotropy is also demonstrated.
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Ahmed, S. I.
2017-11-01
Nanoparticles cobalt ferrite, vacancies defective through vanadium substitution for iron, were synthesized by a sol-gel method. Two systems CoFe2-xVxO4 (0.0 ≤ x ≤ 0.25) and CoFe2-1.67xVxO4 (x = 0.1, 0.2) were prepared. The crystal structure, microstructure and magnetic properties were investigated using XRD, SEM and VSM magnetometer. The occupancy of tetrahedral and octahedral sites by different cations was determined by Rietveld analysis and correlated with magnetic measurements. Vanadium resides at octahedral sites up to x = 0.10, while for higher values it resides mainly at octahedral sites with a lesser amount at the tetrahedrons. Upon increasing the vanadium content, the cell parameter decreases and the bond lengths of the tetrahedral and octahedral sites change opposite to each other. The change in the coercivity and saturation magnetization is correlated with cation distribution. For the same amount of doping x, the iron deficient samples CoFe2-1.67xVxO4 have saturation magnetization obviously reduced than the corresponding samples in CoFe2-xVxO4. The spin canting between cations in A- and B- sites was discussed in details based on Yafet-Kittel triangular arrangement model.
Magnetic field amplification via protostellar disc dynamos
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.
2018-06-01
We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd, the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of the order of 10^{-9} M_{⊙} yr^{-1} for T Tauri stars. This suggests that αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.
Nonlinear saturation of the Weibel instability
Cagas, P.; Hakim, A.; Scales, W.; ...
2017-11-21
The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less
Nonlinear saturation of the Weibel instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cagas, P.; Hakim, A.; Scales, W.
The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less
Controlled nanocrystallinity in Gd nanobowls leads to magnetization of 226 emu/g
NASA Astrophysics Data System (ADS)
Ertas, Y. N.; Bouchard, L.-S.
2017-03-01
Gadolinium (Gd) metal is of great interest in applications such as contrast-enhanced MRI and magnetic cooling. However, it is generally difficult to produce oxide-free and highly magnetic Gd nanoparticles due to the aggressively reactive nature of Gd with oxygen. Herein, we utilized a nanofabrication route and optimization of experimental conditions to produce highly magnetic air-stable oxide-free Gd nanoparticles. The nanobowls displayed the highest saturation magnetization to date for Gd, reaching 226.4 emu/g at 2 K. The crystalline composition of Gd is found to affect the observed magnetization values: the higher magnetization is observed for nanoparticles that have a lower content of the paramagnetic face-centered cubic (fcc) phase and a greater content of the ferromagnetic hexagonal close-packed (hcp) phase. The relative fcc content was found to depend on the deposition rate of the Gd metal during the nanofabrication process, thereby correlating with altered magnetization.
NASA Astrophysics Data System (ADS)
Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten
2017-03-01
The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.
Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization
Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu
2015-01-01
The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...
NASA Astrophysics Data System (ADS)
Nagpal, V.; Kumar, P.; Sudesh, Patnaik, S.
2018-04-01
We have studied the resistivity and magnetoresistance (MR) properties of the recently predicted type-II Weyl semimetal WP2. Polycrystalline WP2 is synthesized using solid state reaction and crystallizes in an orthorhombic structure with the Cmc21 spacegroup. The temperature dependent resistivity is enhanced with the application of magnetic field and a resistivity plateau is observed at low temperatures. We find a small dip in resistivity around 30K at 5T field suggesting that there might be a metal-insulator-like transition at higher magnetic fields. A non-saturating magnetoresistance is observed at low temperatures with maximum MR ˜ 94% at 2K and 6T. The value of MR decreases with the increase in temperature. We see a deviation from Kohler's power law which implies that the system comprises of two types of charge carriers.
NASA Astrophysics Data System (ADS)
Wang, Q.; Chen, A. P.; Guo, E. J.; Roldan, M. A.; Jia, Q. X.; Fitzsimmons, M. R.
2018-01-01
Using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a L a0.8S r0.2Mn O3 (LSMO) epitaxial film grown on a SrTi O3 substrate. The elastic bending strain of ±0.03 % has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (L a1 -xP rx)1 -y C ayMn O3 (LPCMO) films for which strain of ±0.01 % produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none) and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.
NASA Astrophysics Data System (ADS)
Bourouaine, Sofiane; Howes, Gregory G.
2017-06-01
The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.
Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro
2015-01-01
Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.
Structural and magnetic properties of Ni1-xZnxFe2O4 synthesized through the sol-gel method
NASA Astrophysics Data System (ADS)
Guan, Beh Hoe; Zahari, Muhammad Hanif; Chuan, Lee Kean
2016-11-01
Modification of crystal structure by means of substitution would result in the modification of the overall physical properties of crystallite materials especially in ferrites. This study aims to investigate the effect of non-magnetic Zn substitution in spinel NiFe2O4 and its direct effect towards its microstructural and magnetic properties. Magnetic nanoparticles of Nickel-Zinc ferrite with the chemical formula, Ni1-xZnxFe2O4 (x=0.00, 0.25, 0.50, 0.75) were synthesized through the sol-gel route. Phase formation and structural properties of the synthesized ferrite were identified through X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Magnetic properties such as the magnetic saturation, coercivity and remanence were measured by a vibrating sample magnetometer (VSM). XRD measurements reveals successful synthesis of single-phased Nickel ferrite and Nickel—Zinc ferrite. Both crystallite and grain size shows fluctuation with increasing Zn content. The ferrites were found to be ferrimagnetic in nature and show differing values with different x values.
Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro
2015-01-01
Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320
Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma
NASA Astrophysics Data System (ADS)
Kalita, Deiji; Kakati, Bharat; Kausik, Siddhartha Sankar; Saikia, Bipul Kumar; Bandyopadhyay, Mainak
2018-04-01
The accuracy of plasma parameters measured by Langmuir probe in presence of magnetic field is studied in our present work. It is observed that the ratio of electron to ion saturation current shows almost identical behavior with that of unmagnetized hydrogen plasma when r L > 10 r p (here r L : Larmor radius and r p : probe radius). At magnetic field strength, B = 594 gauss, the electron temperature ( T e ) shows an overestimated value up to 35-40%, whereas at B ≤ 37 gauss, T e shows around ≤10% overestimated value w.r.t. unmagnetized case. A bi-Maxwellian electron energy probability function is observed for entire magnetic field range for both pristine and dust containing hydrogen plasma. The bulk (cold) electron collection by the Langmuir probe is strongly suppressed whereas the higher energetic electron collection remains unaffected in presence of magnetic field. In presence of dust grains, it is found that the low energy electron population decreases even more than the magnetized plasma and the high-energy tail slightly increases compared to the pristine plasma.
Surface doping with Al in Ba-hexaferrite powders (abstract)
NASA Astrophysics Data System (ADS)
Turilli, G.; Paoluzi, A.; Lucenti, M.
1991-04-01
Barium M-hexaferrites were intensively studied in order to improve their magnetic characteristics for application as permanent magnets using different ion substitutions. However, substitutions that improve the BHmax energy product have not been found. We propose a new method in order to modify the extrinsic magnetic characteristics of Ba-hexaferrite powders without reducing drastically the magnetization and the magnetic anisotropy. This method consists in the surface doping of the hexaferrite particles, giving as a result a modification of the energy pinning of the domain walls at the grain boundary. Ba ferrite powders having a mean diameter of 3.2 μm have been dry mixed with Al2O3 powders with a diameter <0.5 μm. From the mixed powder a series of 10 cylindrically shaped samples was obtained by isostatically pressing the powders. The samples were thermically treated from 900 to 1200 °C, together with 10 cylindrical samples of pure hexaferrite, for 1 h each. For all the samples we have measured the Curie temperature (Tc), the anisotropy field (HA), the coercive field (Hc), and the saturation magnetization σ. The main results are that up to 1000 °C the Al diffusion is mainly localized at the surface of the grain so that the main part of the grain is undoped as confirmed by the Tc and HA values that are the same as those found in pure hexaferrites. From 900 to 1000 °C the saturation magnetization decreases of the 3% while Hc increases of the 9% with respect to the pure hexaferrite. This result seems to confirm the validity of the proposed method. Above 1000 °C Al begin to diffuse in the grain and above 1200 °C it is possible to say, from thermomagnetic analysis, that Al has diffused uniformly throughout the grain. In this last temperature range the Al substitution leads to a 10% reduction in σ as expected1 while Hc only increases 12%. These preliminary results suggest that the method of surface doping of the powders could be used in order to increase or decrease the H
Imaging putative foetal cerebral blood oxygenation using susceptibility weighted imaging (SWI).
Yadav, Brijesh Kumar; Krishnamurthy, Uday; Buch, Sagar; Jella, Pavan; Hernandez-Andrade, Edgar; Yeo, Lami; Korzeniewski, Steven J; Trifan, Anabela; Hassan, Sonia S; Haacke, E Mark; Romero, Roberto; Neelavalli, Jaladhar
2018-05-01
To evaluate the magnetic susceptibility, ∆χ v , as a surrogate marker of venous blood oxygen saturation, S v O 2 , in second- and third-trimester normal human foetuses. Thirty-six pregnant women, having a mean gestational age (GA) of 31 2/7 weeks, underwent magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) data from the foetal brain were acquired. ∆χ v of the superior sagittal sinus (SSS) was quantified using MR susceptometry from the intra-vascular phase measurements. Assuming the magnetic property of foetal blood, ∆χ do , is the same as that of adult blood, S v O 2 was derived from the measured Δχ v . The variation of ∆χ v and S v O 2 , as a function of GA, was statistically evaluated. The mean ∆χ v in the SSS in the second-trimester (n = 8) and third-trimester foetuses (n = 28) was found to be 0.34± 0.06 ppm and 0.49 ±0.05 ppm, respectively. Correspondingly, the derived S v O 2 values were 69.4% ±3.27% and 62.6% ±3.25%. Although not statistically significant, an increasing trend (p = 0.08) in Δχ v and a decreasing trend (p = 0.22) in S v O 2 with respect to advancing gestation was observed. We report cerebral venous blood magnetic susceptibility and putative oxygen saturation in healthy human foetuses. Cerebral oxygen saturation in healthy human foetuses, despite a slight decreasing trend, does not change significantly with advancing gestation. • Cerebral venous magnetic susceptibility and oxygenation in human foetuses can be quantified. • Cerebral venous oxygenation was not different between second- and third-trimester foetuses. • Foetal cerebral venous oxygenation does not change significantly with advancing gestation.
Basic physics of nuclear magnetic resonance.
Patz, S
1986-01-01
This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.
The Moho as a magnetic boundary. [Earth crust-mantle boundary
NASA Technical Reports Server (NTRS)
Wasilewski, P. J.; Thomas, H. H.; Mayhew, M. A.
1979-01-01
Magnetism in the crust and the upper mantle and magnetic results indicating that the seismic Moho is a magnetic boundary are considered. Mantle derived rocks - peridotites from St. Pauls rocks, dunite xenoliths from the Kaupulehu flow, and peridotite, dunite, and eclogite xenoliths from Roberts Victor and San Carlos diatremes - are weakly magnetic with saturation magnetization values from 0.013 emu/gm to less than 0.001 emu/gm which is equivalent to 0.01 to 0.001 wt% Fe304. Literature on the minerals in mantle xenoliths shows that metals and primary Fe304 are absent, and that complex Cr, Mg, Al, and Fe spinels are dominant. These spinels are non-magnetic at mantle temperatures, and the crust/mantle boundary can be specified as a magnetic mineralogy discontinuity. The new magnetic results indicate that the seismic Moho is a magnetic boundary, the source of magnetization is in the crust, and the maximum Curie isotherm depends on magnetic mineralogy and is located at depths which vary with the regional geothermal gradient.
NASA Technical Reports Server (NTRS)
Cisowski, S. M.; Fuller, M.
1986-01-01
A method for determining a planetary body's magnetic field environment over time is proposed. This relative paleointensity method is based on the normalization of natural remanence to saturation remanence magnetization as measured after each sample is exposed to a strong magnetic field. It is shown that this method is well suited to delineating order-of-magnitude changes in magnetizing fields.
Self isolating high frequency saturable reactor
Moore, James A.
1998-06-23
The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.
Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors
NASA Astrophysics Data System (ADS)
Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.
2018-01-01
The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.
Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline NiFe2O4
NASA Astrophysics Data System (ADS)
Sowmya, N. Shara; Srinivas, A.; Saravanan, P.; Reddy, K. Venu Gopal; Reddy, Monaji Vinitha; Das, Dibakar; Kamat, S. V.
2017-08-01
The effect of magnetic-field annealing on the strain sensitivity (q) and saturation magnetostriction (λs) of NiFe2O4 nanoparticles synthesized by citrate-gel method was investigated. The use of field-annealing resulted in improved magnetoelastic properties at the expense of coercivity. A maximum λs of -40 ppm at 2 kOe, associated with q value of -3.3 ppm/Oe at 5 Oe was achieved in the field-annealed NiFe2O4.
Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T
2017-07-01
We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru; L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow; Shaldin, Yu. V.
2016-01-07
The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-likemore » peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
Magnetocaloric effect in textured rare earth intermetallic compound ErNi
NASA Astrophysics Data System (ADS)
Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.
2018-05-01
Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Ahmad, Zahoor; Meydan, Turgut
2012-02-15
Graphical abstract: Variation of saturation magnetization (M{sub S}) and magnetocrystalline anisotropy coefficient (K{sub 1}) with Ni-Cr content for Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5). Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using Law of Approach to saturation. Black-Right-Pointing-Pointer A considerable increase in the value of M{sub S} from 148 kA/m to 206 kA/m is achieved Black-Right-Pointing-Pointer {rho}{sup RT} enhanced to the order of 10{sup 9} {Omega}cm at potential operational range around 300 K. -- Abstract: The effect of variationmore » of composition on the structural, morphological, magnetic and electric properties of Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15-47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni-Cr. The dc-electrical resistivity ({rho}{sup RT}) at potential operational range around 300 K is increased from 7.5 Multiplication-Sign 10{sup 8} to 4.85 Multiplication-Sign 10{sup 9} {Omega}cm with the increase in Ni-Cr contents. Moreover, the results of the present study provide sufficient evidence to show that the electric and magnetic properties of Mg-ferrite have been improved significantly by substituting low contents of Ni-Cr.« less
NASA Astrophysics Data System (ADS)
Tekgül, Atakan; Kockar, Hakan; Kuru, Hilal; Alper, Mürsel; ÜnlÜ, C. Gökhan
2018-03-01
The electrochemical, structural and magnetic properties of CoCu/Cu multilayers electrodeposited at different cathode potentials were investigated from a single bath. The Cu layer deposition potentials were selected as - 0.3, V - 0.4 V, and - 0.5 V with respect to saturated calomel electrode (SCE) while the Co layer deposition potential was constant at - 1.5 V versus SCE. For the electrochemical analysis, the current-time transients were obtained. The amount of noble non-magnetic (Cu) metal materials decreased with the increase of deposition potentials due to anomalous codeposition. Further, current-time transient curves for the Co layer deposition and capacitance were calculated. In the structural analysis, the multilayers were found to be polycrystalline with both Co and Cu layers adopting the face-centered cubic structure. The (111) peak shifts towards higher angle with the increase of the deposition potentials. Also, the lattice parameters of the multilayers decrease from 0.3669 nm to 0.3610 nm with the increase of the deposition potentials from - 0.3 V to - 0.5 V, which corresponds to the bulk values of Cu and Co, respectively. The electrochemical and structural results demonstrate that the amount of Co atoms increased and the Cu atoms decreased in the layers with the increase of deposition potentials due to anomalous codeposition. For magnetic measurements, the saturation magnetizations, M_s obtained from the magnetic curves of the multilayers were obtained as 212 kA/m, 276 kA/m, and 366 kA/m with - 0.3 V, - 0.4 V, and - 0.5 V versus SCE, respectively. It is seen that the M_s values increased with the increase of the deposition potentials confirming the increase of the Co atoms and decrease of the Cu amount. The results of electrochemical and structural analysis show that the deposition potentials of non-magnetic layers plays important role on the amount of magnetic and non-magnetic materials in the layers and thus on the magnetic properties of the multilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn
2016-06-15
A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model,more » which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.« less
Assessments of Tumor Extracellular pH with PARACEST MRI
2012-01-01
of the spectra were calibrated by setting the resonance of TSP to 0.0 ppm. The pH was determined from the chemical shift of the...Matlab R2009B (Eq. [7G]) to measure each CEST effect (Eq. [1]). The value of M0 for the amine was determined from the value at +ω0 (the MR frequency of ...series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging
Structural and magnetic characterizations of Co2FeGa/SiO2 nanoparticles prepared via chemical route
NASA Astrophysics Data System (ADS)
Priyanka, Dhaka, Rajendra S.
2018-04-01
We report the synthesis of Co2FeGa/SiO2 nanoparticles by sol-gel method and characterization usingx-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurements. The Rietveld refinementsof XRD data with space group Fm-3m clearly show the formation of A2 disordersingle phase and the lattice constant isfound to be 5.738 Å. The energy-dispersive x-ray spectroscopy (EDX) confirm the elemental composition close the desired values. The value of coercivity is found to be around 283 Oe and 126 Oe, measured at 10 K and 300 K, respectively. We observed the saturation magnetization significantly lower than expected from Slater-Pauling rule. This decrease in the magnetic moment might be due to the presence of amorphous SiO2 during the synthesis process. A large content of small size SiO2 particles along with Co2FeGa nanoparticles are also found in TEM study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in; Raja, M. Manivel
2015-06-24
Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The resultmore » has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.« less
Low temperature magnetic properties of GdFeO3
NASA Astrophysics Data System (ADS)
Paul, Pralay; Prajapat, C. L.; Rajarajan, A. K.; Rao, T. V. Chandrasekhar
2018-04-01
Polycrystalline GdFeO3 was prepared using conventional solid state reaction method. Magnetization studies at low temperatures show antiferromagnetic ordering of Gd moments at ˜2.5K. Saturation in magnetization is noted at 2K under moderate magnetic fields, a result hitherto unreported. We conjecture that such a saturation is indicative of weakening of Dzyaloshinskii-Moriya interaction between Gd and Fe sublattices.
Magnetic properties and heavy metal contents of automobile emission particulates*
Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang
2005-01-01
Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705
Investigation of the long-lived saturated internal mode and its control on the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Wei, Deng; Yi, Liu; Xian-Qu, Wang; Wei, Chen; Yun-Bo, Dong; Ohdachi, S.; Xiao-Quan, Ji; Yong, Shen; Jian-Yong, Cao; Jun, Zhou; Bei-Bing, Feng; Yong-Gao, Li; Xian-Li, Huang; Jin-Ming, Gao; Xiao-Yu, Han; Mei, Huang; Xiao-Gang, Wang
2014-01-01
HL-2A plasmas heated by neutral beam injection (NBI) regularly exhibit n = 1 long-lived saturated magnetohydrodynamic instabilities. A reduction in the electron density and plasma stored energy and an increase in fast ion losses are usually observed in the presence of such perturbations. The observed long-lived saturated internal mode (LLM) occurs when the safety factor profile has a weak shear in a broad range of the plasma centre with qmin around unity. It is found that the ideal interchange mode can become marginally stable due to the weak magnetic shear reaching a critical value. The LLM, due to its pressure-driven feature, is destabilized by the strong interaction with fast ions in the low-shear region during the NBI. Furthermore, for the first time it is clearly observed that the LLMs can be suppressed by electron cyclotron resonant heating (ECRH), or by supersonic molecular beam injection in HL-2A plasmas. Low-n sidebands observed during the LLM are also suppressed by increasing the ECRH power. The control of LLMs is due to the change in the magnetic shear or in the pressure profile induced by the local heating or fuelling.
Structural and magnetic behavior of (Ni, Cu) substituted Nd0.67Sr0.33MnO3 perovskite compounds
NASA Astrophysics Data System (ADS)
Arun, B.; Sudakshina, B.; Akshay, V. R.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-05-01
Structural and magnetic phase transition of Ni and Cu substituted Nd0.67Sr0.33MnO3 perovskite compounds have been investigated. The Rietveld refinement of X-ray powder diffraction patterns confirms that both compounds have crystallized into an orthorhombic structure with Pbnm space group same as that of Nd0.67Sr0.33MnO3 compound. X-ray absorption spectra studies completely ruled out the possibility of existence of any impurities. Both compounds do not obey the Curie-Weiss law indicates the presence of some ferromagnetic clusters within the paramagnetic matrix. Ni substituted compound shows a lower value of TC and Cu substituted compound shows a higher value of TC than that of the parent. Non-saturating tendency of magnetization is more prominently seen in the case of Cu substituted compound, indicating an increase in the AFM component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiang; Chen, A. P.; Guo, Erjia J.
In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less
Wang, Qiang; Chen, A. P.; Guo, Erjia J.; ...
2018-01-31
In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less
NASA Astrophysics Data System (ADS)
Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung
2018-05-01
Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.
NASA Astrophysics Data System (ADS)
Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi
2018-03-01
Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.
NASA Astrophysics Data System (ADS)
Yasmin, Nazia; Mirza, Misbah; Muhammad, Safdar; Zahid, Maria; Ahmad, Mukhtar; Awan, M. S.; Muhammad, Altaf
2018-01-01
The M-type hexagonal ferrites with chemical formula SrFe12-xSmxO19 (x = 0, 0.01, 0.02, 0.03) were synthesized via sol-gel method. We studied the effects of substitution of rare earth on the structural and magnetic temperament of M-type hexaferrites. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) strategies are employed for the systematical examination of micrographs and structures of the samples. The magnetic particularities are studied by the use of vibrating sample magnetometery. The M-H loops are used to investigate the hard magnetic behavior of all the samples. The substantial value of coercivity (>1 kOe) for all the samples shows that the particular sample is permanent magnet and reveals the hard magnetic action. It is observed that values of saturation magnetization (Mr) and remanence (Ms) decline with increasing the rare earth ions substitution. This decrease may follow spin canting and the magnetic dilution, which results in dislocation of superexchange interactions. The improvement in Hc may be because of large anisotropy of magnetocrystalline, where ion anisotropy of Fe2+ ion on the 2a site probably overriding in all hexaferrites series. The synthesized composites were useful for applications in magnetic microwave absorbing materials.
Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T
2017-03-01
Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.
Lightning-induced remanent magnetization—the Vredefort impact structure, South Africa
NASA Astrophysics Data System (ADS)
Salminen, Johanna; Pesonen, Lauri J.; Lahti, Kari; Kannus, Kari
2013-10-01
Earlier studies at the large Vredefort impact structure since 1960 have shown that values of natural remanent magnetizations (NRMs) and, hence, Koenigsberger's Q values (ratio of remanent over induced magnetization), for different rock lithologies are elevated compared to the values for similar rock types around the world. Three origins for the high Q values have been suggested, namely shock by meteorite impact, enhanced plasma field and lightning strikes. We have studied whether laboratory lightning experiments can produce enhanced NRMs in the Vredefort target rocks. For comparison, we also included rocks from the Johannesburg dome, which is not a meteorite impact site. The results revealed increased NRMs, susceptibility and Q values of the rocks from both Vredefort and Johannesburg domes. Rock magnetic measurements and scanning electron microscope analyses of lightning pulsed and unpulsed samples showed that the lightning included changes in magnetic properties of the rocks. We suggest that in some samples lightning have changed magnetic mineralogy by oxidizing magnetite to maghemite. Indication of this oxidation came from the low-temperature variation of the remanent magnetization where we observed several hallmarks of maghemitization in samples treated by lightning strikes. Further indications of mineralogical changes include increased Curie points above the magnetite's Curie point (580 °C) and appearance of pronounced lower temperature (200-400 °C) phases in susceptibility versus temperature curves. These changes are interpreted to indicate partially oxidized magnetite (maghemitization) coupled with grain fragmentations and by this way grain size reduction. High-temperature hysteresis and REM (= NRM/saturation isothermal remanent magnetization) studies support these conclusions. Our results were analogous with the ones for lodestones and protolodestones where partially oxidized magnetite is thought to make magnetization more intense.
Electric-field control of magnetic properties for α-Fe2O3/Al2O3 films
NASA Astrophysics Data System (ADS)
Cheng, Bin; Qin, Hongwei; Liu, Liang; Xie, Jihao; Zhou, Guangjun; Chen, Lubin; Hu, Jifan
2018-06-01
α-Fe2O3/Al2O3 films can exhibit weak ferromagnetism at room temperature. The saturation magnetization of the thinner film is larger than that of the thick one deposited at the same temperature of 500 °C, which implies that the weak ferromagnetism at room temperature comes not only from the intrinsic canted magnetic structure, but also from the effects of interface between α-Fe2O3/Al2O3, such as the effect of Al diffusion into α-Fe2O3 film. Perpendicular electric field upon α-Fe2O3/Al2O3 film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity and saturation magnetizing field). The positive electric field can enhance the magnetism of α-Fe2O3/Al2O3 thin film, while negative electric field can reduce it. The change induced by electric field may be connected with the migration effects of Al3+ ions. The steps of curve for saturation magnetization versus the electric field may reflect these complicated processes. The magnetization of the film deposited at a higher temperature can be changed by electric field more easily. This study may inspire more in-depth research and lead to an alternative approach to future magneto-electronic devices.
NASA Astrophysics Data System (ADS)
Mishra, Amaresh Chandra; Giri, R.
2018-05-01
The remanent state of elliptical permalloy nanodisks depends on the orientation of the applied magnetic field with respect to the major and minor axes of the nanodisks [A. C. Mishra, Int. J. Mod. Phys. B 30, 1650192 (2016)]. The remanent state is usually an onion state if the external magnetic field is along the major axis, and is a vortex state if the external magnetic field is along the minor axis. In this work, we have analyzed the magnetization reversal of a crossed elliptic disk of permalloy using micromagnetic simulation. This is a new shape where two identical elliptic disks with semi-major axis of length a and semi-minor axis of length b intersect such that they are perpendicular to each other. If the value of b is very close to that of a, then the remanent state is a near saturation state. As the ratio a/b goes down, new complex remanent states are observed. The hysteresis loss is found to be decreased gradually with the increment of b for a given value of b.
Energy absorption by a magnetic nanoparticle suspension in a rotating field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raikher, Yu. L.; Stepanov, V. I., E-mail: stepanov@icmm.ru
Heat generation by viscous dissipation in a dilute suspension of single-domain ferromagnetic particles in a rotating magnetic field is analyzed by assuming that the suspended particles have a high magnetic rigidity. The problem is solved by using a kinetic approach based on a rotational diffusion equation. Behavior of specific loss power (SLP) as a function of field strength H and frequency {omega} is examined at constant temperature. SLP increases as either of these parameters squared when the other is constant, eventually approaching a saturation value. The function SLP(H, {omega}) can be used to determine optimal and admissible ranges of magneticallymore » induced heating.« less
Fernández-García, María Paz; Gorria, Pedro; Sevilla, Marta; Fuertes, Antonio B; Boada, Roberto; Chaboy, Jesús; Aquilanti, Giuliana; Blanco, Jesús A
2011-01-21
We report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (∼3-4 nm) and the ferromagnetic Co-cores (∼4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs. temperature curves agree quite well with those of the bulk fcc-Co.
Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M
2013-05-22
Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Nair, Harikrishnan S.; Christian, Reinke; Thamizhavel, A.; Strydom, André M.
2016-11-01
Single crystals of Frank-Kasper compounds RTM2Al20 (R = Eu, Gd and La; TM = V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group Fd\\bar{3}m . The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds’ full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value 0.95R\\ln 8 while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. ≤ft({{C}\\text{P}}-γ T\\right)/{{T}3} versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and ρ (T) due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in the paramagnetic region.
NASA Astrophysics Data System (ADS)
Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.
2004-07-01
Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.
Xia, Shuang; Utriainen, David; Tang, Jin; Kou, Zhifeng; Zheng, Gang; Wang, Xuesong; Shen, Wen; Haacke, E Mark; Lu, Guangming
2014-12-01
Decreased oxygen saturation in asymmetrically prominent cortical veins (APCV) seen in ischemic stroke has been hypothesized to correlate with an increase of de-oxygenated hemoglobin. Our goal is to quantify magnetic susceptibility to define APCV by establishing a cutoff above which the deoxyhemoglobin levels are considered abnormal. A retrospective study was conducted on 26 patients with acute ischemic stroke in one cerebral hemisphere that exhibited APCV with 30 age- and sex-matched healthy controls. Quantitative susceptibility mapping (QSM) was used to calculate the magnetic susceptibility of the cortical veins. A paired t-test was used to compare the susceptibility of the cortical veins in the left and right hemispheres for healthy controls as well as in the contralateral hemisphere for stroke patients with APCV. The change in oxygen saturation in the APCV relative to the contralateral side was calculated after thresholding the susceptibility using the mean plus two standard deviations of the contralateral side for each individual. The thresholded susceptibility value of the APCVs in the stroke hemisphere was 254±48 ppb which was significantly higher (p<0.05) than that in the contralateral hemisphere (123±12 ppb) and in healthy controls (125±8 ppb). There was a decrease of oxygen saturation in the APCV ranging from 16% to 44% relative to the veins of the contralateral hemisphere. In conclusion, APCV seen in SWI correspond to reduced levels of oxygen saturation and these abnormal veins can be identified using a susceptibility threshold on the QSM data. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.
2011-09-01
We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less
NASA Astrophysics Data System (ADS)
Dhani, H. S.; Aminudin, A.; Waslaluddin
2018-05-01
Electric current is the basic variable of measurement in instrumentation system. One of the current measurements had been developed was based on magnetic sensor. Giant Magnetoresistance (GMR) produces an output voltage when it detects the magnetic field from electric current flow. The purpose of this study was to characterize the response of GMR when variation number of coil was given. The characterization was the GMR voltage response to the AC current values from 0.01 A to 5.00 A. The linearity of the relation was reaching saturation point when the magnetic field measured higher than 10.5 Oe at room temperature. As the number of coil increased, the earlier saturation occurred. To see the sensitivity of the sensor response, the data graph was cut off at 1.56 A AC. From this research, we got single coil was ideal to measure electric current higher than 1.56 A AC, as the relation of GMR voltage to the current tended to maintain its linearity. For measurement of 1.56 A AC and less, coil number addition would increase the sensitivity of sensor response. This research hopefully will be benefit for further development using an electric current measurement based on GMR magnetic sensor for power meter design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkin, E. R.; Bicknell, G. V., E-mail: parkin@mso.anu.edu.au
Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions-perhaps triggered by the onset of turbulence-upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once themore » disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure <{alpha}{sub P}>bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).« less
1981-09-01
100 k0e) were measured by means of a magnetometer employing an O.S. Walker Co. integratinv flux- meter and American Magnetics superconducting magnet ...part of an ongoing effort in our laboratory to develop high- energy-product permanent magnet materials for use in advanced millimeter- wave/microwave...Saturation Magnetization 20. AiTUACT (CantI- m e~Cvem=a -- q ’,end Identify by block mnbThe anisotropy fields (HA) and saturation magnetizations (4rM
NASA Astrophysics Data System (ADS)
Nakano, Hiroki; Sakai, Tôru
2018-06-01
The S = 1/2 triangular- and kagome-lattice Heisenberg antiferromagnets are investigated under a magnetic field using the numerical-diagonalization method. A procedure is proposed to extract data points with very small finite-size deviations using the numerical-diagonalization results for capturing the magnetization curve. For the triangular-lattice antiferromagnet, the plateau edges at one-third the height of the saturation and the saturation field are successfully estimated. This study additionally presents results of magnetization process for a 45-site cluster of the kagome-lattice antiferromagnet; the present analysis suggests that the plateau does not open at one-ninth the height of the saturation.
Gold-magnetite nanoparticle-biomolecule conjugates: Synthesis, properties and toxicity studies
NASA Astrophysics Data System (ADS)
Pariti, Akshay
This thesis study focuses on synthesizing and characterizing gold-magnetite optically active magnetic nanoparticle and its conjugation with biomolecules for biomedical applications, especially magnetic fluid hyperthermia treatment for cancerous tissue. Gold nanoparticles have already displayed their potential in the biomedical field. They exhibit excellent optical properties and possess strong surface chemistry which renders them suitable for various biomolecule attachments. Studies have showed gold nanoparticles to be a perfect biocompatible vector. However, clinical trials for gold mediated drug delivery and treatment studied in rat models identified some problems. Of these problems, the low retention time in bloodstream and inability to maneuver externally has been the consequential. To further enhance their potential applications and overcome the problems faced in using gold nanoparticles alone, many researchers have synthesized multifunctional magnetic materials with gold at one terminal. Magnetite, among the investigated magnetic materials is a promising and reliable candidate because of its high magnetic saturation moment and low toxicity. This thesis showcases a simple and facile one pot synthesis of gold-magnetite nanoparticles with an average particle size of 80 nm through hot injection method. The as-synthesized nanoparticles were characterized by XRD, TEM, Mossbauer spectroscopy, SQUID and MTS toxicity studies. The superparamagnetism of the as-synthesized nanoparticles has an interestingly high saturation magnetization moment and low toxicity than the literature values reported earlier. L-cysteine and (-)-EGCG (epigallacatechin-3-gallate) were attached to this multifunctional nanoparticles through the gold terminal and characterized to show the particles applicability through Raman, FTIR and UV-Vis spectroscopy.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng
2017-12-01
The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.
New soft magnetic amorphous cobalt based alloys with high hysteresis loop linearity
NASA Astrophysics Data System (ADS)
Nosenko, V. K.; Maslov, V. V.; Kochkubey, A. P.; Kirilchuk, V. V.
2008-02-01
The new amorphous Co56÷59(Fe,Ni,Mn)21÷24(Si0.2B0.8)20-based metal alloys (AMA) with high saturation induction (BS>=1T) were developed. Toroidal tape wound magnetic cores made from these AMA after heat-magnetic treatment (HMT) in a reversal field are characterized by high hysteresis loop linearity, minimum effective magnetic permeability and its high field stability in combination with low coercivity Hc (1-3 A/m, 1 kHz). For the most prospecting alloy compositions the value of effective magnetic permeability decreases compared to known alloys up to 550 - 670 units and remains constant in the wide magnetic field range 1100 - 1300 A/m. Maximum remagnetization loop linearity is achieved after optimum HMT in high Ni containing AMAs, which are characterized by the record low squareness ratio values Ks=0.002-0.02 and Hc=1.0 A/m. Magnetic cores made from the new amorphous alloys can be used both in filter chokes of switch-mode power supply units and in matching mini-transformers of telecommunication systems; at that, high efficiency and accuracy of signal transmission including high frequency pulses are ensured under conditions of long-term influence of dc magnetic bias.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Toroidal-Core Microinductors Biased by Permanent Magnets
NASA Technical Reports Server (NTRS)
Lieneweg, Udo; Blaes, Brent
2003-01-01
The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current. In either case, permanent-magnet material and the slant (if any) and thickness of the gap must be chosen according to the equations to obtain the required bias flux. In modifying the design of the inductor, one must ensure that the inductance is not altered. The simplest way to preserve the original value of inductance would be to leave the gap dimensions unchanged and fill the gap with a permanent- magnet material that, fortuitously, would produce just the required bias flux. A more generally applicable alternative would be to partly fill either the original gap or a slightly enlarged gap with a suitable permanent-magnet material (thereby leaving a small residual gap) so that the reluctance of the resulting magnetic circuit would yield the desired inductance.
Zero-energy state in graphene in a high magnetic field.
Checkelsky, Joseph G; Li, Lu; Ong, N P
2008-05-23
The fate of the charge-neutral Dirac point in graphene in a high magnetic field H has been investigated at low temperatures (T approximately 0.3 K). In samples with small gate-voltage offset V0, the resistance R0 at the Dirac point diverges steeply with H, signaling a crossover to a state with a very large R0. The approach to this state is highly unusual. Despite the steep divergence in R0, the profile of R0 vs T in fixed H saturates to a T-independent value below 2 K, consistent with gapless charge-carrying excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Qin, Hongwei; Pei, Jinliang
2016-05-23
The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less
Magnetic and magnetostrictive properties of Cu substituted Co-ferrites
NASA Astrophysics Data System (ADS)
Chandra Sekhar, B.; Rao, G. S. N.; Caltun, O. F.; Dhana Lakshmi, B.; Parvatheeswara Rao, B.; Subba Rao, P. S. V.
2016-01-01
Copper substituted cobalt ferrite, Co1-xCuxFe2O4 (x=0.00-0.25), nanoparticles were synthesized by sol-gel autocombustion method. X-ray diffraction analysis on the samples was done to confirm the cubic spinel structures and Scherrer equation was used to estimate the mean crystallite size as 40 nm. Using the obtained nanoparticles, fabrication of the sintered pellets was done by standard ceramic technique. Magnetic and magnetostrictive measurements on the samples were made by strain gauge and vibrating sample magnetometer techniques, respectively. Maximum magnetostriction and strain derivative values were deduced from the field dependent magnetostriction curves while the magnetic parameters such as saturation magnetization (51.7-61.9 emu/g) and coercivity (1045-1629 Oe) on the samples were estimated from the obtained magnetic hysteresis loops. Curie temperature values (457-315 °C) were measured by a built in laboratory set-up. Copper substituted cobalt ferrites have shown improved strain derivative values as compared to the pure cobalt ferrite and thus making them suitable for stress sensing applications. The results have been explained on the basis of cationic distributions, strength of exchange interactions and net decreased anisotropic contributions due to the increased presence of Co2+ ions in B-sites as a result of Cu substitutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shufa; Gao, Ruixin; Cheng, Chuyuan
2013-12-09
Ultrafast magnetization dynamics in GdFeCo films triggered by femtosecond laser pulses with and without an external field applied is studied experimentally for different excitation fluence. It is found that subpicosecond magnetization reversal occurs simultaneously in the ultrafast dynamics of both saturation and remnant magnetization states and almost identical within 13 ps, whereas relatively slow magnetization reversal across compensation point appears only in the dynamics of saturation magnetization state. It shows the subpicosecond magnetization reversal is external field independent, and originates from intrinsic magnetic evolution in ferrimagnetic system. The intrinsic subpicosecond reversal is qualitatively explained by linear reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili
2013-10-15
Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less
Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian
2015-04-01
To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topkaya, R., E-mail: rtopkaya@gyte.edu.tr; Kurtan, U.; Junejo, Y.
2013-09-01
Graphical abstract: - Highlights: • CoFe{sub 2}O{sub 4} was generated by sol–gel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. • The presence of spin-disordered surface layer on magnetic core was established. • A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by sol–gel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 ± 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol inmore » synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10–400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the Stoner–Wohlfarth model.« less
Random isotropic one-dimensional XY-model
NASA Astrophysics Data System (ADS)
Gonçalves, L. L.; Vieira, A. P.
1998-01-01
The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .
Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A
2013-11-28
Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemala, H.; Thakur, J. S.; Lawes, G.
2014-07-21
Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (∼65 emu/g) comparedmore » to the bulk value of Fe{sub 3}O{sub 4} (∼95 emu/g). This is due to the presence of a finite surface layer (∼1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.« less
Influence of spark plasma sintering parameters on magnetic properties of FeCo alloy
NASA Astrophysics Data System (ADS)
Albaaji, Amar J.; Castle, Elinor G.; Reece, Mike J.; Hall, Jeremy P.; Evans, Sam L.
2018-04-01
Equiatomic FeCo alloys with average particle size of 24 μm were sintered using spark plasma sintering (SPS) system at sintering temperatures of 1100, 800, and 850 °C for heating rates 50, 100, 300 °C/min by applying pressure of 50 MPa instantly at room temperature for sintering time of 5 and 15 minutes. The highest saturation induction was achieved at SPS conditions of 50 MPa, 50 °C/min, 1100 °C, without dwelling, of value 2.39 T. The saturation induction was improved with extending sintering time, the coercivity was higher in samples sintered at a fast heating rate in comparison to the slowest heating rate.
Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles
NASA Astrophysics Data System (ADS)
Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz
2018-06-01
In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.
Hydrogen molecules and chains in a superstrong magnetic field
NASA Technical Reports Server (NTRS)
Lai, Dong; Salpeter, Edwin E.; Shapiro, Stuart L.
1992-01-01
The electronic structures of hydrogen polymolecules H(n) (n = 2,3,4,...) is studied in a superstrong magnetic field (B greater than about 10 exp 12 G) typically found on the surface of a neutron star. Simple analytical scaling relations for several limiting cases (e.g., large n, high B field) are derived. The binding energies of H(n) molecules are numerically calculated for various magnetic-field strengths. For a given magnetic-field strength, the binding energy per atom in the H(n) molecules is found to approach a constant value as n increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds 3 to 4. Also considered is the structure of negative H ions in a high magnetic field. For B about 10 exp 12 G, the dissociation energy of an atom in a hydrogen chain and the ionization potential of H(-) are smaller than the ionization potential of neutral atomic hydrogen.
NASA Astrophysics Data System (ADS)
Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.
2015-10-01
Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.
A review of the magnetic properties, synthesis methods and applications of maghemite
NASA Astrophysics Data System (ADS)
Shokrollahi, H.
2017-03-01
It must be pointed out that maghemite (γ-Fe2O3) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications.
NASA Astrophysics Data System (ADS)
Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen
2015-09-01
New magnetic Fe@C nanoparticles in the size range of about 20-50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.
GMR effect in CuCo annealed melt-spun ribbons.
Murillo, N; Grande, H; Etxeberria, I; Del Val, J J; González, J; Arana, S; Gracia, F J
2004-11-01
A thorough microstructural and magnetic analysis has been performed on as-quenched and annealed (475 and 525 degrees C, 1 hour) melt-spun Cu100-xCox (x = 10 and 15) granular alloys, presenting a giant magnetoresistance (GMR) effect. The annealed samples are inhomogeneous with respect to the Co-particle sizes and interparticles distances and, therefore, these particles present superparamagnetic and ferromagnetic behaviours, which determine the GMR response. The samples x = 15, treated at 525 degrees C during 1 hour, presented the best GMR ratio (approximately 5% at room temperature to be the highest value approaching roughly to the saturation under an applied magnetic field of 15 KOe), with the coexistence of Co-particles with both kinds of magnetic behaviour.
Low Power Consumption Design and Fabrication of Thin Film Core for Micro Fluxgate.
Lv, Hui; Liu, Shibin
2016-03-01
The soft magnetic characteristic of core is a critical factor to performance of the micro fluxgate. Porous thin film core can be effectively used to decrease the value of saturation magnetic field strength (H(s)) and improve soft magnetic behavior. It is conducive to impelling the micro fluxgate toward the direction of low power consumption. In this work, negative photoresist is used to fabricate a porous core by MEMS technology. Through the processes of ultraviolet-lithography, the porous pattern transfer from the mask to the microstructure on silicon substrate. The experiment result complies with the anticipation and indicates that this MEMS technique can be applied to improve the characteristic of thin film core and decrease power consumption of fluxgate sensor.
Tuttolomondo, Maria Victoria; Villanueva, Maria Emilia; Alvarez, Gisela Solange; Desimone, Martín Federico; Díaz, Luis Eduardo
2013-10-01
The synthesis of monodispersed magnetic silica nanoparticles (MSN) is described using a water-in-oil reverse microemulsion system that does not require the use of co-surfactants. Sodium silicate, Tween 20 as a neutral surfactant and 1-butanol as the organic phase were used. There are several advantages of the proposed method including a saturation magnetization value of 10 emu/g for the particles obtained, uniformity of size and that they are easily functionalized to bind urease covalently. Moreover, the intra-day, inter-day and long-term stability results confirm that the procedure was successful and the enzyme-linked MSNs were stable over repeated uses and storage retaining more than 75% activity after 4 months.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Harwart, Stefanie; Melles, Martin
2001-04-01
High-resolution analyses of rock magnetic and sedimentological parameters were conducted on an 11m long sediment core from Lama Lake, Northern Siberia, which encompasses the late Pleistocene and the Holocene epochs. The results reveal a strong link between the median grain size of the magnetic particles, identified as magnetite, and the oxidation state of the sediment. Reducing conditions associated with a relative high total organic carbon (TOC) content of the sediment characterize the upper 7m of the core (~Holocene), and these have led to a partial dissolution of detrital magnetite grains, and a homogenization of grain-size-related rock magnetic parameters. The anoxic sediments are characterized by significantly larger median magnetic grain sizes, as indicated, for example, by lower median destructive fields of the natural remanent magnetization (MDFNRM) and lower ratios of saturation remanence to saturation magnetization (MSR/MS). Consequently, estimates of relative geomagnetic palaeointensity variations yielded large amplitude shifts associated with anoxic/oxic boundaries. Despite the partial reductive dissolution of magnetic particles within the anoxic section, and consequent minimal variations in magnetic concentration and grain size, palaeointensity estimates for this part of the core were still lithologically distorted by the effects of particle size (and subsidiary TOC) variations. Anomalously high values coincide with an interval of significantly more fine-grained sediment, which is also associated with a decrease in TOC content, which may thus imply a decreased level of magnetite dissolution in this interval. Calculation of relative palaeointensity estimates therefore seems to be compromised by a combined effect of shifts in the particle size distribution of the bulk sediment and by partial magnetite dissolution varying in association with the TOC content of the sediment.
Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olvera, S.; Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid; Sánchez-Marcos, J.
2014-07-01
CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment ismore » approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.« less
NASA Astrophysics Data System (ADS)
Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna
Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.
Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites
NASA Astrophysics Data System (ADS)
Baykal, A.; Auwal, I. A.; Güner, S.; Sözeri, H.
2017-05-01
Ba1-xZnxFe12O19 (0.0≤x≤0.3) hexaferrites were produced via sol-gel auto combustion technique. XRD patterns show that all the samples are single-phase M-type barium hexaferrite (BaM). Scanning electron microscopy (SEM) revealed that grains have a size range of 0.5-2 μm. The magnetic hysteresis (σ-H) loops revealed the ferromagnetic nature of NPs. The average crystallite sizes were calculated by applying Scherrer equation on the base of XRD powder patterns of all samples and found to be in the range of 16.78-48.34 nm. In particular, Ba1-xZnxFe12O19 (0.0≤x≤0.3) hexaferrites have suitable magnetic characteristics (saturation magnetization in a range of 63.00-67.70 emu/g and coercive field in a range of 822-1275 Oe) for magnetic recording and permanent magnets. Effective crystalline anisotropy constants (Keff) are between 4.20×105 and 4.84×105 Erg/g. Magnetic moment increased by the substitution of non-magnetic Zn2+ ions. The anisotropy field (Ha) or intrinsic coercivity values above 13255 Oe reveals that all samples are magnetically hard materials. Tauc plots were drawn to specify the direct optical energy band gap (Eg) of NPs. The Eg values are in a narrow range between 1.69 eV and 1.76 eV.
Subcritical saturation of the magnetorotational instability through mean magnetic field generation
NASA Astrophysics Data System (ADS)
Xie, Jin-Han; Julien, Keith; Knobloch, Edgar
2018-03-01
The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.
Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel
2018-02-21
We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone
NASA Astrophysics Data System (ADS)
Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.
2017-02-01
In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value of 15 μV m-1, which is compatible with reported values.
NASA Astrophysics Data System (ADS)
Lee, Bum Han; Lee, Sung Keun
2017-10-01
The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.
Effect of heat treatment and ball milling on MnBi magnetic materials
NASA Astrophysics Data System (ADS)
Li, Chunhong; Guo, Donglin; Shao, Bin; Li, Kejian; Li, Bingbing; Chen, Dengming
2018-01-01
MnBi alloy was prepared using arc melting, and was then heated at various temperatures and times. The alloy was ball milled for various lengths of time, following a heat treatment at 573 K for 20 h. The effects of the heat treatment and the ball milling on the magnetic performances of the material were investigated by analyzing the phases, the particle sizes, and the grain sizes. Results showed that the mass percentage of the LTP MnBi phase increased as the heat treatment time increased. The mass percentage initially increased and then decreased as the heat treatment temperature increased. The saturation magnetization increased quickly as the mass percentage of the LTP MnBi increased following the heat treatment. The value rose as high as 71.39 emu g-1 at 573 K for 30 h. The magnetization decreased, due to the decomposition of MnBi phases after ball milling. The coercivity increased simultaneously, due to the grain refinement, the presence of stresses, defects, and an amorphous phase. This value was improved from 0.09 to 14.65 KOe after ball milling for 24 h.
NASA Astrophysics Data System (ADS)
Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.
2015-03-01
The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.
Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Thamarai Selvi, E.; Meenakshi Sundar, S.
2017-07-01
Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.
NASA Astrophysics Data System (ADS)
Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik
2016-04-01
Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Highly concentrated methane hydrates occur in sand and shaly sand. Most importantly, two subtypes of hydrate-bearing sands and shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.
Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder
NASA Astrophysics Data System (ADS)
Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang
2017-01-01
Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.
Magnetotransport of single crystalline YSb
Ghimire, N. J.; Botana, A. S.; Phelan, D.; ...
2016-05-10
Here, we report magnetic field dependent transport measurements on a single crystal of cubic YSb together with first principles calculations of its electronic structure. The transverse magnetoresistance does not saturate up to 9 T and attains a value of 75 000% at 1.8 K. The Hall coefficient is electron-like at high temperature, changes sign to hole-like between 110 and 50 K, and again becomes electron-like below 50 K. First principles calculations show that YSb is a compensated semimetal with a qualitatively similar electronic structure to that of isostructural LaSb and LaBi, but with larger Fermi surface volume. The measured electron carrier density and Hall mobility calculated at 1.8 K, based on a single band approximation, aremore » $$6.5\\times {{10}^{20}}$$ cm –3 and $$6.2\\times {{10}^{4}}$$ cm 2 Vs –1, respectively. These values are comparable with those reported for LaBi and LaSb. Like LaBi and LaSb, YSb undergoes a magnetic field-induced metal-insulator-like transition below a characteristic temperature T m, with resistivity saturation below 13 K. Thickness dependent electrical resistance measurements show a deviation of the resistance behavior from that expected for a normal metal; however, they do not unambiguously establish surface conduction as the mechanism for the resistivity plateau.« less
Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell
NASA Astrophysics Data System (ADS)
Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.
2017-07-01
Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.
NASA Astrophysics Data System (ADS)
Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.; Denisov, N. D.; Chekis, V. I.
2017-12-01
The influence of a polymer coating applied in the manufacture of magnetic shields on magnetic properties has been studied based on the example of ribbons of a cobalt-based soft magnetic alloy (Co-Fe-Ni-Cr-Mn-Si-B) with the saturation magnetostriction close to zero. The influence of polymer coating has been separated from the effect of the compacting pressure applied upon its formation. The polymer coating was formed on the ribbon in the states with different signs of the saturation magnetostriction. It has been shown that the compacting pressure and the polymer coating have opposite effects on the properties of the ribbon and that these impacts partly level off upon the formation of the coating. The degree of the influence of the polymer coating on the magnetic properties depends on the state of the ribbon and on the sign of the saturation magnetostriction in this state.
Electromagnetic turbulence and transport in increased β LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Pueschel, Mj; Jenko, Frank; Terry, Paul; Told, Daniel
2016-10-01
The new LaB6 plasma source in LAPD has enabled the production of magnetized, increased β plasmas (up to 15%). We report on the modifications of pressure-gradient-driven turbulence and transport with increased plasma β. Density fluctuations decrease with increasing β while magnetic fluctuations increase. B ⊥ fluctuations saturate while parallel (compressional) magnetic fluctuations increase continuously with β. At the highest β values Î δ ||/ δ B ⊥ 2 and δ B/B 1%. The measurements are consistent with the excitation of the Gradient-driven Drift Coupling (GDC). This instability prefers k|| = 0 and grows in finite β plasmas due to density and temperature gradients through the production of parallel magnetic field fluctuations and resulting ⊥ B|| drifts. Comparisons between experimental measurements and theoretical predictions for the GDC will be shown. Direct measurements of electrostatic particle flux have been performed and show a strong reduction with increasing β. No evidence is found (e.g. density profile shape) of enhanced confinement, suggesting that other transport mechanisms are active. Preliminary measurements indicate that electromagnetic transport due to parallel magnetic field fluctuations at first increases with β but is subsequently suppressed at higher β values.
A study of the physical properties of single crystalline Fe 5B 2P
Lamichhane, Tej N.; Taufour, Valentin; Thimmaiah, Srinivasa; ...
2015-10-24
Single crystals of Fe 5B 2P were grown by self-flux growth technique. Structural and electrical and magnetic anisotropic properties are studied. The Curie temperature of Fe5B2P is determined to be 655 ± 2 K. The saturation magnetization is determined to be 1.72μ B/Fe at 2 K. The temperature variation of the anisotropy constant K 1 is determined for the first time, reaching ~0.50MJ/m 3 at 2 K, and it is comparable to that of hard ferrites. The saturation magnetization is found to be larger than the hard ferrites. In conclusion, the first principle calculations of saturation magnetization and anisotropy constantmore » are found to be consistent with the experimental results.« less
Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films
NASA Astrophysics Data System (ADS)
Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory
2011-03-01
Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.
A high-saturation Fe-27Co material with microalloying additions
NASA Astrophysics Data System (ADS)
Fohr, Frederik; Volbers, Niklas
2018-04-01
This paper reports work on a new variant of the high saturation Fe-27Co alloy. Ternary additions of niobium or tantalum are found to impart ductility to the hot formed material by means of grain refinement. The magnetic and tensile properties of the new alloy with the trade name VACOFLUX® 27 are compared to the standard chromium-type alloy. While the electrical resistivity is reduced, the saturation magnetization of VACOFLUX® 27 is superior.
Scheidegger, Rachel; Vinogradov, Elena; Alsop, David C
2011-01-01
Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time. PMID:21608029
Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles
NASA Astrophysics Data System (ADS)
Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.
2015-11-01
Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.
High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability
Zhang, Yong; Zuo, TingTing; Cheng, YongQiang; Liaw, Peter K.
2013-01-01
Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs. PMID:23492734
Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion
NASA Astrophysics Data System (ADS)
Cheng, Gong; Zheng, Si-Yang
2014-11-01
A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g-1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL-1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics.
Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders
Rus, S. F.; Vlazan, P.; Herklotz, A.
2016-01-01
Nanocrystalline ferrites; CoFe 2O 4 (CFO) and CoFe 1.9Zr 0.1O 4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with themore » substitution of Zr suggests the preferential occupation of Zr 4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less
NASA Astrophysics Data System (ADS)
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Interface effects in ultra-thin films: Magnetic and chemical properties
NASA Astrophysics Data System (ADS)
Park, Sungkyun
When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air- oxidized samples. However, peak intensity variations were observed due to interface interdiffusion.
NASA Astrophysics Data System (ADS)
Grison, H.; Petrovsky, E.; Kapicka, A.
2016-12-01
In rock, soil and environmental studies dealing with magnetic methods, the frequency-dependent magnetic susceptibility (κFD%) is parameter generally accepted as a tool for identification of ultrafine superparamagnetic (SP) particles. This parameter became an indicator of pedogenic magnetic fraction (increased pedogenesis). Despite the number of studies using this parameter, knowledge about threshold values of κFD% is not clear enough and this parameter may be misinterpreted. Moreover, in strongly magnetic soils, magnetic signal of the SP (mostly pedogenic) minerals may be masked by dominant lithological signal, carried by coarse-grain mineral fraction; therefore, influence of pedogenesis is hard to detect. The aim of this contribution is to compare results in determination of ultrafine SP magnetic particles in soils determined using different instruments: (a) Bartington MS2B dual-frequency meter, and (b) more sensitive AGICO Kappameter MFK1-FA. The values of the κFD % obtained by the Bartington MS2B varied from 0.9 to 5.8% (mass-specific magnetic susceptibility from 119 to 1533 × 10-8 m3/kg) while the AGICO MFK1-FA varied from 3.7 to 8.2% (mass-specific magnetic susceptibility from 295 to 1843 × 10-8 m3/kg). Although both instruments suggest significant portion of SP magnetic particles, the results can't be interpreted using the generally accepted threshold values based on Bartington data. However, our results suggest that relation between the mass-specific magnetic susceptibility and κFD% along whole soil profile may serve as suitable tool in discriminating between lithogenic and pedogenic control of magnetic fraction in the soil profile. Moreover, we propose new concept of identification of SP particles, based on field-dependent magnetic susceptibility. Its behaviour shows distinct features with significant change at amplitudes of about 100 A/m. Below this value, susceptibility decreases with increasing amplitude, reflecting saturation of magnetization due to rotation of SP magnetic moments, while above 100 A/m it increases due to magnetization of MD particles.
Dynamo action in stratified convection with overshoot
NASA Technical Reports Server (NTRS)
Nordlund, Ake; Brandenburg, Axel; Jennings, Richard L.; Rieutord, Michel; Ruokolainen, Juha; Stein, Robert F.; Tuominen, Ilkka
1992-01-01
Results are presented from direct simulations of turbulent compressible hydromagnetic convection above a stable overshoot layer. Spontaneous dynamo action occurs followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts, where both the generation and destruction of magnetic field is most vigorous. Whether or not this field is amplified depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. Joule dissipation is balanced mainly by the work done against the magnetic curvature force. It is this curvature force which is also responsible for the saturation of the dynamo.
VARIANCE ANISOTROPY IN KINETIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, Tulasi N.; Matthaeus, William H.; Oughton, Sean
Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solarmore » wind observations.« less
NASA Astrophysics Data System (ADS)
Shu, Di; Guo, Lei; Yin, Liang; Chen, Zhaoyang; Chen, Juan; Qi, Xin
2015-11-01
The average volume of magnetic Barkhausen jump (AVMBJ) v bar generated by magnetic domain wall irreversible displacement under the effect of the incentive magnetic field H for ferromagnetic materials and the relationship between irreversible magnetic susceptibility χirr and stress σ are adopted in this paper to study the theoretical relationship among AVMBJ v bar(magneto-elasticity noise) and the incentive magnetic field H. Then the numerical relationship among AVMBJ v bar, stress σ and the incentive magnetic field H is deduced. Utilizing this numerical relationship, the displacement process of magnetic domain wall for single crystal is analyzed and the effect of the incentive magnetic field H and the stress σ on the AVMBJ v bar (magneto-elasticity noise) is explained from experimental and theoretical perspectives. The saturation velocity of Barkhausen jump characteristic value curve is different when tensile or compressive stress is applied on ferromagnetic materials, because the resistance of magnetic domain wall displacement is different. The idea of critical magnetic field in the process of magnetic domain wall displacement is introduced in this paper, which solves the supersaturated calibration problem of AVMBJ - σ calibration curve.
Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings
NASA Astrophysics Data System (ADS)
Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki
Interior Permanent Magnet Synchronous Motors (IPMSM) have been found in many applications because of their high-power density and high-efficiency. The existence of a complex magnetic circuit, however, makes the design of this machine quite complicated. Although FEM is commonly used in the IPMSM design, one of disadvantages is long CPU times. This paper presents a simple non-linear magnetic analysis for a multi-pole IPMSM as a preliminary design tool of FEM. The proposed analysis consists of the geometric-flux-tube-based equivalent-magnetic-circuit model. The model includes saturable permeances taking into account the local magnetic saturation in the core. As a result, the proposed analysis is capable of calculating the flux distribution and the torque characteristics in the presence of magnetic saturation. The effectiveness of the proposed analysis is verified by comparing with FEM in terms of the analytical accuracy and the computation time for two IPMSMs with different specifications. After verification, the proposed analysis-based optimum design is examined, by which the minimization of motor volume is realized while satisfying the necessary maximum torque for target applications.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1999-01-01
100 kHz core loss and magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, at B(sub peak) = 0.1 T and 50 C only. A linear permeability model is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials arc reviewed. This linear modeling shows that, due to their high permeabilities, these cores must he gapped in order to make up high Q or high current inductors. However, they should serve well, as is, for high frequency, anti ratcheting transformer applications.
Design and characterization of biofunctional magnetic porous silicon flakes.
Muñoz Noval, A; García, R; Ruiz Casas, D; Losada Bayo, D; Sánchez Vaquero, V; Torres Costa, V; Martín Palma, R J; García, M A; García Ruiz, J P; Serrano Olmedo, J J; Muñoz Negrete, J F; del Pozo Guerrero, F; Manso Silván, M
2013-04-01
Magnetic porous silicon flakes (MPSF) were obtained from mesoporous silicon layers formed by multi-step anodization and subsequent composite formation with Fe oxide nanoparticles by thermal annealing. The magnetic nanoparticles adhered to the surface and penetrated inside the pores. Their structure evolved as a result of the annealing treatments derived from X-ray diffraction and X-ray absorption analyses. Moreover, by tailoring the magnetic load, the dynamic and hydrodynamic properties of the particles were controlled, as observed by the pressure displayed against a sensor probe. Preliminary functionality experiments were performed using an eye model, seeking potential use of MPSF as reinforcement for restored detached retina. It was observed that optimal flake immobilization is obtained when the MPSF reach values of magnetic saturation >10(-4)Am(2)g(-1). Furthermore, the MPSF were demonstrated to be preliminarily biocompatible in vitro. Moreover, New Zealand rabbit in vivo models demonstrated their short-term histocompatibility and their magnetic functionality as retina pressure actuators. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.
2018-05-01
We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.
Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping
Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei
2017-01-01
Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152
Magnetic Properties of Rapid Cooled FeCoB Based Alloys Produced by Injection Molding
NASA Astrophysics Data System (ADS)
Nabialek, M.; Jeż, B.; Jeż, K.; Pietrusiewicz, P.; Gruszka, K.; Błoch, K.; Gondro, J.; Rzącki, J.; Abdullah, M. M. A. B.; Sandu, A. V.; Szota, M.
2018-06-01
The paper presents the results of investigations of the structure and magnetic properties of massive rapid cooled Fe50-xCo20+xB20Cu1Nb9 alloys (where x = 0, 5). Massive alloys were made using the method of injecting a liquid alloy into a copper mold. Samples were obtained in the form of 0.5 mm thick plates. The structure of the obtained samples was examined using an X-ray diffractometer equipped with a CuKα lamp. The phase composition of the alloys formed was determined using the Match program. By using Sherrer’s dependence the grain sizes of the identified crystalline phases were estimated. Using the Faraday magnetic balance, the magnetization of samples as a function of temperature in the range from room temperature to 850K was measured. Magnetization of saturation and value of the coercive field for the prepared alloys were determined on the basis of magnetic hysteresis loop measurement using the LakeShore vibration magnetometer.
Alves, T E P; Pessoni, H V S; Franco, A
2017-06-28
In this study we investigated the structural, optical band-gap, and magnetic properties of CoY x Fe 2-x O 4 (0 ≤ x ≤ 0.04) nanoparticles (NPs) synthesized using a combustion reaction method without the need for subsequent heat treatment or the calcing process. The particle size measured from X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images confirms the nanostructural character in the range of 16-36 nm. The optical band-gap (E g ) values increase with the Y 3+ ion (x) concentration being 3.30 and 3.58 eV for x = 0 and x = 0.04, respectively. The presence of yttrium in the cobalt ferrite (Y-doped cobalt ferrite) structure affects the magnetic properties. For instance, the saturation magnetization, M s and remanent magnetization, M r , decrease from 69 emu g -1 to 33 and 28 to 12 emu g -1 for x = 0 and x = 0.04, respectively. On the other hand the coercivity, H c , increases from 1100 to 1900 Oe for x = 0 and x = 0.04 at room temperature. Also we found that M s , M r , and H c decreased with increasing temperature up to 773 K. The cubic magnetocrystalline constant, K 1 , determined by using the "law of approach" (LA) to saturation decreases with Y 3+ ion concentration and temperature. K 1 values for x = 0 (x = 0.04) were 3.3 × 10 6 erg cm -3 (2.0 × 10 6 erg cm -3 ) and 0.4 × 10 6 erg cm -3 (0.3 × 10 6 erg cm -3 ) at 300 K and 773 K, respectively. The results were discussed in terms of inter-particle interactions induced by thermal fluctuations, and Co 2+ ion distribution over tetrahedral A-sites and octahedral B-sites of the spinel structure due to Y 3+ ion substitution.
NASA Astrophysics Data System (ADS)
Rashad, M. M.; Rayan, D. A.; Turky, A. O.; Hessien, M. M.
2015-01-01
Nanocrystalline Ni0.5Zn0.5-xCoxFe2-zYzO4 powders (x=0-0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 oC for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co2+ and they were increased with the value of Y3+ ion as well as both of Y3+ and Co2+ ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y3+ ion suppressed the grain size whereas addition of Co2+ ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni0.5Zn0.2Co0.3Fe2O4 sample annealed at 1000 oC for 2 h.
A unified large/small-scale dynamo in helical turbulence
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel
2016-09-01
We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.
NASA Astrophysics Data System (ADS)
Raland, R. D.; Saikia, D.; Borgohain, C.; Borah, J. P.
2017-08-01
In pursuit of developing magnetic nanoparticles with optimal heat dissipation capabilities, we have successfully synthesized manganese ferrite (MnFe2O4) nanoparticles coated with various concentrations of oleic acid (OA) via co-precipitation. We found that the particle size decreases gradually with increasing OA concentration (35 nm for 0% OA → 30 nm for 5% OA → 27 nm for 7% OA → 20 nm for 9% OA), which was confirmed by the x-ray diffractogram, Williamson-Hall plot and transmission electron micrograph. We also observe a decrease in lattice parameter, and interestingly, change in the shape of MnFe2O4 nanoparticles to quasi-cubic with the increase of OA concentration. These structural changes also manifest in the cation re-distribution, bond length and angle between the octahedral and tetrahedral sites. The magnetic properties are determined by vibrational sample magnetometry (VSM), which shows an increase in the saturation magnetization (M s) from 26 emu g-1 to 38 emu g-1 with almost negligible coercivity, indicating the superparamagnetic nature of the nanoparticles. Finally, the efficiency of induction heating is measured by its specific absorption rate (SAR) and intrinsic loss power (ILP), whose value varies as a function of saturation magnetization, engendered by the changes in the structural motifs of the MnFe2O4 nanoparticles under the influence of OA coating and their concentrations. This study demonstrates the quantitative link between the size, shape and magnetic anisotropy, which are intimately entwined with the heating performance of the nanoparticle.
Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt
NASA Astrophysics Data System (ADS)
Sax, C. R.; Schönfeld, B.; Ruban, A. V.
2015-08-01
Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.
Semiconductor-insulator transition in a YbB6 nanowire with boron vacancy
NASA Astrophysics Data System (ADS)
Han, Wei; Wang, Zhen; Li, Qidong; Lian, Xin; Liu, Xudong; Fan, Qinghua; Zhao, Yanming
2018-06-01
In this paper, we report the study of transport and magnetic properties of ytterbium hexaboride (YbB6) nanowires grown by a low trigger-temperature (200-240 °C) solid state method. The temperature dependence of resistivity shows that the YbB6 nanowire undergoes a semiconductor-insulator transition (SIT) below 20 K with an activation energy ΔE of 1 meV. The value of ρ at 2 K reaches 49 times the value of ρ at 300 K (ρ2 K/ρ300 K = 49). The observed non-saturating magnetoresistance (MR) has a linear relationship with B2. The anomalous electronic transport in the YbB6 nanowire can be explained by the mixed valence of Yb ions due to the boron deficiency supporting by the X-ray photoelectron spectroscopy (XPS) and paramagnetic magnetization.
Linear and nonlinear dynamo properties of time-dependent ABC flows
NASA Astrophysics Data System (ADS)
Brummell, N. H.; Cattaneo, F.; Tobias, S. M.
2001-04-01
The linear and nonlinear dynamo properties of a class of periodically forced flows is considered. The forcing functions are chosen to drive, in the absence of magnetic effects (kinematic regime), a time-dependent version of the ABC flow with A= B= C=1. The time-dependence consists of a harmonic displacement of the origin along the line x= y= z=1 with amplitude ɛ and frequency Ω. The finite-time Lyapunov exponents are computed for several values of ɛ and Ω. It is found that for values of these parameters near unity chaotic streamlines occupy most of the volume. In this parameter range, and for moderate kinetic and magnetic Reynolds numbers, the basic flow is both hydrodynamically and hydromagnetically unstable. However, the dynamo instability has a higher growth rate than the hydrodynamic one, so that the nonlinear regime can be reached with negligible departures from the basic ABC flow. In the nonlinear regime, two distinct classes of behaviour are observed. In one, the exponential growth of the magnetic field saturates and the dynamo settles to a stationary state whereby the magnetic energy is maintained indefinitely. In the other the velocity field evolves to a nondynamo state and the magnetic field, following an initial amplification, decays to zero. The transition from the dynamo to the nondynamo state can be mediated by the hydrodynamic instability or by magnetic perturbations. The properties of the ensuing nonlinear dynamo states are investigated for different parameter values. The implications for a general theory of nonlinear dynamos are discussed.
NASA Astrophysics Data System (ADS)
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
Magnetic Field Saturation of the Ion Weibel Instability in Interpenetrating Relativistic Plasmas
NASA Astrophysics Data System (ADS)
Takamoto, Makoto; Matsumoto, Yosuke; Kato, Tsunehiko N.
2018-06-01
The time evolution and saturation of the Weibel instability at the ion Alfvén current are presented by ab initio particle-in-cell (PIC) simulations. We found that the ion Weibel current in three-dimensional (3D) simulations could evolve into the Alfvén current where the magnetic field energy is sustained at 1.5% of the initial beam kinetic energy. The current filaments are no longer isolated at saturation, but rather connected to each other to form a network structure. Electrons are continuously heated during the coalescence of the filaments, which is crucial for obtaining sustained magnetic fields with much stronger levels than with two-dimensional (2D) simulations. The results highlight again the importance of the Weibel instability in generating magnetic fields in laboratory, astrophysical, and cosmological situations.
Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides
NASA Astrophysics Data System (ADS)
Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.
2017-05-01
In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.
Itinerant G-type antiferromagnetic order in SrCr 2 As 2
Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; ...
2017-07-07
Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less
Itinerant G-type antiferromagnetic order in SrCr2As2
NASA Astrophysics Data System (ADS)
Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; Heitmann, T. W.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.; Johnston, D. C.; Vaknin, D.
2017-07-01
Neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr2As2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature TN = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (˜12 K). The lattice parameter ratio c /a and the magnetic moment saturate at about the same temperature below ˜200 K, indicating a possible magnetoelastic coupling. The ordered moment μ =1.9 (1 ) μB /Cr , measured at T =12 K, is significantly reduced compared to its localized value (4 μB /Cr ) due to the itinerant character brought about by hybridization between the Cr 3 d and As 4 p orbitals.
Itinerant G-type antiferromagnetic order in SrCr 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.
Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less
Macro-magnetic Modeling of the ARL Microelectromechanical System (MEMS) Flux Concentrator
2011-09-01
are drawn as solid pieces and assigned the material properties of permalloy (nickel-iron [ NiFe ]) with a permeability of 5,000 as that is a value...energy densities, and saturation. The modeling process consists of drawing the objects of interest, assigning properties (coercivity, permeability...that is readily achieved in thin films of the material. The material properties assigned to this background are those of a vacuum, with a relative
Lee, Young Han; Yang, Jaemoon; Jeong, Ha-Kyu; Suh, Jin-Suck
2017-01-01
Biochemical imaging of glycosaminoglycan chemical exchange saturation transfer (gagCEST) could predict the depletion of glycosaminoglycans (GAG) in early osteoarthritis. The purpose of this study was to evaluate the relationship between the magnetization transfer ratio asymmetry (MTR asym ) of gagCEST images and visual analog scale (VAS) pain scores in the knee joint. This retrospective study was approved by the institutional review board. A phantom study was performed using hyaluronic acid to validate the MTR asym values of gagCEST images. Knee magnetic resonance (MR) images of 22 patients (male, 9; female, 13; mean age, 50.3years; age range; 25-79years) with knee pain were included in this study. The MR imaging (MRI) protocol involved standard knee MRI as well as gagCEST imaging, which allowed region-of-interest analyses of the patellar facet and femoral trochlea. The MTR asym at 1.0ppm was calculated at each region. The cartilages of the patellar facets and femoral trochlea were graded according to the Outerbridge classification system. Data regarding the VAS scores of knee pain were collected from the electronic medical records of the patients. Statistical analysis was performed using Spearman's correlation. The results of the phantom study revealed excellent correlation between the MTR asym values and the concentration of GAGs (r=0.961; p=0.003). The cartilage grades on the MR images showed significant negative correlation with the MTR asym values in the patellar facet and femoral trochlea (r=-0.460; p=0.031 and r=-0.543; p=0.009, respectively). The VAS pain scores showed significant negative correlation with the MTR asym values in the patellar facet and femoral trochlea (r=-0.435; p=0.043 and r=-0.671; p=0.001, respectively). The pain scores were associated with the morphological and biochemical changes in articular cartilages visualized on knee MR images. The biochemical changes, visualized in terms of the MTR asym values of the gagCEST images, exhibited greater correlation with the pain scores than the morphological changes visualized on conventional MR images; these results provide evidence supporting the theory regarding the association of patellofemoral osteoarthritis with knee pain scores. Copyright © 2016 Elsevier Inc. All rights reserved.
Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix
NASA Astrophysics Data System (ADS)
Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek
2016-09-01
Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg-1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.
Electrical Transport on the Shastry-Sutherland Lattice in Ising-type Rare Earth Tetraborides
NASA Astrophysics Data System (ADS)
Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph. G.
In the presence of a magnetic field, frustrated spin systems may exhibit plateaus at fractional values of their saturation magnetization. Study of the magnetic ordering and excitations at such plateaus are key to understanding the nature of the underlying ground states in these systems. Here we study the magnetization plateaus in metallic rare earth tetraborides RB4 with Ising-type anisotropy (R = Er, Tm) in which R resides on a Shastry-Sutherland lattice. We focus on electrical transport and find that the response reflects scattering of charge carriers with the static and dynamic plateau structure. Modeling of these results is consistent with the expected strong uniaxial anisotropy and provides a framework for the study of plateau states in metallic frustrated systems. We thank NSF Grant No. DMR-1231319, Tsinghua Education Foundation, Moore foundation Grant No. GBMF3848 for support.
Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix.
Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek
2016-09-15
Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.
Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix
Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek
2016-01-01
Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg–1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications. PMID:27628898
NASA Astrophysics Data System (ADS)
Bordelon, David E.; Cornejo, Christine; Grüttner, Cordula; Westphal, Fritz; DeWeese, Theodore L.; Ivkov, Robert
2011-06-01
Magnetic nanoparticles can create heat that can be exploited to treat cancer when they are exposed to alternating magnetic fields (AMF). At a fixed frequency, the particle heating efficiency or specific power loss (SPL) depends upon the magnitude of the AMF. We characterized the amplitude-dependent SPL of three commercial dextran-iron oxide nanoparticle suspensions through saturation to 94 kA/m with a calorimeter comprising a solenoid coil that generates a uniform field to 100 kA/m at ˜150 kHz. We also describe a novel method to empirically determine the appropriate range of the heating curve from which the SPL is then calculated. These results agree with SPL values calculated from the phenomenological Box-Lucas equation. We note that the amplitude-dependent SPL among the samples was markedly different, indicating significant magneto-structural variation not anticipated by current models.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, J.M.; Peuron, A.U.
1980-07-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
Method for the detection of a magnetic field utilizing a magnetic vortex
Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL
2010-04-13
The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.
NASA Astrophysics Data System (ADS)
Çelik, Özer; Fırat, Tezer
2018-06-01
In this study, size controlled FeCo colloidal magnetic nanoalloys in the range of 11.5-37.2 nm were synthesized by surfactant assistant ball milling method. Magnetic separation technique was performed subsequent to synthesis process so as to obtain magnetic nanoalloy fluid with narrow size distribution. Particle distribution was determined by transmission electron microscope (TEM) while X-ray diffraction (XRD) measurements verified FeCo alloy formation as BCC structure. Vibrating sample magnetometer (VSM) method was used to investigate magnetic properties of nanoalloys. Maximum saturation magnetization and maximum coercivity were obtained as 172 Am2/kg for nanoparticles with the mean size of 37.2 nm and 19.4 mT for nanoparticles with the mean size of 13.3 nm, respectively. The heating ability of FeCo magnetic nanoalloys was determined through calorimetrical measurements for magnetic fluid hyperthermia (MFH) applications. Heat generation mechanisms were investigated by using linear response theory and Stoner-Wohlfarth (S-W) model. Specific absorption rate (SAR) values were obtained in the range of 2-15 W/g for magnetic field frequency of 171 kHz and magnetic field strength in between 6 and 14 mT.
Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Hatch, David R.
This thesis presents analysis of the excitation and role of damped modes in gyrokinetic simulations of plasma microturbulence. In order to address this question, mode decompositions are used to analyze gyrokinetic simulation data. A mode decomposition can be constructed by projecting a nonlinearly evolved gyrokinetic distribution function onto a set of linear eigenmodes, or alternatively by constructing a proper orthogonal decomposition of the distribution function. POD decompositions are used to examine the role of damped modes in saturating ion temperature gradient driven turbulence. In order to identify the contribution of different modes to the energy sources and sinks, numerical diagnostics for a gyrokinetic energy quantity were developed for the GENE code. The use of these energy diagnostics in conjunction with POD mode decompositions demonstrates that ITG turbulence saturates largely through dissipation by damped modes at the same perpendicular spatial scales as those of the driving instabilities. This defines a picture of turbulent saturation that is very different from both traditional hydrodynamic scenarios and also many common theories for the saturation of plasma turbulence. POD mode decompositions are also used to examine the role of subdominant modes in causing magnetic stochasticity in electromagnetic gyrokinetic simulations. It is shown that the magnetic stochasticity, which appears to be ubiquitous in electromagnetic microturbulence, is caused largely by subdominant modes with tearing parity. The application of higher-order singular value decomposition (HOSVD) to the full distribution function from gyrokinetic simulations is presented. This is an effort to demonstrate the ability to characterize and extract insight from a very large, complex, and high-dimensional data-set - the 5-D (plus time) gyrokinetic distribution function.
Terreno, Enzo; Delli Castelli, Daniela; Violante, Elisabetta; Sanders, Honorius M H F; Sommerdijk, Nico A J M; Aime, Silvio
2009-01-01
The peculiar properties of osmotically shrunken liposomes acting as magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) contrast agents have been investigated. Attention has been primarily devoted to assessing the contribution arising from encapsulated and incorporated paramagnetic lanthanide(III)-based shift reagents in determining the chemical shift of the intraliposomal water protons, which is a relevant factor for generating the CEST contrast. It is demonstrated that a highly shifted resonance for the encapsulated water can be attained by increasing the percentage of the amphiphilic shift reagent incorporated in the liposome bilayer. It is also demonstrated that the shift contribution arising from the bulk magnetic susceptibility can be optimized through the modulation of the osmotic shrinkage. In terms of sensitivity, it is shown that the saturation transfer efficiency can be significantly improved by increasing the size of the vesicle, thus allowing a high number of exchangeable protons to be saturated. In addition, the role played by the intensity of the saturating radiofrequency field has also been highlighted.
Noise characteristics of barium ferrite particulate rigid disks
NASA Astrophysics Data System (ADS)
Kodama, Naoki; Inoue, Hitoshi; Spratt, Geoffrey; Uesaka, Yasutaro; Katsumoto, Masayuki
1991-04-01
This paper discusses the relationship between the noise characteristics and magnetic properties of longitudinal barium ferrite (Ba-F) rigid disks with different switching field distributions (SFD). The magnetomotive force dependencies of reverse dc-erase (RDC) noise are measured and compared with SFD values. Coated disks with acicular magnetic particles have dips and thin-film disks peaks in the RDC. In Ba-F disks, both cases are observed depending on the SFD values, though the depths or heights of the RDC noise are much smaller than those of coated disks with acicular particles or thin-film disks. Disks with small SFD values have peaks, and disks with large SFD values have dips. In order to find the relationship between noise properties and magnetic properties, interparticle interactions in Ba-F disks are investigated. Reverse dc remanence Id(H) and ac-demagnetized isothermal remanence Ir(H) are measured. Both are normalized by the saturation remanence. The deviation from the noninteracting system, ΔM = Id(H) - [1ΔM=Id(H)-[1- 2Ir(H)] and an interaction field factor (IFF) given by (H'r - Hr)/Hc, are derived from these remanent properties. Here, H'r is the field corresponding to 50% of the remanent magnetization, Hr is remanence coercivity. In Ba-F disks, ΔM shows positive interactions, and the peak heights of ΔM increase and IFF decrease with decreasing SFD values. Positive interactions between Ba-F particles seem to be caused by particle stacking. Therefore, particle stacking results in small SFD values and peak-type RDC noise.
Effective S =2 antiferromagnetic spin chain in the salt (o -MePy-V)FeCl4
NASA Astrophysics Data System (ADS)
Iwasaki, Y.; Kida, T.; Hagiwara, M.; Kawakami, T.; Hosokoshi, Y.; Tamekuni, Y.; Yamaguchi, H.
2018-02-01
We present a model compound for the S =2 antiferromagnetic (AF) spin chain composed of the salt (o -MePy-V ) FeCl4 . Ab initio molecular-orbital calculations indicate the formation of a partially stacked two-dimensional (2D) spin model comprising five types of exchange interactions between S =1 /2 and S =5 /2 spins, which locate on verdazyl radical and Fe ion, respectively. The magnetic properties of the synthesized crystals indicate that the dominant interaction between the S =1 /2 and S =5 /2 spins stabilizes an S =2 spin in the low-temperature region, and an effective S =2 AF chain is formed for T ≪10 K and H <4 T. We explain the magnetization curve and electron-spin-resonance modes quantitatively based on the S =2 AF chain. At higher fields above quantitatively 4 T, the magnetization curve assumes two-thirds of the full saturation value for fields between 4 and 20 T, and approaches saturation at ˜40 T. The spin model in the high-field region can be considered as a quasi-2D S =1 /2 honeycomb lattice under an effective internal field caused by the fully polarized S =5 /2 spin.
Physical, electrical and magnetic properties of nano-sized Co-Cr substituted magnesium ferrites
NASA Astrophysics Data System (ADS)
Javed Iqbal, Muhammad; Ahmad, Zahoor; Meydan, Turgut; Melikhov, Yevgen
2012-02-01
Co-Cr substituted magnesium ferrite nanomaterials (Mg1-xCoxCrxFe2-xO4 with x = 0.0-0.5) have been prepared by the polyethylene glycol assisted micro emulsion method. X-ray diffraction analysis confirms the single-phase cubic close-packed lattice formation of synthesized materials. Hysteresis loops are measured up to field of 4 MA/m and high field region of these loops are modeled using the Law of Approach to saturation to calculate the magnetocrystalline anisotropy constant. The saturation magnetization of the samples increases initially from 148 kA/m for x = 0.0 to 299 kA/m (x = 0.3) and then decreases to 187 kA/m (x = 0.5). Curie temperature for this series is found to be in the range of 618-766 K. Room temperature resistivity increases gradually from 7.5 × 108 Ω cm (x = 0.0) to 3.47 × 109 Ω cm (x = 0.5). Additionally, dielectric measurements are carried out at room temperature in a frequency range of 100 Hz to 3 MHz. With improvement in the values of the above-mentioned properties, the synthesized materials could be suitable for potential application in some magnetic and microwave devices.
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan
2018-04-01
In this study, the tartaric acid modified sol-gel method was used to synthesize (1-x)Bi0.85La0.15FeO3-(x)CoFe2O4 (BLFO-CFO) composites where x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50. The X-ray diffraction (XRD) patterns indicated the formation of composites with both BLFO and CFO crystal symmetry, i.e., perovskite and spinel structures, respectively. Rietveld refinement of the XRD patterns was performed for all of the samples in order to analyze the crystal phases and obtain the structural parameters. There were decreases in the lattice parameters of the perovskite phase as the CFO spinel phase increased in the composites, which may be explained by the strain at the interface of the BLFO and CFO phases. Electrical polarization and dielectric constant enhancements were observed in the BLFO-CFO composites compared with BLFO. The saturation magnetization increased as the CFO phase increased in the composites. The theoretical saturation magnetization (calculated using Vegard's law) was less than the experimentally observed value, possibly due to the spin interaction at the interface of BLFO and CFO.
Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section
NASA Astrophysics Data System (ADS)
Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther
2015-06-01
Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.
NASA Astrophysics Data System (ADS)
Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.
2014-12-01
Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17 to 100 % and the highly serpentinized samples (>85%) have high magnetization (> 6 A/m). Consequently, we proposed the presence of highly SP bodies at the YHVF as the origin of the high magnetizaion zone. It was formed by locally alteration of upper mantle section due to the hydrothermal activity.
Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.
2015-05-01
We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.
3D-MHD Simulations of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.
2003-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.
NASA Astrophysics Data System (ADS)
Gonzalez-Fuentes, C.; Dumas, R. K.; García, C.
2018-01-01
A theoretical and experimental study of the influence of small offsets of the magnetic field (δH) on the measurement accuracy of the spectroscopic g-factor (g) and saturation magnetization (Ms) obtained by broadband ferromagnetic resonance (FMR) measurements is presented. The random nature of δH generates systematic and opposite sign deviations of the values of g and Ms with respect to their true values. A δH on the order of a few Oe leads to a ˜10% error of g and Ms for a typical range of frequencies employed in broadband FMR experiments. We propose a simple experimental methodology to significantly minimize the effect of δH on the fitted values of g and Ms, eliminating their apparent dependence in the range of frequencies employed. Our method was successfully tested using broadband FMR measurements on a 5 nm thick Ni80Fe20 film for frequencies ranging between 3 and 17 GHz.
Magnetic Ordering of Antiferromagnetic Trimer System 2b·3CuCl2·2H2O
NASA Astrophysics Data System (ADS)
Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.
2012-12-01
In this paper, we present the magnetic properties of 2b·3CuCl2·2H2O (b = betaine, C5H11NO2). 2b·3CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.
NASA Astrophysics Data System (ADS)
Kılınç, Ersin
2016-03-01
In recent years, magnetic nanoparticles attained special interest in nanobiotechnology and nanomedicine due to their uniqe properties and biocompatibilities. From this perspective, hybride nanostructure composed from γ-Fe2O3 magnetic nanoparticle and carboxylated multi walled carbon nanotube was synthesized and characterized by FT-IR, VSM, SEM, HR-TEM and ICP-OES. Microscopy images showed that magnetic nanoparticles were nearly spherical structure that arranged on the axis of carboxylated MWCNT. Particle size was found lower than 10 nm. VSM results showed that the obtained magnetic nanoparticles presented superparamagnetic properties at room temperature. The magnetic saturation value was determined as 35.2 emu/g. It was used for the adsorption and controlled release of harmane, a potent tremor-producing neurotoxin. Maximum adsorption capacity was calculated as 151.5 mg/g from Langmuir isotherm. Concentration of harmane was determined by HPLC with fluorescence detection. The antimicrobial activity of synthesized magnetic nanoparticle was investigated against gram-negative and gram-positive bacteria. However, no activity was observed.
Zhang, Jin; Agramunt-Puig, Sebastià; Del-Valle, Núria; Navau, Carles; Baró, Maria D; Estradé, Sònia; Peiró, Francesca; Pané, Salvador; Nelson, Bradley J; Sanchez, Alvaro; Nogués, Josep; Pellicer, Eva; Sort, Jordi
2016-02-17
A new strategy to minimize magnetic interactions between nanowires (NWs) dispersed in a fluid is proposed. Such a strategy consists of preparing trisegmented NWs containing two antiparallel ferromagnetic segments with dissimilar coercivity separated by a nonmagnetic spacer. The trisegmented NWs exhibit a staircase-like hysteresis loop with tunable shape that depends on the relative length of the soft- and hard-magnetic segments and the respective values of saturation magnetization. Such NWs are prepared by electrodepositing CoPt/Cu/Ni in a polycarbonate (PC) membrane. The antiparallel alignment is set by applying suitable magnetic fields while the NWs are still embedded in the PC membrane. Analytic calculations are used to demonstrate that the interaction magnetic energy from fully compensated trisegmented NWs with antiparallel alignment is reduced compared to a single-component NW with the same length or the trisegmented NWs with the two ferromagnetic counterparts parallel to each other. The proposed approach is appealing for the use of magnetic NWs in certain biological or catalytic applications where the aggregation of NWs is detrimental for optimized performance.
Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.
1994-07-01
A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.
Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong
2017-11-01
To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices ( ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Peng, L.; Pan, H.; Ma, H.; Zhao, P.; Qin, R.; Deng, C.
2017-12-01
The irreducible water saturation (Swir) is a vital parameter for permeability prediction and original oil and gas estimation. However, the complex pore structure of the rocks makes the parameter difficult to be calculated from both laboratory and conventional well logging methods. In this study, an effective statistical method to predict Swir is derived directly from nuclear magnetic resonance (NMR) data based on fractal theory. The spectrum of transversal relaxation time (T2) is normally considered as an indicator of pore size distribution, and the micro- and meso-pore's fractal dimension in two specific range of T2 spectrum distribution are calculated. Based on the analysis of the fractal characteristics of 22 core samples, which were drilled from four boreholes of tight lithologic oil reservoirs of Ordos Basin in China, the positive correlation between Swir and porosity is derived. Afterwards a predicting model for Swir based on linear regressions of fractal dimensions is proposed. It reveals that the Swir is controlled by the pore size and the roughness of the pore. The reliability of this model is tested and an ideal consistency between predicted results and experimental data is found. This model is a reliable supplementary to predict the irreducible water saturation in the case that T2 cutoff value cannot be accurately determined.
Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection
NASA Astrophysics Data System (ADS)
Lin, Jun; Zhang, Yang; Yang, Yujing; Sun, Yong; Lin, Tingting
2017-06-01
Compared to other geophysical techniques, the surface nuclear magnetic resonance (SNMR) method could provide unique insights into the hydrologic properties of groundwater in the subsurface. However, the SNMR signal is in the order of nanovolts (10-9 V), and the complex environmental noise, i.e., the spike and the harmony noise (10-4 V), can reach up to 105 times the signal amplitude. Saturation of the amplifier is therefore a serious problem in current SNMR systems. In this study, we propose an anti-saturation method based on an instantaneous floating-point amplifier. The gain of a programmable amplifier is controlled by the value of the input signal. A regulating speed of 50 kS/s is thus achieved to satisfy the self-adaptive adjustment of the real-time SNMR system, which replaces the original man-made setting gain. A large dynamic range of 192.65 dB with a 24-bit high speed analog-digital converter module is then implemented. Compared to traditional SNMR instruments, whose magnification factor is fixed during the experiment, our system can effectively inhibit the distortion of the SNMR signal in both laboratory and field settings. Furthermore, an improved SNR, which is realized by the real-time SNMR system, enables the accurate inversion of the aquifer. Our study broadens the applicability of SNMR systems to use in and around developed areas.
Magnetism and High-magnetic Field Magnetization in Alkali Superoxide CsO2
NASA Astrophysics Data System (ADS)
Miyajima, Mizuki; Astuti, Fahmi; Kakuto, Takeshi; Matsuo, Akira; Puspita Sari, Dita; Asih, Retno; Okunishi, Kouichi; Nakano, Takehito; Nozue, Yasuo; Kindo, Koichi; Watanabe, Isao; Kambe, Takashi
2018-06-01
Alkali superoxide CsO2 is one of the candidates for the spin-1/2 one-dimensional (1D) antiferromagnet, which may be sequentially formed by an ordering of the π-orbital of O2 - molecule below TS ˜ 70 K. Here, we report the magnetism and the high-magnetic field magnetization in pulsed-magnetic fields up to 60 T in powder CsO2. We obtained the low temperature phase diagram around the antiferromagnetic ordering temperature TN = 9.6 K under the magnetic field. At T = 1.3 K, we observed a remarkable up-turn curvature in the magnetization around a saturation field of ˜60 T, which indicates the low-dimensional nature of the spin system. The saturated magnetization is also estimated to be ˜1μB, which corresponds to spin-1/2. In this study we compare it with the theoretical calculation.
NASA Astrophysics Data System (ADS)
Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau
2015-04-01
Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.
Iron oxide nanoparticles modified with silanes for hyperthermia applications
NASA Astrophysics Data System (ADS)
Storozhuk, Liudmyla; Iukhymenko, Natalia
2018-04-01
Fe3O4-HDTMS nanocomposites were prepared and studied using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, X-ray analysis, thermal analysis (TGA), dynamic light scattering analysis, magnetic and specific loss power (SLP) measurements. FTIR results showed that during the modification, the formation of the silane coating occurs due to the appearance of the magnetite-O-Si-R bond. According to TGA results, the mass loss in the range of temperatures 410-650 °C is due to the destruction of covalent bonds Fe-O-Si. The Si-O-R coating leads to the decrease in the absolute value of the effective saturation magnetization due to the presence of a non-magnetic phase (coating) in the sample, but the coercivity increases with the coating thickness due to higher effective values of the magnetic anisotropy of the magnetostrictive nature. The thermal response of NP-based dispersions in silicone and oleic acid was shown that SLP value is higher for magnetic material dispersions in Lipiodol and oleic acid compared to silicone-based dispersions. This can be explained by the contribution of both Neel and Brownian relaxation processes. However, in the case of silicone-based dispersion, Brownian relaxation is negligible because of NP immobilization in viscous silicone matrix. As it is to the effect of coating on SLP, this is clearly evident in the case of silicone dispersions. The study of the heating ability of dispersions based on HDTMS-modified Fe3O4 NPs showed that the coating does not significantly decrease the SLP values.
The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy
The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallelmore » to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.« less
Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.
2018-05-01
We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.
Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Raland, R. D.; Borah, J. P.
2017-01-01
Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn = 0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f = 337 kHz) range and maximum concentration of Mn doping.
NASA Astrophysics Data System (ADS)
Routray, Krutika L.; Sanyal, Dirtha; Behera, Dhrubananda
2017-12-01
CoFe2-xBixO4 nanoferrites with x = 0, 0.05, 0.1, 0.5, and 1.0 have been synthesized by the glycine nitrate process. The present study investigates the effect of Bi3+ substitution on the microstructural, dielectric, ferroelectric, magnetic, and Mossbauer properties of CoFe2O4 nanoparticles. The X-ray diffraction technique was used to confirm the phase purity and estimate the crystallite size which revealed the formation of a secondary phase when Bi3+ concentration exceeds x = 0.5. Transmission electron microscopy indicated the formation of grains by aggregation of small crystallites with a reduction in grain size to 20 nm with an increase in Bi3+ content and also divulged the lattice parameter value to be 8.378 Å, confirming the crystalline nature of the synthesised sample. Dielectric properties performed in the frequency range of 100 Hz to 1 MHz determined that the dielectric behavior is attributed to the Maxwell-Wagner polarization and the activation energy of the specimens is calculated from the dielectric measurements. The hysteresis curve indicated the ferrimagnetic nature of the samples. The samples also exhibited a well saturated P-E loop with gradual lowering in remenant polarization, coercive field, and saturation polarization with an increase in bismuth concentration. Mössbauer spectroscopy analysis confirmed the changes in magnetic moment of ions, their coupling with neighbouring ions, and cation exchange interactions. Owing to the high physical, thermal, and chemical stabilities, these magnetic ceramics, CoFe2-xBixO4, possesses tremendous potential in major understanding of magnetism and in magnetic recording applications for high density information storage.
On the measurement of magnetic viscosity
NASA Astrophysics Data System (ADS)
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P.
2011-10-01
A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, John M.; Peuron, Unto A.
1982-01-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.
Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo
2008-02-01
Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions for biomedical diagnostics and therapeutics. As demonstrated in this Account, nanoscaling laws for magnetic components are found to be critical to the design of optimized magnetic characteristics of hybrid nanoparticles and their enhanced applicability in the biomedical sciences including their utilizations as contrast enhancement agents for magnetic resonance imaging (MRI), ferromagnetic components for nano-bio hybrid structures, and translational vectors for magnetophoretic sensing of biological species. In particular, systematic modulation of saturation magnetization of nanoparticle probes is important to maximize MR contrast effects and magnetic separation of biological targets.
Magnetic Properties of Hematite-Titania Nanocomposites from Ilmenite Leachant Solutions
NASA Astrophysics Data System (ADS)
Sanad, M. M. S.; Rashad, M. M.
2017-07-01
Different Fe2O3/TiO2 nanocomposite ratios have been auto-synthesized from the leaching solution of Egyptian ilmenite ore with and without solvent extraction of soluble iron ions. Hydrolysis-hydrothermal strategy was then implemented for preparation of Fe2O3-TiO2 nanocomposites. The x-ray diffraction results indicated that rutile and hematite were only found at high iron oxide content. Meanwhile, anatase and hematite were the predominant phases at low iron oxide content. High-resolution transmission electron microscopy investigations exhibited nano-rods like morphology and the space lattice distances of TiO2 and Fe2O3 were clearly estimated. Moreover, the chemical composition of different Fe2O3-TiO2 nanocomposites was also elucidated using energy dispersive spectroscopy and Fourier transform infrared analyses techniques. The values of saturation magnetization ( M s) and remanent magnetization ( M r) were noticeably increased by 17.5% and 18.4% with increasing the Fe2O3/TiO2 molar ratio from 1.0 to 3.0, respectively. Field cooling-warming magnetization studies showed that the Morin transition temperature ( T M = 200 K) was consistent with the previously published values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanáška, M.; Kudrna, P.; Tichý, M.
The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma ofmore » a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.« less
Magnetic softening and nanocrystallization in amorphous Co-rich alloys
NASA Astrophysics Data System (ADS)
Buttino, G.; Cecchetti, A.; Poppi, M.
1997-02-01
In this work we have analyzed the changes of the magnetic properties in the Co-based Metglas 2714A (made by Allied Chem. Corp., USA) caused by isothermal heat treatments in the range of temperature from room temperature to conventional crystallization temperature Tcr = 550°C. The nominal composition of the amorphous alloy is Co 66Fe 4Ni 1B 14Si 15. The analysis is made on toroidal samples prepared by winding lengths of amorphous ribbon of about 20 cm. The magnetic properties undergo variations depending on the treatment temperature, except for the saturation magnetization which remains unchanged. For heat treatments of about half an hour around 500°C, superior soft magnetic properties are obtained. Particularly, the initial permeability reaches values up to ten times the value of permeability in the as-received sample. Analysis by the transmission electron microscopy of the sample annealed around 500°C reveals the formation of a nanocrystalline phase, with average grain size of 2 nm, embedded in a residual amorphous matrix. The occurrence of permeability increases in concomitance with the formation of the nanocrystalline phase is ascribed to a drastic reduction in the local magnetocrystalline anisotropy randomly averaged out by the exchange interactions, similar to the case of the annealed Fe-based alloys containing Cu.
Dynamically important magnetic fields near supermassive black holes in radio-loud AGN
NASA Astrophysics Data System (ADS)
Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander
The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.
NASA Astrophysics Data System (ADS)
Salah, Numan; Habib, Sami; Azam, Ameer
2017-02-01
Nanoparticles (NPs) of Sn1- x O2:Mn0.5 x Co0.5 x with x = 0.02, 0.04, 0.06, 0.08 and 0.1 were synthesized by the microwave-assisted route and characterized for their thermoelectric and magnetic properties. As a result of Mn and Co co-doping, a considerable increase in the values of energy band gap and lattice constant c of Sn1- x O2:Mn0.5 x Co0.5 x NPs was observed. The x-ray photoelectron spectroscopy spectra revealed that Mn and Co ions were incorporated in their 4+ and 2+ states, respectively. The resistivity and calculated activation energy of these NPs were found to decrease by increasing the Mn and Co contents. A negative Seebeck coefficient was observed, whose value was found to be significantly increased by increasing the value of x. The magnetic measurement results revealed that all the microwave-synthesized Sn1- x O2:Mn0.5 x Co0.5 x NPs including the pure SnO2 have distinctly wide hysteresis loops. This indicates that samples have room-temperature ferromagnetism. The optimum value for x to have maximum saturation magnetism was observed to be 0.04. Diamagnetic contributions from the core of these NPs were noticed at higher magnetic fields. The observed magnetism was attributed to the presence of defects at the NPs' interfacing sites, grain boundaries, atom vacancies and an optimum level of Mn and Co co-dopants. The observed wide hysteresis loops in these NPs might be useful for producing nanoscale magnets and magnetic memory devices. Moreover, the observed thermoelectric properties, i.e. Seebeck coefficient and power factor in these NPs, might be useful for the development of thermoelectric devices.
Limits on magnetic field amplification from the r -mode instability
NASA Astrophysics Data System (ADS)
Friedman, John L.; Lindblom, Lee; Rezzolla, Luciano; Chugunov, Andrey I.
2017-12-01
At second order in perturbation theory, the unstable r -mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000)., 10.1086/312539], suggests that the amplification may damp out the instability. A background magnetic field, however, turns the saturated time-independent perturbations corresponding to adding differential rotation into perturbations whose characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to previous work, however, we show that if the amplitude is small, i.e., ≲10-4 , then the limit on the magnetic-field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or significantly altering an unstable r -mode in nascent neutron stars with normal interiors and in cold stars whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our analysis depends on the assumption that there are no marginally unstable perturbations, and this may not hold when differential rotation leads to a magnetorotational instability.
NASA Astrophysics Data System (ADS)
Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team
2014-10-01
In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.
NASA Astrophysics Data System (ADS)
Belaïd, Sarah; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Laurent, Sophie
2018-04-01
A study of the experimental conditions to synthesize monodisperse iron oxide nanocrystals prepared from the thermal decomposition of iron(III) acetylacetonate was carried out in the presence of surfactants and a reducing agent. The influence of temperature, synthesis time and surfactant amounts on nanoparticle properties is reported. This investigation combines relaxometric characterization and size properties. The relaxometric behavior of the nanomaterials depends on the selected experimental parameters. The synthesis of iron oxide nanoparticles with a high relaxivity and a high saturation magnetization can be obtained with a short reaction time at high temperature. Moreover, the influence of surfactant concentrations determines the optimal value in order to produce iron oxide nanoparticles with a narrow size distribution. The optimized synthesis is rapid, robust and reproductive, and produces nearly monodisperse magnetic nanocrystals.
NASA Astrophysics Data System (ADS)
De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco
2017-04-01
This work reports the synthesis of MgxMn1-xFe2O4 (x=0-1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11-15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.
Large, nonsaturating thermopower in a quantizing magnetic field
Fu, Liang
2018-01-01
The thermoelectric effect is the generation of an electrical voltage from a temperature gradient in a solid material due to the diffusion of free charge carriers from hot to cold. Identifying materials with a large thermoelectric response is crucial for the development of novel electric generators and coolers. We theoretically consider the thermopower of Dirac/Weyl semimetals subjected to a quantizing magnetic field. We contrast their thermoelectric properties with those of traditional heavily doped semiconductors and show that, under a sufficiently large magnetic field, the thermopower of Dirac/Weyl semimetals grows linearly with the field without saturation and can reach extremely high values. Our results suggest an immediate pathway for achieving record-high thermopower and thermoelectric figure of merit, and they compare well with a recent experiment on Pb1–xSnxSe. PMID:29806031
NASA Astrophysics Data System (ADS)
Strempfer, J.; Rütt, U.; Bayrakci, S.; Brückel, Th.; Jauch, W.
2004-01-01
We present an overview of recent results from nonresonant magnetic diffraction experiments on the antiferromagnetic compounds MnF2, FeF2, CoF2, and NiF2 using high-energy synchrotron radiation of photon energies above 100 keV. New results are presented on the determination of the spin and of the L/S ratio for CoF2 and NiF2. For CoF2, the saturation value of the long-range-ordered pure spin Sz component Sz=1.11(1) is considerably lower than the value Sz=3/2 for the free Co2+ ion. This is in contrast to our results for NiF2, where the full spin of the free transition-metal ion was found, Sz=0.98(1). The temperature dependence of the magnetization in the critical region as well as in the low-temperature region is also presented. For all compounds, Ising behavior is found in the critical regime, whereas the crossover to the low-temperature spin-wave behavior varies. We attribute this to different anisotropies in this series of compounds.
Magneto-optical properties of BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrites
NASA Astrophysics Data System (ADS)
Asiri, S.; Güner, S.; Korkmaz, A. D.; Amir, Md.; Batoo, K. M.; Almessiere, M. A.; Gungunes, H.; Sözeri, H.; Baykal, A.
2018-04-01
In this study, nanocrystalline BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrite powders were prepared by sol-gel auto combustion method and the effect of Cr3+ ion substitution on morphology, structure, optic and magnetic properties of Barium hexaferrite were investigated. X-ray powder diffraction (XRD) analyses confirmed the purity of all samples. The XRD data shows that the average crystallite size lies between 60.95 nm and 50.10 nm and same was confirmed by Transmission electron microscopy. Transmission electron and scanning electron microscopy analyses presented the hexagonal morphology of all products. The characteristic hysteresis (σ-H) curves proved the ferromagnetic feature of as grown nanoparticle samples. Specific saturation magnetization (σs) drops from 46.59 to 34.89 emu/g with increasing Cr content while the coercive field values lie between 770 and 1652 Oe. The large magnitude of the magnetocrystalline (intrinsic) anisotropy field, (Ha) between 11.0 and 12.6 kOe proves that all products are magnetically hard. The energy band gap values decrease from 2.0 eV to 1.84 eV with increasing Cr content. From 57Fe Mössbauer spectroscopy, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values were determined and discussed.
NASA Astrophysics Data System (ADS)
Gong, Z.; Dekkers, M. J.; Heslop, D.; Mullender, T. A. T.
2009-08-01
To identify remagnetization is essential for palaeomagnetic studies and their geodynamic implications. The traditional approach is often based on directional analysis of palaeomagnetic data and field tests, which may be inconclusive if the apparent polar wander path (APWP) is poorly constrained or if the remagnetization predates folding. In several cases, rock magnetic work, particularly, the measurement of hysteresis loops allows identification of the so-called `remagnetized' and `non-remagnetized' trends. However, for weakly magnetic samples, this approach can be equivocal. Here, to improve the diagnosis of remagnetization, we investigated 192 isothermal remanent magnetization (IRM) acquisition curves (up to 700 mT) of remagnetized and non-remagnetized limestones from the Organyà Basin, northern Spain. Also, 96 IRM acquisition curves from non-remagnetized marls were studied as a cross-check for the non-remagnetized limestones. A non-parametric end-member modelling approach is used to analyse the IRM acquisition curve data sets. First, remagnetized and non-remagnetized groups were treated separately. Two or three end-members were found to adequately describe the data variability: one end-member represents the high-coercivity contribution, whereas the low-coercivity part can be described by either one end-member or two reasonably similar end-members. In the remagnetized limestones, the low-coercivity end-members tend to saturate at higher field values than in the non-remagnetized limestones. When the entire data set was processed together, a three-end-member model was judged optimal. This model consists of a high-coercivity end-member, a low-coercivity end-member that saturates at ~300-400 mT and a low-coercivity end-member that approximately saturates at 700 mT. Higher contributions of the latter end-member appear to occur dominantly in the remagnetized limestones, whereas the reverse is true for the non-remagnetized limestones, so they plot in clearly distinguishable areas. Meanwhile, the IRM curves from non-remagnetized marls show a behaviour similar to that of the non-remagnetized end-member in the limestones. Therefore, this new approach can be a very useful tool to diagnose remagnetization in weakly magnetic limestones and marls. We recommend applying it to other areas of potentially remagnetized low-intensity sediments.
Crystal structure and magnetic properties of Cr doped barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan
2018-04-01
The Cr3+ substituted BaFe12O19 has been synthesized by modified sol-gel method to tailor the magnetic anisotropy and coercivity for technological applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the M-type hexaferrite. In order to investigate these interactions, BaFe12-xCrxO19 (x = 0.0, 0.5, 1.0, 2.0, and 4.0) M-type hexaferrites were characterized by employing XRD (X-ray Diffractometer). It is confirmed that, all the samples are in nanocrystalline and single phase, no impurity has been detected within the XRD limit. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field were increasing with the increasing Cr3+ content, but after the percolation limit it decreases. The magnetocrystalline anisotropy is increasing with the Cr3+ concentration in samples and high values of magnetocrystalline anisotropy revealed that all samples are hard magnetic materials. Magnetic hysteresis loops were analyzed using the Law of Approach to Saturation method.
Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths
NASA Astrophysics Data System (ADS)
Yanai, Takeshi; Shiraishi, Kotaro; Akiyoshi, Toshiki; Azuma, Keita; Watanabe, Yoshimasa; Ohgai, Takeshi; Morimura, Takao; Nakano, Masaki; Fukunaga, Hirotoshi
2016-05-01
We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ṡ 4H2O, NiCl2 ṡ 6H2O and CoCl2 ṡ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 %) in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.
NASA Astrophysics Data System (ADS)
Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.
2017-11-01
In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.
NASA Astrophysics Data System (ADS)
Wu, Shuang; Kanada, Isao; Mewes, Tim; Mewes, Claudia; Mankey, Gary; Ariake, Yusuke; Suzuki, Takao
Soft ferrites have been extensively and intensively applied for high frequency device applications. Among them, Ba-ferrites substituted by Mn and Ti are particularly attractive as future soft magnetic material candidates for advanced high frequency device applications. However, very little has been known as to the intrinsic magnetic properties, such as damping parameter, which is crucial to develop high frequency devices. In the present study, much effort has been focused on fabrication of single crystal Ba-ferrites and measurements of damping parameter by FMR. Ba-ferrite samples consisted of many grains with various sizes have been prepared. The saturation magnetization and the magnetic anisotropy field of the sample are in reasonable agreement with the values in literature. The resonances positions in the FMR spectra over a wide frequency range also comply with theoretical predictions. However, the complex resonance shapes observed makes it difficult to extract dynamic magnetic property. Possible reasons are the demagnetization field originating from irregular sample shape or existence of multiple grains in the samples. S.W. acknowledges the support under the TDK Scholar Program.
In-Situ Preparation and Magnetic Properties of Fe3O4/WOOD Composite
NASA Astrophysics Data System (ADS)
Gao, Honglin; Zhang, Genlin; Wu, Guoyuan; Guan, Hongtao
2011-06-01
Fe3O4/wood composite, a magnetic material, was prepared by In-situ chemosynthesis method at room temperature. The X-ray diffraction (XRD) shows that the average partical size of Fe3O4 was about 14 nm. The magnetic properties of the resulting composites were investigated by vibrating sample magnetometer (VSM). The composites have saturation magnetization (Ms) values from 4.7 to 25.3 emu/g with the increase of weight percent gains (WPG) of the wood for the composites, but coercive forces (Hc) are invariable, which is different from the magnetic materials reported before. It may be due to the fact that the interaction between wood and Fe3O4 becomes stronger when less of Fe3O4 particles are introduced in the composition, and this also changes the surface anisotropy (Ks) of the magnetism. A structural characterization by Fourier transform infrared (FTIR) proved the interaction between Fe3O4 particles and wood matrix, and it also illustrates that this interaction influences the coercive force of the composite.
Preparation and characterization of V/TiO{sub 2} nanocatalyst with magnetic nucleus of iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feyzi, Mostafa; Rafiee, Hamid Reza, E-mail: rafieehr@yahoo.com; Ranjbar, Shahram
2013-11-15
Graphical abstract: - Highlights: • Fe-V/TiO{sub 2} nanocatalyst is prepared. • Combination of sol–gel and wetness impregnation methods. • Facile separation of catalyst from medium by magnet. - Abstract: A magnetic composite containing V/TiO{sub 2} was prepared by combination of sol–gel and wetness impregnation methods. The effects of synthesis temperature, different weight percents of Fe supported on TiO{sub 2}, vanadium loading and the heating rate of calcination on the structure and morphology of nanocatalyst were investigated. The optimum conditions for synthesized catalyst were 40 wt.% of Fe, 15 wt.% of V and synthesis temperature equal to 30 °C. Characterization ofmore » catalyst is carried out using XRD, TGA, DSC, SEM, FTIR and N{sub 2} physisorption measurements. The magnetic character of nanocatalyst was measured using VSM, which showed the typical paramagnetic behavior of sample at room temperature with a saturation magnetization value equal to 8.283 emu/g. The nanocatalyst has a particle size about 56 nm and can easily be separated from medium by a magnet.« less
Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, G. A.; Costescu, R. M.; Husanu, M. A.
2011-10-03
Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less
Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun
2018-05-09
With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.
Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films
NASA Astrophysics Data System (ADS)
Bhoi, Biswanath; Kim, Bosung; Kim, Yongsub; Kim, Min-Kwan; Lee, Jae-Hyeok; Kim, Sang-Koog
2018-05-01
Yttrium iron garnet (YIG:Y3Fe5O12) thin films were grown on (111) gadolinium gallium garnet (Gd3Ga5O12, GGG) substrates using pulsed-laser deposition under several different deposition and annealing conditions. X-ray diffraction measurements revealed that the crystallographical orientation of the YIG films is pseudomorphic to and the same as that of the GGG substrate, with a slight rhombohedral distortion along the surface normal. Furthermore, X-ray reciprocal space mapping evidenced that in-situ annealed YIG films during film growth are under compressive strain, whereas ex-situ annealed films have two different regions under compressive and tensile strain. The saturation magnetization ( 4 π M S ) of the films was found to vary, according to the deposition conditions, within the range of 1350 to 1740 G, with a very low coercivity of H C < 5 Oe. From ferromagnetic resonance (FMR) measurements, we estimated the effective saturation magnetization ( 4 π M e f f ) to be 1810 to 2530 G, which are larger than that of single crystalline bulk YIG (˜1750 G). Such high values of 4 π M e f f are attributable to the negative anisotropy field ( H U ) that increases in size with increasing compressive in-plane strain induced in YIG films. The damping constant ( α G ) of the grown YIG films was found to be quite sensitive to the strain employed. The lowest value of α G obtained was 2.8 × 10-4 for the case of negligible strain. These results suggest a means of tailoring H U and α G in the grown YIG films by the engineering of strain for applications in spintronics and magneto-optical devices.
Model for temperature-dependent magnetization of nanocrystalline materials
NASA Astrophysics Data System (ADS)
Bian, Q.; Niewczas, M.
2015-01-01
A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.
Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.
2008-01-01
Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.
Evolution of the f-mode instability in neutron stars and gravitational wave detectability
NASA Astrophysics Data System (ADS)
Passamonti, A.; Gaertig, E.; Kokkotas, K. D.; Doneva, D.
2013-04-01
We study the dynamical evolution of the gravitational-wave driven instability of the f mode in rapidly rotating relativistic stars. With an approach based on linear perturbation theory we describe the evolution of the mode amplitude and follow the trajectory of a newborn neutron star through its instability window. The influence on the f-mode instability of the magnetic field and the presence of an unstable r mode is also considered. Two different configurations are studied in more detail, an N=1 polytrope with a typical mass and radius and a more massive polytropic N=0.62 model with gravitational mass M=1.98M⊙. We study several evolutions with different initial rotation rates and temperature and determine the gravitational waves radiated during the instability. In more massive models, an unstable f mode with a saturation energy of about 10-6M⊙c2 may generate a gravitational wave signal which can be detected by the Advanced LIGO/Virgo detector from the Virgo cluster. The magnetic field affects the evolution and then the detectability of the gravitational radiation when its strength is higher than 1012G, while the effects of an unstable r mode become dominant when this mode reaches the maximum saturation value allowed by nonlinear mode couplings. However, the relative saturation amplitude of the f and r modes must be known more accurately in order to provide a definitive answer to this issue. From the thermal evolution we find also that the heat generated by shear viscosity during the saturation phase completely balances the neutrinos’ cooling and prevents the star from entering the regime of mutual friction. The evolution time of the instability is therefore longer and the star loses significantly larger amounts of angular momentum via gravitational waves.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Schwarze, Gene E.
1999-01-01
100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.
Evolution of structural, magnetic and transport behavior by Pr doping in SrRuO3
NASA Astrophysics Data System (ADS)
Gupta, Renu; Pramanik, A. K.
2018-05-01
Here we report the evolution of structural, magnetic and transport behavior in perovskite based ruthenates Sr1-xPrxRuO3 (x=0.0 and 0.1). The substitution of Pr on Sr site retains orthorhombic structure while we find the slight change in structural parameters. The SrRuO3 has itinerant ferromagnet (FM) type nature of ordering temperature ˜160 K and below the transition temperature showing large bifurcation between ZFC and FC magnetization. By Pr doping, the magnetic moment decreases with decreasing bifurcation of ZFC and FC. The ZFC data show three distinct peaks (three transition temperature; TM1,TM2 and TM3). The magnetization study of both the samples, at high temperature fitted with modified CWL showing the decreasing value of ordering temperature by Pr doping matches close to TM2. The low-temperature isothermal magnetization M (H) data show that the high field saturation moment has decreased by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which is also decreased by Pr substitution. Evolution of Rhodes-Wohlfarth ratio value increases, which suggests that FM in this system evolves toward the more itinerant type by Pr doping. The electrical resistivity ρ(T) of both the samples show metallic behavior, in the all temperature range and ρ(T) increases by Pr doping while around below 45 K, the resistivity decreases by Pr doping and this crossing temperature also matches with ZFC data.
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T.; Babb, James S.; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R.
2014-01-01
Rationale and Objectives The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral–tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren–Lawrence [KL] grade 2–3). Materials and Methods A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24–78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18–61 years), and 21 patients with KL2–3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44–89 years). Routine clinical proton density–weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm3 was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. Results The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2–3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2–3 OA. Conclusions The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. PMID:24717549
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T; Babb, James S; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R
2014-06-01
The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral-tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren-Lawrence [KL] grade 2-3). A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24-78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18-61 years), and 21 patients with KL2-3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44-89 years). Routine clinical proton density-weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm(3) was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2-3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2-3 OA. The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raghunath, Ganesh
Iron-Gallium alloy (Galfenol) is a magnetostrictive smart material (lambdasat ˜400 ppm) with potential for robust transduction owing to good magneto-mechanical coupling and useful mechanical properties. In addition, Galfenol exhibits a highly negative Poisson's ratio (denoted by nu) along the crystallographic directions on {100} planes with nu values of as low as -0.7 under tensile loads. Consequently, their samples become wider when elongated and narrower when compressed (aka auxeticity). This is an anisotropic, in-plane and volume conserving phenomenon with compensating contractions and expansions in the third (out of plane) direction. Since there is good magneto-elastic coupling in Galfenol, a negative Poisson's ratio is expected to be observed under application of magnetic fields even under zero stress conditions. This work deals with systematically studying the magneto-elastic contributions in Galfenol samples between 12 and 33 atomic percent Ga as a non-synthetic (no artificial linkages, unlike foams) 'structural auxetic' material, capable of bearing loads. This investigation addresses the profound gap in understanding this atypical behavior using empirical data supported by analytical modeling from first principles to predict the Poisson's ratio at magnetic saturation, multi-physics finite element simulations to determine the trends in the strains along the {100} directions and magnetic domain imaging to explain the mechanical response from a magnetic domain perspective. The outcome of this effort will help comprehend the association between anisotropic magnetic and mechanical energies and hence the magnetic contributions to the atomic level interactions that are the origins of this magneto-auxetic characteristic. Also, it is well established that a number of mechanical properties such as shear resistance and toughness depend on the value of Poisson's ratio. There is a slight increase in these mechanical properties with non-zero nu values, but as we enter the highly auxetic regime (nu<-0.5), these values increase by magnitudes. Hence, the possibility of nu values approaching -1.0 under applied magnetic fields at zero stress is extremely intriguing, as these properties can be much larger than is possible in conventional materials. This has potential for several novel applications where the value of Poisson's ratio can be magnetically tuned to keep it near -1 under applied stresses.
Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B.
2008-12-01
Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
A High Stability Time Difference Readout Technique of RTD-Fluxgate Sensors
Pang, Na; Cheng, Defu; Wang, Yanzhang
2017-01-01
The performance of Residence Times Difference (RTD)-fluxgate sensors is closely related to the time difference readout technique. The noise of the induction signal affects the quality of the output signal of the following circuit and the time difference detection, so the stability of the sensor is limited. Based on the analysis of the uncertainty of the RTD-fluxgate using the Bidirectional Magnetic Saturation Time Difference (BMSTD) readout scheme, the relationship between the saturation state of the magnetic core and the target (DC) magnetic field is studied in this article. It is proposed that combining the excitation and induction signals can provide the Negative Magnetic Saturation Time (NMST), which is a detection quantity used to measure the target magnetic field. Also, a mathematical model of output response between NMST and the target magnetic field is established, which analyzes the output NMST and sensitivity of the RTD-fluxgate sensor under different excitation conditions and is compared to the BMSTD readout scheme. The experiment results indicate that this technique can effectively reduce the noise influence. The fluctuation of time difference is less than ±0.1 μs in a target magnetic field range of ±5 × 104 nT. The accuracy and stability of the sensor are improved, so the RTD-fluxgate using the readout technique of high stability time difference is suitable for detecting weak magnetic fields. PMID:29023409
Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Singh, Rakesh Kumar; Kar, Manoranjan
2018-07-01
The calcium (Ca2+) substituted M-type barium hexaferrite (Ba1-xCaxFe12O19) for Ca2+ (x = 0.00, 0.025, 0.050, 0.075, 0.100, 0.150, and 0.200) have been synthesized by the citrate sol-gel method. The X-ray diffraction (XRD) patterns with Rietveld refinement reveal the formation of hexagonal crystal structure with P63/mmc space group. The lattice parameters a = b and c decrease, whereas lattice strain found to increase with the increase in Ca concentration in the samples. The analysis of Raman spectra well supports the XRD patterns analysis. The average particle size is obtained from the FE-SEM (Field Emission Scanning Electron Microscopy) micrographs and these are similar to that of crystallite size obtained from the XRD pattern analysis. The saturation magnetization and magnetocrystalline anisotropy have been obtained by employing the "Law of Approach (LA) to Saturation magnetization" technique at room temperature. The saturation magnetization and magnetocrystalline anisotropy constant are maximum for 5% Ca substitution in barium hexaferrite. It could be due to lattice strain mediated magnetism. However, these magnetic properties decrease for more than the 5% Ca substitution in barium hexaferrite. It could be due to decrease of magnetic exchange interaction (Fe-O-Fe) in the sample. A correlation between magnetic interaction and lattice strain has been observed in Ca2+ substituted M-type barium hexaferrite.
Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses
NASA Astrophysics Data System (ADS)
Dubs, Carsten; Surzhenko, Oleksii; Linke, Ralf; Danilewsky, Andreas; Brückner, Uwe; Dellith, Jan
2017-05-01
Using a liquid phase epitaxy (LPE) technique (1 1 1) yttrium iron garnet (YIG) films with thicknesses of ≈100 nm and surface roughnesses as low as 0.3 nm have been grown on (1 1 1) gadolinium gallium garnet (GGG) substrates as a basic material for spin-wave propagation experiments in microstructured waveguides. The continuously strained films exhibit nearly perfect crystallinity without significant mosaicity and with effective lattice misfits of Δ {{a}\\bot}/{{a}s}≈ {{10}-4} and below. The film/substrate interface is extremely sharp without broad interdiffusion layer formation. All LPE films exhibit a nearly bulk-like saturation magnetization of (1800+/- 20 ) Gs and an ‘easy cone’ anisotropy type with extremely small in-plane coercive fields <0.2 Oe. There is a rather weak in-plane magnetic anisotropy with a pronounced six-fold symmetry observed for the saturation field <1.5 Oe. No significant out-of-plane anisotropy is observed, but a weak dependence of the effective magnetization on the lattice misfit is detected. The narrowest ferromagnetic resonance linewidth is determined to be 1.4 Oe @ 6.5 GHz which is the lowest value reported so far for YIG films of 100 nm thicknesses and below. The Gilbert damping coefficient for investigated LPE films is estimated to be close to 1× {{10}-4} .
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif
2018-07-01
In this work the iron oxide (α-Fe2O3) nanoparticles are synthesized using two different methods: precipitation and hydrothermal. Size, structural, optical and magnetic properties were determined and compared using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis, Superconducting QUantum Interference Device (SQUID) magnetometer and Photoluminescence (PL). XRD data further revealed a rhombohedral (hexagonal) structure with the space group (R-3c) and showed an average size of 21 nm for hydrothermal samples and 33 nm for precipitation samples which concorded with TEM and SEM images. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure α-Fe2O3 but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The decrease in the particle size of hematite of 33 nm for precipitation samples to 21 nm for hydrothermal samples is responsible for increasing the optical band gap of 1.94-2.10 eV where, the relation between them is inverse relationship. The products exhibited the attractive magnetic properties with good saturation magnetization, which were examined by a SQUID magnetometer. Photoluminescence measurements showed a strong emission band at 450 nm. Pure hematite prepared by hydrothermal method has smallest size, best crystallinity, highest band gap and best value of saturation magnetization compared to the hematite elaborated by the precipitation method.
NASA Astrophysics Data System (ADS)
Sinha, A. K.; Singh, M. N.; Achary, S. N.; Sagdeo, A.; Shukla, D. K.; Phase, D. M.
2017-08-01
Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co1.5Fe1.5O4 is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (TH) and octahedral (OH) sites. Spin states of Co3+ ions in TH sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L2,3-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t2g and eg absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at OH and TH sites. The results are in agreement with those obtained from magnetization data, and favors Co3+ ions in TH sites in high spin states. Normalized areas of the satellite peaks in TM L2,3-edge XAS spectra have been used to estimate 3dn+1L contribution in ground state wave function and the contributions were found to be significant.
NASA Astrophysics Data System (ADS)
Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Therese, H. A.
2018-02-01
We report the effect of sputtering power (200 W - 350 W) on the structural, topographical and magnetic properties of Co2FeSi (CFS) films deposited at ambient temperatures as compared to the films which were either annealed at 300 °C or were subjected to Electron beam Rapid Thermal Annealed (ERTA) treatment. The structural and morphological analyses reveal changes in their crystalline phases and particle sizes. All the as-deposited and annealed CFS films showed A2 phase crystal structure. Whereas the CFS film sputtered at 350 W followed by ERTA displayed the fully ordered L21 structure. The particles are spherical in shape and their sizes increased gradually with increase in the sputtering power of the as-deposited and annealed CFS films. However, ERTA CFS films had spherical as well as columnar (elongated) shaped grains and their grain sizes increased nonlinearly with sputtering power. M-H studies on as-deposited, annealed and ERTA CFS films show ferromagnetic responses. The comparatively stronger ferromagnetic response was observed for the ERTA samples with low saturation field which depends on the enrichment of fine crystallites in these films. This indicates that, apart from higher sputtering powers used for deposition of CFS films, ERTA process plays a significant role in the enhancement of their magnetic responses. 350 W ERTA film has the considerable saturation magnetization (∼816 emu/cc), coercivity (∼527 Oe) and a good squareness values at 100 K than at 300 K, which could originate from the spin wave excitation effect. Further, the optimized parameters to achieve a CFS film with good structural and magnetic properties are discussed from the perspective of spintronics.
The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Z.
1999-05-10
This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structuremore » in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.« less
NASA Astrophysics Data System (ADS)
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite
NASA Astrophysics Data System (ADS)
Amir, Md.; Güner, S.; Yıldız, A.; Baykal, A.
2017-01-01
Fe3O4@HA@Ag magnetic nanocomposites (MNCs) were successfully synthesized by the simple reflux method for the removal of azo dyes from the industrial aqueous media. Fe3O4@HA@AgMNCs exhibited high catalytic activity to reduce MB within 20 min from the waste water. The obtained materials were characterized by the means of different techniques. Powder X-ray diffraction (XRD) analysis confirmed the single-phase of Fe3O4 spinel structure. SEM and TEM analysis indicated that Fe3O4@HA@AgMNCs were nanoparticles like structure with small agglomeration. TG result showed that the products contained 9% of HA. The characteristic peaks of HA at 1601 cm-1 and 1703 cm-1 was observed by the means of FT-IR spectra of Fe3O4@HA@AgMNCs. The hysteresis (σ-H) curves revealed Fe3O4@HA@Ag MNCs exhibit a typical superparamagnetic characteristic with a saturation magnetization of 59.11 emu/g and measured magnetic moment is 2.45 μB. The average magnetic particle dimension (Dmag) is 13.25 nm. In accordance, the average crystallite and particle dimensions were obtained as 11.50 nm and 13.10 nm from XRD and TEM measurements, respectively. Magnetocrystalline anisotropy was offered as uniaxial and calculated effective anisotropy constant (Keff) is 2.96×105 Erg/g. The blocking temperature was estimated as 522 K. The size-dependent saturation magnetization suggests the existence of a magnetically dead layer as 0.793 nm for Fe3O4@HA@Ag MNCs. The UV-vis diffuse reflectance spectroscopy (DRS) and Kubelka-Munk theory were applied to determine the optical properties of powder samples. The direct optical energy band gap (Eg) values were estimated from Tauc plots between 1.62 eV and 2.12 eV.
Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet LiCuVO4
NASA Astrophysics Data System (ADS)
Büttgen, N.; Nawa, K.; Fujita, T.; Hagiwara, M.; Kuhns, P.; Prokofiev, A.; Reyes, A. P.; Svistov, L. E.; Yoshimura, K.; Takigawa, M.
2014-10-01
We have performed nuclear magnetic resonance (NMR) experiments on the quasi-one-dimensional frustrated spin-1/2 system LiCuVO4 in magnetic fields H applied along the c axis up to field values near the saturation field Hsat. For the field range Hc2
NASA Astrophysics Data System (ADS)
Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung
2018-05-01
CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter.
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com
2015-05-15
Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.
Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle
2014-02-17
Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.
NASA Astrophysics Data System (ADS)
Kumar, Nitesh; Sanyal, D.; Sundaresan, A.
2009-08-01
Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.
Dynamic Deformation of Vortex Lattice in the Hollow Superconducting YBaCuO Cylinder
NASA Astrophysics Data System (ADS)
Babayan, V. H.; Ayvazyan, M. T.; Kteyan, A. A.; Vardanyan, R. A.
The elastic and viscous properties of vortex lattice in ceramic YBaCuO are studied by the measurements of ac response U in the cavity of the hollow cylinder placed in the magnetic field H aligned along the cylinder's axis. It is observed that the U(H) dependence is reaching saturation with increase of magnetic field. We interpret this effect by nonlocality of the vortex lattice elastic constants. Based on the analysis of the response dependence on excitation frequency, we conclude that vortex lattice deformation vector decreases at higher frequencies. The amplitude-frequency characteristics of the response indicate that vortices perform overdamped oscillations. The estimated damping coefficient value exceeds the evaluation by Bardeen-Stephen theory.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P. J.
2011-09-01
Context. A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. Aims: We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. Methods: We perform numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. Results: We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker tachoclines allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e. those with the largest amplitudes of the initial field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile. Conclusions: The results indicate that buoyancy is a common phenomena when the magnetic field is amplified through dynamo action in a narrow layer. It is, however, very hard for the field to rise up to the surface without losing its initial coherence.
Structural and magnetic correlation of Finemet alloys with Ge addition
NASA Astrophysics Data System (ADS)
Muraca, D.; Cremaschi, V.; Moya, J.; Sirkin, H.
The correlation between saturation magnetization and the magnetic moment per Fe atom in the nanocrystalline state is studied for Finemet-type alloys. These studies were performed on nanocrystalline ribbons whose compositions were Fe 73.5Si 13.5-xGe xNb 3B 9Cu 1 ( x=8, 10 and 13.5 at%). We used a simple lineal model, X-ray diffraction and Mössbauer spectroscopy data to calculate the magnetic contribution of the nanocrystals and the results were contrasted with the measured saturation magnetization of the different alloys. The technique presented here provides a very simple and powerful tool to compute the magnetic contribution of the nanocrystalline phase to the alloy. This calculus could be used to determine the volume fraction of nanocrystalline and amorphous phases in the nanocrystallized alloy, without using a very sophisticated microscopy method.
NASA Astrophysics Data System (ADS)
Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.
2013-05-01
Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.
Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang
2015-07-15
Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater. Copyright © 2015. Published by Elsevier B.V.
Antibiotic loading and release studies of LSMO nanoparticles embedded in an acrylic polymer
NASA Astrophysics Data System (ADS)
Biswas, Sonali; Keshri, Sunita; Goswami, Sudipta; Isaac, Jinu; Ganguly, Swastika; Perov, Nikolai
2016-12-01
In this paper, we present the drug loading and release works of ? (LSMO) manganite nanoparticles (NPs). The LSMO NPs, grown using the sol-gel method, were embedded in an acrylic interpenetrating polymer network to make the sample applicable for biomedical purposes. The results of scanning electron microscopy showed that these NPs were well dispersed in the polymer. The grain size of these NPs lies in the range of 25-45 nm, as confirmed by transmission electron microscopy. The measurements of DC magnetization and hysteresis loops reveal that the basic magnetic behaviour of the LSMO NPs remained almost unaltered even after embedding in polymer, but with lower saturation value of magnetization. The drug loading and release studies of the grown sample were carried out using an antibiotic, ciprofloxacin. The minimum inhibitory effect of the sample loaded with this drug has exhibited high activity against different strains of bacteria, comparable to the pure ciprofloxacin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Manju, E-mail: marora@nplindia.org; Zargar, R. A., E-mail: rayeesphy12@gmail.com
2015-08-28
Fe{sub 3}O{sub 4}:Porous carbon (Fe{sub 3}O{sub 4}:PC) nano-magnetic composites were prepared by using different weight fractions of acid treated PC by the chemical co-precipitation route and annealed at 573 K, 773 K and 973 K temperatures in inert N{sub 2} gas atmosphere for 2 hrs to obtain desired stoichiometry of nanocomposites. The structural, morphological and magnetic properties of these composites were characterized by powder XRD, TEM, EPR and VSM analytical techniques. The crystallinity of the composites, g-value and spin concentration increases with increasing annealing temperature. TEM images confirmed the formation of nanosized ferrite nanoprticles whose size increases from 23 nm to 54 nm on increasingmore » annealing temperature. Porous carbon increases porosity, coercivity and reduces saturation magnetization of these prepared nanocomposites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisolia, M. N.; Bruno, F. Y.; Sando, D.
2014-10-27
We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C} = 31.8 K with a saturation magnetization of 4.2 μ{sub B} per formula unit at 10 K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ∼0.7 eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growthmore » technique such as pulsed laser deposition.« less
Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites
NASA Astrophysics Data System (ADS)
Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.
2007-09-01
The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25Fe2O3 and Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gd)O·5.25Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.
Magnetodielectric effect in CdS nanosheets grown within Na-4 mica
NASA Astrophysics Data System (ADS)
Mandal, Amrita; Mitra, Sreemanta; Datta, Anindya; Banerjee, Sourish; Chakravorty, Dipankar
2012-04-01
CdS nanosheets of thickness 0.6 nm were grown within the interlayer spaces of Na-4 mica. Magnetization measurements carried out in the temperature range 2-300 K showed the composites to have weak ferromagnetic-like properties even at room temperature. The saturation magnetization (MS) at room temperature was found to be higher than that reported for CdS nanoparticles. The higher value of MS may be ascribed to the presence of a large number defects in the present CdS system, due to a large surface to volume ratio in the nanosheets as compared to that of CdS nanoparticles. The nanocomposites exhibited a magnetodielectric effect with a dielectric constant change of 5.3% for a magnetic field of 0.5 T. This occurred due to a combination of magnetoresistance and Maxwell-Wagner effect as delineated in the model developed by Catalan.
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Mansour, S. F.; Ismael, H.
2015-03-01
M-type hexaferrite (MFe12O19), M=Ba or Sr nanoparticles with hexagonal crystal structure have been successfully synthesized by a citrate auto-combustion method. BiFeO3 (BFO) was prepared by the flash auto-combustion technique. Different nanocomposites were prepared according to the formula [(1-X) MFe12O19+XBiFeO3; M=Ba or Sr, X=0.3, 0.4, 0.5 and 0.6]. The structure and morphology of the obtained nanocomposites have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). From the results, it is observed that the value of saturation magnetization decreases with increasing BFO content, which was mainly due to the contribution of the volume of the weak-magnetic BFO to the total sample volume.
Magnetic Properties of Electron-Doped LaCoO3
NASA Astrophysics Data System (ADS)
Tomiyasu, Keisuke; Sato, Mika; Koyama, Shun-Ichi; Nojima, Tsutomu; Kajimoto, Ryoichi; Ji, Sungdae; Iwasa, Kazuaki
2017-09-01
We studied electron-doped LaCo1 - yTey6 + O3 by magnetization measurements and neutron scattering. The effective Bohr magneton, estimated by Curie-Weiss fitting around room temperature, is independent of y. This suggests that magnetic Co3+(HS), not nonmagnetic Co3+(LS), is mainly replaced by doped magnetic Co2+(HS). At the lowest temperatures, a Brillouin-function-like saturating behavior persists in the magnetization curves even in the high-y samples, and neither a clear magnetic reflection nor magnetic dispersion is observed by neutron scattering. These findings indicate that the magnetic correlation is very weak, in contrast to the well-known hole-doped LaCoO3 accompanied by a drastic transition to a ferromagnetic metal. However, we also found that the low-y samples exhibit nonnegligible enhancement of the saturated magnetization by ˜2μB per a doped electron. All these characteristics are discussed in the light of the activation and inactivation of a spin-state blockade.
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling.
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E
2016-06-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; ...
2016-06-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer.more » The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.« less
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.
2016-01-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling. PMID:27248368
Tailoring magnetic domains in Gd-Fe thin films
NASA Astrophysics Data System (ADS)
Talapatra, A.; Chelvane, J. Arout; Mohanty, J.
2018-05-01
This paper presents the global modification of magnetic domains and magnetic properties in amorphous Gd19Fe81 thin films with rapid thermal processing at two distinct temperatures (250oC and 450oC), and with different time intervals viz., 2, 5, 10 and 20 minutes. 100 nm thick as-prepared films display nano-scale meandering stripe domains with high magnetic phase contrast which is the signature of perpendicular magnetic anisotropy. The films processed at 250oC for various time intervals show successive reduction in magnetic phase contrast and domain size. The domain pattern completely disappeared, and topography dominated mixed magnetic phase has been obtained for the films processed at 450oC for time intervals greater than 2 minutes. The magnetization measurements indicate the reduction in perpendicular magnetic anisotropy with increase in saturation magnetization for all the rapid thermal processed films. The experimental outputs have been used to simulate the domain pattern. Reduction in uniaxial anisotropy along with the increase in saturation magnetization successfully explain the experimental trend of decrease in domain size and magnetic contrast.
Memory characteristics of ring-shaped ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Hasunuma, M.; Sakaiya, S.
1989-03-01
For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less
Demagnetization using a determined estimated magnetic state
Denis, Ronald J; Makowski, Nathanael J
2015-01-13
A method for demagnetizing comprising positioning a core within the electromagnetic field generated by a first winding until the generated first electrical current is not substantially increasing, thereby determining a saturation current. A second voltage, having the opposite polarity, is then applied across the first winding until the generated second electrical current is approximately equal to the magnitude of the determined saturation current. The maximum magnetic flux within the core is then determined using the voltage across said first winding and the second current. A third voltage, having the opposite polarity, is then applied across the first winding until the core has a magnetic flux equal to approximately half of the determined maximum magnetic flux within the core.
Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen
2017-04-01
It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.
LaBombard, B; Lyons, L
2007-07-01
A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Mehmood, Z.; Abbas, Z.
2017-02-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
NASA Astrophysics Data System (ADS)
Matin, M.; Mondal, Rajib; Barman, N.; Thamizhavel, A.; Dhar, S. K.
2018-05-01
Here, we report an extremely large positive magnetoresistance (XMR) in a single-crystal sample of MoSi2, approaching almost 107% at 2 K in a 14-T magnetic field without appreciable saturation. Hall resistivity data reveal an uncompensated nature of MoSi2 with an electron-hole compensation level sufficient enough to expect strong saturation of magnetoresistance in the high-field regime. Magnetotransport and the complementary de Haas-van Alphen (dHvA) oscillations results, however, suggest that strong Zeeman effect causes a magnetic field-induced modulation of the Fermi pockets and drives the system towards perfect electron-hole compensation condition in the high-field regime. Thus, the nonsaturating XMR of this semimetal arises under the unconventional situation of Zeeman effect-driven electron-hole compensation, whereas its huge magnitude is decided solely by the ultralarge value of the carrier mobility. Intrinsic ultralarge carrier mobility, strong suppression of backward scattering of the charge carriers, and nontrivial Berry phase in dHvA oscillations attest to the topological character of MoSi2. Therefore, this semimetal represents another material hosting combination of topological and conventional electronic phases.
Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S; DeGeorge, V; Ohodnicki, PR
2014-05-07
Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less
NASA Astrophysics Data System (ADS)
Ahmad, Mukhtar; Grössinger, R.; Kriegisch, M.; Kubel, F.; Rana, M. U.
2013-04-01
The magnetic and microwave characterization of single phase hexaferrites of entirely new composition Ba1-xSrxCo2AlFe15O27 (x=0.2-1.0) for application in a microwave absorber, have been reported. The samples synthesized by sol-gel method were investigated by differential thermal analyzer, Fourier transform infrared spectroscope, X-ray diffractometer, field emission gun scanning electron microscope, vibrating sample magnetometer and vector network analyzer. Platelet grains exhibit well defined hexagonal shape which is a better shape for microwave absorption. M-H loops for a selected sample were measured for a temperature range of 4.2-400 K. Moreover M-H loops for all Sr-substituted samples were also measured at room temperature up to a maximum applied field of 9 T. Saturation magnetization values were calculated by the law of approach to saturation. The room temperature coercivity for all the samples is found to be a few hundred oersteds which is necessary for electromagnetic materials and makes these ferrites ideal for microwave devices, security, switching and sensing applications. The complex permittivity, permeability and reflection losses of a selected ferrite-epoxy composite were also investigated over a frequency range of 0.5-13 GHz.
Chemical Exchange Saturation Transfer (CEST): what is in a name and what isn’t?
van Zijl, Peter C.M.; Yadav, Nirbhay N.
2011-01-01
Chemical exchange saturation transfer (CEST) imaging is a relatively new MRI contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and, after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic MR principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast (MTC). In CEST MRI, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to MTC, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to MTC, CEST imaging requires sufficiently slow exchange on the MR time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. PMID:21337419
Bulk and nanocrystalline electron doped Gd0.15Ca0.85MnO3: Synthesis and magnetic characterization
NASA Astrophysics Data System (ADS)
Dhal, Lakshman; Chattarpal; Nirmala, R.; Santhosh, P. N.; Kumary, T. Geetha; Nigam, A. K.
2014-09-01
Polycrystalline Gd0.15Ca0.85MnO3 sample was prepared by solid state reaction method and nanocrystalline samples of different grain sizes of the same were prepared by sol-gel method. Phase purity and composition were verified by room temperature X-ray diffraction and SEM-EDAX analysis. Magnetization data of bulk Gd0.15Ca0.85MnO3 in 5 kOe field shows a peak at 119 K (TN) suggesting an antiferromagnetic transition. Nanocrystalline Gd0.15Ca0.85MnO3 sample ( 54 nm size) also shows a cusp at 107 K and a broad thermal hysteresis between field cooled cooling (FCC) and field cooled warming (FCW) data around this temperature. This thermal hysteresis suggests possible crystal structural transition. Field variation of magnetization of bulk Gd0.15Ca0.85MnO3 at 5 K shows a tendency to saturate, but yields a magnetic moment value of only 1.12 μB/f.u. in 70 kOe. The value of magnetization of nanocrystalline sample at 5 K in 70 kOe field is slightly larger and is 1.38 μB/f.u. which is probably due to the surface moments of the nanoparticle samples. Both the samples show Curie-Weiss-like behaviour in their paramagnetic state.
NASA Astrophysics Data System (ADS)
Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando
2018-04-01
We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.
Effect of Sc{sup 3+} on structural and magnetic properties of Mn-Zn nano ferrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angadi, Jagadeesha V.; Matteppanavar, Shidaling; Srinatha, N.
2016-05-23
In the present investigation, for the first time, we report on the effect of Sc{sup 3+} on the structural and magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2-y}O{sub 4} (y = 0.01, 0.03 and 0.05) nanoferrites synthesized by solution combustion method using the mixture of fuels. As synthesized powders were characterized for the detailed structural analysis by X-ray diffractometer (XRD), Fourier transmission infrared spectroscopy (FTIR) and room temperature magnetic properties by using vibrating sample magnetometer (VSM). The results of XRD and FTIR confirm that the formation of nano crystalline, single-phased Mn-Zn ferrite with cubic spinel structure belongs to Fd-3m spacemore » group. The room temperature magnetic studies shows that, the saturation magnetization (M{sub S}), remanence magnetization (M{sub R}) and magnetic moment (η{sub B}), magnetic particle size (D{sub m}) have found to increase with Sc{sup 3+} ion concentration up to x = 0.3 and then decrease. The values of αY-K and the magnetic particle size (D{sub m}) are found to be in the range of 68-75° and 10-19 nm respectively, with Sc{sup 3+} concentration.« less
NASA Astrophysics Data System (ADS)
Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja
We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pransisco, Prengki, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Shafie, Afza, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my
2014-10-24
This paper examines the effect of calcination process on the structural and magnetic properties material nanostructure composite of Ni{sub 0Ð}œ‡{sub 5}Zn{sub 0Ð}œ‡{sub 25}Cu{sub 0.25} Fe{sub 2}O{sub 4} ferrites. The samples were successfully prepared by sol-gel method at different calcination temperature, which are 600°C, 700°C, 800°C and 900°C. Morphological investigation, average crystallite size and microstructure of the material were examined by using X-ray diffraction (XRD) and confirmed by high resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope (FESEM). The effects of calcination temperature on the magnetic properties were calculated by using vibrating sample magnetometer (VSM). The XRD resultmore » shows single-phase cubic spinel structure with interval average size 5.9-38 nm, and grain size microstructure of the material was increasing with temperature increases. The highest magnetization saturation was reached at a temperature 800°C with value 53.89 emu/g, and the value coercive force (Hc) was inversely with the grain size.« less
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
Iacovita, Cristian; Florea, Adrian; Dudric, Roxana; Pall, Emoke; Moldovan, Alin Iulian; Tetean, Romulus; Stiufiuc, Rares; Lucaciu, Constantin Mihai
2016-10-13
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/g MNP for the small monocrystalline MNPs and only 400 W/g MNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.
Lamination effects on a 3D model of the magnetic core of power transformers
NASA Astrophysics Data System (ADS)
Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan
2017-12-01
In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.
Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuglsby, R.; Kharel, P., E-mail: parashu.kharel@sdstate.edu; Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588
2015-05-07
Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved theirmore » magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.« less
NASA Astrophysics Data System (ADS)
Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi
2018-05-01
Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.
NASA Astrophysics Data System (ADS)
Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-06-01
We have investigated the structural and magnetic properties of Nd0.67Ba0.33MnO3 manganite and partial replacement of Mn with Fe and Cu compounds followed by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and vibrating sample magnetometer (VSM). The Rietveld refinement of XRD indicates orthorhombic crystal structure with I-mma space group for all the compounds and thus obtained lattice parameters confirm the presence of co-operative Jahn-Teller effect. XRD and XAS spectra results suggests the existence of Fe3+ in Fe-substituted compound where as a mixed state of Cu2+ and Cu3+ ions in the Cu-substituted compound. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease upon the substitution of Fe and Cu atoms because of the suppression of double exchange interaction. The theoretically obtained and experimentally determined values of effective PM moment and saturation magnetic moment confirms the presence of inhomogeneous magnetic states containing FM and antiferromagnetic clusters in all the studied compounds.
NASA Astrophysics Data System (ADS)
Xu, Feng; Chen, Xin; Ma, Yungui; Phuoc, N. N.; Zhang, Xiaoyu; Ong, C. K.
2008-10-01
In this work, the high-frequency magnetic permeability spectra of as-sputtered FeCoSiN films with various Si concentrations were investigated. The soft magnetic properties with an induced in-plane uniaxial anisotropy can only be obtained within some composition ranges because of the formation of different granular microstructures. The permeability spectra measured without any external fields (He) were well fitted based on the phenomenological Landau-Lifshitz-Gilbert equation. Results show that with the increase in Si concentration, the saturated magnetization 4πMs, the resonance frequency fr, the permeability μ, and the qualify factor Q values decrease, while the damping coefficient α and resonant frequency linewidth Δf increase. The increase in Gilbert damping coefficient α or G is ascribed to the increase in mosaicity or magnetic ripples with higher volume proportion of Si-rich matrix. The investigations on Δf-He relations indicate the extrinsic damping contribution from the two-magnon scattering in FeCoSiN, which is suggested to be due to the change in the granular microstructures compared with FeCoN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borza, F., E-mail: fborza@phys-iasi.ro; Lupu, N.; Dobrea, V.
2015-05-07
Ferromagnetic Fe-Ni-Co-Al-(Ta,Nb)-B microwires with diameters from 170 μm to 50 μm, which possess both superelastic and good magnetic properties, have been prepared by rapid quenching from the melt using the in rotating water spinning technique followed by cold-drawing and ageing. The cold-drawing and annealing processes lead to the initialization of premartensitic phases as confirmed by the X-ray diffraction and scanning transmission electron microscopic investigations, more significantly in the 50 μm cold-drawn microwires. An increase in the coercive field and in the saturation magnetization has been obtained by annealing, more importantly in the case of Nb-containing alloy. Ageing by thermal or current annealing ledmore » to the initialization of the superelastic effect. High values of strain of up to 1.8%, very good repeatability under successive loading, and values of superelastic effect of up to 1.2% have been achieved. The structural analysis coupled with the stress-strain data suggests that these materials annealed at 800 °C have superelastic potential at reduced ageing times. The magnetic behavior was found to be easily tailored through both thermal and thermomagnetic treatments with changes in the magnetic parameters which can be contactless detected. The results are important for future applications where both mechanical and magnetic properties matter, i.e., sensing/actuating systems.« less
NASA Astrophysics Data System (ADS)
Zare, Samad; Ati, Ali A.; Dabagh, Shadab; Rosnan, R. M.; Othaman, Zulkafli
2015-06-01
A series of nano-sized Zn-Al substituted cobalt ferrite Co(1-x)Zn(x)Fe2-xAlxO4 with 0.0 ⩽ x ⩽ 1.0 have been synthesized by chemical co-precipitation technique. The XRD spectra revealed the single phase spinel structure of Co(1-x)Zn(x)Fe2-xAlxO4 with average size of nanoparticles are estimated to be 17-30 nm. These are small enough to achieve the suitable signal to noise ratio, which is important in the high-density recording media. The FTIR spectra show the characteristic of two strong absorption bands at 560-600 cm-1 corresponds to the intrinsic stretching vibrations of the metal at the tetrahedral site and lowest band is observed at 370-410 cm-1 corresponds to octahedral site. The crystalline structures of nanoparticles composite were characterized by Field Emission Scanning Electron Microscopy (FE-SEM). The magnetic properties such as saturation magnetization, remanence magnetization, and coercivity were calculated from the hysteresis loops. Saturation magnetization were found to increase up to x = 0.4 while remanence magnetization and coercivity continuously decrease with increasing Zn-Al concentration. The stability in coercivity while increase in saturation magnetization confirms that the Co0.6Zn0.4Fe1.6Al0.4O4 ferrite sample is suitable for applications in high-density recording media.
Saturated Widths of Magnetic Islands in Tokamak Discharges
NASA Astrophysics Data System (ADS)
Halpern, F.; Pankin, A. Y.
2005-10-01
The new ISLAND module described in reference [1] implements a quasi-linear model to compute the widths of multiple magnetic islands driven by saturated tearing modes in toroidal plasmas of arbitrary aspect ratio and cross sectional shape. The distortion of the island shape caused by the radial variation in the perturbation is computed in the new module. In transport simulations, the enhanced transport caused by the magnetic islands has the effect of flattening the pressure and current density profiles. This self consistent treatment of the magnetic islands alters the development of the plasma profiles. In addition, it is found that islands closer to the magnetic axis influence the evolution of islands further out in the plasma. In order to investigate such phenomena, the ISLAND module is used within the BALDUR predictive modeling code to compute the widths of multiple magnetic islands in tokamak discharges. The interaction between the islands and sawtooth crashes is examined in simulations of DIII-D and JET discharges. The module is used to compute saturated neoclassical tearing mode island widths for multiple modes in ITER. Preliminary results for island widths in ITER are consistent with those presented [2] by Hegna. [1] F.D. Halpern, G. Bateman, A.H. Kritz and A.Y. Pankin, ``The ISLAND Module for Computing Magnetic Island Widths in Tokamaks,'' submitted to J. Plasma Physics (2005). [2] C.C. Hegna, 2002 Fusion Snowmass Meeting.
NASA Astrophysics Data System (ADS)
Niu, Q.; Yu, W. C.; Yip, K. Y.; Lim, Z. L.; Kotegawa, H.; Matsuoka, E.; Sugawara, H.; Tou, H.; Yanase, Y.; Goh, Swee K.
2017-06-01
In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnel, Karine; Safsten, Alex; Rytting, Matthew
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer.more » The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.« less
Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.
Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming
2009-01-01
An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.
Ecklund, Kirsten; Vajapeyam, Sridhar; Mulkern, Robert V; Feldman, Henry A; O'Donnell, Jennifer M; DiVasta, Amy D; Gordon, Catherine M
2017-07-01
Adolescents and women with anorexia nervosa have increased bone marrow fat and decreased bone formation, at least in part due to hormonal changes leading to preferential stem cell differentiation to adipocytes over osteoblasts. The purpose of this study was to evaluate marrow fat content and correlate with age and disease severity using knee MRI with T1 relaxometry (T1-R) and MR spectroscopy (MRS) in 70 adolescents with anorexia nervosa. We enrolled 70 girls with anorexia nervosa who underwent 3-T knee MRI with coronal T1-W images, T1-R and single-voxel proton MRS at 30 and 60 ms TE. Metaphyses were scored visually on the T1-W images for red marrow. Visual T1 score, T1 relaxometry values, MRS lipid indices and fat fractions were analyzed by regression on age, body mass index (BMI) and bone mineral density (BMD) as disease severity markers. MRS measures included unsaturated fat index, T2 water, unsaturated and saturated fat fractions. All red marrow measures declined significantly with age. T1-R values were associated negatively with BMI and BMD for girls ≤16 years (P=0.03 and P=0.002, respectively) and positively for those≥17 years (P=0.05 and P=0.003, respectively). MRS identified a strong inverse association between T2 water and saturated fat fraction from 60 ms TE data (r=-0.85, P<0.0001). There was no association between unsaturated fat index and BMI or BMD. The association between T1 and BMI and BMD among older girls suggests more marrow fat in those with severe anorexia nervosa. In contrast, the physiological association between marrow fat content and age remained dominant in younger patients. The strong association between T2 water and saturated fat may relate to the restricted mobility of water with increasing marrow fat.
Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder
NASA Astrophysics Data System (ADS)
Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid
2016-07-01
NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.
Experiments in Ice Contaminant Remanent Magnetization of Dusty Frost Deposits
NASA Astrophysics Data System (ADS)
Grossman, Y.; Aharonson, O.; Shaar, R.
2017-12-01
Sedimentary rocks can acquire magnetization in the presence of an external field as grains settle out of suspension in a water column - a process known as Depositional Remanent Magnetization (DRM). In analogy with this, here we propose and experimentally demonstrate a new mechanism for acquisition of magnetization by ice and particulate mixtures which we term Ice Contaminant Remanent Magnetization (ICRM). This phenomenon results from the settling of atmospheric dust containing magnetic particles (e.g. magnetite or other iron oxides). Upon freezing, magnetic dust particles assume a preferential orientation that depends on the external planetary field, resulting in bulk magnetization of the dusty ice. Hence over geologic timescales, the ice stratigraphy is expected to record the geomagnetic history. To test this hypothesis, we designed a set of experiments in which mixtures of ice and dust were deposited in a controlled ambient magnetic field environment. We measured the ratio between the volume normalized magnetization of the dusty ice (m) and the applied field (H) during deposition of the mixture, which is expressed as the effective ICRM susceptibility: m=χICRMH. A magnetic field was applied by a 3-axis Helmholtz coil at the Weizmann Simulating Planetary Ices & Environments Laboratory, and the frozen samples were analyzed in a 2G-Entreprises SQUID Rock Magnetometer at the Hebrew University Institute for Earth Sciences. We measured a clear correlation in amplitude and direction between the ambient magnetic field applied during deposition and the remanent magnetic moment of the resulting samples. We studied various concentrations and particle sizes (diameters 5 µm to 50 µm) of iron and magnetite particles. Effective bulk susceptibilities show a range of values, starting from 10-3 and up to values that saturate the analytical instrument. Our preliminary results indicate that natural ice deposits may acquire variable magnetization due to ICRM, which may in turn be interpreted as paleomagnetic records on Earth and other planets.
Magnetic signature of the 22 June 1932 tsunami deposits (Jalisco, Mexican Pacific coast)
NASA Astrophysics Data System (ADS)
Bógalo, M. F.; Ramírez-Herrera, M.-T.; Goguitchaichvili, A.; Rey, D.; Mohamed, K. J.; Calvo-Rathert, M.; Corona, N.
2017-06-01
Recent studies have demonstrated that rock-magnetic analysis may provide additional information to distinguish and characterize extreme marine inundation events such as tsunamis. Rock-magnetic proxies reinforce and improve the environmental evidences supplied by other methods, adding some decisive clues for the interpretation of the origin and genesis of the sedimentary deposits. Here we report rock-magnetic, XRD, and SEM microscopy results obtained in the Palo Verde estuary (Colima Pacific coast, Mexico) in order to enhance the tools for identification and reconstruction of two tsunami-induced deposits. The sedimentary sequence includes two sand units, a tsunami deposit (PV1) associated with the 22 June 1932 tsunami and a deeper sandy layer (PV2) related to a possible paleotsunami that occurred around 1300 C.E. Both sandy units are topped by finer grained units. Magnetic properties exhibit a significant correlation with the stratigraphy. High susceptibility (χ) and high saturation isothermal remanence (SIRM) values typical of high concentrations of (titano)magnetite are a distinctive feature of the most recent sandy tsunamigenic unit PV1 and the overlaying soil. The lower sandy tsunamigenic unit PV2 shows significantly lower χ and SIRM values, indicating lower concentration of (titano)magnetite in this unit and the overlaying clayey-silt unit. The latter also shows a higher coercivity component associated with (titano)hematite. Magnetic grain-size differences are also observed between PV1 and PV2 suggesting differences in hydraulic conditions at the time of deposition. The bulk mineralogical composition and sediment texture of these units also support the hypothesis of different provenances for each tsunamigenic unit as inferred from magnetic properties.
Operating a magnetic nozzle helicon thruster with strong magnetic field
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2016-03-01
A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
Mehta, Virat; Biskup, Nevenko; Arenholz, E; ...
2015-04-23
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO 3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO 3 and (La,Sr)(Al,Ta)O 3 substrates and the lowest values are found in thin films in compression on LaAlO 3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co 2+ and Co 3+ as well as lowmore » spin Co 3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less
NASA Astrophysics Data System (ADS)
Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.
2015-04-01
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.
Phase relationships in the CeFe 8 Co 3 Ti 1 - y Si y system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, B. S.; McGuire, M. A.; Susner, M. A.
We investigated the phase formation behavior of the nominal CeFe 8Co 3Ti 1-ySi y system for 0 ≤ y ≤ 0.6 by powder x-ray diffraction and scanning electron microscopy with energy dispersive x-ray spectroscopy for ingots formed by arc-melting then annealing at 1000 °C and quenching to room temperature. The ingots are seen to nearly single phase for y ≤ 0.4 and are multi-phase for y ≥ 0.5 though a compound of the ThMn 12 type does indeed form for all values of y. We also measured the saturation magnetizations (M s), Curie temperatures (T C), and magnetic anisotropy fieldsmore » (H a) for the y ≤ 0.4 samples and the values of Ms and Ha appear to be nearly identical for all y 0.4. TC, but, is seen to increase about 20 °C in this range for increasing y.« less
Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method
NASA Astrophysics Data System (ADS)
Shao, Bin; Yin, Xueguo; Hua, Weidong; Ma, Yilong; Sun, Jianchun; Li, Chunhong; Chen, Dengming; Guo, Donglin; Li, Kejian
2018-05-01
Sponge-like nickel composed of micro-chains with a diameter of 1-5 μm was selectively synthesized by the hydrothermal method, using sodium hydroxide (NaOH) as the alkaline reagent, aqueous hydrazine as reducing agent and citric acid as a coordination agent. The time-dependent samples prepared at different NaOH concentrations were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The results showed that the agglomerates of nickel citrate hydrazine complex nanoplates were first precipitated and then reduced to prickly nickel micro-chains at a lower NaOH concentration, which played a role in the further formation of sponge-like nickel. Also, the probable growth mechanism of the sponge-like nickel was proposed. The magnetic properties of sponge-like nickel were studied using a vibrating sample magnetometer. The sponge-like nickel exhibited a ferromagnetic behavior with a saturation magnetization value of 43.8 emu g-1 and a coercivity value of 120.7 Oe.
Phase relationships in the CeFe 8 Co 3 Ti 1 - y Si y system
Conner, B. S.; McGuire, M. A.; Susner, M. A.; ...
2017-04-07
We investigated the phase formation behavior of the nominal CeFe 8Co 3Ti 1-ySi y system for 0 ≤ y ≤ 0.6 by powder x-ray diffraction and scanning electron microscopy with energy dispersive x-ray spectroscopy for ingots formed by arc-melting then annealing at 1000 °C and quenching to room temperature. The ingots are seen to nearly single phase for y ≤ 0.4 and are multi-phase for y ≥ 0.5 though a compound of the ThMn 12 type does indeed form for all values of y. We also measured the saturation magnetizations (M s), Curie temperatures (T C), and magnetic anisotropy fieldsmore » (H a) for the y ≤ 0.4 samples and the values of Ms and Ha appear to be nearly identical for all y 0.4. TC, but, is seen to increase about 20 °C in this range for increasing y.« less
Faraday rotation signatures of fluctuation dynamos in young galaxies
NASA Astrophysics Data System (ADS)
Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy
2018-03-01
Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.
NASA Astrophysics Data System (ADS)
Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi
2016-09-01
To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.
Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii
2017-12-01
Two sets of Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.
Fe-based bulk amorphous alloys with iron contents as high as 82 at%
NASA Astrophysics Data System (ADS)
Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu
2015-07-01
Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.
Synthesis, structural and magnetic properties of Mg0.6Zn0.4CrxFe2-xO4 (0.0 ≤ x ≤ 2.0) nano ferrite
NASA Astrophysics Data System (ADS)
Verma, R.; Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Modak, S. S.; Mazaleyrat, F.
2018-05-01
Present study reports, effect on structural, magnetic properties of Cr doped Mg-Zn nano-ferrite: Mg0.6Zn0.4CrxFe2-xO4 (0.0≤ x≤2.0), synthesized by sol-gel auto combustion method. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were utilized to monitor the effect of Cr substitution on structural, magnetic properties, and correlation between them. XRD confirms the formation of single phase spinel nano ferrite with particle size ranging between 3.9 - 40.5 nm, whereas EDS confirms the formation of the estimated ferrite composition. Distribution of Mg, Zn, Cr, Fe cations on tetrahedral (A), octahedral (B) site show mixed spinel structure. Increase of Cr content leads to increase of specific surface area (4.35 - 28.28 m2/g), decrease of experimental saturation magnetization at 300 K (varies between 0.57 - 40.95 Am2/kg), and theoretical magnetization at 0 K (range between 13.37 - 56.77 Am2/kg). Observed changes in coercivity values reflect soft magnetic nature of the studied ferrites.
Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Kush; Thakur, Preeti; Thakur, Atul, E-mail: atulphysics@gmail.com
2016-05-23
Ni-Zn substituted M-type barium ferrite nanocomposite has been prepared via citrate precursor method. Nanocomposite having composition BaNi{sub 0.5}Zn{sub 0.5}Fe{sub 11}O{sub 19} was sintered at 900°C for 3hrs and characterized by using different characterization techniques. X-ray diffraction (XRD) confirmed the formation of double phase with most prominent peak at (114). Average crystallite size for pure BaM and BNZFO were found to be 36 nm & 45 nm. Field emission scanning electron microscopy (FESEM) confirmed the formation of hexagonal platelets with a layered structure. Magnetic properties of these samples were investigated by using vibrating sample magnetometer (VSM). Magnetic parameters like saturation magnetization (M{sub s}),more » coericivity (H{sub c}) and squareness ratio (SQR) of nanocomposite were found to be 60 emu/g, 3663 Oe and 0.6163 respectively. These values were noticed to be higher as compared to pure BaM. Enhanced magnetic properties of nanocomposite were strongly dependent on exchange coupling. Therefore these properties make this nanocomposite a suitable candidate for magnetic recording and high frequency applications.« less
NASA Astrophysics Data System (ADS)
Gholizadeh, Ahmad
2018-04-01
In the present work, the influence of different sintering atmospheres and temperatures on physical properties of the Cu0.5Zn0.5Fe2O4 nanoparticles including the redistribution of Zn2+ and Fe3+ ions, the oxidation of Fe atoms in the lattice, crystallite sizes, IR bands, saturation magnetization and magnetic core sizes have been investigated. The fitting of XRD patterns by using Fullprof program and also FT-IR measurement show the formation of a cubic structure with no presence of impurity phase for all the samples. The unit cell parameter of the samples sintered at the air- and inert-ambient atmospheres trend to decrease with sintering temperature, but for the samples sintered under carbon monoxide-ambient atmosphere increase. The magnetization curves versus the applied magnetic field, indicate different behaviour for the samples sintered at 700 °C with the respect to the samples sintered at 300 °C. Also, the saturation magnetization increases with the sintering temperature and reach a maximum 61.68 emu/g in the sample sintered under reducing atmosphere at 600 °C. The magnetic particle size distributions of samples have been calculated by fitting the M-H curves with the size distributed Langevin function. The results obtained from the XRD and FTIR measurements suggest that the magnetic core size has the dominant effect in variation of the saturation magnetization of the samples.
Structural, optical and magnetic properties of Er3+, Tb3+: YIG films prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Elhamali, Suleiman M.; Ibrahim, N. B.; Radiman, S.
2018-04-01
Nanoparticle Y2.8-xTb0.2ErxFe5O12 (x = 0, 0.8, 1.4, 1.8, and 2.2) films were successfully prepared using a sol-gel method. The films were deposited on a quartz substrate, followed by annealing process in air at 900 °C. The XRD patterns revealed the single-phase garnet structure of obtaining films. The results confirmed the successful incorporation of erbium and terbium ions into the YIG structure. The lattice parameter increases at low Er3+ concentration, then decreases with increment of Er3+ ions and the lowest value of 12.34 Å was obtained at (x = 2.2). The sizes of nanoparticles are in the average range from 29 to 46 nm. The addition of Er3+ ions significantly enhanced the transparency (from 64 % to 95 %) in the visible and near infrared region. Magnetic properties study showed that all films are soft ferrimagnetic materials. The saturation magnetization value increased to 190 emu/cm3 at (x=1.4), then decreased dramatically with increment of x content. Coercivity field noticeably increased with the increments of x content.
Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys
NASA Astrophysics Data System (ADS)
Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.
2013-10-01
Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.
Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix
Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles
2016-01-01
Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659
NASA Astrophysics Data System (ADS)
Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Holek, Martin
2017-11-01
This paper reports a honey-mediated green synthesis of ZnFe2O4 spinel ferrite nanoparticles and the effect of further annealing on structural, magnetic, optical, dielectric and electrical properties. X-ray diffraction study confirmed the well formation of ZnFe2O4 spinel ferrite crystal structure. Raman and Fourier transform infrared spectroscopy confirmed the formation of spinel ferrite crystal structure. The scanning electron microscopy study revealed the formation of spherical morphology at lower annealing temperature with achieved particle size 30-60 nm, whereas, octahedral like morphology at higher annealing temperature with particle size 50-400 nm. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. The estimated magnetic parameter such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) showed variation in value with nano-crystallite size. The highest saturation magnetization (Ms) was 12.81 emu/g for as-synthesized ZnFe2O4 spinel ferrite nanoparticles, whereas, highest coercivity (Hc) was 25.77 Oe for ZnFe2O4 nanoparticles annealed at high temperature 1000 °C. UV-Visible reflectance spectroscopy showed the band gap variation from 1.90 eV to 2.14 eV with the increase of annealing temperature. The dielectric constant and dielectric loss were decreased with frequency showing the normal behavior of spinel ferrites. The variation in conductivity is explained in terms of the variation in microstructure and variation in the mobility of charge carriers associated with the cation redistribution induced by annealing or grain size. The modulus and impedance spectroscopy study revealed the influence of bulk grain and the grain boundary on the electrical resistance and capacitance of ZnFe2O4 nanoparticles. The results presented in this work are helpful for green synthesis of well-controlled size, morphology and physical properties of ZnFe2O4 nanoparticles.
Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.
2017-05-01
We studied the surface spins disorder in uncoated and silica (SiO2) coated maghemite (γ-Fe2O3) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (TB) for SiO2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (Ms) of SiO2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1- BTb)) was fitted well for both uncoated and SiO2 coated nanoparticles and yields: B =3×10-7 K-b, b=2.22 and B=0.0127 K-b, b=0.57 for uncoated and SiO2 coated nanoparticles, respectively. Higher value of B for SiO2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO2 coated nanoparticles than in uncoated γ-Fe2O3 nanoparticles.
Zhao, Guo-meng; Wang, Jun; Ren, Yang; Beeli, Pieder
2013-06-12
We report high-energy synchrotron X-ray diffraction spectrum and high-temperature magnetic data for multiwalled carbon nanotubes (MWCNTs) embedded with Fe and Fe3O4 nanoparticles. We unambiguously show that the saturation moments of the embedded Fe and Fe3O4 nanoparticles are enhanced by a factor of about 3.0 compared with what would be expected if they would be unembedded. More intriguingly the enhanced moments were completely lost when the sample was heated up to 1120 K, and the lost moments were completely recovered through two more thermal cycles below 1020 K. These novel results cannot be explained by the magnetism of the Fe and Fe3O4 impurity phases, the magnetic proximity effect between magnetic nanoparticles and carbon, and the ballistic transport of MWCNTs.
NASA Astrophysics Data System (ADS)
Xiao, Ling; Sun, Y. H.; Yu, Lie
2011-07-01
This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.
Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications
NASA Astrophysics Data System (ADS)
Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia
2013-10-01
Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.
Carbon matrix based magnetic nanocomposites for potential biomedical applications.
Izydorzak-Wozniak, M; Leonowicz, M
2014-03-01
It was found that by varying the pyrolysis temperature of the polymeric precursor, carbon matrix magnetic nanocomposites with different constitution and fractions of magnetic component were made. X-ray diffraction, transmission electron microscopy and Raman spectroscopy revealed the presence of nanocrystallites (NCs) of Co, Fe3C and Ni embedded in porous, partially-graphitized carbon matrix. Vibrating sample magnetometer measurements enabled to determine the correlation between NCs size distribution and magnetic properties. The magnetic studies confirmed that the coercivity, saturation and remanent magnetizations, as well as fraction of the magnetic component depend on the pyrolysis temperature. The Co#C and Fe3C#C composites exhibited ferromagnetic behavior with a remanent to saturation magnetization (M(R)/M(S)) ratio ranging from 0.25 to 0.3, whereas in the Ni containing samples a relatively small M(R)/M(S) ratio point to significant contribution of superparamagnetic interactions. As the carbon matrix magnetic nanocomposites are proposed for biomedical application the basic cytotoxicity test were performed to evaluate a potential toxic effect of the materials on MG-63 cells line.
Stability properties and fast ion confinement of hybrid tokamak plasma configurations
NASA Astrophysics Data System (ADS)
Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.
2015-11-01
In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.
NASA Astrophysics Data System (ADS)
Sapkota, Keshab R.; Maloney, F. Scott; Wang, Wenyong
2018-04-01
In this work, we report unusual observations of Kondo effect and coexistence of Kondo effect and ferromagnetism in indium tin oxide (ITO) nanowires that were synthesized without incorporating any magnetic impurities. The temperature-dependent resistivity (ρ -T ) data exhibited an upturn below 80 K and then tended to saturate below 10 K. The ρ -T and magnetoresistance data were analyzed using the n -channel Kondo model, and from the obtained values of S =1 and n ˜1 , the nanowires were expected to be an underscreened Kondo system. A model was also proposed to explain the formation of localized S =1 spin centers in the ITO nanowires. This work could provide insights into the understanding of spin-related novel phenomena in metal oxide nanostructures.
The limiting velocity effect in a magnetically held discharge with a moving wall
NASA Astrophysics Data System (ADS)
Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.
1991-08-01
Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.
Structural and magnetic properties of barium-gadolinium hexaferrites
NASA Astrophysics Data System (ADS)
Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.
A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba 1-xGd x)O·5.25Fe 2O 3 ( x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe 2O 3) and GdFeO 3 were detected in the remaining samples. Coercivity ( Hc) shows remarkably high values, ˜293 kA/m for x=0.20 and 0.30 with a maximum of 322 kA/m for x=0.25. Specific saturation magnetization ( σsat) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.
Coherence length saturation at the low temperature limit in two-dimensional hole gas
NASA Astrophysics Data System (ADS)
Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi
2018-05-01
The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.
Zhu, Zongmin; Han, Zhixuan; Bi, Xiangyang; Yang, Wenlin
2012-09-01
Environmental contamination due to uncontrolled e-waste recycling is an emerging global problem. The aim of this study is to test the applicability of magnetic methods for detecting the metal pollutants emitted from e-waste recycling activities. Dust samples collected from a typical e-waste recycling region in Guiyu, Guangdong Province, China, were investigated using magnetic, geochemical, micro-morphological and mineralogical analysis. The values of mass-specific susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) in dusts from e-waste recycling impacted areas ranged from 101 to 636×10(-8) m(3) kg(-1) and from 10.5 to 85.2×10(-3) Am(2) kg(-1), respectively. There was a significant correlation between SIRM and χ (r(2)=0.747, p<0.001), indicating that ferrimagnetic minerals were dominating χ in the dust samples. The values of χ(fd)% varied from 2.6 to 4.6% with a mean of 3.4%, which suggested that magnetic carriers in the dusts are predominately coarse-grained particles. Two shapes of magnetic particles, spherule (10-150 μm) and angular-shaped particles (30-300 μm), were identified by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analyses. κ-T curves, magnetic hysteresis loops and X-ray diffraction (XRD) analysis indicated that these magnetic particles were magnetite and goethite. There were significant correlations between SIRM and heavy metals (especially Cd, Co, Fe, Ni and Zn) as well as the Tomlinson pollution load index (PLI) of the dust, indicating that SIRM can be used as an efficient proxy for metal pollution in the e-waste recycling impacted area. Copyright © 2012 Elsevier B.V. All rights reserved.
Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.
2013-01-01
In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
Physics of the saturation of particle acceleration in relativistic magnetic reconnection
NASA Astrophysics Data System (ADS)
Kagan, Daniel; Nakar, Ehud; Piran, Tsvi
2018-05-01
We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.
Schmidt, Barbara; Roberts, Robin S; Whyte, Robin K; Asztalos, Elizabeth V; Poets, Christian; Rabi, Yacov; Solimano, Alfonso; Nelson, Harvey
2014-10-01
To compare oxygen saturations as displayed to caregivers on offset pulse oximeters in the 2 groups of the Canadian Oxygen Trial. In 5 double-blind randomized trials of oxygen saturation targeting, displayed saturations between 88% and 92% were offset by 3% above or below the true values but returned to true values below 84% and above 96%. During the transition, displayed values remained static at 96% in the lower and at 84% in the higher target group during a 3% change in true saturations. In contrast, displayed values changed rapidly from 88% to 84% in the lower and from 92% to 96% in the higher target group during a 1% change in true saturations. We plotted the distributions of median displayed saturations on days with >12 hours of supplemental oxygen in 1075 Canadian Oxygen Trial participants to reconstruct what caregivers observed at the bedside. The oximeter masking algorithm was associated with an increase in both stability and instability of displayed saturations that occurred during the transition between offset and true displayed values at opposite ends of the 2 target ranges. Caregivers maintained saturations at lower displayed values in the higher than in the lower target group. This differential management reduced the separation between the median true saturations in the 2 groups by approximately 3.5%. The design of the oximeter masking algorithm may have contributed to the smaller-than-expected separation between true saturations in the 2 study groups of recent saturation targeting trials in extremely preterm infants. Copyright © 2014 Elsevier Inc. All rights reserved.
A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.
Fan, Xuliang; Liu, Jinliang
2014-02-01
High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Liu, Jinliang
2013-02-01
As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.
NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Rodrigo; Socrates, Aristotle
2013-04-20
We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies.more » Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.« less
Zhang, Yu; Liu, Jinliang
2013-02-01
As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.
Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla
Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.
2016-01-01
Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566
NASA Astrophysics Data System (ADS)
Lappe, S. L.; Harrison, R. J.; Feinberg, J. M.
2012-12-01
The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' in ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 8-27 mm3 graphite crucible, heated up to 1350°C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in fixed orientation and quenched into water in a range of known magnetic fields from 0.2 mT to 1.5 mT. We present a comparison of all non-heating methods commonly used for paleointensity determination of extraterrestrial material. All samples showed uni-directional, single-component demagnetization behaviour. Saturation REM ratio (NRM/SIRM) and REMc ratio show non-linear behaviour as function of applied field and a saturation value < 1. Using the REM' method the samples showed approximately constant REM' between 100 and 150 mT AF-field. Plotting the average values for this field range again shows non-linear behaviour and a saturation value < 1. Another approach we examined to obtain calibration curves for paleointensity determination is based on ARM measurents. We also present an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal curve (FORC) diagram to generate a Preisach distribution of coercivities and interaction fields within the sample and then physically models the acquisition of TRM as function of magnetic field, temperature and time using thermal relaxation theory. The comparison of observed and calculated NRM demagnetisation spectra is adversely effected by a large population of particles in the single-vortex state. Comparison of observed and calculated REM' curves, however, yields much closer agreement in the high-coercivity SD-dominated range. Calculated values of the average REM' ratio show excellent agreement with the experimental values - including the observed non-linearity of the remanence acquisition curve - suggesting that this method has the potential to reduce the uncertainties in non-heating paleointensity methods for extraterrestrial samples. [1] AR Muxworthy and D Heslop(2011) A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 1. Theoretical framework. Journal of Geophysical Research, 116, B04102, doi:10.1029/2010JB007843. [2] AR Muxworthy, D Heslop, GA Paterson, and D Michalk. A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 2. Experimental testing. Journal of Geophysical Research, 116, B04103, doi:10.1029/2010JB007844.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.
2012-10-15
Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao
2018-02-01
A series of Ni55-x Fe x Mn20Ga25 (0 ⩽ x ⩽ 5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x = 0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M → L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M → 5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5 × 105 J m-3) for the alloys with x > 3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x = 4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.
Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power
NASA Astrophysics Data System (ADS)
Iacovita, Cristian; Stiufiuc, Rares; Radu, Teodora; Florea, Adrian; Stiufiuc, Gabriela; Dutu, Alina; Mican, Sever; Tetean, Romulus; Lucaciu, Constantin M.
2015-10-01
Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.
NASA Astrophysics Data System (ADS)
Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew
2012-02-01
We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.
NASA Astrophysics Data System (ADS)
Mahmoudi, Soulmaz; Gholizadeh, Ahmad
2018-06-01
In this work, Y3-xSrxZrxFe5O12 (0.0 ≤ x ≤ 0.7) were synthesized by citrate precursor method at 1050 °C. The structural and magnetic properties of Y3-xSrxFe5-xZrxO12 were studied by using the X-ray diffraction technique, scanning electron microscopy, transmission electron microscopy, the Fourier transform infrared spectroscopy and vibrating sample magnetometer. XRD analysis using X'Pert package show a pure garnet phase with cubic structure (space group Ia-3d) and the impurity phase SrZrO3 is observed when the range of x value is exceeded from 0.6. Rietveld refinement using Fullprof program shows the lattice volume expansion with increasing the degree of Sr/Zr substitution. The crystallite sizes remain constant in the range of x = 0.0 - 0.5 and then increase. The different morphology observed in SEM micrographs of the samples can be related to different values of the microstrain in the samples. The hysteresis loops of the samples reveal a superparamagnetic behaviour. Also, the drop in coercivity with increasing of the substitution is mainly originated from a reduction in the magneto-elastic anisotropy energy. The values of the saturation magnetization (MS) indicate a non-monotonically variant with increasing the Sr/Zr substitution and reach a maximum 26.14 emu/g for the sample x = 0.1 and a minimum 17.64 emu/g for x = 0.0 and x = 0.2. The variation of MS, in these samples results from a superposition of three factors; reduction of Fe3+ in a-site, change in angle FeT-O-FeO, and magnetic core size.
The experimental study of the DC dielectric breakdown strength in magnetic fluids
NASA Astrophysics Data System (ADS)
Kopčanský, P.; Tomčo, L.; Marton, K.; Koneracká, M.; Potočová, I.; Timko, M.
2004-05-01
Magnetic fluids have been studied for use as a high-voltage insulation. High-voltage measurements on magnetic fluids based on transformer oil, as a function of volume concentrations of magnetite particles and applied magnetic field, showed the increase of the DC dielectric breakdown strength opposite transformer oil, if the saturation magnetization of magnetic fluid is up to 4 mT approximately.
The exchange interaction effects on magnetic properties of the nanostructured CoPt particles
NASA Astrophysics Data System (ADS)
Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.
2016-03-01
Various manifestations of the exchange interaction effects in magnetization curves of the CoPt nanostructured particles are demonstrated and discussed. The inter-grain exchange constant A in the sponge-like agglomerates of crystallites is estimated as A=(7±1) pJ/m from the approach magnetization to saturation curves that is in good agreement with A=(6.6±0.5) pJ/m obtained from Bloch T 3/2 law. The fractal dimensionality of the exchange coupled crystallite system in the porous media of the disordered CoPt alloy d=(2.60±0.18) was estimated from the approach magnetization to saturation curve. Coercive force decreases with temperature as Hc T 3/2 which is assumed to be a consequence of the magnetic anisotropy energy reduction due to the thermal spin wave excitations in the investigated CoPt particles.
Cao, Derang; Pan, Lining; Li, Jianan; Cheng, Xiaohong; Zhao, Zhong; Xu, Jie; Li, Qiang; Wang, Xia; Li, Shandong; Wang, Jianbo; Liu, Qingfang
2018-05-21
Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.
NASA Astrophysics Data System (ADS)
Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka
2018-04-01
Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.
NASA Astrophysics Data System (ADS)
Othman, H. A.; Eltabey, M. M.; Ibrahim, Samia. E.; El-Deen, L. M. Sharaf; Elkholy, M. M.
2017-02-01
Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na2O-B2O3-SiO2) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO3 and BO4 are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100-100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization MS and coercive field HC were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of MS and HC increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir
Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less
Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory
ERIC Educational Resources Information Center
Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel
2015-01-01
Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…
Clinical safety of 3-T brain magnetic resonance imaging in newborns.
Fumagalli, Monica; Cinnante, Claudia Maria; Calloni, Sonia Francesca; Sorrentino, Gabriele; Gorla, Ilaria; Plevani, Laura; Pesenti, Nicola; Sirgiovanni, Ida; Mosca, Fabio; Triulzi, Fabio
2018-03-29
The effects and potential hazards of brain magnetic resonance imaging (MRI) at 3 T in newborns are debated. Assess the impact of 3-T MRI in newborns on body temperature and physiological parameters. Forty-nine newborns, born preterm and at term, underwent 3-T brain MRI at term-corrected age. Rectal and skin temperature, oxygen saturation and heart rate were recorded before, during and after the scan. A statistically significant increase in skin temperature of 0.6 °C was observed at the end of the MRI scan (P<0.01). There was no significant changes in rectal temperature, heart rate or oxygen saturation. Core temperature, heart rate and oxygen saturation in newborns were not affected by 3-T brain MR scanning.
NASA Astrophysics Data System (ADS)
Fabian, Karl; Knies, Jochen; Kosareva, Lina; Nurgaliev, Danis
2017-04-01
Room temperature magnetic initial curves, upper hysteresis curves, acquisition curves of induced remanent magnetization (IRM), and backfield (BF) curves have been measured between -1.5 T and 1.5 T for more than 430 samples from Ocean Drilling Program (ODP) Hole 910C. The core was drilled in 556.4 m water depth on the southern Yermak Plateau (80°15.896'N, 6°35.430'E), NW Svalbard. In total, 507.4 m of sediments were cored, and average recovery was 57%, with 80% between 170 and 504.7 meter below seafloor (mbsf). For this study, the borehole was re-sampled between 150 mbsf and 504.7 mbsf for environmental magnetic, inorganic geochemical, and sedimentological analyses (443 samples). The lithology is mainly silty-clay with some enrichments of fine sands in the lower section (below 400 mbsf). For all samples, a Curie express balance was used to obtain the temperature dependence of induced magnetization in air at a heating rate of 100 °C/min up to a maximum temperature of 800 °C. The hysteresis curves were used to infer classical hysteresis parameters like saturation remanence (Mrs), saturation magnetization (Ms), remanence coercivity (Hcr) or coercivity (Hc). In addition several other parameters, like hysteresis energy, high-field slope or saturation field have been determined and help to characterize the down-core variation of the magnetic fractions. Acquisition curves of isothermal remanent magnetization are decomposed into endmembers using non-negative matrix factorization. The obtained mixing coefficients decompose hysteresis loops, back-field, thermomagnetic curves, geochemistry, and sedimentological parameters into their related endmember components. Down-core variation of the endmembers enables reconstruction of sediment transport processes and in-situ formation of magnetic mineral phases.
Yang, Tao; Zeng, Qingli; Liu, Zhifeng; Liu, Qingsheng
2011-06-01
Magnetic parameters and heavy metal concentrations of road dusts collected from two parks with distance about 16 km in Wuhan city, China, were measured. The Guishan Park is circled by main roads with heavy traffic, and the Moshan Park is located on the downwind hills of steelworks and a power plant. Mean values of magnetic susceptibility (χ) and saturation magnetization (M (s)) of the dusts from the Moshan Park are 1.31 and 1.57 times those from the Guishan Park, respectively. Their magnetic mineralogy is dominated by pseudo-single domain magnetite; however, minor hematite was also identified in those from the Guishan Park. The dominant sources of non-natural magnetic particles and heavy metals were inferred as windblown emissions from the steelworks and the power plant for the Moshan Park, and road/railway traffics for the Guishan Park, respectively. Spatial variation in magnetic properties of road dust in the two parks and their different magnetic behavior propose that the magnetic measurements are sensitive to the different pollutant origins, as well as the urban environment, and that magnetic techniques have a high efficiency in mapping urban environment. Correlation between magnetic parameters and heavy metal concentrations is strongly site-specific: strong correlations were observed in the Moshan Park with correlation coefficients generally higher than 0.800, whereas correlations are poor in the Guishan Park. Therefore, it is strongly recommended that these relationships should be examined thoroughly before magnetic mapping.
NASA Astrophysics Data System (ADS)
Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.
2018-02-01
The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.
NASA Astrophysics Data System (ADS)
Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian
2010-05-01
This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.
Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...
2015-12-10
In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μ B, 866 K and 0.9 μ B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2 1 disordered structure. The antisitemore » disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less
Domain-wall superconductivity in superconductor-ferromagnet hybrids.
Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V
2004-11-01
Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.
FEL Trajectory Analysis for the VISA Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1998-10-06
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Narayanan, V.; Stephen, A.
2016-05-01
The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.
NASA Astrophysics Data System (ADS)
Gherca, Daniel; Pui, Aurel; Cornei, Nicoleta; Cojocariu, Alina; Nica, Valentin; Caltun, Ovidiu
2012-11-01
We focused on obtaining MFe2O4 nanoparticles using ricin oil solution as surfactant and on their structural characterization and magnetic properties. The annealed samples at 500 °C in air for 6 h were analyzed for the crystal phase identification by powder X-ray diffraction using CuKα radiation. The particle size, the chemical composition and the morphology of the calcinated powders were characterized by scanning electron microscopy. All sintered samples contain only one phase, which has a cubic structure with crystallite sizes of 12-21 nm. From the infrared spectra of all samples were observed two strong bands around 600 and 400 cm-1, which correspond to the intrinsic lattice vibrations of octahedral and tetrahedral sites of the spinel structure, respectively, and characteristic vibration for capping agent. The magnetic properties of fine powders were investigated at room temperature by using a vibrating sample magnetometer. The room temperature M-H hysteresis loops show ferromagnetic behavior of the calcined samples, with specific saturation magnetization (Ms) values ranging between 11 and 53 emu/g.
NASA Astrophysics Data System (ADS)
Castaño-Yepes, Jorge David; Ayala, Alejandro; Dominguez, C. A.; Hernández, L. A.; Hernández-Ortíz, Saúl; Tejeda-Yeomans, María Elena
2018-01-01
We compute the production of prompt photons and the υ2 harmonic coefficient in relativistic heavy-ion collisions induced by gluon fusion in the presence of an intense magnetic field, during the early stages of the reaction. The calculations take into account several parameters which are relevant to the description of the experimental transverse momentum distribution, and elliptic flow for RHIC and LHC energies. The main imput is the strenght of the magnetic field which varies in magnitude from 1 to 3 times the pion mass squared, and allows the gluon fusion that otherwise is forbidden in the absence of the field. The high gluon occupation number and the value of the saturation scale also play an important role in our calculation, as well as a flow velocity and geometrical factors. Our results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes, and gives a good description of the experimental data.
Monte Carlo study of magnetic nanoparticles adsorbed on halloysite Al2Si2O5(OH) 4 nanotubes
NASA Astrophysics Data System (ADS)
Sotnikov, O. M.; Mazurenko, V. V.; Katanin, A. A.
2017-12-01
We study properties of magnetic nanoparticles adsorbed on the halloysite surface. For that a distinct magnetic Hamiltonian with a random distribution of spins on a cylindrical surface was solved by using a nonequilibrium Monte Carlo method. The parameters for our simulations, the anisotropy constant, nanoparticle size distribution, saturated magnetization, and geometrical characteristics of the halloysite template, were taken from recent experiments. We calculate the hysteresis loops and temperature dependence of the zero-field-cooling (ZFC) susceptibility, the maximum of which determines the blocking temperature. It is shown that the dipole-dipole interaction between nanoparticles moderately increases the blocking temperature and weakly increases the coercive force. The obtained hysteresis loops (e.g., the value of the coercive force) for Ni nanoparticles are in reasonable agreement with the experimental data. We also discuss the sensitivity of the hysteresis loops and ZFC susceptibilities to the change in anisotropy and dipole-dipole interaction, as well as the 3 d -shell occupation of the metallic nanoparticles; in particular we predict larger coercive force for Fe than for Ni nanoparticles.
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
Tang, Minghong; Zhao, Bingcheng; Zhu, Weihua; Zhu, Zhendong; Jin, Q Y; Zhang, Zongzhi
2018-02-07
Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni] 5 /Cu (t Cu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength J ex , which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant α eff of a [Co/Ni] 5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin t Cu , f of the AP state is apparently higher, whereas α eff is lower than that in the P state, owing to the unidirectional exchange bias effect (H EB ) from the TbCo layer. The differences in f and α eff between the two states gradually decrease with increasing t Cu . By using a uniform precession model including an additional H EB term, the field-dependent frequency curves can be well-fitted, and the fitted H EB value is in good agreement with the experimental data. Moreover, the saturation damping constant α 0 displays a nearly linear correlation with J ex . It decreases significantly with J ex and eventually approaches a constant value of 0.027 at t Cu = 2 nm where J ex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.
Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wang, Yaocen; Makino, Akihiro
2018-04-01
In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.
Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)
NASA Astrophysics Data System (ADS)
Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.
2018-04-01
The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.
Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium
NASA Astrophysics Data System (ADS)
Jangid, Kamlesh
2018-03-01
Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.
Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Mukesh; Bhatnagar, Mukesh Chander
2018-05-01
In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.
Tiret, Brice; Brouillet, Emmanuel; Valette, Julien
2016-09-01
With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.
High power solid state laser modulator
Birx, Daniel L.; Ball, Don G.; Cook, Edward G.
2004-04-27
A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.
High quality TmIG films with perpendicular magnetic anisotropy grown by sputtering
NASA Astrophysics Data System (ADS)
Wu, C. N.; Tseng, C. C.; Yeh, S. L.; Lin, K. Y.; Cheng, C. K.; Fanchiang, Y. T.; Hong, M.; Kwo, J.
Ferrimagnetic thulium iron garnet (TmIG) films grown on gadolinium gallium garnet substrates recently showed stress-induced perpendicular magnetic anisotropy (PMA), attractive for realization of quantum anomalous Hall effect (QAHE) of topological insulator (TI) films via the proximity effect. Moreover, current induced magnetization switching of Pt/TmIG has been demonstrated for the development of room temperature (RT) spintronic devices. In this work, high quality TmIG films (about 25nm) were grown by sputtering at RT followed by post-annealing. We showed that the film composition is tunable by varying the growth parameters. The XRD results showed excellent crystallinity of stoichiometric TmIG films with an out-of-plane lattice constant of 1.2322nm, a narrow film rocking curve of 0.017 degree, and a film roughness of 0.2 nm. The stoichiometric films exhibited PMA and the saturation magnetization at RT was 109 emu/cm3 (RT bulk value 110 emu/cm3) with a coercive field of 2.7 Oe. In contrast, TmIG films of Fe deficiency showed in-plane magnetic anisotropy. The high quality sputtered TmIG films will be applied to heterostructures with TIs or metals with strong spin-orbit coupling for novel spintronics.
Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng
2013-07-21
Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.
Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yan; Chi, Yanxiu; Shan, Shiyao
2014-02-25
The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in themore » nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghvaei, Amir Hossein, E-mail: amirtaghvaei@gmail.com; Shahabi, Hamed Shakur; Bednarčik, Jozef
2014-11-14
Atomic structure and thermal behavior of Co{sub 40}Fe{sub 22}Ta{sub 8-x}Y{sub x}B{sub 30} (x = 0, 2.5, 4, 6, and 8) metallic glasses with good soft magnetic properties have been investigated by high-energy synchrotron X-ray diffraction and differential scanning calorimeter, respectively. It has been shown that the extension of the supercooled liquid region first increases and reaches a large value of 95 K and subsequently decreases as a function of Y content. Analysis of the structure factors and pair correlation functions in the reciprocal-space and real-space have indicated that the addition of Y noticeably changes the atomic structure and reduces the degree of themore » medium-range order. Magnetic measurements have implied that the introduction of Y enhances both saturation magnetization and Curie temperatures of the ribbons, while keeping their coercivity very small. The underlying mechanisms for changes in the atomic structure, improving the thermal stability and magnetic properties upon Y addition have been discussed.« less
Investigation of electronic and magnetic properties of Ni0.5Cu0.5Fe2O4: theoretical and experimental
NASA Astrophysics Data System (ADS)
Sharma, Uma Shankar; Shah, Rashmi
2018-05-01
In present study, Ni0.5Cu0.5Fe2O4 been was synthesized with Co-precipitation method and prepared samples were annealed at 300°C and 500°C. The single phase formation of nickel ferrite was confirmed through powder X-ray diffraction (XRD). The presence of various functional groups was confirmed through FTIR analysis. The effects of the annealing temperature on the particle sizes and magnetic properties of the ferrite samples were investigated and interpret with valid reasons. The structural and magnetic properties of the ferrite samples were strongly affected by the annealing temperature. The annealing temperature increases coercivity and saturation magnetization values are continuously increased. Spin polarization calculations are performed on the Ni0.5Cu0.5Fe2O4, compounds within density functional theory (DFT) and find out equilibrium lattice constants 8.2 Å and DOS show there exists large spin splitting between the spin up and spin down channels near the Fermi level confirm p-d hybridization. The theoretical calculated magnetic are slightly higher than our experimental results. The other results have been discussed in detail.
NASA Astrophysics Data System (ADS)
Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.
2018-05-01
Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.
NASA Astrophysics Data System (ADS)
Hira, Uzma; Sher, Falak
2018-04-01
In this study, we have investigated the structural, magnetic and thermoelectric properties of La0.4Bi0.4Ca0.2Mn1-xCoxO3 (0 ≤ x ≤ 0.3) manganites. The crystallographic parameters of samples were determined by the Rietveld refinement of powder X-ray diffraction data. It was observed that Co doping results in change of crystal structures from orthorhombic (space group: Pbnm) to rhombohedral (space group: R-3c) symmetry. Scanning electron microscopy (SEM) images show smooth, clean and densified structures, depicting good crystallinity of samples. The zero field cooled (ZFC) and field cooled (FC) magnetization data were collected in the temperature range 5 to 300 K under an applied magnetic field of 0.1 Tesla. The analysis of temperature dependent magnetization data reveals all samples to be ferromagnetic with Curie temperatures around ∼77 K. The magnetic hysteresis loops, collected at 5 K, show that the saturation magnetization (MS) values decrease from 43 emu/g to 14 emu/g with increase in Co doping. The high temperature thermoelectric properties of all samples are characteristic of a semiconducting behavior, the small polaron hopping model fitting well with the temperature dependent electrical resistivity (ρ) and thermopower (S) data. The thermopower values change sign from positive to negative as temperature is increased from 313 K to 680 K. The maximum thermoelectric power factor (PF = S2/ρ) obtained for x = 0.3 sample at 313 K is 4.60 μW/mK2, is much higher than for the undoped sample.
NASA Astrophysics Data System (ADS)
Gopi, D.; Ansari, M. Thameem; Shinyjoy, E.; Kavitha, L.
2012-02-01
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28 kHz and 35 kHz at the power of 150 and 320 W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35 kHz at 320 W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization ( Ms) value of the functionalized magnetic hydroxyapatite. The Ms value is found to be much less than that of pure magnetite nanoparticle and this decrement in Ms is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications.
Gopi, D; Ansari, M Thameem; Shinyjoy, E; Kavitha, L
2012-02-15
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28kHz and 35kHz at the power of 150 and 320W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35kHz at 320W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization (M(s)) value of the functionalized magnetic hydroxyapatite. The M(s) value is found to be much less than that of pure magnetite nanoparticle and this decrement in M(s) is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites
NASA Astrophysics Data System (ADS)
Kong, Ing; Hj Ahmad, Sahrim; Hj Abdullah, Mustaffa; Hui, David; Nazlim Yusoff, Ahmad; Puryanti, Dwi
2010-11-01
Magnetic and microwave absorbing properties of thermoplastic natural rubber (TPNR) filled magnetite (Fe 3O 4) nanocomposites were investigated. The TPNR matrix was prepared from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) in the ratio of 70:20:10 with the LNR as the compatibilizer. TPNR-Fe 3O 4 nanocomposites with 4-12 wt% Fe 3O 4 as filler were prepared via a Thermo Haake internal mixer using a melt-blending method. XRD reveals the presence of cubic spinel structure of Fe 3O 4 with the lattice parameter of a=8.395 Å. TEM micrograph shows that the Fe 3O 4 nanoparticles are almost spherical with the size ranging 20-50 nm. The values of saturation magnetization ( MS), remanence ( MR), initial magnetic susceptibility ( χi) and initial permeability ( μi) increase, while the coercivity ( HC) decreases with increasing filler content for all compositions. For nanocomposites, the values of the real ( ɛr') and imaginary permittivity ( ɛr'') and imaginary permeability ( μr'') increase, while the value of real permeability ( μr') decreases as the filler content increases. The absorption or minimum reflection loss ( RL) continuously increases and the dip shifts to a lower frequency region with the increasing of both filler content in nanocomposites and the sample thickness. The RL is -25.51 dB at 12.65 GHz and the absorbing bandwidth in which the RL is less than -10 dB is 2.7 GHz when the filler content is 12 wt% at 9 mm sample thickness.
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
Study of free-piston Stirling engine driven linear alternators
NASA Technical Reports Server (NTRS)
Nasar, S. A.; Chen, C.
1987-01-01
The analysis, design and operation of single phase, single slot tubular permanent magnet linear alternator is presented. Included is the no-load and on-load magnetic field investigation, permanent magnet's leakage field analysis, parameter identification, design guidelines and an optimal design of a permanent magnet linear alternator. For analysis of the magnetic field, a simplified magnetic circuit is utilized. The analysis accounts for saturation, leakage and armature reaction.
Operating a magnetic nozzle helicon thruster with strong magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira
A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ionmore » flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.« less
Magnetic ordering and crystal field effects in quasi-caged structure compound PrFe2Al8
NASA Astrophysics Data System (ADS)
Nair, Harikrishnan S.; Ghosh, Sarit K.; Ramesh Kumar, K.; Strydom, André M.
2016-04-01
The compound PrFe2Al8 possesses a three-dimensional network structure resulting from the packing of Al polyhedra centered at the transition metal element Fe and the rare earth Pr. Along the c-axis, Fe and Pr form chains which are separated from each other by the Al-network. In this paper, the magnetism and crystalline electric field effects in PrFe2Al8 are investigated through the analysis of magnetization and specific heat data. A magnetic phase transition in the Pr lattice is identified at TNPr ≈ 4 K in dc magnetization and ac susceptibility data. At 2 K, the magnetization isotherm presents a ferromagnetic saturation, however, failing to reach full spin-only ferromagnetic moment of Pr3+. Metamagnetic step-like low-field features are present in the magnetization curve at 2 K which is shown to shift upon field-cooling the material. Arrott plots centered around TPrN display "S"-like features suggestive of an inhomogeneous magnetic state. The magnetic entropy, Sm, estimated from specific heat outputs a value of R ln(2) at TN2 suggesting a doublet state for Pr3+. The magnetic specific heat is modeled by using a 9-level Schottky equation pertinent to the Pr3+ ion with J=4. Given the crystalline electric field situation of Pr3+, the inference of a doublet state from specific heat and consequent long-range magnetic order is an unexpected result.
Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.
2013-09-01
Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.
NASA Technical Reports Server (NTRS)
Dyal, P.; Gordon, D. I.
1973-01-01
Discussion of the properties of both the stationary and portable magnetometers used in the Apollo program to measure static and dynamic fields on the lunar surface. A stationary magnetometer is described in which the three orthogonal vector components of the magnetic field are measured by three fluxgate sensors which are located at the ends of three orthogonal booms and contain ferromagnetic cores driven to saturation by means of a periodic current. In the Apollo 16 magnetometer special high-stability ring-core sensors were used which provided an output voltage to the analog-to-digital converter which is proportional to the magnetic field. A portable magnetometer is described which consists of a set of three orthogonal fluxgate sensors mounted on top of a tripod connected to an electronics box by a ribbon cable. The above-mentioned stationary magnetometer simultaneously measured the time-varying components of the field which were later subtracted from the portable magnetometer measurements to give the desired resultant steady field values caused by the magnetized crustal material.
Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention.
Tsuru, Takahiro; Sugimura, Kazuki; Nishio, Yoshiyuki
2017-12-15
Iron oxide nanoparticles-incorporated carrageenan (CAR)/PHEMA composites of interpenetrating network (IPN) type were successfully prepared by in situ ferrite synthesis in the polymer network. The IPN structure was constructed at CAR/PHEMA compositions of 15/85 and 40/60 (wt/wt) by polymerization and cross-linking of 2-hydroxyethylmethacrylate as an impregnating solvent of CAR gels. As a result of this IPN construction, the composites were firm and showed a good shape-retentivity in their gelatinous state. SQUID magnetometry and X-ray diffractometry were conducted for evaluation of the magnetic property of the inorganic-hybridized IPN composites. Magnetite particles with 10-30nm sizes were distributed inside the IPNs treated with the repeatable ferrite synthesis; thereby, the hybrids displayed a superparamagnetic character at ambient temperature. Specifically, the 40/60 CAR/PHEMA IPN imparted a practically passable value (10-15emu (g sample) -1 ) of saturation magnetization. The present IPN system offers a potential for application as a biocompatible magnetic material used in hydro-surroundings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe
2018-04-18
In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.
Two-Step Sintering Behavior of Sol-Gel Derived Dense and Submicron-Grained YIG Ceramics
NASA Astrophysics Data System (ADS)
Chen, Ruoyuan; Zhou, Jijun; Zheng, Liang; Zheng, Hui; Zheng, Peng; Ying, Zhihua; Deng, Jiangxia
2018-04-01
In this work, dense and submicron-grain yttrium iron garnet (YIG, Y3Fe5O12) ceramics were fabricated by a two-step sintering (TSS) method using nano-size YIG powder prepared by a citrate sol-gel method. The densification, microstructure, magnetic properties and ferromagnetic resonance (FMR) linewidth of the ceramics were investigated. The sample prepared at 1300°C in T 1, 1225°C in T 2 and 18 h holding time has a density higher than 98% of the theoretical value and exhibits a homogeneous microstructure with fine grain size (0.975 μm). In addition, the saturation magnetization ( M S) of this sample reaches 27.18 emu/g. High density and small grain size can also achieve small FMR linewidth. Consequently, these results show that the sol-gel process combined with the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense and fine-grained YIG ceramics with appropriate magnetic properties.
NASA Astrophysics Data System (ADS)
Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.
2018-04-01
Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.
Cation distribution of Ni-Zn-Mn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Parvatheeswara Rao, B.; Dhanalakshmi, B.; Ramesh, S.; Subba Rao, P. S. V.
2018-06-01
Mn substituted Ni-Zn ferrite nanoparticles, Ni0.4Zn0.6-xMnxFe2O4 (x = 0.00-0.25 in steps of 0.05), using metal nitrates were prepared by sol-gel autocombustion in citric acid matrix. The samples were examined by X-ray diffraction and vibrating sample magnetometer techniques. Rietveld structural refinements using the XRD data were performed on the samples to consolidate various structural parameters like phase (spinel), crystallite size (24.86-37.43 nm), lattice constant (8.3764-8.4089 Å) etc and also to determine cation distributions based on profile matching and integrated intensity ratios. Saturation magnetization values (37.18-68.40 emu/g) were extracted from the measured M-H loops of these nanoparticles to estimate their magnetic moments. Experimental and calculated magnetic moments and lattice constants were used to confirm the derived cation distributions from Rietveld analysis. The results of these ferrite nanoparticles are discussed in terms of the compositional modifications, particle sizes and the corresponding cation distributions as a result of Mn substitutions.
Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter
Johnston, Ewen D; Boyle, Breidge; Juszczak, Ed; King, Andy; Brocklehurst, Peter; Stenson, Ben J
2011-01-01
Background A pretrial clinical improvement project for the BOOST-II UK trial of oxygen saturation targeting revealed an artefact affecting saturation profiles obtained from the Masimo Set Radical pulse oximeter. Methods Saturation was recorded every 10 s for up to 2 weeks in 176 oxygen dependent preterm infants in 35 UK and Irish neonatal units between August 2006 and April 2009 using Masimo SET Radical pulse oximeters. Frequency distributions of % time at each saturation were plotted. An artefact affecting the saturation distribution was found to be attributable to the oximeter's internal calibration algorithm. Revised software was installed and saturation distributions obtained were compared with four other current oximeters in paired studies. Results There was a reduction in saturation values of 87–90%. Values above 87% were elevated by up to 2%, giving a relative excess of higher values. The software revision eliminated this, improving the distribution of saturation values. In paired comparisons with four current commercially available oximeters, Masimo oximeters with the revised software returned similar saturation distributions. Conclusions A characteristic of the software algorithm reduces the frequency of saturations of 87–90% and increases the frequency of higher values returned by the Masimo SET Radical pulse oximeter. This effect, which remains within the recommended standards for accuracy, is removed by installing revised software (board firmware V4.8 or higher). Because this observation is likely to influence oxygen targeting, it should be considered in the analysis of the oxygen trial results to maximise their generalisability. PMID:21378398
Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter.
Johnston, Ewen D; Boyle, Breidge; Juszczak, Ed; King, Andy; Brocklehurst, Peter; Stenson, Ben J
2011-11-01
A pretrial clinical improvement project for the BOOST-II UK trial of oxygen saturation targeting revealed an artefact affecting saturation profiles obtained from the Masimo Set Radical pulse oximeter. Saturation was recorded every 10 s for up to 2 weeks in 176 oxygen dependent preterm infants in 35 UK and Irish neonatal units between August 2006 and April 2009 using Masimo SET Radical pulse oximeters. Frequency distributions of % time at each saturation were plotted. An artefact affecting the saturation distribution was found to be attributable to the oximeter's internal calibration algorithm. Revised software was installed and saturation distributions obtained were compared with four other current oximeters in paired studies. There was a reduction in saturation values of 87-90%. Values above 87% were elevated by up to 2%, giving a relative excess of higher values. The software revision eliminated this, improving the distribution of saturation values. In paired comparisons with four current commercially available oximeters, Masimo oximeters with the revised software returned similar saturation distributions. A characteristic of the software algorithm reduces the frequency of saturations of 87-90% and increases the frequency of higher values returned by the Masimo SET Radical pulse oximeter. This effect, which remains within the recommended standards for accuracy, is removed by installing revised software (board firmware V4.8 or higher). Because this observation is likely to influence oxygen targeting, it should be considered in the analysis of the oxygen trial results to maximise their generalisability.
Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.
2013-01-01
Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483
Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys
NASA Astrophysics Data System (ADS)
Nhung, Tran Hong; Planel, R.
1983-03-01
The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.
NASA Astrophysics Data System (ADS)
Altayeb, A.; Sondezi, B. M.; Tchoula Tchokonté, M. B.; Strydom, A. M.; Doyle, T. B.; Kaczorowski, D.
2017-05-01
We report the evolution from ferromagnetic (FM) to antiferromagnetic (AFM) state in CeCu(Ge1-xSnx ) investigated by means of magnetic and heat capacity measurements. X-ray diffraction studies for all compositions indicate the ZrBeSi - type hexagonal crystal structure with space group P63/mmc (No. 194). The magnetic susceptibility, χ (T ) at high temperature follows the Curie - Weiss relation with an effective magnetic moment close to the value of 2.54 μB expected for free Ce3+ - ion. At low temperatures, χ (T ) data indicate AFM transition for alloys in the concentration range 0.7 ≤x ≤1 and FM for x ≤0.6 . The magnetization, M (μ0H ) of samples exhibiting AFM behaviour shows metamagnetic transition at low magnetic fields with some irreversibility in the process of increasing and decreasing magnetic field. In turn, M (μ0H ) of samples exhibiting FM behaviour shows saturation in high magnetic fields. Heat capacity, Cp(T) data confirm the AFM and FM transitions observed in magnetic measurements. An additional anomaly below TC and TN is observed in Cp(T)/T, which likely arises from spin reorientation or rearrangement in FM or AFM structure. Below in FM region, Cp(T) can be well described assuming spin-waves excitations with an energy gap ΔC.
Magnetic properties of Co/Ni grain boundaries after annealing
NASA Astrophysics Data System (ADS)
Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol
2018-05-01
Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.
NASA Astrophysics Data System (ADS)
Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.
2016-11-01
Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.
NASA Technical Reports Server (NTRS)
Brown, J. M.; Curl, R. F.; Evenson, K. M.
1984-01-01
The far-infrared laser magnetic resonance spectrum of the SiH radical in the v = O level of its X2Pi state has been recorded. The signals are rather weak. The molecules were generated in the reaction between fluorine atoms and SiH4. Rotational transitions have been detected in both 2Pi1/2 and 2Pi3/2 spin components but no fine structure transitions between the spin components were observed. Proton hyperfine splittings were resolved on some lines. The measurements have been analyzed, subjected to a least-squares fit using an effective Hamiltonian, and the appropriate molecular parameters determined. The weakness of the spectrum and the failure of attempts to power saturate favorable lines are both consistent with a small value for the electric dipole moment for SiH.
NASA Astrophysics Data System (ADS)
Hikosaka, Tomoyuki; Miyamoto, Masahiro; Yamada, Mamoru; Morita, Tadashi
1993-05-01
It is very important to obtain saturated magnetic properties from reverse saturation (full B-H curve) of ferromagnetic cores to design magnetic switches which are used in high power pulse generators. The magnetic switch is excited in the high frequency range (˜MHz). But, it is extremely difficult to measure full B-H curve of large toroidal cores of which diameter is some hundreds of mm, using the conventional ac excitation method at high frequency. The main reason is poor output ability of power source for core excitation. Therefore we have developed pulse excitation method to get high frequency magnetic properties. The measurement circuit has two sections. One is excitation part composed by charge transfer circuit. The others is reset part for adjustment initial point on direct B-H curve. The sample core is excited by sinusoidal voltage pulse expressed as 1-cos(2π ft). Excitation frequency f is decided by the constants of the elements of the charge transfer circuit. The change of magnetic flux density ΔB and magnetic field H are calculated, respectively, by measuring the induced voltage of search coil and magnetizing current. ΔB-H characteristics from reverse saturation of four different kinds of large cores were measured in frequency range from 50 kHz to 1 MHz. Core loss increases in proportion to Nth powers of the frequency, where the index N depends on each of cores. N is about 0.5 in case of winding ribbon cores, such as Fe-based amorphous, Co-based amorphous, and Finemet, but N is about 0.2 in case of the Ni-Zn ferrite.
Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury
2012-10-01
frequency direction, phase FOV = 0.5, slice thickness = 10 mm. Spatial saturation bands were placed anterior and posterior to the slice of interest to...thickness = 10 mm, with spatial saturation bands placed anterior and posterior to the slice and diffusion sensitization in the right-to-left...the center frequency, and can be extracted by applying MT saturation pulses with alternating (positive/negative) off-resonance frequencies. The goal
Estimation of saturated pixel values in digital color imaging
Zhang, Xuemei; Brainard, David H.
2007-01-01
Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor to respond at its maximum value, can produce undesirable artifacts in digital color images. We present a Bayesian algorithm that estimates what the saturated channel's value would have been in the absence of saturation. The algorithm uses the non-saturated responses from the other color channels, together with a multivariate Normal prior that captures the correlation in response across color channels. The appropriate parameters for the prior may be estimated directly from the image data, since most image pixels are not saturated. Given the prior, the responses of the non-saturated channels, and the fact that the true response of the saturated channel is known to be greater than the saturation level, the algorithm returns the optimal expected mean square estimate for the true response. Extensions of the algorithm to the case where more than one channel is saturated are also discussed. Both simulations and examples with real images are presented to show that the algorithm is effective. PMID:15603065
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Owen, James E.
2016-05-01
Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.
Association of physical examination with pulmonary artery catheter parameters in acute lung injury.
Grissom, Colin K; Morris, Alan H; Lanken, Paul N; Ancukiewicz, Marek; Orme, James F; Schoenfeld, David A; Thompson, B Taylor
2009-10-01
To correlate physical examination findings, central venous pressure, fluid output, and central venous oxygen saturation with pulmonary artery catheter parameters. Retrospective study. Data from the multicenter Fluid and Catheter Treatment Trial of the National Institutes of Health Acute Respiratory Distress Syndrome Network. Five hundred thirteen patients with acute lung injury randomized to treatment with a pulmonary artery catheter. Correlation of physical examination findings (capillary refill time >2 secs, knee mottling, or cool extremities), central venous pressure, fluid output, and central venous oxygen saturation with parameters from a pulmonary artery catheter. We determined association of baseline physical examination findings and on-study parameters of central venous pressure and central venous oxygen saturation with cardiac index <2.5 L/min/m2 and mixed venous oxygen saturation <60%. We determined correlation of baseline central venous oxygen saturation and mixed venous oxygen saturation and predictive value of a low central venous oxygen saturation for a low mixed venous oxygen saturation. Prevalence of cardiac index <2.5 and mixed venous oxygen saturation <60% was 8.1% and 15.5%, respectively. Baseline presence of all three physical examination findings had low sensitivity (12% and 8%), high specificity (98% and 99%), low positive predictive value (40% and 56%), but high negative predictive value (93% and 86%) for cardiac index <2.5 and mixed venous oxygen saturation <60%, respectively. Central venous oxygen saturation <70% predicted a mixed venous oxygen saturation <60% with a sensitivity 84%,specificity 70%, positive predictive value 31%, and negative predictive value of 96%. Low cardiac index correlated with cool extremities, high central venous pressure, and low 24-hr fluid output; and low mixed venous oxygen saturation correlated with knee mottling and high central venous pressure, but these correlations were not found to be clinically useful. In this subset of patients with acute lung injury, there is a high prior probability that cardiac index and mixed venous oxygen saturation are normal and physical examination findings of ineffective circulation are not useful for predicting low cardiac index or mixed venous oxygen saturation. Central venous oxygen saturation <70% does not accurately predict mixed venous oxygen saturation <60%, but a central venous oxygen saturation >or=70% may be useful to exclude mixed venous oxygen saturation <60%.
Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers
NASA Astrophysics Data System (ADS)
Bhongale, S. R.; Ingawale, H. R.; Shinde, T. J.; Pubby, Kunal; Bindra Narang, Sukhleen; Vasambekar, P. N.
2017-11-01
The magnetic and electromagnetic properties of nanocrystalline spinel ferrites with chemical formula MgxCd1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by oxalate co-precipitation method under microwave sintering technique were studied. The magnetic and dielectric parameters of ferrites were determined by using vibrating sample magnetometer (VSM) and vector network analyzer (VNA) respectively. Magnetic parameters such as saturation magnetizations (Ms), coercive force (Hc), remnant magnetization (Mr), Yafet-Kittel (Y-K) angle of ferrites were determined from hysteresis loops. The variation of real permittivity (ε‧), dielectric loss tangent (tanδe), real permeability (μ‧) and magnetic loss tangent (tanδm) with frequency and Mg2+content were studied in X-band frequency range. The values of ε‧, tanδe, μ‧ and tanδm of ferrites were observed to be in range of 4.2 - 6.12, 2.9 × 10-1 - 6 × 10-2, 0.6 - 1.12 and 4.5 × 10-1 - 2 × 10-3 respectively for the prepared compositions. The study of variation of reflection loss with frequency of all ferrites shows that ferrite with magnesium content x = 0.4 can be potential candidate for microwave applications in X-band.
Metal organic framework Cu9Cl2(cpa)6 as tunable molecular magnet
NASA Astrophysics Data System (ADS)
Hamilton, Heather S. C.; Farmer, William M.; Skinner, Samuel F.; ter Haar, Leonard W.
2018-05-01
Chemical modifications of the magnetic metal organic framework (MOF) Cu9X2(cpa)6.42H2O (X = F, Cl, Br; cpa = anion of 2-carboxypentonicacid) have been investigated as a means of modifying, in a tunable manner, the magnetism of this 2-D material best described as a triangles-in-triangles (TIT) or triangulated-Kagomé-latttice (TKL). Since numerous theoretical studies have already attempted to describe the enigmatic ground state of this Heisenberg lattice, tunable chemical modifications should provide an excellent opportunity to expand this class of materials for studies concerning fundamental physics of frustrated spins, and applications such as adiabatic demagnetization refrigeration (ADR) that depend on the magnetocaloric effect (MCE). The chemical modification investigated is the intercalation of d- and f-orbital ions into the voids of the framework (channels of nearly 20 Å diameter). Magnetic measurements in the temperature range 1.8 - 300 K confirm signature features of TKL magnetism in intercalated samples persist, specifically: i) large negative Weiss constant (θCW); ii) absence of a phase transition down to 1.8 K; iii) minimum in χMT; iv) low temperature χMT values increasingly divergent at low fields indicating net ferromagnetic correlations; and, v) increasing field dependence of magnetization at low temperatures suggestive of intermediate plateaus, or ferrimagnetism, not saturation.
NASA Astrophysics Data System (ADS)
Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.
2018-04-01
Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.
A simple vibrating sample magnetometer for macroscopic samples
NASA Astrophysics Data System (ADS)
Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.
2018-03-01
We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect
NASA Astrophysics Data System (ADS)
Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui
2018-05-01
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
Wu, Meng; Shi, Jun-Jie; Zhang, Min; Ding, Yi-Min; Wang, Hui; Cen, Yu-Lang; Guo, Wen-Hui; Pan, Shu-Hang; Zhu, Yao-Hui
2018-05-18
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 10 3 cm 2 V -1 s -1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2016-04-01
Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible, preferably while the drilling of the brand new wells (logging-while-drilling, LWD). The MRIL-WD Tool can accomplish any tasks reliably and in a timely manner thus saving drilling time and reducing the overall risk for the well. Control of water production and identification of pay zones with high irreducible water saturation are also very important for formation evaluation and petrophysical analysis in oil fields located in the Azerbaijan Republic and also other fields around the world. Sometimes above-mentioned problems can cause delay in completion decisions which will create additional expenses for field management. In many wells, breakthroughs in reservoir characterization have been achieved in directly determining hydrocarbon volumes, net permeability thickness, and hydrocarbon type, thus circumventing the problems associated with obtaining wireline data and the considerable amount of rig time required (so MRIL-WD can considerably reduce the NPT). Some reservoir zones with relatively low water saturation, which calculated from the other conventional logs, can produce with relatively high percentage of water cut, primarily because much of the water is movable. However, other zones with high calculated water saturation produce water free hydrocarbons. The difficulty in predicting water production can be related with the producing from the complex lithology, which can contain low-permeability, medium- to fine-grained shaly sands. Where grains are small, the formations have high surface to volume ratios that result in high irreducible water saturation and due to this we can see low resistivity values. As a result the use of resistivity logs as pay indicator, sometimes can cause low resistivity pay zones might be overlooked and consequently net field pay could be underestimated. In the last few years, nuclear magnetic resonance logs have shown great promise in solving problems of formation evaluation that could not be directly resolved with conventional logs. The capability of MRIL-WD can help many engineers to differentiate between the immovable and movable water in oil reservoirs in many fields. Sometimes MRIL-WD have also been capable of providing better formation permeability than conventional logs, a feature which can save time and expense in well-completion decisions. The RT & RM bound fluid and total porosity measurements can provide a tremendous new insight into the formation evaluation of shaly sands and low resistivity pays. Unlike traditional porosity devices, which are affected by rock matrix changes, the MRIL-WD tool can be used in complex or mixed lithology sequences and provide measurements of porosity that are lithology independent.
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.
Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg
2014-12-01
The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.
Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films
Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.
2013-01-01
We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346