Sample records for saturation recovery epr

  1. Saturation recovery EPR and ELDOR at W-band for spin labels

    PubMed Central

    Froncisz, Wojciech; Camenisch, Theodore G.; Ratke, Joseph J.; Anderson, James R.; Subczynski, Witold K.; Strangeway, Robert A.; Sidabras, Jason W.; Hyde, James S.

    2008-01-01

    A reference-arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) (J.W. Sidabras et al., Rev. Sci. Instrum. 78 (2007) 034701). The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2 to 35 GHz (J.S. Hyde et al., J. Phys. Chem. B 108 (2004) 9524–9529). The values of T1e decrease at 94 GHz relative to values at 35 GHz. PMID:18547848

  2. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains.

    PubMed

    Mainali, Laxman; Camenisch, Theodore G; Hyde, James S; Subczynski, Witold K

    2017-12-01

    The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [ M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186 ]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t -test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant ( P ≤ 0.05) and can be attributed to sources other than preparation/technique.

  3. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.

    2011-10-01

    There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate ( T1-1) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T1-1 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T1-1 profiles obtained for 1-palmitoyl-2-( n-doxylstearoyl)phosphatidylcholine ( n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T1-1 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).

  4. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    PubMed

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  7. Spin-labeled small unilamellar vesicles with the T1-sensitive saturation-recovery EPR display as an oxygen sensitive analyte for measurement of cellular respiration

    PubMed Central

    Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S.; Subczynski, Witold K.

    2015-01-01

    This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer. PMID:26441482

  8. Spin-labeled small unilamellar vesicles with the T1-sensitive saturation-recovery EPR display as an oxygen sensitive analyte for measurement of cellular respiration.

    PubMed

    Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S; Subczynski, Witold K

    2015-08-01

    This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer.

  9. Saturation-inversion-recovery: A method for T1 measurement

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhi; Zhao, Ming; Ackerman, Jerome L.; Song, Yiqiao

    2017-01-01

    Spin-lattice relaxation (T1) has always been measured by inversion-recovery (IR), saturation-recovery (SR), or related methods. These existing methods share a common behavior in that the function describing T1 sensitivity is the exponential, e.g., exp(- τ /T1), where τ is the recovery time. In this paper, we describe a saturation-inversion-recovery (SIR) sequence for T1 measurement with considerably sharper T1-dependence than those of the IR and SR sequences, and demonstrate it experimentally. The SIR method could be useful in improving the contrast between regions of differing T1 in T1-weighted MRI.

  10. Magnetization hysteresis electron paramagnetic resonance. A new null phase insensitive saturation transfer EPR technique with high sensitivity to slow motion.

    PubMed Central

    Vistnes, A I

    1983-01-01

    In electron paramagnetic resonance (EPR) nonlinear phenomena with respect to magnetic-field modulation are often studied by out-of-phase spectra recordings. The existence of a nonzero out-of-phase signal implies that the EPR signal is phase shifted relative to the modulation signal. This phase shift is called a magnetization hysteresis. The hysteresis angle varies during a sweep through the resonance conditions for a free radical. By recording this variation, a magnetization hysteresis (MH) spectrum results. In practice, a MH spectrum is computer calculated from two EPR spectra detected with a 90 degree difference in phase setting. There is no need for a careful null-phase calibration like that in traditional analysis of nonlinearities. The MH spectra calculated from second harmonic EPR spectra of spin labels were highly dependent on the rotational correlation time. The technique can therefore be used to study slow molecular motion. In the present work MH spectra and Hemminga and deJager's magnitude saturation transfer EPR spectra (Hemminga, M. A., and P. A. deJager, 1981, J. Magn. Reson., 43:324-327) have been analyzed to define parameters that can describe variations in the rotational correlation time. A novel modification of the sample holder and temperature regulation equipment is described. PMID:6309263

  11. Study of Damage and Recovery of Electron Irradiated Polyimide using EPR and NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Humagain, Sunita; Jhonson, Jessica; Stallworth, Phillip; Engelhart, Daniel; Plis, Elena; Ferguson, Dale; Cooper, Russell; Hoffmann, Ryan; Greenbaum, Steve

    The main objective of this research is to probe radical concentrations in electron irradiated polyimide (PI, Kapton®) and to examine the impact on the electrical properties using EPR and NMR spectroscopy. PI is an electrical insulator used in space missions as a thermal management blanketing material, it is therefore critical for spacecraft designers to understand the nature of electron transport (electrical conductivity) within the bulk of the material. The recovery mechanism (radical evolution) of PI in vacuum, argon and air after having been subjected to 90 KeV electron irradiation, was studied. The formation and subsequent exponential decay of the radical concentrations was recorded using EPR. This signal decay agrees well with the recovery mechanism being probed by electrical conductivity measurements and implies a strong relation between the two. To investigate the distribution of radicals in the polymer, 1H NMR relaxation time (T1) were measured at 300MHz. Additional NMR experiments, in particular 13C, were performed to search for direct evidence of structural defects.

  12. A Dynamic Nuclear Polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities.

    PubMed

    Feintuch, Akiva; Shimon, Daphna; Hovav, Yonatan; Banerjee, Debamalya; Kaminker, Ilia; Lipkin, Yaacov; Zibzener, Koby; Epel, Boris; Vega, Shimon; Goldfarb, Daniella

    2011-04-01

    A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Multifrequency EPR study on freeze-dried fruits before and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.; Dimitrova, A.; Georgieva, L.; Tzvetkova, E.

    2006-09-01

    X-, K- and Q-band EPR studies on lyophilized whole pulp parts of blue plum, apricot, peach, melon as well as achens and pulp separately of strawberry before and after X-ray irradiation are reported. Before irradiation all samples show in X band a weak singlet EPR line with g=2.0030±0.0005, except melon, which is EPR silent. Immediately after irradiation all samples exhibit complex fruit-depending spectra, which decay with time and change to give, in ca. 50 days, an asymmetric singlet EPR line with g=2.0041±0.0005. Only apricot pulp gave a typical "sugar-like" EPR spectrum. Singlet EPR lines recorded after irradiation in X -band are K- and Q-band resolved as typical anisotropic EPR spectra with g=2.0023±0.0003 and g⊥=2.0041±0.0005. In addition, K- and Q-band EPR spectra of all samples show a superposition with the six EPR lines of Mn 2+ naturally present in the fruits. The saturation behavior of the EPR spectra of achens of lyophilized and fresh strawberry is also studied. The differences in g factors of samples before and after X-ray irradiation might be used for the identification of radiation processing of fruits in the case of pulp and the differences in the EPR saturation behavior might be used for the achens of strawberry.

  14. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3.

    PubMed

    Bonificio, W D; Clarke, D R

    2014-11-01

    Tellurium-based devices, such as photovoltaic (PV) modules and thermoelectric generators, are expected to play an increasing role in renewable energy technologies. Tellurium, however, is one of the scarcest elements in the earth's crust, and current production and recycling methods are inefficient and use toxic chemicals. This study demonstrates an alternative, bacterially mediated tellurium recovery process. We show that the hydrothermal vent microbe Pseudoalteromonas sp. strain EPR3 can convert tellurium from a wide variety of compounds, industrial sources and devices into metallic tellurium and a gaseous tellurium species. These compounds include metallic tellurium (Te(0)), tellurite (TeO3(2-)), copper autoclave slime, tellurium dioxide (TeO2), tellurium-based PV material (cadmium telluride, CdTe) and tellurium-based thermoelectric material (bismuth telluride, Bi2Te3). Experimentally, this was achieved by incubating these tellurium sources with the EPR3 in both solid and liquid media. Despite the fact that many of these tellurium compounds are considered insoluble in aqueous solution, they can nonetheless be transformed by EPR3, suggesting the existence of a steady state soluble tellurium concentration during tellurium transformation. These experiments provide insights into the processes of tellurium precipitation and volatilization by bacteria, and their implications on tellurium production and recycling. © 2014 The Society for Applied Microbiology.

  15. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  16. Rapid-scan EPR imaging.

    PubMed

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of hyperoxia during the rest periods of interval training on perceptual recovery and oxygen re-saturation time.

    PubMed

    Peeling, Peter; Andersson, Ramon

    2011-01-01

    The effect of hyperoxic gas supplementation on the recovery time of oxygen saturation levels (S(a)O(2)), and its effect on perceptual recovery were assessed. Seven national-level kayak athletes completed two laboratory-based ergometer sessions of 6 × 3-min maximal aerobic intervals, with 2 min recovery between repetitions. During each recovery period, athletes either inhaled a hyperoxic gas (99.5 ± 0.2 % F(I)O(2)) or were given no external supplementation (control). Mean power output, stroke rate, heart rate, and ratings of perceived exertion were collected during each interval repetition, and the intensity was matched between trials. During each 2-min recovery period, post-exercise haemoglobin saturation levels were measured via pulse oximetry (S(p)O(2)), and the time taken for the S(p)O(2) to return to pre-exercise values was recorded. Subsequently, a rating of perceived recovery quality was collected. There were no differences in the levels of post-exercise de-saturation between the hyperoxic and control trials (P < 0.05), although the recovery time of S(p)O(2) was significantly faster in the hyperoxic trial (P < 0.05). There was no influence of oxygen supplementation on the athletes' perception of recovery quality. Hyperoxic gas supplementation during the recovery periods between high-intensity intervals substantially improves the recovery time of S(p)O(2) with no likely influence on recovery perception.

  18. EPR Investigation of Gamma-Irradiated Rapana Thomasiana (Gastropoda, Muricidae) Shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletchi, Emilia Dana; Duliu, Octavian G.; Georgescu, Rodica

    2007-04-23

    The shell of Rapana Thomasiana snail, a carnivorous gastropod collected from the coasts of the Black Sea (Romania) was investigated by using Electron Paramagnetic Resonance (EPR) spectroscopy. The samples in powder form were irradiated with a 60Co gamma-ray source at ambient temperature in the dose range between 1.06 and 11.3 kGy. The measurements showed that the EPR signal intensity enhanced following saturation exponential with the absorbed dose. The estimated EPR parameters: g1 = 1.9976, g2 = 2.0006, g3 = 2.0015, g4 = 2.0030 and g5 = 2.0043 revealed a complex spectrum consisting of CO{sub 2}{sup -}, CO{sub 3}{sup 3-} andmore » CO{sub 3}{sup -} species. A very weak signal at g6 = 2.0057 was associated to SO{sub 2}{sup -} electron center. All EPR signals of gamma-irradiated samples decreased with various rate with the of 100 deg. C isothermal annealing time.« less

  19. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    NASA Astrophysics Data System (ADS)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  20. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    PubMed

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Oxygen Saturation during Transport to the Recovery Room in Patients over Age Sixty.

    DTIC Science & Technology

    anesthesia recovery room (PARR), has not been studied specifically in patients over 60 years of age . This study identifies alterations in oxygen saturation...during post-anesthesia transport in this age group. Specifically, this investigation quantifies the incidence of a decrease in SaO2 to 90% (defined in

  2. Approximate methods for the fast computation of EPR and ST-EPR spectra. V. Application of the perturbation approach to the problem of anisotropic motion

    NASA Astrophysics Data System (ADS)

    Robinson, B. H.; Dalton, L. R.

    1981-01-01

    The modulation perturbation treatment of Galloway and Dalton is applied to the solution of the stochastic Liouville equation for the spin density matrix which incorporates an anisotropic rotational diffusion operator. Pseudosecular and saturation terms of the spin hamiltonian are explicitly considered as is the interaction of the electron spins with the applied Zeeman modulation field. The modulation perturbation treatment results in a factor of four improvement in computational speed relative to inversion of the full supermatrix with little or no loss of computational accuracy. The theoretical simulations of EPR and ST-EPR spectra are in nearly quantitative agreement with experimental spectra taken under high resolution conditions.

  3. One-way EPR steering and genuine multipartite EPR steering

    NASA Astrophysics Data System (ADS)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  4. Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul

    2015-06-01

    Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  5. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2013-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 n

  7. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hader, J.; Moloney, J. V.; College of Optical Sciences, University of Arizona, Tucson, Arizona 85721

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap,more » the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.« less

  9. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  10. Full cycle rapid scan EPR deconvolution algorithm.

    PubMed

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  11. Full cycle rapid scan EPR deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  12. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    PubMed

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  13. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  14. EPR: Evidence and fallacy.

    PubMed

    Nichols, Joseph W; Bae, You Han

    2014-09-28

    The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  16. Locations of radical species in black pepper seeds investigated by CW EPR and 9 GHz EPR imaging

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-01

    In this study, noninvasive 9 GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9 GHz EPR imaging capabilities. The 9 GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2 mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe3+, and Mn2+ complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1 h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9 GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds.

  17. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    PubMed

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  19. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  1. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  2. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    PubMed

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    PubMed

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  4. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang

    2015-08-31

    As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. Themore » results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)« less

  5. Comparison of centric and reverse-centric trajectories for highly accelerated three-dimensional saturation recovery cardiac perfusion imaging.

    PubMed

    Wang, Haonan; Bangerter, Neal K; Park, Daniel J; Adluru, Ganesh; Kholmovski, Eugene G; Xu, Jian; DiBella, Edward

    2015-10-01

    Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation. © 2014 Wiley Periodicals, Inc.

  6. Application of EPR spectroscopy to the examination of pro-oxidant activity of coffee.

    PubMed

    Krakowian, Daniel; Skiba, Dominik; Kudelski, Adam; Pilawa, Barbara; Ramos, Paweł; Adamczyk, Jakub; Pawłowska-Góral, Katarzyna

    2014-05-15

    Free radicals present in coffee may be responsible for exerting toxic effects on an organism. The objectives of this work were to compare free radicals properties and concentrations in different commercially available coffees, in solid and liquid states, and to determine the effect of roasting on the formation of free radicals in coffee beans of various origins. The free radicals content of 15 commercially available coffees (solid and liquid) was compared and the impact of processing examined using electron paramagnetic resonance (EPR) spectroscopy at X-band (9.3 GHz). First derivative EPR spectra were measured at microwave power in the range of 0.7-70 mW. The following parameters were calculated for EPR spectra: amplitude (A), integral intensity (I), and line-width (ΔBpp); g-Factor was obtained from resonance condition. Our study showed that free radicals exist in green coffee beans (10(16) spin/g), roasted coffee beans (10(18) spin/g), and in commercially available coffee (10(17)-10(18) spin/g). Free radical concentrations were higher in solid ground coffee than in instant or lyophilised coffee. Continuous microwave saturation indicated homogeneous broadening of EPR lines from solid and liquid commercial coffee samples as well as green and roasted coffee beans. Slow spin-lattice relaxation processes were found to be present in all coffee samples tested, solid and liquid commercial coffees as well as green and roasted coffee beans. Higher free radicals concentrations were obtained for both the green and roasted at 240 °C coffee beans from Peru compared with those originating from Ethiopia, Brazil, India, or Colombia. Moreover, more free radicals occurred in Arabica coffee beans roasted at 240 °C than Robusta. EPR spectroscopy is a useful method of examining free radicals in different types of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    PubMed

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  8. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less

  9. Use of aspartame-based sweetener tablets in emergency dosimetry using EPR.

    PubMed

    Maghraby, A; Salama, E

    2010-06-01

    Accident dosimetry aims to evaluate the unplanned radiation doses delivered to individuals through one of the objects exist in the area of the accident. The gamma dose response of free radicals generated in irradiated aspartame tablets and its usability for emergency dosimetry was studied. EPR spectra of unirradiated and irradiated aspartame-based sweetener were recorded. Two signals arise after irradiating, S(1) at g (S(1)) = 2.00229 +/- 0.00097 and S(2) at g (S(2)) = 2.00262 +/- 0.00088. Some EPR parameters were studied for radiation-induced radicals in aspartame sweeteners tablets, such as the microwave saturation behaviour, the effect of magnetic field modulation amplitude on the peak-to-peak height and peak-to-peak line width for both of S(1) and S(2). Responses of S(1) and S(2) to different radiation doses were studied and resulted in linear relationships, radicals persistence curves were plotted over a 49-d storage period. It was found that Aspartame sweeteners tablets are useful in the range from 0.96 to 39.96 Gy. Radiation-induced radicals possess reasonable stability.

  10. Use of EPR to Solve Biochemical Problems

    PubMed Central

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  11. Doppler-resolved kinetics of saturation recovery

    DOE PAGES

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  12. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane.

    PubMed Central

    Kawasaki, K; Yin, J J; Subczynski, W K; Hyde, J S; Kusumi, A

    2001-01-01

    A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase. PMID:11159441

  13. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.

    PubMed

    Yokoyama, Hidekatsu

    2012-01-01

    Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  15. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment

    USGS Publications Warehouse

    Ebel, Brian A.; Martin, Deborah

    2017-01-01

    Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.

  16. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  17. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  18. Pharmaceutical applications of in vivo EPR

    NASA Astrophysics Data System (ADS)

    Mäder, Karsten

    1998-07-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained.

  19. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However

  20. EPR spectroscopic investigation of psoriatic finger nails.

    PubMed

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry.

    PubMed

    Gallez, Bernard

    2016-12-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Characterization of Melanin Radicals in Paraffin-embedded Malignant Melanoma and Nevus Pigmentosus Using X-band EPR and EPR Imaging.

    PubMed

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke; Hara, Hideyuki

    2017-01-01

    Continuous wave electron paramagnetic resonance (CW EPR) and X-band (9 GHz) EPR imaging (EPRI) were used to nondestructively investigate the possible differentiation between malignant melanoma (MM) and nevus pigmentosus (NP) melanin radicals in paraffin-embedded specimens. The EPR spectra of both samples were analyzed using linewidth, spectral pattern, and X-band EPRI. The CW-EPR spectra of the MM showed an additional signal overlap. Eumelanin- and pheomelanin-related radicals were observed in the MM specimens. The EPR results revealed that the peak-to-peak linewidths (ΔH pp ) of paraffin-embedded MM and NP samples were 0.65 ± 0.01 and 0.69 ± 0.01 mT, respectively. The g-value was 2.005 for both samples. Moreover, the two-dimensional (2D) EPRI of the MM showed different signal intensities at the different tumor stages, unlike the NP, which displayed fewer variations in signal intensity. Thus, the present results suggest that EPR and 2D EPRI can be useful for characterization of the two melanin radicals in the MM and for determination of their size and concentration.

  3. High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots.

    PubMed

    Baranov, Pavel G; Orlinskii, Sergei B; de Mello Donegá, Celso; Schmidt, Jan

    2010-10-01

    CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the (67)Zn nuclear spins in the core of ZnO QDs and of the (1)H nuclear spins in the Zn(OH)(2) capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.

  4. High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots

    PubMed Central

    Baranov, Pavel G.; de Mello Donegá, Celso; Schmidt, Jan

    2010-01-01

    is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the 67Zn nuclear spins in the core of ZnO QDs and of the 1H nuclear spins in the Zn(OH)2 capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques. PMID:20936163

  5. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  6. A sub-Kelvin cryogen-free EPR system.

    PubMed

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. EPR-based distance measurements at ambient temperature.

    PubMed

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  9. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  10. EFFECT OF MICROWAVE POWER ON SHAPE OF EPR SPECTRA--APPLICATION TO EXAMINATION OF COMPLEX FREE RADICAL SYSTEM IN THERMALLY STERILIZED ACIDUM BORICUM.

    PubMed

    Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara

    2016-01-01

    Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.

  11. Experimental EPR-steering using Bell-local states

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J.

    2010-11-01

    The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.

  12. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    PubMed Central

    Vane, Leland M.

    2017-01-01

    BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395

  13. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    PubMed

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  14. Very High Frequency Epr: Instrument and Applications

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Most Electron Paramagnetic Resonance (EPR, also known as ESR or EMR) experiments are performed at conventional 9 GHz or 35 GHz frequency. But there are numerous situations in which a large increase in the microwave frequency (and/or magnetic field) will result in substantial increase in the information content in EPR spectra. This has motivated us to construct a very high frequency (VHF, 95 GHz) EPR spectrometer at Illinois EPR Research Center. Many advantages of VHF EPR are demonstrated through examples in Chapter 1. The spectrometer and some unique aspects of the instrument are described and documented in Chapter 2. Chapter 3 reports use of the VHF EPR technique to study the structure/spectral relationship of a homologous series of thiophenes, which may be constituents of coal. Two successful methods to generate the cation radicals of these organic sulfur compounds are found. The g matrices (tensors) of the thiophenic radicals are obtained for the first time. The small differences between anisotropic components of the g matrices can be unambiguously resolved. Correlations of the experimentally measured g matrices with the molecular and electronic structures are reported. The g shifts correlate linearly with lambda of their Huckel molecular orbitals; the largest g components are proportional to the pi spin densities on sulfur. In addition, the small proton hyperfine interactions of dibenzothiophene (DBT) are observed for the first time by continuous wave VHF EPR. A multifrequency approach, including auxiliary 2-4 GHz pulsed measurement, has shown that a single set of spin Hamiltonian parameters describes the spin system of DBT over a microwave frequency span of 3 to 95 GHz. These newly available, detailed, and accurate data provide a valuable opportunity to test, and perhaps to improve, the existing theoretical models for predictions on g matrices of organic radicals. Finally, Chapter 4 reports trial calculations of g matrices by several molecular orbital methods.

  15. Saturation pulse design for quantitative myocardial T1 mapping.

    PubMed

    Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B

    2015-10-01

    Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both

  16. EPR detection of foods preserved with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  17. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    PubMed

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  18. Relativistic Nonlocality and the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  19. EPR study on non- and gamma-irradiated herbal pills

    NASA Astrophysics Data System (ADS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  20. EPR: Some History and Clarification

    NASA Astrophysics Data System (ADS)

    Fine, Arthur

    2002-04-01

    Locality, separation and entanglement 1930s style. We’ll explore the background to the 1935 paper by Einstein, Podolsky and Rosen, how it was composed, the actual argument of the paper, the principles used, and how the paper was received by Schroedinger, and others.We’ll also look at Bohr’s response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to EPR marks a shift in Bohr’s thinking about the quantum theory.

  1. Chirp echo Fourier transform EPR-detected NMR.

    PubMed

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Chirp echo Fourier transform EPR-detected NMR

    NASA Astrophysics Data System (ADS)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  3. EPR study on gamma-irradiated fruits dehydrated via osmosis

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  4. Transient radical pairs studied by time-resolved EPR.

    PubMed

    Bittl, Robert; Weber, Stefan

    2005-02-25

    Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.

  5. EPR spectroscopy of complex biological iron-sulfur systems.

    PubMed

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  6. Polymer therapeutics and the EPR effect.

    PubMed

    Maeda, Hiroshi

    History of the EPR (enhanced permeability and retention) effect is discussed, which goes back to the analyses of molecular pathology in bacterial infection and edema (extravasation) formation. The first mediator we found for extravasation was bradykinin. Later on, were found nitric oxide and superoxide, then formation of peroxynitrite, that activates procollagenase. In this inflammatory setting many other vascular mediators are involved that are also common to cancer vasculature. Obviously cancer vasculature is defective architechtally, and this makes macromolecular drugs more permeable through the vascular wall. The importance of this pathophysiological event of EPR effect can be applied to macromolecular drug-delivery, or tumor selective delivery, which takes hours to achieve in the primary as well as metastatic tumors, not to mention of the inflamed tissues. The retention of the EPR means that such drugs will be retained in tumor tissues more than days to weeks. This was demonstrated initially, and most dramatically, using SMANCS, a protein-polymer conjugated-drug dissolved in lipid contrast medium (Lipiodol) by administering intraarterially. For disseminating the EPR concept globally, or in the scientific community, Professor Ruth Duncan played a key role at the early stage, as she worked extensively on polymer- therapeutics, and knew its importance.

  7. Time-resolved EPR study of singlet oxygen in the gas phase.

    PubMed

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  8. The estimation of recovery time of calf muscle oxygen saturation during exercise by using functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Shojaeifar, M.; Mohajerani, E.

    2014-08-01

    Several methods of near infrared spectroscopy such as functional near infrared spectroscopy (fNIRS) and pulse oximetry have been applied for monitoring of tissue oxygenation or arterial oxygen saturation. Some vascular diseases can be diagnosed through measurements of tissue oxygenation. In this study, the temporal variation of oxygenation of calf muscle after exercise is studied by fNIRS. First, the accuracy of a low-cost fNIRS system is studied by measuring the oxygenation of a lipid phantom. Moreover, in-vivo study is performed to evaluate the precision of this system. Then, the variation of muscle oxygenation of four persons during exercise is measured and also the recovery time after walking/running is measured by this fNIRS system.

  9. Time-resolved EPR spectroscopy in a Unix environment.

    PubMed

    Lacoff, N M; Franke, J E; Warden, J T

    1990-02-01

    A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.

  10. Essential Ambiguity and Essential Influence: Rereading Bohr's Reply to EPR

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2006-01-01

    The article offers a rereading of Bohr's reply to the argument of A. Einstein, B. Podolsky, and N. Rosen (EPR) concerning the incompleteness, or else nonlocality, of quantum mechanics. Bohr shows EPR's argument to be deficient on their own terms, by virtue of an ambiguity found in their application of the criterion of reality they propose to the phenomena in question. He also offers an alternative interpretation of the EPR experiment itself, the thought experiment proposed by EPR, as part of his overall interpretation of quantum mechanics as complementarity.

  11. Active cancellation - A means to zero dead-time pulse EPR.

    PubMed

    Franck, John M; Barnes, Ryan P; Keller, Timothy J; Kaufmann, Thomas; Han, Songi

    2015-12-01

    The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Quantitative Component Analysis of Solid Mixtures by Analyzing Time Domain 1H and 19F T1 Saturation Recovery Curves (qSRC).

    PubMed

    Stueber, Dirk; Jehle, Stefan

    2017-07-01

    Prevalent polymorphism and complicated phase behavior of active pharmaceutical ingredients (APIs) often result in remarkable differences in the respective biochemical and physical API properties. Consequently, API form characterization and quantification play a central role in the pharmaceutical industry from early drug development to manufacturing. Here we present a novel and proficient quantification protocol for solid mixtures (qSRC) based on the measurement and mathematical fitting of T 1 nuclear magnetic resonance (NMR) saturation recovery curves collected on a bench top time-domain NMR instrument. The saturation recovery curves of the relevant pure components are used as fingerprints. Employing a bench top NMR instrument possesses clear benefits. These instruments exhibit a small footprint, do not present any special requirements on lab space, and required sample handling is simple and fast. The qSRC analysis can easily be conducted in a conventional laboratory setting as well as in an industrial production environment, making it a versatile tool with the potential for widespread application. The accuracy and efficiency of the qSRC method is illustrated using 1 H and 19 F T 1 data of selected pharmaceutical model compounds, as well as utilizing 1 H T 1 data of an actual binary API anhydrous polymorph system of a Merck & Co., Inc. compound formerly developed as a hepatitis C virus drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. SolarSoft Desat Package for the Recovery of Saturated AIA Flare Images

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard Alan; Torre, Gabriele; Piana, Michele; Massone, AnnaMaria

    2015-04-01

    The dynamic range of EUV images has been limited by the problem of CCD saturation as seen countless times in movies of solare flares made using the Solar Dynamics Observatory’s Atmospheric Imaging Assembly (SDO AIA). Concurrent with the saturation are the eight rays emanating from the saturation locus which are the result of diffraction off the wire meshes that support the EUV passband filters. This is the problem and its solution in a nutshell. By utilizing techniques similar to those used for making images from the rotating modulation collimators on the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) we have developed a software package that can be used to make images of the EUV flare kernels in a highly automated way as described in Schwartz et al. (2014). Starting from cutouts centered around a flaring region, the software uses the point-spread-function (PSF) of the diffraction pattern to identify and reconstruct the region of the primary saturation. The software also uses the best information available to reconstruct the general scene obscured from overflow saturation and subtracts away the diffraction fringes. It is not a total correction for the PSF but is meant to provide the flare images above all. The software is freely available and distributed within the DESAT package of Solar Software.(Schwartz, R. A., Torre, G., & Piana, M. (2014), Astrophysical Journal Letters, 793, LL23 )

  14. Investigating the Distribution of Stable Paramagnetic Species in an Apple Seed Using X-Band EPR and EPR Imaging.

    PubMed

    Nakagawa, Kouichi; Epel, Boris

    2017-03-01

    This study investigated the location and distribution of paramagnetic species in apple seeds using electron paramagnetic resonance (EPR) and X-band (9 GHz) EPR imaging (EPRI). EPR primarily detected two paramagnetic species per measured seed. These two different radical species were assigned as stable radicals and Mn 2+ species based on the g values and hyperfine components. The signal from the stable radical was noted at g ≈ 2.00 and was strong and relatively stable. The subsequent noninvasive EPRI of the radical present in each seed revealed that the stable radicals were located primarily in the seed coat, with very few radicals observed in the cotyledon of the seed. These results indicate that the stable radical species were only found within the seed coat, and few radical species were found in other seed parts.

  15. Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.

    PubMed

    Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier

    2013-07-17

    Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.

  16. EPR study of free radicals in bread

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Mladenova, Ralitsa

    2004-05-01

    The features of the recorded EPR spectra of paramagnetic species formed in bread and rusk are reported. The appearance of free radicals in them is only connected with their thermal treatment since the starting materials (flour and grains) exhibit very weak EPR signal. The obtained EPR spectra are complex and indicate that: (i) the relative number of paramagnetic species depends on the temperature and treating time of the raw product; (ii) the g-values are strongly temperature dependent with a tendency to coincide at t≥220 °C. Because of the relatively low (150-220 °C) temperature of thermal treatment, the studied free radicals can be assumed to appear in the course of the browning (Maillard) reaction and not to the carbonization of the material.

  17. X- and Q-band EPR studies on fine powders of irradiated plants. New approach for detection of their radiation history by using Q-band EPR spectrometry

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2004-01-01

    X- and Q-band EPR studies after γ-irradiation of some dry spices and aromatic herbs are reported. Before irradiation all samples show only one singlet line in X-band EPR, whereas the Q-band EPR spectrum of the same samples is a superposition of two individual spectra—one corresponding to the above EPR signal, with an anisotropic spectrum, and a second one consisting of six lines due to the Mn 2+ naturally present in plants. The radiation induced EPR signal due to cellulose free radicals was not detected after γ-irradiation, but only the increase of the natural signal present before the irradiation. The fading kinetic of this EPR signal was monitored in three cases—when samples were kept in plastic bags without any special conditioning after irradiation, when samples were covered with paraffin before irradiation and when samples were dried at 60°C for 1 h before irradiation. The studies show that stability of radiation induced EPR signals decreases in the order of: paraffin covered > heated before irradiation > kept at room conditions. The two EPR spectra in the Q-band—one with radiation dependent intensity and a second due to Mn 2+, which is radiation independent allow identification of previous radiation treatment based on the fact that Mn 2+ quantity in the sample is constant whereas the quantity of radiation-induced free radicals is temperature dependent. It was found that for irradiated samples the ratio between EPR intensity of the free radicals and that of Mn 2+ before and after heating decreases with 50-60% whereas for non-irradiated samples it is ca. 10-15%.

  18. W-Band Frequency-Swept EPR

    PubMed Central

    Hyde, James S.; Strangeway, Robert A.; Camenisch, Theodore G.; Ratke, Joseph J.; Froncisz, Wojciech

    2010-01-01

    This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8 × 105 GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study. PMID:20462775

  19. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  20. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  1. Spin entanglement, decoherence and Bohm's EPR paradox.

    PubMed

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  2. Developing a national programme for textiles and clothing recovery.

    PubMed

    Bukhari, Mohammad Abdullatif; Carrasco-Gallego, Ruth; Ponce-Cueto, Eva

    2018-04-01

    Textiles waste is relatively small in terms of weight as compared to other waste streams, but it has a large impact on human health and environment, and its rate is increasing due to the 'fast fashion' model. In this paper, we examine the French national programme for managing post-consumer textiles and clothing through a case study research. To date, France is the only country in the world implementing an extended producer responsibility (EPR) policy for end-of-use clothing, linen and shoes. The case highlights the benefits of using an EPR policy and provides interesting insights about the challenges faced by the textiles waste sector. For instance, the EPR policy has contributed to a threefold increase in the collection and recycling rates of post-consumer textiles since 2006. In addition, the material recovery rate of the post-consumer textiles can reach 90%, 50% of which can be directly reused. However, the 'reuse' stream is facing some challenges because its main market is in Africa and many African countries are considering banning the import of used textiles to encourage a competitive textiles industry locally and internationally. The EPR policy shows a great potential to identify new markets for 'reuse' and to improve the textiles waste sector. Such an EPR policy also could drive societies to financially support innovation and research to provide feasible solutions for fashion producers to adopt eco-design and design for recycling practices. This paper provides guidance for policy makers, shareholders, researchers and practitioners interested in diverting post-consumer textiles and clothing waste from landfills and promoting circular textiles transition.

  3. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  4. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

    PubMed

    Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L

    2015-09-01

    Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be

  5. Einstein and the Quantum: The Secret Life of EPR

    NASA Astrophysics Data System (ADS)

    Fine, Arthur

    2006-05-01

    Locality, separation and entanglement -- 1930s style. Starting with Solvay 1927, we'll explore the background to the 1935 paper by Einstein, Podolsky and Rosen: how it was composed, the actual argument and principles used, and how the paper was received by Schroedinger, and others. We'll also look at Bohr's response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to which EPR marks a shift in Bohr's thinking about the quantum theory. Time permitting, we will contrast EPR with Bell's theorem.

  6. Broadband Transmission EPR Spectroscopy

    PubMed Central

    Hagen, Wilfred R.

    2013-01-01

    EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819

  7. Self-testing through EPR-steering

    NASA Astrophysics Data System (ADS)

    Šupić, Ivan; Hoban, Matty J.

    2016-07-01

    The verification of quantum devices is an important aspect of quantum information, especially with the emergence of more advanced experimental implementations of quantum computation and secure communication. Within this, the theory of device-independent robust self-testing via Bell tests has reached a level of maturity now that many quantum states and measurements can be verified without direct access to the quantum systems: interaction with the devices is solely classical. However, the requirements for this robust level of verification are daunting and require high levels of experimental accuracy. In this paper we discuss the possibility of self-testing where we only have direct access to one part of the quantum device. This motivates the study of self-testing via EPR-steering, an intermediate form of entanglement verification between full state tomography and Bell tests. Quantum non-locality implies EPR-steering so results in the former can apply in the latter, but we ask what advantages may be gleaned from the latter over the former given that one can do partial state tomography? We show that in the case of self-testing a maximally entangled two-qubit state, or ebit, EPR-steering allows for simpler analysis and better error tolerance than in the case of full device-independence. On the other hand, this improvement is only a constant improvement and (up to constants) is the best one can hope for. Finally, we indicate that the main advantage in self-testing based on EPR-steering could be in the case of self-testing multi-partite quantum states and measurements. For example, it may be easier to establish a tensor product structure for a particular party’s Hilbert space even if we do not have access to their part of the global quantum system.

  8. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  9. Case Studies in e-RPL and e-PR

    ERIC Educational Resources Information Center

    Cameron, Roslyn; Miller, Allison

    2014-01-01

    The use of ePortfolios for recognition of prior learning (e-RPL) and for professional recognition (e-PR) is slowly gaining in popularity in the VET sector however their use is sporadic across educational sectors, disciplines, educational institutions and professions. Added to this is an array of purposes and types of e-RPL and e-PR models and…

  10. Free-radical probes for functional in vivo EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  11. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of

  12. Applications of EPR steering in quantum teleportation and NOON states

    NASA Astrophysics Data System (ADS)

    Zárate, Laura Rosales

    2018-04-01

    Einstein-Podolsky-Rosen (EPR) steering refers to the type of correlations described in the EPR paradox, where one observer seems to affect ("steer") the state of other observer by using local measurements. There have been several works regarding characterization and quantification of EPR steering. One characteristic of this non-local correlation is that it can be asymmetric, while entanglement is symmetric. This asymmetric property is relevant for potential applications of EPR steering to quantum information, in particular to quantum cryptography and quantum teleportation. This latter refers to the process where one observer sends an unknown quantum state to Bob, who is in a different location. They communicate by classical means. Here we will show that EPR steering is a necessary resource to obtain secure continuous variable teleportation. We will also consider NOON states, which is an example of an entangled state. For this state, we will present a steering signature. This contribution reviews the work derived in Refs. [1] and [2], which was presented as an invited talk in ELAF 2017.

  13. Emergency EPR and OSL dosimetry with table vitamins and minerals.

    PubMed

    Sholom, S; McKeever, S W S

    2016-12-01

    Several table vitamins, minerals and L-lysine amino acid have been preliminarily tested as potential emergency dosemeters using electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) techniques. Radiation-induced EPR signals were detected in samples of vitamin B2 and L-lysine while samples of multivitamins of different brands as well as mineral Mg demonstrated prominent OSL signals after exposure to ionizing radiation doses. Basic dosimetric properties of the radiation-sensitive substances were studied, namely dose response, fading of the EPR or OSL signals and values of minimum measurable doses (MMDs). For EPR-sensitive samples, the EPR signal is converted into units of dose using a linear dose response and correcting for fading using the measured fading dependence. For OSL-sensitive materials, a multi-aliquot, enhanced-temperature protocol was developed to avoid the problem of sample sensitization and to minimize the influence of signal fading. The sample dose in this case is also evaluated using the dose response and fading curves. MMDs of the EPR-sensitive samples were below 2 Gy while those of the OSL-sensitive materials were below 500 mGy as long as the samples are analyzed within 1 week after exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs.

    PubMed

    Chen, Ling; Zang, Fengchao; Wu, Haoan; Li, Jianzhong; Xie, Jun; Ma, Ming; Gu, Ning; Zhang, Yu

    2018-01-25

    Micelle drugs based on a polymeric platform offer great advantages over liposomal drugs for tumor treatment. Although nearly all of the nanomedicines approved in the clinical use can passively target to the tumor tissues on the basis of an enhanced permeability and retention (EPR) effect, the nanodrugs have shown heterogenous responses in the patients. This phenomenon may be traced back to the EPR effect of tumor, which is extremely variable in the individuals from extensive studies. Nevertheless, there is a lack of experimental data describing the EPR effect and predicting its impact on therapeutic efficacy of nanoagents. Herein, we developed 32 nm magnetic iron oxide nanoparticles (MION) as a T 2 -weighted contrast agent to describe the EPR effect of each tumor by in vivo magnetic resonance imaging (MRI). The MION were synthesized by a thermal decomposition method and modified with DSPE-PEG2000 for biological applications. The PEGylated MION (Fe 3 O 4 @PEG) exhibited high r 2 of 571 mM -1 s -1 and saturation magnetization (M s ) of 94 emu g -1 Fe as well as long stability and favorable biocompatibility through the in vitro studies. The enhancement intensities of the tumor tissue from the MR images were quantitatively measured as TNR (Tumor/Normal tissue signal Ratio) values, which were correlated with the delay of tumor growth after intravenous administration of the PLA-PEG/PTX micelle drug. The results demonstrated that the group with the smallest TNR values (TNR < 0.5) displayed the best tumor inhibitory effect. In addition, there was a superior correlation between TNR value and relative tumor delay in individual mice. These analysis results indicated that the TNR value of the tumor region enhanced by Fe 3 O 4 @PEG (d = 32 nm) could be used to predict the therapeutic efficacy of the micelle drugs (d ≤ 32 nm) in a certain period of time. Fe 3 O 4 @PEG has a potential to serve as an ideal MRI contrast agent to visualize the EPR effect in patients for accurate

  15. A Local Realistic Reconciliation of the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Sanctuary, Bryan

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  16. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  17. Time dependence of the radiation-induced EPR signal in sucrose.

    PubMed

    Desrosiers, Marc; Wadley, Samara

    2006-01-01

    Sucrose and common household sugars (e.g. cane) have been studied as dosemeters for a wide variety of applications. However, previous studies of the post-irradiation time dependence of irradiated sugar did not include an electron paramagnetic resonance (EPR) reference material. This work employs synthetic ruby as an EPR reference material to remove significant spectrometer/environmental influences on the measured time-dependent changes in the EPR spectral amplitude of irradiated sucrose. As such, these more accurate measurements should replace the previously published data.

  18. Pulse EPR distance measurements to study multimers and multimerisation

    NASA Astrophysics Data System (ADS)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  19. L Band EPR Tooth Dosimetry for Heavy Ion Irradiation

    PubMed Central

    Yamaguchi, Ichiro; Sato, Hitoshi; Kawamura, Hiraku; Hamano, Tsuyoshi; Yoshii, Hiroshi; Suda, Mitsuru; Miyake, Minoru; Kunugita, Naoki

    2016-01-01

    Electron Paramagnetic Resonance (EPR) tooth dosimetry is being developed as a device to rapidly assess large populations that were potentially exposed to radiation during a major radiation accident or terrorist event. While most exposures are likely to be due to fallout and therefore involve low linear energy transfer (LET) radiation, there is also a potential for exposures to high LET radiation, for which the effect on teeth has been less well characterized by EPR. Therefore, the aim of this paper is to acquire fundamental response curves for high LET radiation in tooth dosimetry using L band EPR. For this purpose, we exposed human teeth to high energy carbon ions using the heavy ion medical accelerator in Chiba at the National Institute of Radiological Sciences. The primary findings were that EPR signals for carbon ion irradiation were about one-tenth the amplitude of the response to the same dose of 150 kVp X-rays. PMID:27542817

  20. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  1. Clinical EPR: Unique Opportunities and Some Challenges

    PubMed Central

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  2. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  3. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.

    PubMed

    Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M

    2016-05-16

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

  4. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

    PubMed Central

    Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.

    2016-01-01

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419

  5. Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR.

    PubMed

    Nakagawa, Kouichi; Maeda, Hayato

    2017-01-01

    We investigated the location and distribution of paramagnetic species in black and white rice using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black rice, which were identified as a stable radical and Mn 2+ species, based on the g values and hyperfine components of the EPR signals. The signal from the stable radical appeared at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI revealed that this stable radical was primarily located in the pigmented region of black rice, while very few radicals were observed in the rice interior. Pigments extracted from black rice were analyzed using HPLC; the major compound was found to be cyanidin-3-glucoside. EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the rice, and that it could either be cyanidin-3-glucoside, or one of its oxidative decomposition products.

  6. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    PubMed

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Peptide-membrane Interactions by Spin-labeling EPR

    PubMed Central

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  8. Wormhole and entanglement (non-)detection in the ER=EPR correspondence

    DOE PAGES

    Bao, Ning; Pollack, Jason; Remmen, Grant N.

    2015-11-19

    The recently proposed ER=EPR correspondence postulates the existence of wormholes (Einstein-Rosen bridges) between entangled states (such as EPR pairs). Entanglement is famously known to be unobservable in quantum mechanics, in that there exists no observable (or, equivalently, projector) that can accurately pick out whether a generic state is entangled. Many features of the geometry of spacetime, however, are observables, so one might worry that the presence or absence of a wormhole could identify an entangled state in ER=EPR, violating quantum mechanics, specifically, the property of state-independence of observables. In this note, we establish that this cannot occur: there is nomore » measurement in general relativity that unambiguously detects the presence of a generic wormhole geometry. Furthermore, this statement is the ER=EPR dual of the undetectability of entanglement.« less

  9. EPR and IR spectral investigations on some leafy vegetables of Indian origin

    NASA Astrophysics Data System (ADS)

    Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.

    2009-09-01

    EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)-Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe 3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)-O-Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn 2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic C dbnd O bonds.

  10. Prediction and Repetition in Quantum Mechanics: The EPR Experiment and Quantum Probability

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2007-02-01

    The article considers the implications of the experiment of A. Einstein, B. Podolsky, and N. Rosen (EPR), and of the exchange (concerning this experiment) between EPR and Bohr concerning the incompleteness, or else nonlocality, of quantum mechanics for our understanding of quantum phenomena and quantum probability. The article specifically argues that in the case of quantum phenomena, including those involved in the experiments of the EPR type, the probabilistic considerations are important even when the predictions concerned can be made with certainty, due to the impossibility, in general, to repeat any given quantum experiment with the same outcome. The article argue that this fact, not properly considered or taken into account by EPR, makes it difficult and ultimately impossible to sustain their argument, which it is consistent with Bohr's counterargument to EPR and with his view of quantum phenomena and quantum mechanics.

  11. Biophysical EPR Studies Applied to Membrane Proteins

    PubMed Central

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  12. Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy

    PubMed Central

    Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.

    2008-01-01

    This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493

  13. ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.

    PubMed

    Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk

    2018-02-15

    The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.

  14. Novel EPR characterization of the antioxidant activity of tea leaves

    NASA Astrophysics Data System (ADS)

    Morsy, M. A.; Khaled, M. M.

    2002-04-01

    Electron paramagnetic resonance (EPR) spectroscopy is utilized to investigate several categories of green and black tea: Twining green tea (TGT), Chinese green tea (CGT), Red-labels black tea (RBT). Basically, two EPR signals from all the studied samples are observed: One of them is a very weak sharp EPR signal with Δ Hpp≅10 G and g-factor=2.00023 superimposed on the other broad signal with Δ Hpp≅550 G and g-factor=2.02489. The broad signal is a characteristic one of manganese(II) complex, while the sharp signal is related to a stable radical of aromatic origin exist in a powder condition. The feature of the manganese EPR signal is attributed to manganese(II) complex and reflected the molecular behavior of Mn(II) in the protein system of the natural leaves. The sharp signal, which is most probably due to a semiquinones radicals, is observed at room temperature and its intensity is remarkably affected by photo degradation of the studied samples. The intensity of manganese(II) EPR signal is found to be related to ageing and disintegration of the tea leaves. Moreover, direct relation between the relative intensity of the semiquinones radical signal and antioxidant activity of the studied samples was also correlated.

  15. Effects of energy and protein restriction, followed by nutritional recovery on morphological development of the gastrointestinal tract of weaned kids.

    PubMed

    Sun, Z H; He, Z X; Zhang, Q L; Tan, Z L; Han, X F; Tang, S X; Zhou, C S; Wang, M; Yan, Q X

    2013-09-01

    Effects of energy, protein, or both energy and protein restriction on gastrointestinal morphological development were investigated in 60 Liuyang Black kids, which were sourced from local farms and weaned at 28 d of age. Weaned kids were randomly assigned to receive 1 of 4 dietary treatments (15 kids per treatment), which consisted of adequate nutrient supply (CON), energy restriction (ER), protein restriction (PR), or energy and protein restriction (EPR). The entire experiment included adaptation period (0 to 6 d), nutritional restriction period (7 to 48 d), and recovery period (49 to 111 d). Three kids from each group were killed at d 48 and 111, and the rumen, duodenum, jejunum, and ileum were harvested. On d 48 (end of nutritional restriction), lengths of the duodenum (P = 0.005), jejunum (P = 0.003), and ileum (P = 0.003), and weights of the rumen (P = 0.004), duodenum (P = 0.006), jejunum (P = 0.006), and ileum (P = 0.004) of kids in ER, PR, and EPR were less than those of kids in CON. Compared with CON, PR decreased papillae width (P = 0.03) and surface area (P = 0.05) of the rumen epithelium, villus surface area (P = 0.05), and N concentration (P = 0.02) of the jejunum mucosa on d 48. Compared with CON, EPR decreased papillae height (P = 0.001), width (P = 0.001), and surface area (P = 0.003), N concentration (P = 0.01), and the ratio of N to DNA (P = 0.03) of the rumen epithelium. Compared with CON, EPR also decreased villus height (P = 0.01), width (P = 0.006), and surface area (P = 0.006), N concentration (P < 0.001), and the ratio of N to DNA (P < 0.001) of the jejunum mucosa on d 48. On d 111 (end of nutritional recovery), lengths of the duodenum (P = 0.001), jejunum (P = 0.001), and ileum (P = 0.001), weights of the rumen (P < 0.001), duodenum (P = 0.001), jejunum (P < 0.001), and ileum (P < 0.001) of kids in ER, PR, and EPR were still less than those of kids in CON; N concentrations of rumen epithelium of kids in PR (P = 0.01) and EPR (P = 0.001), and

  16. On the Correlations between the Particles in the EPR-Paradoxon

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The Einstein-Podolsky-Rosen gedanken-experiment does not imply non-local interactions or an action-at-a-distance.Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true.But, the EPR implices correlations between the particles which come in by subjective knowledge. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements.The discussion of the Einstein-Podolsky-Rosen gedanken-experiment (EPR) has been going on over fifty years. EINSTEIN, PODOLSKY, and ROSEN formulated their famous paradox in 1935, and in the discussion between N. BOHR (1935, 1949) and A. EINSTEIN (1936, 1948); A. EINSTEIN (1948) made his point that the EPR implied an action-at-a-distance for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect, 1981).Translated AbstractÜber die Korrelationen zwischen den Partikeln beim EPR-ParadoxonDas Gedankenexperiment von EINSTEIN, PODOLSKY und ROSEN über die anscheinend paradoxen Beziehungen zwischen beliebig weit entfernten Partikeln gemäß der quantenmechanischen Theorie der Messungen führt tatsächlich nicht auf nichtlokale Wechselwirkungen.Das Einstein-Podolsky-Rosen-Paradoxon zeigt vielmehr, daß die Messung an einem Teilchen keinerlei Einfluß auf die Meßwerte an anderen Partikeln hat, wenn die quantenmechanischen Vertauschungsregeln erfüllt sind.Dagegen weist das Einstein-Podolsky-Rosensche Gedankenexperiment Korrelationen zwischen den Teilchen auf, die die Folge einer a-priori-Kenntnis über die Werte von Hamilton-Jacobischen Zwei-Partikeln-Koordinaten von

  17. EPR investigations of gamma-irradiated ground black pepper

    NASA Astrophysics Data System (ADS)

    Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter

    2006-02-01

    The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.

  18. A hand-held EPR scanner for transcutaneous oximetry

    NASA Astrophysics Data System (ADS)

    Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan

    2015-03-01

    Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use

  19. Development of a Hybrid EPR/NMR Coimaging System

    PubMed Central

    Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.

    2010-01-01

    Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621

  20. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  1. High-field EPR on membrane proteins - crossing the gap to NMR.

    PubMed

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  2. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    PubMed

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    NASA Astrophysics Data System (ADS)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel— Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom— Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle— Cantharellus cibarius Fr., as well as oyster mushroom— Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  4. The view from the trenches: part 2-technical considerations for EPR screening.

    PubMed

    Nicolalde, Roberto J; Gougelet, Robert M; Rea, Michael; Williams, Benjamin B; Dong, Ruhong; Kmiec, Maciej M; Lesniewski, Piotr N; Swartz, Harold M

    2010-02-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders' feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders' recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods.

  5. Radiation accident dosimetry on plastics by EPR spectrometry.

    PubMed

    Trompier, F; Bassinet, C; Clairand, I

    2010-02-01

    In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.

  6. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.

    PubMed

    Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław

    2015-07-22

    A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.

  7. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    NASA Astrophysics Data System (ADS)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  8. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  9. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Pachova, Zdravka

    2006-03-01

    EPR spectra of dry, sugar containing fruits—raisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031 ± 0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: Seeds of raisins, chokeberry and figs give a singlet line. Stones from blue plums and peaches exhibit typical "cellulose-like" EPR signal consisting of an intense singlet line with g = 2.0033 ± 0.0005 and 2 week satellite lines situated ca. 30 G left and right to it. Stones of dates are the only sample in which "sugar-like" spectrum is recorded. Skin of raisins and figs exhibits "sugar-like" EPR spectrum whereas that of dates and chokeberry—a singlet line. Under the same experimental conditions skin of sultanas, peaches and blue plums are EPR silent. Flesh of raisins, sultanas, figs, dates and peaches exhibits "sugar-like" EPR spectrum, flesh of blue plums gives a singlet EPR line and that of chokeberry is EPR silent. As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days.

  10. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  11. Seventy Years of the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2006-11-01

    In spite of the fact that statistical predictions of quantum theory (QT) can only be tested if large amount of data is available a claim has been made that QT provides the most complete description of an individual physical system. Einstein's opposition to this claim and the paradox he presented in the article written together with Podolsky and Rosen in 1935 inspired generations of physicists in their quest for better understanding of QT. Seventy years after EPR article it is clear that without deep understanding of the character and limitations of QT one may not hope to find a meaningful unified theory of all physical interactions, manipulate qubits or construct a quantum computer.. In this paper we present shortly the EPR paper, the discussion, which followed it and Bell inequalities (BI). To avoid various paradoxes we advocate purely statistical contextual interpretation (PSC) of QT. According to PSC a state vector is not an attribute of a single electron, photon, trapped ion or quantum dot. A value of an observable assigned to a physical system has only a meaning in a context of a particular physical experiment PSC does not provide any mental space-time picture of sub phenomena. The EPR paradox is avoided because the reduction of the state vector in the measurement process is a passage from a description of the whole ensemble of the experimental results to a particular sub-ensemble of these results. We show that the violation of BI is neither a proof of the completeness of QT nor of its non-locality. Therefore we rephrase the EPR question and ask whether QT is "predictably "complete or in other words does it provide the complete description of experimental data. To test the "predictable completeness" it is not necessary to perform additional experiments it is sufficient to analyze more in detail the existing experimental data by using various non-parametric purity tests and other specific statistical tools invented to study the fine structure the time-series.

  12. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    PubMed

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  13. Pharmacological and Physical Vessel Modulation Strategies to Improve EPR-mediated Drug Targeting to Tumors

    PubMed Central

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim; Moonen, Chrit; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2018-01-01

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. PMID:28697952

  14. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    PubMed

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    PubMed

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  16. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  17. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  18. EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.

    PubMed

    Kripal, Ram; Singh, Manju

    2015-01-25

    Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Alcoholic extraction enables EPR analysis to characterize radiation-induced cellulosic signals in spices.

    PubMed

    Ahn, Jae-Jun; Sanyal, Bhaskar; Akram, Kashif; Kwon, Joong-Ho

    2014-11-19

    Different spices such as turmeric, oregano, and cinnamon were γ-irradiated at 1 and 10 kGy. The electron paramagnetic resonance (EPR) spectra of the nonirradiated samples were characterized by a single central signal (g = 2.006), the intensity of which was significantly enhanced upon irradiation. The EPR spectra of the irradiated spice samples were characterized by an additional triplet signal at g = 2.006 with a hyperfine coupling constant of 3 mT, associated with the cellulose radical. EPR analysis on various sample pretreatments in the irradiated spice samples demonstrated that the spectral features of the cellulose radical varied on the basis of the pretreatment protocol. Alcoholic extraction pretreatment produced considerable improvements of the EPR signals of the irradiated spice samples relative to the conventional oven and freeze-drying techniques. The alcoholic extraction process is therefore proposed as the most suitable sample pretreatment for unambiguous detection of irradiated spices by EPR spectroscopy.

  20. EPR-dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor

    2017-09-01

    This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.

  1. PRO-QUEST: a rapid assessment method based on progressive saturation for quantifying exchange rates using saturation times in CEST.

    PubMed

    Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier

    2018-03-05

    To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia

    PubMed Central

    Kawaharada, Yasuyuki; Nielsen, Mette W.; Kelly, Simon; James, Euan K.; Andersen, Kasper R.; Rasmussen, Sheena R.; Füchtbauer, Winnie; Madsen, Lene H.; Heckmann, Anne B.; Radutoiu, Simona; Stougaard, Jens

    2017-01-01

    In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes. PMID:28230048

  3. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.

    PubMed

    Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V

    2015-10-22

    Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.

  4. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  5. Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes

    PubMed Central

    Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.

    2011-01-01

    Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766

  6. THE VIEW FROM THE TRENCHES: PART 2–TECHNICAL CONSIDERATIONS FOR EPR SCREENING

    PubMed Central

    Nicolalde, Roberto J.; Gougelet, Robert M.; Rea, Michael; Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej M.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders’ feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders’ recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods. PMID:20065674

  7. EPR and TL correlation in some powdered Greek white marbles.

    PubMed

    Baïetto, V; Villeneuve, G; Guibert, P; Schvoerer, M

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 degrees C and 360 degrees C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perpendicular = 2.0038 and g parallel = 2.0024 due to the SO3- centre and the B one with g1 = 2.0005; g2 = 2.0001; g3 = 1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 degrees C TL peak is associated to the A signal and thus to the SO3- centre and the 360 degrees C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  8. All-optical clock recovery, photonic balancing, and saturated asymmetric filtering for fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Parsons, Earl Ryan

    In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator. I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB. I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB. Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The

  9. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    PubMed Central

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  10. Skew projection of echo-detected EPR spectra for increased sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-06-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.

  11. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population.

    PubMed

    Ivannikov, Alexander I; Khailov, Artem M; Orlenko, Sergey P; Skvortsov, Valeri G; Stepanenko, Valeri F; Zhumadilov, Kassym Sh; Williams, Benjamin B; Flood, Ann B; Swartz, Harold M

    2016-12-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y -1 , the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose-response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and its

  12. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population

    PubMed Central

    Ivannikov, Alexander I.; Khailov, Artem M.; Orlenko, Sergey P.; Skvortsov, Valeri G.; Stepanenko, Valeri F.; Zhumadilov, Kassym Sh.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.

    2016-01-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y−1, the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose–response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and

  13. Lithium formate for EPR dosimetry: radiation-induced radical trapping at low temperatures.

    PubMed

    Krivokapić, André; Aalbergsjø, Siv G; De Cooman, Hendrik; Hole, Eli Olaug; Nelson, William H; Sagstuen, Einar

    2014-05-01

    Radiation-induced primary radicals in lithium formate. A material used in EPR dosimetry have been studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-Induced EPR (EIE) techniques. In this study, single crystals were X irradiated at 6-8 K and radical formation at these and higher temperatures were investigated. Periodic density functional theory calculations were used to assist in assigning the radical structures. Mainly two radicals are present at 6 K, the well-known CO2(•-) radical and a protonated electron-gain product. Hyperfine coupling tensors for proton and lithium interactions were obtained for these two radicals and show that the latter radical exists in four conformations with various degrees of bending at the radical center. Pairs of CO2(•-) radicals were also observed and the tensor for the electron-electron dipolar coupling was determined for the strongest coupled pair, which exhibited the largest spectral intensity. Upon warming, both the radical pairs and the reduction product decay, the latter apparently by a transient species. Above 200 K the EPR spectrum was mainly due to the CO2(•-) (mono) radicals, which were previously characterized as the dominant species present at room temperature and which account for the dosimetric EPR signal.

  14. Steering, Entanglement, Nonlocality, and the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Jones, Steve; Andrew, Doherty

    2007-06-01

    The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.

  15. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    PubMed

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. EPR Steering inequalities with Communication Assistance

    PubMed Central

    Nagy, Sándor; Vértesi, Tamás

    2016-01-01

    In this paper, we investigate the communication cost of reproducing Einstein-Podolsky-Rosen (EPR) steering correlations arising from bipartite quantum systems. We characterize the set of bipartite quantum states which admits a local hidden state model augmented with c bits of classical communication from an untrusted party (Alice) to a trusted party (Bob). In case of one bit of information (c = 1), we show that this set has a nontrivial intersection with the sets admitting a local hidden state and a local hidden variables model for projective measurements. On the other hand, we find that an infinite amount of classical communication is required from an untrusted Alice to a trusted Bob to simulate the EPR steering correlations produced by a two-qubit maximally entangled state. It is conjectured that a state-of-the-art quantum experiment would be able to falsify two bits of communication this way. PMID:26880376

  17. Interaction of Huntingtin Exon-1 Peptides with Lipid-Based Micellar Nanoparticles Probed by Solution NMR and Q-Band Pulsed EPR.

    PubMed

    Ceccon, Alberto; Schmidt, Thomas; Tugarinov, Vitali; Kotler, Samuel A; Schwieters, Charles D; Clore, G Marius

    2018-05-23

    Lipid-based micellar nanoparticles promote aggregation of huntingtin exon-1 peptides. Here we characterize the interaction of two such peptides, htt NT Q  7 and htt NT Q  10 comprising the N-terminal amphiphilic domain of huntingtin followed by 7 and 10 glutamine repeats, respectively, with 8 nm lipid micelles using NMR chemical exchange saturation transfer (CEST), circular dichroism and pulsed Q-band EPR. Exchange between free and micelle-bound htt NT Q  n peptides occurs on the millisecond time scale with a K D ∼ 0.5-1 mM. Upon binding micelles, residues 1-15 adopt a helical conformation. Oxidation of Met 7 to a sulfoxide reduces the binding affinity for micelles ∼3-4-fold and increases the length of the helix by a further two residues. A structure of the bound monomer unit is calculated from the backbone chemical shifts of the micelle-bound state obtained from CEST. Pulsed Q-band EPR shows that a monomer-dimer equilibrium exists on the surface of the micelles and that the two helices of the dimer adopt a parallel orientation, thereby bringing two disordered polyQ tails into close proximity which may promote aggregation upon dissociation from the micelle surface.

  18. EPR: how subtle is the Lord and how is the Lord subtle?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    The article offers a counterargument to the argument of A. Einstein, B. Podolsky and N. Rosen (EPR) concerning the incompleteness, or else nonlocality, of quantum mechanics, based on Bohr's reply to EPR's article. The article also relates argument to the impossibility of exact repetition of quantum events.

  19. High-frequency EPR of surface impurities on nanodiamond

    NASA Astrophysics Data System (ADS)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  20. EPR investigation of some traditional oriental irradiated spices

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Georgescu, Rodica; Ali, Shaban Ibrahim

    2007-06-01

    The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60Co γ-ray irradiated cardamom ( Elettaria cardamomum L. Maton, Zingiberaceae), ginger (( Zingiber officinale Rosc., Zingiberaceae), and saffron ( Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 °C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.

  1. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  2. Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging

    NASA Astrophysics Data System (ADS)

    Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata

    2007-01-01

    This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.

  3. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    PubMed

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  4. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  5. Impacts of doping concentration on the saturable characteristics of Tm-Ho codoped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Tao, Mengmeng; Feng, Guobin; Yu, Ting; Ye, Xisheng; Wang, Zhenbao; Shen, Yanlong; Zhao, Jun

    2018-03-01

    Impacts of Tm ion concentration and Ho ion concentration on the saturable behaviors of Tm-Ho codoped fiber saturable absorbers and the output characteristics of the passively Q-switched laser systems are investigated and analyzed both at the initial lasing state and the stable passive Q-switching state. Simulations show that, varying concentrations of Tm and Ho ions have different impacts on the temporal evolution processes but similar effects on the macroscopic characteristics of the laser system. The root for the impacts of dopant concentrations is the population of the 3H6 energy level and the cavity loss it induces. For Tm ions, the rise of the Tm concentration improves the population of the 3H6 energy level directly, while, for Ho ions, higher Ho concentration leads to larger recovery rate of the 3H6 energy level, thus increasing the population of the 3H6 energy level indirectly. As for limited total dopant concentration, the Tm:Ho concentration ratio can be optimized for different applications.

  6. THE EFFECT OF BACKGROUND SIGNAL AND ITS REPRESENTATION IN DECONVOLUTION OF EPR SPECTRA ON ACCURACY OF EPR DOSIMETRY IN BONE.

    PubMed

    Ciesielski, Bartlomiej; Marciniak, Agnieszka; Zientek, Agnieszka; Krefft, Karolina; Cieszyński, Mateusz; Boguś, Piotr; Prawdzik-Dampc, Anita

    2016-12-01

    This study is about the accuracy of EPR dosimetry in bones based on deconvolution of the experimental spectra into the background (BG) and the radiation-induced signal (RIS) components. The model RIS's were represented by EPR spectra from irradiated enamel or bone powder; the model BG signals by EPR spectra of unirradiated bone samples or by simulated spectra. Samples of compact and trabecular bones were irradiated in the 30-270 Gy range and the intensities of their RIS's were calculated using various combinations of those benchmark spectra. The relationships between the dose and the RIS were linear (R 2  > 0.995), with practically no difference between results obtained when using signals from irradiated enamel or bone as the model RIS. Use of different experimental spectra for the model BG resulted in variations in intercepts of the dose-RIS calibration lines, leading to systematic errors in reconstructed doses, in particular for high- BG samples of trabecular bone. These errors were reduced when simulated spectra instead of the experimental ones were used as the benchmark BG signal in the applied deconvolution procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Dalal, N. S.; Rakvin, B.; Mahl, T. A.; Bhalla, A. S.; Sheng, Z. Z.

    1991-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility.

  8. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    PubMed

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  9. Wave Velocities in Hydrocarbons and Hydrocarbon Saturated - Applications to Eor Monitoring.

    NASA Astrophysics Data System (ADS)

    Wang, Zhijing

    In order to effectively utilize many new seismic technologies and interpret the results, acoustic properties of both reservoir fluids and rocks must be well understood. It is the main purpose of this dissertation to investigate acoustic wave velocities in different hydrocarbons and hydrocarbon saturated rocks under various reservoir conditions. The investigation consists of six laboratory experiments, followed by a series of theoretical and application analyses. All the experiments involve acoustic velocity measurements in hydrocarbons and rocks with different hydrocarbons, using the ultrasonic pulse-transmission methods, at elevated temperatures and pressures. In the experiments, wave velocities are measured versus both temperature and pressure in 50 hydrocarbons. The relations among the acoustic velocity, temperature, pressure, API gravity, and the molecular weight of the hydrocarbons are studied, and empirical equations are established which allow one to calculate the acoustic velocities in hydrocarbons with known API gravities. Wave velocities in hydrocarbon mixtures are related to the composition and the velocities in the components. The experimental results are also analyzed in terms of various existing theories and models of the liquid state. Wave velocities are also measured in various rocks saturated with different hydrocarbons. The compressional wave velocities in rocks saturated with pure hydrocarbons increase with increasing the carbon number of the hydrocarbons. They decrease markedly in all the heavy hydrocarbon saturated rocks as temperature increases. Such velocity decreases set the petrophysical basis for in-situ seismic monitoring thermal enhanced oil recovery processes. The effects of carbon dioxide flooding and different pore fluids on wave velocities in rocks are also investigated. It is highly possible that there exist reflections of seismic waves at the light-heavy oil saturation interfaces in-situ. It is also possible to use seismic methods

  10. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    PubMed Central

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  11. Multisite EPR oximetry from multiple quadrature harmonics.

    PubMed

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. [EPR study of iron status in human body during intensive physical activity].

    PubMed

    Ibragimova, M I; Chushnikov, A I; Cherepnev, G V; Petukhov, V Iu; Zheglov, E P

    2014-01-01

    The iron metabolism was studied in serum blood samples collected from 26 professional sportsmen undergoing intensive physical exercises using EPR combined with haematological and biochemical laboratory tests. Only 23% of EPR spectra (n = 6) were practically normal while in the rest spectra additional abnormal absorption lines were detected. Presumably, the significant portion of new signals may be caused by different cytochromes. Moreover, the anisotropic signals with g1 approximately equal to 2.02; g2 approximately equal to 1.94 and g3 approximately equal to 1.86 registered in some spectra pointed to the sulfur-iron centers. There was nearly linear correlation between the concentration of Fe3+ in transfferin (Fe(3+)-Tf) obtained from the EPR spectra and the serum iron concentration measured by absorption photometry both for sportsmen and controls (healthy individuals and patients with different diseases). At equal serum iron concentrations the Fe(3+)-Tf level was higher in sportsmen than that in controls. The Pearson correlation coefficient (r) for Fe(3+)-Tf and serum iron values was equal to 0.89 in sportsmen versus r = 0.97 in controls. Additional new lines in serum EPR spectra of professional sportsmen prove the suitability of EPR assay for scheduled medical exams since routinebiochemical and haematological tests are insufficient to discover all abnormalities in iron metabolism under intensive physical exercises.

  13. Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough?

    PubMed

    Hennink, Monique M; Kaiser, Bonnie N; Marconi, Vincent C

    2017-03-01

    Saturation is a core guiding principle to determine sample sizes in qualitative research, yet little methodological research exists on parameters that influence saturation. Our study compared two approaches to assessing saturation: code saturation and meaning saturation. We examined sample sizes needed to reach saturation in each approach, what saturation meant, and how to assess saturation. Examining 25 in-depth interviews, we found that code saturation was reached at nine interviews, whereby the range of thematic issues was identified. However, 16 to 24 interviews were needed to reach meaning saturation where we developed a richly textured understanding of issues. Thus, code saturation may indicate when researchers have "heard it all," but meaning saturation is needed to "understand it all." We used our results to develop parameters that influence saturation, which may be used to estimate sample sizes for qualitative research proposals or to document in publications the grounds on which saturation was achieved.

  14. Advances in Probes and Methods for Clinical EPR Oximetry

    PubMed Central

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  15. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    PubMed

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    PubMed

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  17. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    NASA Astrophysics Data System (ADS)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  18. Intelligent ePR system for evidence-based research in radiotherapy: proton therapy for prostate cancer.

    PubMed

    Le, Anh H; Liu, Brent; Schulte, Reinhard; Huang, H K

    2011-11-01

    Proton therapy (PT) utilizes high energy particle proton beam to kill cancer cells at the target region for target cancer therapy. Due to the physical properties of the proton beam, PT delivers dose with higher precision and no exit dose compared to conventional radiotherapy. In PT, patient data are distributed among multiple systems, a hindrance to research on efficacy and effectiveness. A data mining method and a treatment plan navigator utilizing the infrastructure and data repository of a PT electronic patient record (ePR) was developed to minimize radiation toxicity and improve outcomes in prostate cancer treatment. MATERIALS/METHOD(S): The workflow of a proton therapy treatment in a radiation oncology department was reviewed, and a clinical data model and data flow were designed. A prototype PT ePR system with DICOM compliance was developed to manage prostate cancer patient images, treatment plans, and related clinical data. The ePR system consists of four main components: (1) Data Gateway; (2) ePR Server; (3) Decision Support Tools; and (4) Visualization and Display Tools. Decision support and visualization tools are currently developed based on DICOM images, DICOM-RT and DICOM-RT-ION objects data from prostate cancer patients treated with hypofractionation protocol proton therapy were used for evaluating ePR system effectiveness. Each patient data set includes a set of computed tomography (CT) DICOM images and four DICOM-RT and RT-ION objects. In addition, clinical outcomes data collected from PT cases were included to establish a knowledge base for outcomes analysis. A data mining search engine and an intelligent treatment plan navigator (ITPN) were developed and integrated with the ePR system. Evaluation was based on a data set of 39 PT patients and a hypothetical patient. The ePR system was able to facilitate the proton therapy workflow. The PT ePR system was feasible for prostate cancer patient treated with hypofractionation protocol in proton therapy

  19. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  20. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-03-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 °C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical "cellulose-like" EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs—Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  1. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis.

    PubMed

    Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella

    2013-05-01

    Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches.

    PubMed

    d'Entremont, Agnes G; Kolind, Shannon H; Mädler, Burkhard; Wilson, David R; MacKay, Alexander L

    2014-03-01

    To evaluate the effect of metal artifact reduction techniques on dGEMRIC T(1) calculation with surgical hardware present. We examined the effect of stainless-steel and titanium hardware on dGEMRIC T(1) maps. We tested two strategies to reduce metal artifact in dGEMRIC: (1) saturation recovery (SR) instead of inversion recovery (IR) and (2) applying the metal artifact reduction sequence (MARS), in a gadolinium-doped agarose gel phantom and in vivo with titanium hardware. T(1) maps were obtained using custom curve-fitting software and phantom ROIs were defined to compare conditions (metal, MARS, IR, SR). A large area of artifact appeared in phantom IR images with metal when T(I) ≤ 700 ms. IR maps with metal had additional artifact both in vivo and in the phantom (shifted null points, increased mean T(1) (+151 % IR ROI(artifact)) and decreased mean inversion efficiency (f; 0.45 ROI(artifact), versus 2 for perfect inversion)) compared to the SR maps (ROI(artifact): +13 % T(1) SR, 0.95 versus 1 for perfect excitation), however, SR produced noisier T(1) maps than IR (phantom SNR: 118 SR, 212 IR). MARS subtly reduced the extent of artifact in the phantom (IR and SR). dGEMRIC measurement in the presence of surgical hardware at 3T is possible with appropriately applied strategies. Measurements may work best in the presence of titanium and are severely limited with stainless steel. For regions near hardware where IR produces large artifacts making dGEMRIC analysis impossible, SR-MARS may allow dGEMRIC measurements. The position and size of the IR artifact is variable, and must be assessed for each implant/imaging set-up.

  3. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  4. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed Central

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes. PMID:26389123

  5. Impact of EPR systems on information flow in Finnish health centers.

    PubMed

    Mäkelä, Kari; Virjo, Irma; Aho, Juhani; Kalliola, Pentti; Kurunmäki, Harri; Uusitalo, Leena; Valli, Markku; Ylinen, Suvi

    2013-03-01

    We studied how well healthcare personnel in healthcare centers (HCs) in the South Ostrobothnia region of Finland are able to obtain patient information thorough electronic patient record (EPR) systems. This study followed the changes in availability of patient information during a 7-year period, from 2003 to the end of 2010. The patient group studied focused on those involved in anticoagulant (AC) treatment. A structured questionnaire was sent in 2003 to the staff of 15 HCs. The questionnaire dealt with access and availability of patient information from the EPR. Respondents were asked to rate how often they obtain information concerning AC treatment from various sources. In total, 1,114 questionnaires were sent, and 860 answers were received; the response rate was 77%. A repeat study was conducted in 2010, and 932 responses were obtained (response rate, 56%). Paper-based AC treatment cards carried by the patients were an important information source for 75.0% of the respondents in 2003 and 55.4% in 2010. For all new AC treatments, the EPR was a primary information source for 33.3% of respondents in 2003 and 60.2% in 2010. This study indicated that during the study period there was an improvement in access to EPR but that this did not always improve the overall availability of data. Results show that problems in information flow from secondary care to the HCs persist. Almost half of the patients dealt with in the HCs were affected by at least some problems. In the 7 years covered by this study, EPR systems have become more important as information sources for clinical data, but there is still room for improvement.

  6. In vivo and ex vivo EPR detection of spin-labelled ovalbumin in mice.

    PubMed

    Abramović, Zrinka; Brgles, Marija; Habjanec, Lidija; Tomasić, Jelka; Sentjurc, Marjeta; Frkanec, Ruza

    2010-10-01

    In this study, spin-labelled ovalbumin (SL-OVA), free or entrapped in liposomes, was administered to mice subcutaneously (s.c.) or intravenously (i.v.) with the aim to determine the conditions for pharmacokinetic studies of spin-labelled proteins by EPR and to measure the time course of SL-OVA distribution in vivo in live mice and ex vivo in isolated organs. Upon s.c. administration, the decay of the EPR signal was followed for 60min at the site of application using an L-band EPR spectrometer. Within this time period, the signal of free SL-OVA was diminished by about 70%. It was estimated with the help of the oxidizing agent K(3)[(FeCN)(6)] that approximately 30% was a consequence of the spin label reduction to EPR non-visible hydroxylamine and about 40% was due to the SL-OVA elimination from the site of measurement. For liposome encapsulated SL-OVA, the intensity diminished only by approx. 40% in the same period, indicating that liposomes successfully protect the protein from reduction. EPR signal could not be detected directly over live mouse organs within 60min after s.c. application of SL-OVA. With the available L-band EPR spectrometer, the measurements at the site of s.c. application are possible if the amount of SL-OVA applied to a mouse is more than 3mg. For the pharmacokinetic studies of the protein distribution in organs after s.c. or i.v. injection the concentration of the spin-labelled protein should be more than 0.5mmol/kg. After i.v. administration, only ex vivo measurements were possible using an X-band EPR spectrometer, since the total amount of SL-OVA was not sufficient for in vivo detection and also because of rapid reduction of nitroxide. After 2min, the protein was preferentially distributed to liver and, to a smaller extent, to spleen.

  7. EPR spin trapping of oxygen radicals in plants: a methodological overview.

    PubMed

    Bacić, Goran; Mojović, Milos

    2005-06-01

    We present a brief account of the difficulties involved in detection of oxygen free radicals in plants and give a rationale for using the EPR spin trapping technique in such studies. Comparative analysis of characteristics of different spin traps is given, having in mind their suitability in trapping oxygen-centered free radicals. Certain technical aspects of EPR experiments related to successful trapping of free radicals are discussed. Previous studies of trapping of oxygen radicals in plants are reviewed in terms of how efficient the experimental approach employed has been in their detection and how this influences conclusions about the mechanisms of their production. In addition, we analyze the potential of spin labels in the analysis of free radical production in plants and demonstrate that the combination of EPR spin traps and spin labels is extremely efficient for this purpose.

  8. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    PubMed

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei.

    PubMed

    Makrinich, Maria; Gupta, Rupal; Polenova, Tatyana; Goldbourt, Amir

    The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W 1 ) and double (W 2 ) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al., JMR 244, 2014, 107-113) and suggested for achieving the complete saturation of all quadrupolar spin energy levels, a mono-exponential relaxation model fits the data, compatible with elimination of the spin exchange processes. Other pulses such as an adiabatic pulse lasting one-third of a rotor period, and a two-rotor-period long continuous-wave pulse, both used for distance measurements under special experimental conditions, yield good fits to bi-exponential functions with varying coefficients and time constants due to variations in initial conditions. Those values are a measure of the extent of saturation obtained from these pulses. An empirical fit of the recovery curves to a stretched exponential function can provide general recovery times. A stretching parameter very close to unity, as obtained for a phase modulated pulse but not for other cases, suggests that in this case recovery times and longitudinal relaxation times are similar. The results are experimentally demonstrated for compounds containing 11 B (spin-3/2) and 51 V (spin-7/2). We propose that accurate spin lattice relaxation rates can be measured by a short phase modulated pulse (<1-2ms), similarly to the "true T 1 " measured

  10. An EPR methodology for measuring the London penetration depth for the ceramic superconductors

    NASA Technical Reports Server (NTRS)

    Rakvin, B.; Mahl, T. A.; Dalal, N. S.

    1990-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T(sub c) superconductors. The method utilizes the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T(sub c) is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, Neutron scattering, and magnetic susceptibility.

  11. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  12. Teaching the EPR Paradox at High School?

    ERIC Educational Resources Information Center

    Pospiech, Gesche

    1999-01-01

    Argues the importance of students at university and in the final years of high school gaining an appreciation of the principles of quantum mechanics. Presents the EPR gedanken experiment (thought experiment) as a method of teaching the principles of quantum mechanics. (Author/CCM)

  13. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    PubMed

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  14. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    NASA Astrophysics Data System (ADS)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  15. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.

    PubMed

    Theek, Benjamin; Gremse, Felix; Kunjachan, Sijumon; Fokong, Stanley; Pola, Robert; Pechar, Michal; Deckers, Roel; Storm, Gert; Ehling, Josef; Kiessling, Fabian; Lammers, Twan

    2014-05-28

    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of <0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. EPR hyperfine structure of the Mo-related defect in CdWO4

    NASA Astrophysics Data System (ADS)

    Elsts, E.; Rogulis, U.

    2005-01-01

    The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.

  17. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    PubMed

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  18. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous

  19. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.

    PubMed

    Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-10-01

    The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, p<0.001). In conclusion, our study demonstrated that cell-penetrating paramagnetic spin-probes, such as mito-TEMPO, are valuable tools for EPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR.

    PubMed

    Theek, Benjamin; Baues, Maike; Ojha, Tarun; Möckel, Diana; Veettil, Seena Koyadan; Steitz, Julia; van Bloois, Louis; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2016-06-10

    The Enhanced Permeability and Retention (EPR) effect is a highly variable phenomenon. To enhance EPR-mediated passive drug targeting to tumors, several different pharmacological and physical strategies have been evaluated over the years, including e.g. TNFα-treatment, vascular normalization, hyperthermia and radiotherapy. Here, we systematically investigated the impact of sonoporation, i.e. the combination of ultrasound (US) and microbubbles (MB), on the tumor accumulation and penetration of liposomes. Two different MB formulations were employed, and their ability to enhance liposome accumulation and penetration was evaluated in two different tumor models, which are both characterized by relatively low levels of EPR (i.e. highly cellular A431 epidermoid xenografts and highly stromal BxPC-3 pancreatic carcinoma xenografts). The liposomes were labeled with two different fluorophores, enabling in vivo computed tomography/fluorescence molecular tomography (CT-FMT) and ex vivo two-photon laser scanning microscopy (TPLSM). In both models, in spite of relatively high inter- and intra-individual variability, a trend towards improved liposome accumulation and penetration was observed. In treated tumors, liposome concentrations were up to twice as high as in untreated tumors, and sonoporation enhanced the ability of liposomes to extravasate out of the blood vessels into the tumor interstitium. These findings indicate that sonoporation may be a useful strategy for improving drug targeting to tumors with low EPR. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evaluation of sub-microsecond recovery resonators for In Vivo Electron Paramagnetic Resonance Imaging

    PubMed Central

    F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna

    2008-01-01

    Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414

  2. Direct Prediction of EPR Spectra from Lipid Bilayers: Understanding Structure and Dynamics in Biological Membranes.

    PubMed

    Catte, Andrea; White, Gaye F; Wilson, Mark R; Oganesyan, Vasily S

    2018-06-02

    Of the many biophysical techniques now being brought to bear on studies of membranes, electron paramagnetic resonance (EPR) of nitroxide spin probes was the first to provide information about both mobility and ordering in lipid membranes. Here, we report the first prediction of variable temperature EPR spectra of model lipid bilayers in the presence and absence of cholesterol from the results of large scale fully atomistic molecular dynamics (MD) simulations. Three types of structurally different spin probes were employed in order to study different parts of the bilayer. Our results demonstrate very good agreement with experiment and thus confirm the accuracy of the latest lipid force fields. The atomic resolution of the simulations allows the interpretation of the molecular motions and interactions in terms of their impact on the sensitive EPR line shapes. Direct versus indirect effects of cholesterol on the dynamics of spin probes are analysed. Given the complexity of structural organisation in lipid bilayers, the advantage of using a combined MD-EPR simulation approach is two-fold. Firstly, prediction of EPR line shapes directly from MD trajectories of actual phospholipid structures allows unambiguous interpretation of EPR spectra of biological membranes in terms of complex motions. Secondly, such an approach provides an ultimate test bed for the up-to-date MD simulation models employed in the studies of biological membranes, an area that currently attracts great attention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  4. Fault Current Distribution and Pole Earth Potential Rise (EPR) Under Substation Fault

    NASA Astrophysics Data System (ADS)

    Nnassereddine, M.; Rizk, J.; Hellany, A.; Nagrial, M.

    2013-09-01

    New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.

  5. The EPR detection of foods preserved with the use of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Stachowicz, W.; Burlińska, G.; Michalik, J.; Dziedzic-Gocławska, A.; Ostrowski, K.

    1995-02-01

    Solid constituents extracted from irradiated foods have been examined by the epr (esr) spectroscopy. It has been proved that some epr active species produced by radiation in foods are specific and stable enough to be used for the detection of irradiation treatment. The most promising results have been obtained with bones extracted from frozen raw meat (beef, pork, poultry and fish), with seeds of fruits (dates and figs), with dried mushrooms, gelatin and macaroni.

  6. [Effect of ascorbic acid (vitamin C) on the EPR spectra from the black and red hair].

    PubMed

    Chikvaidze, E; Miminoshvili, A; Gogoladze, T; Kiparoidze, S

    2012-02-01

    The EPR spectra of melanin's free radicals in natural black and red hair have been investigated. It is show that the EPR spectrum of black hair is slightly asymmetric singlet with g=2,0035 and ΔH=0,5 mTl. The EPR spectrum of red hair with g=2,0053 differs from the spectrum of black hair. Under the influence of visible (blue with λ(max)=450 nm) in both types of hair (black and red), the protoinduced free radicals appear, which indicates an increase in the intensity of already existing EPR spectrum of hair. It should be noted that the EPR spectra of red hair from various donors are different. The antioxidant ascorbic acid has the different effect on the photoinduced free radicals. In particular, in the case of black hair, the concentration of photoinduced free radicals is slightly reduced, whereas in red hair, the disappearance of the triplet in the spectrum is observed, and at the same time, the spectrum becomes a singlet, the intensity of which increases sharply.

  7. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...

  8. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    PubMed Central

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  9. Various approaches in EPR identification of gamma-irradiated plant foodstuffs: A review.

    PubMed

    Aleksieva, Katerina I; Yordanov, Nicola D

    2018-03-01

    Irradiation of food in the world is becoming a preferred method for their sterilization and extending their shelf life. For the purpose of trade with regard to the rights of consumers is necessary marking of irradiated foodstuffs, and the use of appropriate methods for unambiguous identification of radiation treatment. One-third of the current standards of the European Union to identify irradiated foods use the method of the Electron Paramagnetic Resonance (EPR) spectroscopy. On the other hand the current standards for irradiated foods of plant origin have some weaknesses that led to the development of new methodologies for the identification of irradiated food. New approaches for EPR identification of radiation treatment of herbs and spices when the specific signal is absent or disappeared after irradiation are discussed. Direct EPR measurements of dried fruits and vegetables and different pretreatments for fresh samples are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    PubMed

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  11. Geological and petrologic evolution of seamounts near the EPR based on submersible and camera study

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey; Smith, Terri L.; Niu, Yaoling

    1989-09-01

    Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.

  12. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  13. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  14. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  15. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  17. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    PubMed

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  18. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  20. Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy.

    PubMed

    Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja

    2015-08-15

    The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Intraoperative colon mucosal oxygen saturation during aortic surgery.

    PubMed

    Lee, Eugene S; Bass, Arie; Arko, Frank R; Heikkinen, Maarit; Harris, E John; Zarins, Christopher K; van der Starre, Pieter; Olcott, Cornelius

    2006-11-01

    Colonic ischemia after aortic reconstruction is a devastating complication with high mortality rates. This study evaluates whether Colon Mucosal Oxygen Saturation (CMOS) correlates with colon ischemia during aortic surgery. Aortic reconstruction was performed in 25 patients, using a spectrophotometer probe that was inserted in each patient's rectum before the surgical procedure. Continuous CMOS, buccal mucosal oxygen saturation, systemic mean arterial pressure, heart rate, pulse oximetry, and pivotal intra-operative events were collected. Endovascular aneurysm repair (EVAR) was performed in 20 and open repair in 5 patients with a mean age of 75 +/- 10 (+/-SE) years. CMOS reliably decreased in EVAR from a baseline of 56% +/- 8% to 26 +/- 17% (P < 0.0001) during infrarenal aortic balloon occlusion and femoral arterial sheath placement. CMOS similarly decreased during open repair from 56% +/- 9% to 15 +/- 19% (P < 0.0001) when the infrarenal aorta and iliac arteries were clamped. When aortic circulation was restored in both EVAR and open surgery, CMOS returned to baseline values 56.5 +/- 10% (P = 0.81). Mean recovery time in CMOS after an aortic intervention was 6.4 +/- 3.3 min. Simultaneous buccal mucosal oxygen saturation was stable (82% +/- 6%) during aortic manipulation but would fall significantly during active bleeding. There were no device related CMOS measurement complications. Intra-operative CMOS is a sensitive measure of colon ischemia where intraoperative events correlated well with changes in mucosal oxygen saturation. Transient changes demonstrate no problem. However, persistently low CMOS suggests colon ischemia, thus providing an opportunity to revascularize the inferior mesenteric artery or hypogastric arteries to prevent colon infarction.

  2. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  3. Environment-induced decoherence II. Effect of decoherence on Bell's inequality for an EPR pair

    NASA Astrophysics Data System (ADS)

    Venugopalan, A.; Kumar, Deepak; Ghosh, R.

    1995-02-01

    According to Bell's theorem, the degree of correlation between spatially separated measurements on a quantum system is limited by certain inequalities if one assumes the condition of locality. Quantum mechanics predicts that this limit can be exceeded, making it nonlocal. We analyse the effect of an environment modelled by a fluctuating magnetic field on the quantum correlations in an EPR singlet as seen in the Bell inequality. We show that in an EPR setup, the system goes from the usual ‘violation’ of Bell's inequality to a ‘non-violation’ for times larger than a characteristic time scale which is related to the parameters of the fluctuating field. We also look at these inequalities as a function of the spatial separation between the EPR pair.

  4. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    PubMed Central

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  5. An EPR study of the pH dependence of formate effects on Photosystem II.

    PubMed

    Jajoo, Anjana; Katsuta, Nobuhiro; Kawamori, Asako

    2006-04-01

    Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.

  6. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical.

    PubMed

    Marchand, Valérie; Levêque, Philippe; Driesschaert, Benoit; Marchand-Brynaert, Jacqueline; Gallez, Bernard

    2017-06-01

    The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Longitudinal analysis on utilization of medical document management system in a hospital with EPR implementation.

    PubMed

    Kuwata, Shigeki; Yamada, Hitomi; Park, Keunsik

    2011-01-01

    Document management systems (DMS) have widespread in major hospitals in Japan as a platform to digitize the paper-based records being out of coverage by EPR. This study aimed to examine longitudinal trends of actual use of DMS in a hospital in which EPR had been in operation, which would be conducive to planning the further information management system in the hospital. Degrees of utilization of electronic documents and templates with DMS were analyzed based on data extracted from a university-affiliated hospital with EPR. As a result, it was found that the number of electronic documents as well as scanned documents circulating at the hospital tended to increase. The result indicated that replacement of paper-based documents with electronic documents did not occur. Therefore it was anticipated that the need for DMS would continue to increase in the hospital. The methods used this study to analyze the trend of DMS utilization would be applicable to other hospitals with with a variety of DMS implementation, such as electronic storage by scanning documents or paper preservation that is compatible with EPR.

  8. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?

    PubMed

    Danhier, F

    2016-12-28

    Tumor targeting by nanomedicine-based therapeutics has emerged as a promising approach to overcome the lack of specificity of conventional chemotherapeutic agents and to provide clinicians the ability to overcome shortcomings of current cancer treatment. The major underlying mechanism of the design of nanomedicines was the Enhanced Permeability and Retention (EPR) effect, considered as the "royal gate" in the drug delivery field. However, after the publication of thousands of research papers, the verdict has been handed down: the EPR effect works in rodents but not in humans! Thus the basic rationale of the design and development of nanomedicines in cancer therapy is failing making it necessary to stop claiming efficacy gains via the EPR effect, while tumor targeting cannot be proved in the clinic. It is probably time to dethrone the EPR effect and to ask the question: what is the future of nanomedicines without the EPR effect? The aim of this review is to provide a general overview on (i) the current state of the EPR effect, (ii) the future of nanomedicine and (iii) the strategies of modulation of the tumor microenvironment to improve the delivery of nanomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effectiveness evaluation of whole-body electromyostimulation as a post-exercise recovery method.

    PubMed

    DE LA Camara, Miguel A; Pardos, Ana I; Veiga, Óscar L

    2018-01-04

    Whole-body electromyostimulation (WB-EMS) devices are now being used in health and sports training, although there are few studies investigating their benefits. The objective of this research was to evaluate the effectiveness of WB-EMS as a post-exercise recovery method, and compare it with other methods like active and passive recovery. The study included nine trained men (age = 21 ± 1years, height = 1.77 ± 0.4 m, mass = 62 ± 7 kg). Three trials were performed in three different sessions, 1 week apart. Each trial, the participants completed the same exercise protocol and a different recovery method each time. A repeated measures design was used to check the basal reestablishing on several physiological variables [lactate, heart rate, percentage of tissue hemoglobin saturation, temperature, and neuromuscular fatigue] and to evaluate the quality of recovery. The non-parametric Wilcoxon and Friedman ANOVA tests were used to examine the differences between recovery methods. The results showed no differences between methods in the physiological and psychological variables analyzed. Although, the blood lactate concentration showed borderline statistical significance between methods (P = 0.050). Likewise, WB-EMS failed to recover baseline blood lactate concentration (P = 0.021) and percentage of tissue hemoglobin saturation (P = 0.023), in contrast to the other two methods. These findings suggest that WB-EMS is not a good recovery method because the power of reestablishing of several physiological and psychological parameters is not superior to other recovery methods like active and passive recovery.

  10. Irradiated bivalve mollusks: Use of EPR spectroscopy for identification and dosimetry

    NASA Astrophysics Data System (ADS)

    Alberti, Angelo; Chiaravalle, Eugenio; Fuochi, Piergiorgio; Macciantelli, Dante; Mangiacotti, Michele; Marchesani, Giuliana; Plescia, Elena

    2011-12-01

    High energy radiation treatment of foodstuff for microbial control and shelf-life extension is being used in many countries. However, for consumer protection and information, the European Union has adopted the Directives 1999/2/EC and 1999/3/EC to harmonize the rules concerning the treatment and trade of irradiated foods in EU countries. Among the validated methods to detect irradiated foods the EU directives also include Electron Paramagnetic Resonance (EPR/ESR) spectroscopy.We describe herein the use of EPR for identification of four species of bivalve mollusks, i.e. brown Venus shells (Callista chione), clams (Tapes semidecussatus), mussels (Mytilus galloprovincialis) and oysters (Ostrea edulis) irradiated with 60Co γ-rays. EPR could definitely identify irradiated seashells due to the presence of long-lived free radicals, primarily CO2-, CO33-, SO2- and SO3- radical anions. The presence of other organic free radicals, believed to originate from conchiolin, a scleroprotein present in the shells, was also ascertained. The use of one of these radicals as a marker for irradiation of brown Venus shells and clams can be envisaged. We also propose a dosimetric protocol for the reconstruction of the administered dose in irradiated oysters.

  11. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    NASA Astrophysics Data System (ADS)

    Aragno, D.; Fattibene, P.; Onori, S.; Aragno, D.; Fattibene, P.

    2000-09-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO2- signal of intensity similar to that induced by a dose of about 2 mGy of 60Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined.

  12. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    PubMed

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  13. Metal Ion Interactions with Immunoglobulin G (IgG). 1. Preliminary Studies with Electron Paramagnetic Resonance (EPR) Spectroscopy and Ultrafiltration

    DTIC Science & Technology

    1978-12-12

    EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non

  14. Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I.

    PubMed

    Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2016-09-01

    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, N; Roberts, K; Stabile, F

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence ofmore » radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and

  16. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients

    PubMed Central

    Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.

    2007-01-01

    Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865

  17. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds

    NASA Astrophysics Data System (ADS)

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.

    2018-04-01

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

  18. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  19. Simple group password-based authenticated key agreements for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  20. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity.

    PubMed

    Maeda, Hiroshi

    2015-08-30

    The enhanced permeability and retention (EPR) effect of solid tumors as seen with nanomedicines and macromolecular drugs is well known. However, many researchers appear to lack a full understanding of this effect. The effect varies depending on a patient's pathological and physiological characteristics and clinical condition. When a patient's systolic blood pressure is low side of about 90mmHg instead of 120-130mmHg, the hydrodynamic force pushing blood from the luminal side of a vessel into tumor tissue becomes significantly low, which results in a low EPR. Also, a vascular embolism in a tumor may impede blood flow and the EPR. Here, I describe the background of the EPR effect, heterogeneity of this effect, physiological and pathological factors affecting the effect, the EPR effect in metastatic tumors, artifacts of the EPR effect with micellar and liposomal drugs, problems of macromolecular drug stability and drug release, and access to target sites. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals

    PubMed Central

    Olafsdottir, Olof Birna; Eliasdottir, Thorunn Scheving; Kristjansdottir, Jona Valgerdur; Hardarson, Sveinn Hakon; Stefánsson, Einar

    2015-01-01

    Purpose To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals. Methods Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery). Results Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001). Conclusions Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye. PMID:26042732

  2. A multimedia electronic patient record (ePR) system for image-assisted minimally invasive spinal surgery.

    PubMed

    Documet, Jorge; Le, Anh; Liu, Brent; Chiu, John; Huang, H K

    2010-05-01

    This paper presents the concept of bridging the gap between diagnostic images and image-assisted surgical treatment through the development of a one-stop multimedia electronic patient record (ePR) system that manages and distributes the real-time multimodality imaging and informatics data that assists the surgeon during all clinical phases of the operation from planning Intra-Op to post-care follow-up. We present the concept of this multimedia ePR for surgery by first focusing on image-assisted minimally invasive spinal surgery as a clinical application. Three clinical phases of minimally invasive spinal surgery workflow in Pre-Op, Intra-Op, and Post-Op are discussed. The ePR architecture was developed based on the three-phased workflow, which includes the Pre-Op, Intra-Op, and Post-Op modules and four components comprising of the input integration unit, fault-tolerant gateway server, fault-tolerant ePR server, and the visualization and display. A prototype was built and deployed to a minimally invasive spinal surgery clinical site with user training and support for daily use. A step-by-step approach was introduced to develop a multimedia ePR system for imaging-assisted minimally invasive spinal surgery that includes images, clinical forms, waveforms, and textual data for planning the surgery, two real-time imaging techniques (digital fluoroscopic, DF) and endoscope video images (Endo), and more than half a dozen live vital signs of the patient during surgery. Clinical implementation experiences and challenges were also discussed.

  3. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  4. Beyond the EPR: Complementary roles of the hospital-wide electronic health record and clinical departmental systems

    PubMed Central

    2009-01-01

    Background Many hospital departments have implemented small clinical departmental systems (CDSs) to collect and use patient data for documentation as well as for other department-specific purposes. As hospitals are implementing institution-wide electronic patient records (EPRs), the EPR is thought to be integrated with, and gradually substitute the smaller systems. Many EPR systems however fail to support important clinical workflows. Also, successful integration of systems has proven hard to achieve. As a result, CDSs are still in widespread use. This study was conducted to see which tasks are supported by CDSs and to compare this to the support offered by the EPR. Methods Semi-structured interviews with users of 16 clinicians using 15 different clinical departmental systems (CDS) at a Medium-sized University hospital in Norway. Inductive analysis of transcriptions from the audio taped interviews. Results The roles of CDSs were complementary to those of the hospital-wide EPR system. The use of structured patient data was a characteristic feature. This facilitated quality development and supervision, tasks that were poorly supported by the EPR system. The structuring of the data also improved filtering of information to better support clinical decision-making. Because of the high value of the structured patient data, the users put much effort in maintaining their integrity and representativeness. Employees from the departments were also engaged in the funding, development, implementation and maintenance of the systems. Conclusion Clinical departmental systems are vital to the activities of a clinical hospital department. The development, implementation and clinical use of such systems can be seen as bottom-up, user-driven innovations. PMID:19523198

  5. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE PAGES

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    2016-07-11

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  6. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  7. 75 FR 27841 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on EPR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on EPR The ACRS Subcommittee on EPR will hold a meeting on May 21, 2010, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting will be open to public attendance. The agenda for...

  8. Thermomagnetic, dielectric and EPR studies on four new multiferroics

    NASA Astrophysics Data System (ADS)

    Ramachandran, Vasanth

    Multiferroics are materials which exhibit at least two or all three of the ferroic (ferroelectric, ferromagnetic and ferroelastic) orders co-existing in them, and are of high current interest in both the fundamental research and in the discovery of new multifunctional materials. This dissertation presents thermomagnetic, dielectric and electron paramagnetic resonance (EPR) studies on some new multiferroics. The primary focus of this work is on these four compounds: [(CH3)2NH2]Mn(HCOO)3, K3Fe5F15, Pb(Fe1/2Nb1/2)O 3, and MnV2O4. Chapter 3 discusses our discovery of multiferroic behavior of the metal-organic framework (MOF) compound dimethylammonium manganese formate, [(CH3)2NH2]Mn(HCOO) 3, with the aid of single crystal heat capacity and EPR measurements on the compound. Simultaneous occurrence of ferroelectric and antiferromagnetic long-range orders in this compound established its multiferroic nature. Chapter 4 describes the multiferroic nature of the 'tetragonal tungsten bronze'-type ferroelectric potassium iron fluoride, K3Fe5 F15, studied by magnetic susceptibility, magnetization, dielectric and EPR characterization of single crystal and polycrystalline samples. A weak ferromagnetic (FM) ordering due to spin canting caused by the antisymmetric exchange interaction between the Fe ions, and its influence on the dielectric constant evident by the observation of an anomaly around the FM ordering temperature, together indicate an intrinsic magnetoelectric coupling present in this compound. Chapter 5 describes multiferroic behavior of the complex oxide perovskite lead iron niobate, Pb(Fe1/2Nb1/2)O3 abbreviated as PFN. Systematic (9.4, 34, 381, 683 GHz) EPR and magnetic susceptibility measurements on polycrystalline PFN samples show an antiferromagnetic (AFM) ordering, the presence of a small finite internal field well above the AFM ordering temperature, and the first observation of an anomaly in the susceptibility near the ferroelectric Curie point, together implying

  9. Irradiation ageing of CSPE/EPR control command electric cables. Correlation between mechanical properties and oxidation

    NASA Astrophysics Data System (ADS)

    Calmet, J. F.; Carlin, F.; Nguyen, T. M.; Bousquet, S.; Quinot, P.

    2002-03-01

    In this paper, correlations between the elongation at break and the oxidation of chlorosulfonated polyethylene and ethylene propylene rubber (EPR) polymers in instrumentation and control cables irradiated at different dose rates are brought to evidence. During irradiation, the following phenomena are observed: an increase of oxygen consumption, a degradation of the mechanical properties and a reduction of the oxidation induction time (OIT) measured for EPR. A correlation between the mechanical properties and the OIT of the EPR has only been established in the case of irradiation at low dose rate. This reveals a difference in the oxidative degradation process at low and high dose rates. This study shows the possibility to assess the ageing of electric cables installed inside nuclear power plants by OIT measurements.

  10. EPR spectra of Cu(2+) in KH(2)PO(4) single crystals.

    PubMed

    Biyik, Recep; Tapramaz, Recep

    2008-01-01

    Cu(2+) doped single crystals of KH(2)PO(4) were investigated using EPR technique at room temperature. The spectra of the complex contains large number of overlapping lines. Five sites are resolved and four of them are compatible with the tetragonal symmetry, and the fifth one belongs to an interstitial site. The results are discussed and compared with previous studies. Detailed investigation of the EPR spectra indicate that Cu(2+) substitute with K(+) ions. The principal values of the g and hyperfine tensors and the ground state wave function of Cu(2+) ions are obtained.

  11. Cryptanalysis and Improvements for the Quantum Private Comparison Protocol Using EPR Pairs

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Xu, Gang; Yang, Yi-Xian

    2013-07-01

    In this paper, we carry out an in-depth analysis of the quantum private comparison (QPC) protocol with the semi-honest third party (TP). The security of QPC protocol using the EPR pairs is re-examined. Unfortunately, we find that TP can use the fake EPR pairs to steal all the secret information. Furthermore, we give two simple and feasible solutions to improve the original QPC protocol. It is shown that the improved protocol is secure, which can resist various kinds of attacks from both the outside eavesdroppers and the inside participants, even the semi-honest TP.

  12. EPR Oximetry Sensor-Developing a TAM Derivative for In Vivo Studies.

    PubMed

    Boś-Liedke, Agnieszka; Walawender, Magdalena; Woźniak, Anna; Flak, Dorota; Gapiński, Jacek; Jurga, Stefan; Kucińska, Małgorzata; Plewiński, Adam; Murias, Marek; Elewa, Marwa; Lampp, Lisa; Imming, Peter; Tadyszak, Krzysztof

    2018-06-01

    Oxygenation is one of the most important physiological parameters of biological systems. Low oxygen concentration (hypoxia) is associated with various pathophysiological processes in different organs. Hypoxia is of special importance in tumor therapy, causing poor response to treatment. Triaryl methyl (TAM) derivative radicals are commonly used in electron paramagnetic resonance (EPR) as sensors for quantitative spatial tissue oxygen mapping. They are also known as magnetic resonance imaging (MRI) contrast agents and fluorescence imaging compounds. We report the properties of the TAM radical tris(2,3,5,6-tetrachloro-4-carboxy-phenyl)methyl, (PTMTC), a potential multimodal (EPR/fluorescence) marker. PTMTC was spectrally analyzed using EPR and characterized by estimation of its sensitivity to the oxygen in liquid environment suitable for intravenous injection (1 mM PBS, pH = 7.4). Further, fluorescent emission of the radical was measured using the same solvent and its quantum yield was estimated. An in vitro cytotoxicity examination was conducted in two cancer cell lines, HT-29 (colorectal adenocarcinoma) and FaDu (squamous cell carcinoma) and followed by uptake studies. The stability of the radical in different solutions (PBS pH = 7.4, cell media used for HT-29 and FaDu cells culturing and cytotoxicity procedure, full rat blood and blood plasma) was determined. Finally, a primary toxicity test of PTMTC was carried out in mice. Results of spectral studies confirmed the multimodal properties of PTMTC. PTMTC was demonstrated to be not absorbed by cancer cells and did not interfere with luciferin-luciferase based assays. Also in vitro and in vivo tests showed that it was non-toxic and can be freely administrated till doses of 250 mg/kg BW via both i.v. and i.p. injections. This work illustrated that PTMTC is a perfect candidate for multimodal (EPR/fluorescence) contrast agent in preclinical studies.

  13. Implementing Diffie-Hellman key exchange using quantum EPR pairs

    NASA Astrophysics Data System (ADS)

    Mandal, Sayonnha; Parakh, Abhishek

    2015-05-01

    This paper implements the concepts of perfect forward secrecy and the Diffie-Hellman key exchange using EPR pairs to establish and share a secret key between two non-authenticated parties and transfer messages between them without the risk of compromise. Current implementations of quantum cryptography are based on the BB84 protocol, which is susceptible to siphoning attacks on the multiple photons emitted by practical laser sources. This makes BB84-based quantum cryptography protocol unsuitable for network computing environments. Diffie-Hellman does not require the two parties to be mutually authenticated to each other, yet it can provide a basis for a number of authenticated protocols, most notably the concept of perfect forward secrecy. The work proposed in this paper provides a new direction in utilizing quantum EPR pairs in quantum key exchange. Although, classical cryptography boasts of efficient and robust protocols like the Diffie-Hellman key exchange, in the current times, with the advent of quantum computing they are very much vulnerable to eavesdropping and cryptanalytic attacks. Using quantum cryptographic principles, however, these classical encryption algorithms show more promise and a more robust and secure structure for applications. The unique properties of quantum EPR pairs also, on the other hand, go a long way in removing attacks like eavesdropping by their inherent nature of one particle of the pair losing its state if a measurement occurs on the other. The concept of perfect forward secrecy is revisited in this paper to attribute tighter security to the proposed protocol.

  14. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.

  15. A multimedia Electronic Patient Record (ePR) system for Image-Assisted Minimally Invasive Spinal Surgery

    PubMed Central

    Documet, Jorge; Le, Anh; Liu, Brent; Chiu, John; Huang, HK

    2009-01-01

    Purpose This paper presents the concept of bridging the gap between diagnostic images and image-assisted surgical treatment through the development of a one-stop multimedia electronic patient record (ePR) system that manages and distributes the real-time multimodality imaging and informatics data that assists the surgeon during all clinical phases of the operation from planning Intra-Op to post-care follow-up. We present the concept of this multimedia ePR for surgery by first focusing on Image-Assisted Minimally Invasive Spinal Surgery as a clinical application. Methods Three clinical Phases of Minimally Invasive Spinal Surgery workflow in Pre-Op, Intra-Op, and Post Op are discussed. The ePR architecture was developed based on the three-phased workflow, which includes the Pre-Op, Intra-Op, and Post-Op modules and four components comprising of the input integration unit, fault-tolerant gateway server, fault-tolerant ePR server, and the visualization and display. A prototype was built and deployed to a Minimally Invasive Spinal Surgery clinical site with user training and support for daily use. Summary A step-by step approach was introduced to develop a multi-media ePR system for Imaging-Assisted Minimally Invasive Spinal Surgery that includes images, clinical forms, waveforms, and textual data for planning the surgery, two real-time imaging techniques (digital fluoroscopic, DF) and endoscope video images (Endo), and more than half a dozen live vital signs of the patient during surgery. Clinical implementation experiences and challenges were also discussed. PMID:20033507

  16. EPR imaging and HPLC characterization of the pigment-based organic free radical in black soybean seeds.

    PubMed

    Nakagawa, Kouichi; Maeda, Hayato

    2017-02-01

    We investigated the location and distribution of paramagnetic species in dry black, brown, and yellow (normal) soybean seeds using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black soybean. These two different radical species were assigned as stable organic radical and Mn 2+  species based on the g values and hyperfine structures. The signal from the stable radical was noted at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI of the radical present in black soybean revealed that the stable radical was primarily located in the pigmented region of the soybean coat, with very few radicals observed in the soybean cotyledon (interior). Pigments extracted from black soybean were analyzed using HPLC. The major compound was found to be cyanidin-3-glucoside. Multi-EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the soybean coat, and it could be cyanidin-3-glucoside or an oxidative decomposition product.

  17. Two copies of the Einstein-Podolsky-Rosen state of light lead to refutation of EPR ideas.

    PubMed

    Rosołek, Krzysztof; Stobińska, Magdalena; Wieśniak, Marcin; Żukowski, Marek

    2015-03-13

    Bell's theorem applies to the normalizable approximations of original Einstein-Podolsky-Rosen (EPR) state. The constructions of the proof require measurements difficult to perform, and dichotomic observables. By noticing the fact that the four mode squeezed vacuum state produced in type II down-conversion can be seen both as two copies of approximate EPR states, and also as a kind of polarization supersinglet, we show a straightforward way to test violations of the EPR concepts with direct use of their state. The observables involved are simply photon numbers at outputs of polarizing beam splitters. Suitable chained Bell inequalities are based on the geometric concept of distance. For a few settings they are potentially a new tool for quantum information applications, involving observables of a nondichotomic nature, and thus of higher informational capacity. In the limit of infinitely many settings we get a Greenberger-Horne-Zeilinger-type contradiction: EPR reasoning points to a correlation, while quantum prediction is an anticorrelation. Violations of the inequalities are fully resistant to multipair emissions in Bell experiments using parametric down-conversion sources.

  18. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    PubMed

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    PubMed

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing

    PubMed Central

    A. Abdel‐Rahman, Engy; Mahmoud, Ali M.; Khalifa, Abdulrahman M.

    2016-01-01

    Abstract Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site‐directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. PMID:26801204

  1. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. From PACS to Web-based ePR system with image distribution for enterprise-level filmless healthcare delivery.

    PubMed

    Huang, H K

    2011-07-01

    The concept of PACS (picture archiving and communication system) was initiated in 1982 during the SPIE medical imaging conference in New Port Beach, CA. Since then PACS has been matured to become an everyday clinical tool for image archiving, communication, display, and review. This paper follows the continuous development of PACS technology including Web-based PACS, PACS and ePR (electronic patient record), enterprise PACS to ePR with image distribution (ID). The concept of large-scale Web-based enterprise PACS and ePR with image distribution is presented along with its implementation, clinical deployment, and operation. The Hong Kong Hospital Authority's (HKHA) integration of its home-grown clinical management system (CMS) with PACS and ePR with image distribution is used as a case study. The current concept and design criteria of the HKHA enterprise integration of the CMS, PACS, and ePR-ID for filmless healthcare delivery are discussed, followed by its work-in-progress and current status.

  3. Teichmuller Space Resolution of the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2013-04-01

    The mystery of Newton's action-at-a-distance law of gravity was resolved by Einstein with Riemann's non-Euclidean geometry, which permitted the explanation of the departure from Newton's law for the motion of Mercury. It is here proposed that the similarly mysterious non-local EPR-type quantum correlations may be explained by a Teichmuller space geometry below the Planck length, for which an experiment for its verification is proposed.

  4. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    PubMed

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  5. Kinetics of Recovery of the Dark-adapted Salamander Rod Photoresponse

    PubMed Central

    Nikonov, S.; Engheta, N.; Pugh, E.N.

    1998-01-01

    The kinetics of the dark-adapted salamander rod photocurrent response to flashes producing from 10 to 105 photoisomerizations (Φ) were investigated in normal Ringer's solution, and in a choline solution that clamps calcium near its resting level. For saturating intensities ranging from ∼102 to 104 Φ, the recovery phases of the responses in choline were nearly invariant in form. Responses in Ringer's were similarly invariant for saturating intensities from ∼103 to 104 Φ. In both solutions, recoveries to flashes in these intensity ranges translated on the time axis a constant amount (τc) per e-fold increment in flash intensity, and exhibited exponentially decaying “tail phases” with time constant τc. The difference in recovery half-times for responses in choline and Ringer's to the same saturating flash was 5–7 s. Above ∼104 Φ, recoveries in both solutions were systematically slower, and translation invariance broke down. Theoretical analysis of the translation-invariant responses established that τc must represent the time constant of inactivation of the disc-associated cascade intermediate (R*, G*, or PDE*) having the longest lifetime, and that the cGMP hydrolysis and cGMP-channel activation reactions are such as to conserve this time constant. Theoretical analysis also demonstrated that the 5–7-s shift in recovery half-times between responses in Ringer's and in choline is largely (4–6 s) accounted for by the calcium-dependent activation of guanylyl cyclase, with the residual (1–2 s) likely caused by an effect of calcium on an intermediate with a nondominant time constant. Analytical expressions for the dim-flash response in calcium clamp and Ringer's are derived, and it is shown that the difference in the responses under the two conditions can be accounted for quantitatively by cyclase activation. Application of these expressions yields an estimate of the calcium buffering capacity of the rod at rest of ∼20, much lower than previous

  6. Female exposure to high G: effects of simulated combat sorties on cerebral and arterial O2 saturation.

    PubMed

    Tripp, L D; Chelette, T; Savul, S; Widman, R A

    1998-09-01

    One of the key factors in maintaining optimal cognitive performance in the high-G environment is the adequate delivery of oxygen to the cerebral tissue. As eye-level blood pressure is compromised at 22 mmHg x G(-1), perfusion to the peripheral cerebral tissues (cerebral cortex) may not be adequate to support the mental demands of flight. This study measured the effect of closed-loop flight simulations (3 min) on cerebral oxygen saturation changes (rSO2), arterial oxygen saturation (SAO2), and heart rate (HR), in both rested (8 h of rest) and sleepless (24 h without sleep) conditions. Subjects (16; 8 males and 8 females) were subjected to G-exposures via closed-loop flight simulations in a series of four 3-min sorties flown by subjects on the Dynamic Environment Simulator (centrifuge) in either a rested or a sleepless state. Prior to the centrifuge flight, subjects were instrumented with sensors for measurement of arterial oxygen saturation (SAO2) and regional cerebral tissue oxygenation (rSO2). Subjects wore the standard flight suit, boots, CSU-13B/P anti-G suit, and the COMBAT EDGE positive-pressure breathing for G-protection system. Significant changes in cerebral and arterial oxygen saturation were observed within groups when comparing pretest baselines and minimum values during the test and pre- and post-G rSO2, SAO2, and HR in both the rested and sleepless state, (p # 0.01), respectively, for each group. Comparisons between groups showed women to have significantly smaller regional cerebral cortex oxygen decreases than men (p # 0.01). No significant changes in SAO2, however, were observed between groups. Both men and women showed a slow recovery of rSO2 values to the prebaseline levels. Sleeplessness had no effect on the rSO2, SAO2, and HR compared with the rested condition. During acceleration, regional cerebral tissue oxygen decreased 13% in men compared with 9% in women. The recovery of cerebral tissue oxygen levels to prebaseline values was retarded

  7. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    PubMed

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. In Vivo EPR For Dosimetry

    PubMed Central

    Swartz, Harold M.; Burke, Greg; Coey, M.; Demidenko, Eugene; Dong, Ruhong; Grinberg, Oleg; Hilton, James; Iwasaki, Akinori; Lesniewski, Piotr; Kmiec, Maciej; Lo, Kai-Ming; Nicolalde, R. Javier; Ruuge, Andres; Sakata, Yasuko; Sucheta, Artur; Walczak, Tadeusz; Williams, Benjamin B.; Mitchell, Chad; Romanyukha, Alex; Schauer, David A.

    2007-01-01

    As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those without a significant probability of acute effects can be reassured and removed from the need for further consideration in the medical/emergency system. In many of the plausible scenarios there is an urgent need to make the determination very soon after the event and while the subject is still present. In vivo EPR measurements of radiation-induced changes in the enamel of teeth is a method, perhaps the only such method, which can differentiate among doses sufficiently for classifying individuals into categories for treatment with sufficient accuracy to facilitate decisions on medical treatment. In its current state, the in vivo EPR dosimeter can provide estimates of absorbed dose with an error approximately ± 50 cGy over the range of interest for acute biological effects of radiation, assuming repeated measurements of the tooth in the mouth of the subject. The time required for acquisition, the lower limit, and the precision are expected to improve, with improvements in the resonator and the algorithm for acquiring and calculating the dose. The magnet system that is currently used, while potentially deployable, is somewhat large and heavy, requiring that it be mounted on a small truck or trailer. Several smaller magnets, including an intraoral magnet are under development, which would extend the ease of use of this technique. PMID:18591988

  9. Evaluation of the Human/Extreme Environment Interaction: Implications for Enhancing Operational Performance and Recovery

    DTIC Science & Technology

    2014-02-01

    and 4 hours during the recovery using a pulse oximeter (Nonin Onyx II 9550, Plymouth, MN). Analysis Skeletal Muscle RNA isolation. An 8-20...Oximetry. Blood oxygen saturation was evaluated before and after exercise, and during recovery at 0:30, 2:30, 4:30, and 6:00 using a pulse oximeter ...cycling for 45 minutes, post exercise, and every hour during the 6-hour recovery using pulse oximeter (Nonin Onyx Finger Pulse Oximeter , Nonin Medical

  10. Modeling magnetization transfer effects of Q2TIPS bolus saturation in multi-TI pulsed arterial spin labeling.

    PubMed

    Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg

    2014-10-01

    To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.

  11. A more secure anonymous user authentication scheme for the integrated EPR information system.

    PubMed

    Wen, Fengtong

    2014-05-01

    Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security.

  12. Investigations in quantum games using EPR-type set-ups

    NASA Astrophysics Data System (ADS)

    Iqbal, Azhar

    2006-04-01

    Research in quantum games has flourished during recent years. However, it seems that opinion remains divided about their true quantum character and content. For example, one argument says that quantum games are nothing but 'disguised' classical games and that to quantize a game is equivalent to replacing the original game by a different classical game. The present thesis contributes towards the ongoing debate about quantum nature of quantum games by developing two approaches addressing the related issues. Both approaches take Einstein-Podolsky-Rosen (EPR)-type experiments as the underlying physical set-ups to play two-player quantum games. In the first approach, the players' strategies are unit vectors in their respective planes, with the knowledge of coordinate axes being shared between them. Players perform measurements in an EPR-type setting and their payoffs are defined as functions of the correlations, i.e. without reference to classical or quantum mechanics. Classical bimatrix games are reproduced if the input states are classical and perfectly anti-correlated, as for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. The second approach uses the result that when the predictions of a Local Hidden Variable (LHV) model are made to violate the Bell inequalities the result is that some probability measures assume negative values. With the requirement that classical games result when the predictions of a LHV model do not violate the Bell inequalities, our analysis looks at the impact which the emergence of negative probabilities has on the solutions of two-player games which are physically implemented using the EPR-type experiments.

  13. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    PubMed

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid

    PubMed Central

    Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.

    2013-01-01

    Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063

  15. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer

    NASA Astrophysics Data System (ADS)

    Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

  16. W-band EPR of vanadyl complexes aggregates on the surface of Al2O3

    NASA Astrophysics Data System (ADS)

    Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.

    2018-05-01

    Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.

  17. Gamma-ray and neutron dosimetry by EPR and AMS, using tooth enamel from atomic-bomb survivors: a mini review.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki

    2012-03-01

    The electron paramagnetic resonance (EPR, or electron spin resonance) method was used to measure CO₂⁻· radicals recorded in tooth enamel by exposure to atomic-bomb gamma rays. The EPR-estimated doses (i.e. ⁶⁰Co gamma-ray equivalent dose) were generally in good correlation with cytogenetic data of the same survivors, whereas plots of EPR-estimated dose or cytogenetically estimated dose against DS02 doses turned out to scatter more widely. Because those survivors whose EPR doses were higher (or lower) than DS02 doses tended to show also higher (or lower) responses for cytogenetic responses, the apparent variation appears primarily due to problems in individual DS02 doses rather than the measurement errors associated with the EPR or cytogenetic technique. A part of the enamel samples were also used for evaluation of neutron doses by measuring ⁴¹Ca/⁴⁰Ca ratios using the accelerator mass spectrometry technique. The results for the measured ratios were on average ~85 % of the calculated ratios by DS02 (but within the 95 % confidence bounds of the simulated results), which lends support to DS02-derived neutron doses to the survivors.

  18. EPR investigation of damage centers formed in some drug powders irradiated with gamma rays

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem

    2018-07-01

    The radiation damage centers in levetiracetam, progesterone, ethosuximide, and propranolol hydrochloride were investigated by EPR spectroscopy at 295 K. The paramagnetic species were attributed to the -ĊHCHNH-, -CH2ĊH2CH- and -ĊH-, -ĊHCH2N- and-ĊH-, and -NĊCH2- radicals, respectively. The results were observed as being in good conformity with the literature. The spectra of these compounds were computer simulated. Furthermore, the EPR parameters of the radicals formed by ɣ-irradiation in the samples were determined.

  19. Single well tracer method to evaluate enhanced recovery

    DOEpatents

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  20. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  1. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells.

    PubMed

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner. Copyright © 2016. Published by Elsevier Inc.

  2. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    PubMed

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  4. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media.

    PubMed

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Stability of X-band EPR signals from fingernails under vacuum storage.

    PubMed

    Sholom, Sergey; McKeever, Stephen

    2017-12-01

    EPR signals of different origin have been tested in human finger- and toe-nails with an X-band EPR technique for different conditions of nail storage. Three different signals were identified, namely a singlet at g=2.005, a doublet at g=2.004 with a splitting constant A=1.8 mT, and an anisotropic signal at g1=2.057, g2=2.029 and g3=2.003 (positions of local extrema). All EPR spectra from nails, whether irradiated or mechanically stressed, can be described as a superposition of these three signals. The singlet is responsible for the background signal (BG), is the main component of radiation-induced signals (RIS) for low doses (100 Gy or lower) and also contributes to mechanically-induced signals (MIS). This signal is quite stable under vacuum storage, but can be reduced almost to zero by soaking in water. The behavior of this signal under ambient conditions depends on many factors, such as absorbed dose, air humidity, and ambient illumination intensity at the place of storage. The doublet arises after exposure of nails to high (few hundreds Gy and higher) doses or after mechanical stress of samples. Depending on how this signal was obtained, it may have bulk or surface locations with quite different stability properties. The surface-located doublet (generated on the nail edges during cutting or clipping) is quite unstable and decays over about two hours for samples stored at ambient conditions and within several seconds for samples immersed in water. The volume-distributed doublet decays within a few minutes in water, several hours at ambient conditions and several days in vacuum. The anisotropic signal may also be generated by both ionizing radiation and mechanical stress; this signal is quite stable in vacuum and decays over several days at ambient conditions or a few tens of minutes in water. The reference lines for the above-described three EPR signals were obtained and a procedure of spectra deconvolution was developed and tested on samples exposed to both

  6. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds.

    PubMed

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K

    2018-04-27

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.

    PubMed

    Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I

    2013-01-08

    Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. EPR studies of free radicals decay and survival in gamma irradiated aminoglycoside antibiotics: sisomicin, tobramycin and paromomycin.

    PubMed

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2012-02-14

    Radiation sterilization technology is more actively used now that any time because of its many advantages. Gamma radiation has high penetrating power, relatively low chemical reactivity and causes small temperature rise. But on the other hand radiosterilization can lead to radiolytic products appearing, in example free radicals. Free radicals in radiative sterilized sisomicin, tobramycin and paromomycin were studied by electron paramagnetic resonance (EPR) spectroscopy. Dose of gamma irradiation of 25kGy was used. Concentrations and properties of free radicals in irradiated antibiotics were studied. EPR spectra were recorded for samples stored in air and argon. For gamma irradiated antibiotics strong EPR lines were recorded. One- and two-exponential functions were fitted to experimental points during testing and researching of time influence of the antibiotics storage to studied parameters of EPR lines. Our study of free radicals in radiosterilized antibiotics indicates the need for characterization of medicinal substances prior to sterilization process using EPR values. We propose the concentration of free radicals and other spectroscopic parameters as useful factors to select the optimal type of sterilization for the individual drug. The important parameters are i.a. the τ time constants and K constants of exponential functions. Time constants τ give us information about the speed of free radicals concentration decrease in radiated medicinal substances. The constant K(0) shows the free radicals concentration in irradiated medicament after long time of storage. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    NASA Astrophysics Data System (ADS)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  10. Decision support tools for proton therapy ePR: intelligent treatment planning navigator and radiation toxicity tool for evaluating of prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Le, Anh H.; Deshpande, Ruchi; Liu, Brent J.

    2010-03-01

    The electronic patient record (ePR) has been developed for prostate cancer patients treated with proton therapy. The ePR has functionality to accept digital input from patient data, perform outcome analysis and patient and physician profiling, provide clinical decision support and suggest courses of treatment, and distribute information across different platforms and health information systems. In previous years, we have presented the infrastructure of a medical imaging informatics based ePR for PT with functionality to accept digital patient information and distribute this information across geographical location using Internet protocol. In this paper, we present the ePR decision support tools which utilize the imaging processing tools and data collected in the ePR. The two decision support tools including the treatment plan navigator and radiation toxicity tool are presented to evaluate prostate cancer treatment to improve proton therapy operation and improve treatment outcomes analysis.

  11. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  12. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares.

    PubMed

    Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  14. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  15. Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2015-12-01

    Limestone samples were deformed up to 5% inelastic axial strain at an effective confining pressure Peff=50 MPa in the cataclastic flow regime and subsequently maintained under constant static stress conditions (either isostatic of triaxial) for extended periods of time while elastic wave speeds and permeability were continuously monitored. During deformation, both seismic wave speeds and permeability decrease with increasing strain, due to the growth of subvertical microcracks and inelastic porosity reduction. During the static hold period under water-saturated conditions, the seismic wave speeds recovered gradually, typically by around 5% (relative to their initial value) after 2 days, while permeability remained constant. The recovery in wave speed increases with increasing confining pressure but decreases with increasing applied differential stress. The recovery is markedly lower when the samples are saturated with an inert fluid as opposed to water. The evolution in wave speed is interpreted quantitatively in terms of microcrack density, which shows that the post-deformation recovery is associated with a decrease in effective microcrack length, typically of the order to 10% after 2 days. The proposed mechanism for the observed damage recovery is microcrack closure due to a combination of backsliding on wing cracks driven by time-dependent friction and closure due to pressure solution at contacts between propping particles or asperities and microcrack walls. The recovery rates observed in the experiments, and the proposed underlying mechanisms, are compatible with seismological observations of seismic wave speed recovery along faults following earthquakes.

  16. Zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Beauregard, O.C.

    1988-09-01

    Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in a spacetime or in the momentum-energy space, as V-shaped, anti LAMBDA-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states absolute value B>=*. The reversibility = * implies that causality is CPT-invariant, or arrowless, at the microlevel. Arrowed causality is a macroscopic emergence, corollary to wave retardation and probability increase. Factlike irreversibility states repression, not suppression, of blind statistical retrodiction- that is, of finalmore » cause.« less

  17. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    PubMed Central

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  18. Electronic paramagnetic resonance (EPR) for the study of ascorbyl radical and lipid radicals in marine organisms.

    PubMed

    González, Paula Mariela; Aguiar, María Belén; Malanga, Gabriela; Puntarulo, Susana

    2013-08-01

    Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (A(•)) and lipid radicals. A(•) is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A(•)/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A(•)/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions. Oxidative damage to lipids was assessed by the EPR-sensitive adduct formation that correlates well with cell membrane damage with no interference from other biological compounds. Probe instability, tissue metabolism, and lack of spin specificity are drawback factors for employing EPR for in vivo determination of free radicals. However, the dependability of this technique, mostly by combining it with other biochemical strategies, enhances the value of these procedures as contributors to the knowledge of oxidative condition in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  20. Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.

    2016-08-01

    Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.

  1. Comparison of scavenging capacities of vegetables by ORAC and EPR.

    PubMed

    Kameya, Hiromi; Watanabe, Jun; Takano-Ishikawa, Yuko; Todoriki, Setsuko

    2014-02-15

    Reactive oxygen species (ROS) are considered to be causative agents of many health problems. In spite of this, the radical-specific scavenging capacities of food samples have not been well studied. In the present work, we have developed an electron paramagnetic resonance (EPR) spin trapping method for analysis of the scavenging capacities of food samples for multiple ROS, utilising the same photolysis procedure for generating each type of radical. The optimal conditions for effective evaluation of hydroxyl, superoxide, and alkoxyl radical scavenging capacity were determined. Quantification of radical adducts was found to be highly reproducible, with variations of less than 4%. The optimised EPR spin trapping method was used to analyse the scavenging capacities of 54 different vegetable extracts for multiple radicals, and the results were compared with oxygen radical absorption capacity values. Good correlations between the two methods were observed for superoxide and alkoxyl radicals, but not for hydroxyl. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Study on Energy Productivity Ratio (EPR) at palm kernel oil processing factory: case study on PT-X at Sumatera Utara Plantation

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.

    2018-02-01

    The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.

  3. Amplification of Dynamic Nuclear Polarization at 200 GHz by Arbitrary Pulse Shaping of the Electron Spin Saturation Profile.

    PubMed

    Kaminker, Ilia; Han, Songi

    2018-06-07

    Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).

  4. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    PubMed

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    NASA Astrophysics Data System (ADS)

    Mladenova, Ralitsa B.; Firzov, Cyril; Yordanov, Nicola D.

    2010-09-01

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Еnoviton, Еnoviton С and Еnoviton СЕ, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Еnoviton С or Еnoviton СЕ due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Еnoviton С and Еnoviton СЕ). Gamma-induced free radicals exhibit long time stability—for a six months period the intensity of central peak decrease with 30-40%.

  6. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy.

    PubMed

    Thétiot-Laurent, Sophie; Gosset, Gaëlle; Clément, Jean-Louis; Cassien, Mathieu; Mercier, Anne; Siri, Didier; Gaudel-Siri, Anouk; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2017-02-01

    There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (Δa X ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (a N , a H , and a P ) of their EPR spectra vary reversibly with pH and, from a P or a H titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pK a ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging.

    PubMed

    Kubota, Harue; Komarov, Denis A; Yasui, Hironobu; Matsumoto, Shingo; Inanami, Osamu; Kirilyuk, Igor A; Khramtsov, Valery V; Hirata, Hiroshi

    2017-06-01

    The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-(1- 15 N)-1-oxyl ( 2 H, 15 N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-1-oxyl ( 2 H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2 H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2 H, 15 N-DCP and 2 H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping. 2 H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2 H, 15 N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2 H, 15 N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2 H, 15 N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. EPR signals of 2 H, 15 N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.

  8. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  9. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    PubMed

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  11. A Hash Based Remote User Authentication and Authenticated Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng

    2015-11-01

    To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.

  12. Moving Difference (MDIFF) Non-adiabatic rapid sweep (NARS) EPR of copper(II)

    PubMed Central

    Hyde, James S.; Bennett, Brian; Kittell, Aaron W.; Kowalski, Jason M.; Sidabras, Jason W.

    2014-01-01

    Non Adiabatic Rapid Sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (AW Kittell et al, (2011)). Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850 G at 1.9 GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about 4 times higher than when using conventional 100 kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines. PMID:24036469

  13. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  14. Study of EPR/ESR Dosimetry in Fingernails as a Method for Assessing Dose of Victims of Radiological Accidents/Incidents

    DTIC Science & Technology

    2008-06-17

    dosimeters . .............................................................................................. 117 Figure 4-2. Flow chart illustrating...alanine, various sugars, quartz in rocks and sulfates, as EPR dosimeters [15]. Alternatively, radiation-induced EPR signals have been detected using...the medical response to radiological accidents, as a method for estimating radiation dose without the use of physical dosimeters and using exposed

  15. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    PubMed

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  16. Injectable LiNc-BuO loaded microspheres as in vivo EPR oxygen sensors after co-implantation with tumor cells.

    PubMed

    Frank, Juliane; Gündel, Daniel; Drescher, Simon; Thews, Oliver; Mäder, Karsten

    2015-12-01

    Electron paramagnetic resonance (EPR) oximetry is a technique which allows accurate and repeatable oxygen measurements. We encapsulated a highly oxygen sensitive particulate EPR spin probe into microparticles to improve its dispersibility and, hence, facilitate the administration. These biocompatible, non-toxic microspheres contained 5-10 % (w/w) spin probe and had an oxygen sensitivity of 0.60 ± 0.01 µT/mmHg. To evaluate the performance of the microparticles as oxygen sensors, they were co-implanted with syngeneic tumor cells in 2 different rat strains. Thus, tissue injury was avoided and the microparticles were distributed all over the tumor tissue. Dynamic changes of the intratumoral oxygen partial pressure during inhalation of 8 %, 21 %, or 100 % oxygen were monitored in vivo by EPR spectroscopy and quantified. Values were verified in vivo by invasive fluorometric measurements using Oxylite probes and ex vivo by pimonidazole adduct accumulation. There were no hints that the tumor physiology or tissue oxygenation had been altered by the microparticles. Hence, these microprobes offer great potential as oxygen sensors in preclinical research, not only for EPR spectroscopy but also for EPR imaging. For instance, the assessment of tissue oxygenation during therapeutic interventions might help understanding pathophysiological processes and lead to an individualized treatment planning or the use of formulations with hypoxia triggered release of active agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Employment Precariousness Scale (EPRES): psychometric properties of a new tool for epidemiological studies among waged and salaried workers.

    PubMed

    Vives, Alejandra; Amable, Marcelo; Ferrer, Montserrat; Moncada, Salvador; Llorens, Clara; Muntaner, Carles; Benavides, Fernando G; Benach, Joan

    2010-08-01

    Despite the fact that labour market flexibility has resulted in an expansion of precarious employment in industrialised countries, to date there is limited empirical evidence concerning its health consequences. The Employment Precariousness Scale (EPRES) is a newly developed, theory-based, multidimensional questionnaire specifically devised for epidemiological studies among waged and salaried workers. To assess the acceptability, reliability and construct validity of EPRES in a sample of waged and salaried workers in Spain. A sample of 6968 temporary and permanent workers from a population-based survey carried out in 2004-2005 was analysed. The survey questionnaire was interviewer administered and included the six EPRES subscales, and measures of the psychosocial work environment (COPSOQ ISTAS21) and perceived general and mental health (SF-36). A high response rate to all EPRES items indicated good acceptability; Cronbach's alpha coefficients, over 0.70 for all subscales and the global score, demonstrated good internal consistency reliability; exploratory factor analysis using principal axis analysis and varimax rotation confirmed the six-subscale structure and the theoretical allocation of all items. Patterns across known groups and correlation coefficients with psychosocial work environment measures and perceived health demonstrated the expected relations, providing evidence of construct validity. Our results provide evidence in support of the psychometric properties of EPRES, which appears to be a promising tool for the measurement of employment precariousness in public health research.

  18. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  19. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  20. A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics.

    PubMed

    Oganesyan, Vasily S; Chami, Fatima; White, Gaye F; Thomson, Andrew J

    2017-01-01

    EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    PubMed Central

    Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520

  2. An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Perito, B.; Romanelli, M.; Buccianti, A.; Passaponti, M.; Montegrossi, G.; Di Benedetto, F.

    2018-05-01

    We report in this study the first XRPD and EPR spectroscopy characterisation of a biogenic calcite, obtained from the activity of the bacterium Bacillus subtilis. Microcrystalline calcite powders obtained from bacterial culture in a suitable precipitation liquid medium were analysed without further manipulation. Both techniques reveal unusual parameters, closely related to the biological source of the mineral, i.e., to the bioprecipitation process and in particular to the organic matrix observed inside calcite. In detail, XRPD analysis revealed that bacterial calcite has slightly higher c/a lattice parameters ratio than abiotic calcite. This correlation was already noticed in microcrystalline calcite samples grown by bio-mineralisation processes, but it had never been previously verified for bacterial biocalcites. EPR spectroscopy evidenced an anomalously large value of W 6, a parameter that can be linked to occupation by different chemical species in the next nearest neighbouring sites. This parameter allows to clearly distinguish bacterial and abiotic calcite. This latter achievement was obtained after having reduced the parameters space into an unbiased Euclidean one, through an isometric log-ratio transformation. We conclude that this approach enables the coupled use of XRPD and EPR for identifying the traces of bacterial activity in fossil carbonate deposits.

  3. Free Radical Scavenging Activity of Drops and Spray Containing Propolis-An EPR Examination.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Ramos, Pawel; Mencner, Lukasz; Olczyk, Krystyna; Pilawa, Barbara

    2017-01-13

    The influence of heating at a temperature of 50 °C and UV-irradiation of propolis drops and spray on their free radical scavenging activity was determined. The kinetics of interactions of the propolis samples with DPPH free radicals was analyzed. Interactions of propolis drops and propolis spray with free radicals were examined by electron paramagnetic resonance spectroscopy. A spectrometer generating microwaves of 9.3 GHz frequency was used. The EPR spectra of the model DPPH free radicals were compared with the EPR spectra of DPPH in contact with the tested propolis samples. The antioxidative activity of propolis drops and propolis spray decreased after heating at the temperature of 50 °C. A UV-irradiated sample of propolis drops more weakly scavenged free radicals than an untreated sample. The antioxidative activity of propolis spray increased after UV-irradiation. The sample of propolis drops heated at the temperature of 50 °C quenched free radicals faster than the unheated sample. UV-irradiation weakly changed the kinetics of propolis drops or spray interactions with free radicals. EPR analysis indicated that propolis drops and spray should not be stored at a temperature of 50 °C. Propolis drops should not be exposed to UV-irradiation.

  4. EPR Studies of the Binding Properties, Guest Dynamics, and Inner-Space Dimensions of a Water-Soluble Resorcinarene Capsule.

    PubMed

    Ayhan, Mehmet Menaf; Casano, Gilles; Karoui, Hakim; Rockenbauer, Antal; Monnier, Valérie; Hardy, Micaël; Tordo, Paul; Bardelang, David; Ouari, Olivier

    2015-11-09

    Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7)  M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  6. Effect of UV irradiation on Echinaceae purpureae interactions with free radicals examined by an X-band (9.3 GHz) EPR spectroscopy.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    The effect of UVA (315-400 nm) irradiation on Echinaceae purpureae interactions with free radicals was examined by the use of electron paramagnetic resonance (EPR) spectroscopy. The changes of antioxidant properties of E. purpureae with time of UV irradiation from 10 to 110 min (10 min steps) were determined. DPPH as the paramagnetic reference was used in this study. Changes of EPR signals of the reference after interactions with nonirradiated and UV-irradiated E. purpureae were detected. Interactions of the tested E. purpureae samples caused decrease of the EPR signal of DPPH as the result of its antioxidant properties. The decrease of the amplitude of EPR line of DPPH was lower for interactions with UV-irradiated E. purpureae . EPR examination confirmed antioxidant properties of E. purpureae . The weaker antioxidant properties of E. purpureae after UV irradiation were pointed out. E. purpureae should be storage in the dark. The tests bring to light usefulness of electron paramagnetic resonance with microwave frequency of 9.3 GHz (an X-band) in examination of storage conditions of pharmacological herbs.

  7. A Comparative Evaluation of EPR and OxyLite Oximetry Using a Random Sampling of pO2 in a Murine Tumor

    PubMed Central

    Vikram, Deepti S.; Bratasz, Anna; Ahmad, Rizwan; Kuppusamy, Periannan

    2015-01-01

    Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO2 measurements were taken from random locations at a depth of ~3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness. PMID:17705635

  8. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans.

    PubMed

    Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene

    2017-10-01

    Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.

  9. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    NASA Astrophysics Data System (ADS)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  10. Effect of nonlinearity saturation on hot-image formation in cascaded saturable nonlinear medium slabs

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.

  11. Combined NMR and EPR Spectroscopy to Determine Structures of Viral Fusion Domains in Membranes

    PubMed Central

    Tamm, Lukas K.; Lai, Alex L.; Li, Yinling

    2008-01-01

    Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case. PMID:17963720

  12. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    NASA Astrophysics Data System (ADS)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  13. Laboratory Scale Experiments and Numerical Modeling of Cosolvent flushing of NAPL Mixtures in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Agaoglu, B.; Scheytt, T. J.; Copty, N. K.

    2011-12-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.

  14. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    PubMed

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  16. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.

    PubMed

    Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.

  17. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, R.

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core andmore » linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.« less

  18. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  19. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  20. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    PubMed

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  2. Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban.

    PubMed

    Martin, Peter D; James, Zachary M; Thomas, David D

    2018-06-05

    We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to map interactions between the transmembrane (TM) domains of the sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) and phospholamban (PLB) as affected by PLB phosphorylation. In the cardiac sarcoplasmic reticulum, PLB binding to SERCA results in Ca-dependent enzyme inhibition, which is reversed by PLB phosphorylation at Ser16. Previous spectroscopic studies on SERCA-PLB have largely focused on the cytoplasmic domain of PLB, showing that phosphorylation induces a structural shift in this domain relative to SERCA. However, SERCA inhibition is due entirely to TM domain interactions. Therefore, we focus here on PLB's TM domain, attaching Cys-reactive spin labels at five different positions. In each case, continuous-wave EPR indicated moderate spin-label mobility, with the addition of SERCA revealing two populations, one indistinguishable from PLB alone and another with more restricted rotational mobility, presumably due to SERCA-binding. Phosphorylation had no effect on the rotational mobility of either component but significantly decreased the mole fraction of the restricted component. Solvent-accessibility experiments using power-saturation EPR and saturation-recovery EPR confirmed that these two spectral components were SERCA-bound and unbound PLB and showed that phosphorylation increased the overall lipid accessibility of the TM domain by increasing the fraction of unbound PLB. However-based on these results-at physiological levels of SERCA and PLB, most SERCA would have bound PLB even after phosphorylation. Additionally, no structural shift in the TM domain of SERCA-bound PLB was detected, as there were no significant changes in membrane insertion depth or its accessibility. Therefore, we conclude that under physiological conditions, the phosphorylation of PLB induces little or no change in the interaction of the TM domain with SERCA, so relief of inhibition is predominantly due to the

  3. Some Boussinesq Equations with Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christou, M. A.

    2010-11-25

    We investigate numerically some Boussinesq type equations with square or cubic and saturated nonlinearity. We examine the propagation, interaction and overtake interaction of soliton solutions. Moreover, we examine the effect of the saturation term on the solution and compare it with the classical case of the square or cubic nonlinearity without saturation. We calculate numerically the phase shift experienced by the solitons upon collision and conclude the impact of saturation.

  4. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  5. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  6. Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma (EPR CAT)

    DTIC Science & Technology

    2016-12-01

    Preservation and Resuscitation (EPR) was developed to rapidly preserve the organism during ischemia, using hypothermia, drugs , and fluids, to “ buy time...Device Exemption (IDE) from the Food and Drug Administration (FDA). Our trial is complicated by the fact that both fluids and equipment are to be used

  7. Mn distribution in natural sphalerites: a micronalytical and EPR study

    NASA Astrophysics Data System (ADS)

    di Benedetto, F.; Bernardini, G. P.; Cipriani, C.; Plant, D.; Romanelli, M.; Vaughan, D. J.

    2003-04-01

    Electron Paramagnetic Resonance (EPR) has been successfully applied to determine the local coordination and distribution of transition metal cations in sulphides and sulphosalts (Di Benedetto et al., 2002). Due to its enhanced sensitivity and element-specificity it is one of the best tools to monitor Mn(II) behaviour down to very low concentrations. In order to reach a fuller understanding of the spectroscopic results, a microanalytical study has also been undertaken by means of Electron Microprobe Analysis. Operating conditions were chosen to achieve the lowest possible detection limits, taking into account that Mn can replace Zn in the sphalerite lattice both as a minor and trace element, and that EPR can detect Mn(II) below the ppm range. Six natural samples from the Museo di Storia Naturale, Università di Firenze, were selected to have pure single crystals and avoid magnetically active phases associated with the sphalerite. The Mn concentration determined ranges between 30 and 14300 ppm and Mn content varies considerably within the same sample, leading to differences up to the 50% as compared to the mean value. X-ray images confirm Mn to be distributed with an unusual pattern, unrelated to the other common Zn-replacing cations, Fe and Cd, present in the samples. Powder EPR spectra reveal at least three different Mn(II) signals: two sextets, overlapping in all samples containing Mn as trace element, and a single line, present only in the more concentrated samples. While the latter have been attributed to an inhomogeneous Mn distribution, due to an enhanced Mn-Mn superexchange interaction, the difference between the two sextets, observed by means of EEPR investigations in a synthetic sphalerite (Di Benedetto et al., 2002), appears unrelated to the Mn concentration and may be attributed to small differences in the local coordination of Mn(II) ions. This, in turn, may be explained by the segregation of small amounts of Mn into polytypic domains, features which

  8. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation

  9. Application of EPR spectroscopy to examine free radicals evolution during storage of the thermally sterilized Ungentum ophthalmicum.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    2016-06-24

    Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.

  10. The design and integration of retinal CAD-SR to diabetes patient ePR system

    NASA Astrophysics Data System (ADS)

    Wu, Huiqun; Wei, Yufang; Liu, Brent J.; Shang, Yujuan; Shi, Lili; Jiang, Kui; Dong, Jiancheng

    2017-03-01

    Diabetic retinopathy (DR) is one of the serious complications of diabetes that could lead to blindness. Digital fundus camera is often used to detect retinal changes but the diagnosis relies too much on ophthalmologist's experience. Based on our previously developed algorithms for quantifying retinal vessels and lesions, we developed a computer aided detection-structured report (CAD-SR) template and implemented it into picture archiving and communication system (PACS). Furthermore, we mapped our CAD-SR into HL7 CDA to integrate CAD findings into diabetes patient electronic patient record (ePR) system. Such integration could provide more quantitative features from fundus image into ePR system, which is valuable for further data mining researches.

  11. Brine saturation technique for extraction of light filth from rubbed, ground, and whole sage: collaborative study.

    PubMed

    Freeman, C C

    1985-01-01

    A new approach to the isolation of light filth from the 3 commercial forms of sage was studied collaboratively. It incorporates a simple isopropanol defatting, followed by saturation of the product with brine by alternately heating and cooling, and subsequent trapping of filth from tap water with olive oil. This method circumvents the use of hazardous, expensive solvents and more time-consuming pretreatment procedures. Overall recoveries were 92.1% for rodent hair and 78.7% for insect fragments on clean, easy-to-read papers. An additional blending step was necessary to obtain satisfactory recovery of rodent hair fragments from whole sage. The method has been adopted official first action for light filth in rubbed and ground sage only.

  12. EPR Oximetry for Investigation of Hyperbaric O2 Pre-treatment for Tumor Radiosensitization.

    PubMed

    Williams, Benjamin B; Hou, Huagang; Coombs, Rachel; Swartz, Harold M

    A number of studies have reported benefits associated with the application of hyperbaric oxygen treatment (HBO) delivered immediately prior to radiation therapy. While these studies provide evidence that pre-treatment with HBO may be beneficial, no measurements of intratumoral pO2 were carried out and they do not directly link the apparent benefits to decreased hypoxic fractions at the time of radiation therapy. While there is empirical evidence and some theoretical basis for HBO to enhance radiation therapy, without direct and repeated measurements of its effects on pO2, it is unlikely that the use of HBO can be understood and optimized for clinical applications. In vivo EPR oximetry is a technique uniquely capable of providing repeated direct measurements of pO2 through a non-invasive procedure in both animal models and human patients. In order to evaluate the ability of pretreatment with HBO to elevate tumor pO2, a novel small animal hyperbaric chamber system was constructed that allows simultaneous in vivo EPR oximetry. This chamber can be placed within the EPR magnet and is equipped with a variety of ports for multiplace gas delivery, thermoregulation, delivery of anesthesia, physiologic monitoring, and EPR detection. Initial measurements were performed in a subcutaneous RIF-1 tumor model in C3H/HeJ mice. The mean baseline pO2 value was 6.0 ± 1.2 mmHg (N = 7) and responses to two atmospheres absolute pressure HBO varied considerably across subjects, within tumors, and over time. When an increase in pO2 was observed, the effect was transient in all but one case, with durations lasting from 5 min to over 20 min, and returned to baseline levels during HBO administration. These results indicate that without direct measurements of pO2 in the tissue of interest, it is likely to be difficult to know the effects of HBO on actual tissue pO2.

  13. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    NASA Astrophysics Data System (ADS)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  14. Volcanic Eruptions of the EPR and Ridge Axis Segmentation: An Interdisciplinary View

    NASA Astrophysics Data System (ADS)

    White, S.; Soule, S. A.; Tolstoy, M.; Waldhauser, F.; Rubin, K.

    2008-12-01

    The eruption of the EPR in 2005-06 provides an ideal window into the relationship between fine-scale segmentation of the ridge axis and individual eruptive episodes. Lava flow mapping of the eruption by visual and acoustic images, precise dates on multiple eruptive units, stress information from seismicity, long-term records of hydrothermal activity, and well known segment boundaries illustrate the relationships between eruptions and segmentation of mid-ocean ridges. Lava flows emerged from several sections of the axial summit trough (AST) during the eruption, presumably from en echelon fissures between 9 45'N and 9 57'N. Each en echelon fissure is a 4th order segment, and the overall area matches the 3rd Order segment between ~9 45'N and ~9 58'N. Within the eruption, the primary eruptive fissure jumped east by 600 m at 9 53'N, and ran along an inward facing fault scarp, although limited lava effusion also extended northward along the axial fissure. A zone of high seismicity connects the normal fault bounding the eastern fissure eruption with the main locus of eruption on the ridge axis to the south, suggesting that the offset eruption may have occurred in response to stress buildup on this fault. Radiometric ages indicate that the entire along-axis extent of the eruptive fissures activated initially, but that volcanic activity focused to a single fourth-order segment within 1-3 months. Previously indentified breaks in the AST and its overall outline were largely unchanged by the eruption. These observations support the hypothesis that fourth-order segments are offsets controlled by the mechanics of dike emplacement, whereas third-order segments represent discrete volcanic systems. Dike segmentation may be controlled by variations in underlying ridge structure or the magma reservoir. Hydrothermal systems disrupted as far south as 9 37'N may be responding to cracking due to stress interaction or share a common deeper magmatic source. Comparisons between the 1991 EPR

  15. Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Dubovsky, S. V.

    2016-07-01

    Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.

  16. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  17. Phase transitions and proton ordering in hemimorphite: new insights from single-crystal EPR experiments and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mao, Mao; Li, Zucheng; Pan, Yuanming

    2013-02-01

    Single-crystal electron paramagnetic resonance spectra of gamma-ray-irradiated hemimorphite (Mapimi, Durango, Mexico) after storage at room temperature for 3 months, measured from 4 to 275 K, reveal a hydroperoxy radical HO2 derived from the water molecule in the channel. The EPR spectra of the HO2 radical confirm that hemimorphite undergoes two reversible phase transitions at ~98 and ~21 K and allow determinations of its spin Hamiltonian parameters, including superhyperfine coupling constants of two more-distant protons from the neighboring hydroxyl groups, at 110, 85, 40 and 7 K. These EPR results show that the HO2 radical changes in site symmetry from monoclinic to triclinic related to the ordering and rotation of its precursor water molecule in the channel at <98 K. The monoclinic structure of hemimorphite with completely ordered O-H systems at low temperature has been evaluated by both the EPR spectra of the HO2 radical at <21 K and periodic density functional theory calculations.

  18. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  19. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy

    NASA Astrophysics Data System (ADS)

    Richert, Sabine; Tait, Claudia E.; Timmel, Christiane R.

    2017-07-01

    Photoexcited triplet states play a crucial role in photochemical mechanisms: long known to be of paramount importance in the study of photosynthetic reaction centres, they have more recently also been shown to play a major role in a number of applications in the field of molecular electronics. Their characterisation is crucial for an improved understanding of these processes with a particular focus on the determination of the spatial distribution of the triplet state wavefunction providing information on charge and energy transfer efficiencies. Currently, active research in this field is mostly focussed on the investigation of materials for organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). As the properties of triplet states and their spatial extent are known to have a major impact on device performance, a detailed understanding of the factors governing triplet state delocalisation is at the basis of the further development and improvement of these devices. Electron Paramagnetic Resonance (EPR) has proven a valuable tool in the study of triplet state properties and both experimental methods as well as data analysis and interpretation techniques have continuously improved over the last few decades. In this review, we discuss the theoretical and practical aspects of the investigation of triplet states and triplet state delocalisation by transient continuous wave and pulse EPR and highlight the advantages and limitations of the presently available techniques and the current trends in the field. Application of EPR in the study of triplet state delocalisation is illustrated on the example of linear multi-porphyrin chains designed as molecular wires.

  20. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  1. Introducing the electronic patient record (EPR) in a hospital setting: boundary work and shifting constructions of professional identities.

    PubMed

    Håland, Erna

    2012-06-01

    Today's healthcare sector is being transformed by several ongoing processes, among them the introduction of new technologies, new financial models and new ways of organising work. The introduction of the electronic patient record (EPR) is representative and part of these extensive changes. Based on interviews with health personnel and office staff in a regional hospital in Norway, and with health administrators and information technology service-centre staff in the region, the article examines how the introduction of the EPR, as experienced by the participants, affects the work practices and boundaries between various professional groups in the healthcare system and discusses the implications this has for the understanding of medical practice. The article shows how the EPR has become part of the professionals' boundary work; expressing shifting constructions of professional identities. © 2011 The Author. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  2. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  3. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  4. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  5. Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.

    PubMed

    Chappell, James M; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

  6. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com; Sivaramaiah, G.; Rao, J.L.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) andmore » photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.« less

  7. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.

    PubMed

    Hou, Huagang; Khan, Nadeem; Gohain, Sangeeta; Kuppusamy, M Lakshmi; Kuppusamy, Periannan

    2018-03-16

    Tissue oxygenation is a critical parameter in various pathophysiological situations including cardiovascular disease and cancer. Hypoxia can significantly influence the prognosis of solid malignancies and the efficacy of their treatment by radiation or chemotherapy. Electron paramagnetic resonance (EPR) oximetry is a reliable method for repeatedly assessing and monitoring oxygen levels in tissues. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) has been developed as a probe for biological EPR oximetry, especially for clinical use. However, clinical applicability of LiNc-BuO crystals is hampered by potential limitations associated with biocompatibility, biodegradation, or migration of individual bare crystals in tissue. To overcome these limitations, we have embedded LiNc-BuO crystals in polydimethylsiloxane (PDMS), an oxygen-permeable biocompatible polymer and developed an implantable/retrievable form of chip, called OxyChip. The chip was optimized for maximum spin density (40% w/w of LiNc-BuO in PDMS) and fabricated in a form suitable for implantation using an 18-G syringe needle. In vitro evaluation of the OxyChip showed that it is robust and highly oxygen sensitive. The dependence of its EPR linewidth to oxygen was linear and highly reproducible. In vivo efficacy of the OxyChip was evaluated by implanting it in rat femoris muscle and following its response to tissue oxygenation for up to 12 months. The results revealed preservation of the integrity (size and shape) and calibration (oxygen sensitivity) of the OxyChip throughout the implantation period. Further, no inflammatory or adverse reaction around the implantation area was observed thereby establishing its biocompatibility and safety. Overall, the results demonstrated that the newly-fabricated high-sensitive OxyChip is capable of providing long-term measurements of oxygen concentration in a reliable and repeated manner under clinical conditions.

  8. Family-focused practice within a recovery framework: practitioners' qualitative perspectives.

    PubMed

    Ward, B; Reupert, A; McCormick, F; Waller, S; Kidd, S

    2017-03-24

    Family-focused practice (FFP) is an effective approach to supporting individuals with mental illness. 'Recovery' is also central to contemporary mental health care. However, there is a dearth of evidence about how the two concepts are related and subsequently implemented in practice. The aim of this study was to explore practitioners' understandings and practices of FFP within a recovery framework. Purposive/snowball sampling was used to recruit and conduct qualitative interviews with 11 mental health practitioners in rural Australia. Concurrent sampling and data collection were informed by thematic analysis and continued until data saturation was reached. Participants found it difficult to articulate their understandings of FFP within a recovery framework. Nonetheless they were able to describe practices that embodied family-focused recovery. Barriers to such practices included medical models of care, where there are often a shortage of skilled staff and high demands for care. Stigma (self and from others) and confidentiality were also identified as barriers to involving family members in recovery focused care. Family-focused recovery care is a priority in many high-income countries. A family-focused recovery framework is needed to assist service planners, practitioners, family members and those with mental health needs and ensure such care is embedded within practice guidelines.

  9. In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry.

    PubMed

    Diepart, Caroline; Magat, Julie; Jordan, Bénédicte F; Gallez, Bernard

    2011-06-01

    Recently, we have developed a new electron paramagnetic resonance (EPR) protocol in order to estimate tissue oxygen consumption in vivo. Because it is crucial to probe the heterogeneity of response in tumors, the aim of this study was to apply our protocol, together with (19)F MRI relaxometry, to the mapping of the oxygen consumption in tumors. The protocol includes the continuous measurement of tumor po(2) during the following respiratory challenge: (i) basal values during air breathing; (ii) increasing po(2) values during carbogen breathing until saturation of tissue with oxygen; (iii) switching back to air breathing. We have demonstrated previously using EPR oximetry that the kinetics of return to the basal value after oxygen saturation are mainly governed by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with L-thyroxine) and control mice, as hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor cells. Our recently developed snapshot inversion recovery MRI fluorocarbon oximetry technique allowed the po(2) return kinetics to be measured with a high temporal resolution. The kinetic constants (i.e. oxygen consumption rates) were higher for tumors from hyperthyroid mice than from control mice, data that are consistent with our previous EPR study. The corresponding histograms of the (19)F MRI data showed that the kinetic constants displayed a shift to the right for the hyperthyroid group, indicating a higher oxygen consumption in these tumors. The color maps showed a large heterogeneity in terms of oxygen consumption rate within a tumor. In conclusion, (19)F MRI relaxometry allows the noninvasive mapping of the oxygen consumption in tumors. The ability to assess the heterogeneity of tumor response is critical in order to identify potential tumor regions that might be resistant to treatment and therefore produce a poor response to therapy. Copyright © 2010 John Wiley & Sons

  10. Effect of ferroelastic domain pattern changes on the EPR spectra in TDM

    NASA Astrophysics Data System (ADS)

    Zapart, W.; Zapart, M. B.

    2011-09-01

    This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.

  11. New Quantum Key Distribution Scheme Based on Random Hybrid Quantum Channel with EPR Pairs and GHZ States

    NASA Astrophysics Data System (ADS)

    Yan, Xing-Yu; Gong, Li-Hua; Chen, Hua-Ying; Zhou, Nan-Run

    2018-05-01

    A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.

  12. The impact of fluid topology on residual saturations - A pore-network model study

    NASA Astrophysics Data System (ADS)

    Doster, F.; Kallel, W.; van Dijke, R.

    2014-12-01

    In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same

  13. Educational Process Reflection (EPR): An Evaluation of a Model for Professional Development Concerning Social Interaction and Educational Climate in the Swedish Preschool

    ERIC Educational Resources Information Center

    Bygdeson-Larsson, Kerstin

    2006-01-01

    Educational process reflection (EPR) is a professional development model aimed at supporting preschool teachers reflecting on and changing their practice. A particular focus is on interaction between practitioners and children, and between the children themselves. In this article, I first describe the theoretical frameworks that helped shape EPR,…

  14. A loop resonator for slice-selective in vivo EPR imaging in rats

    PubMed Central

    Hirata, Hiroshi; He, Guanglong; Deng, Yuanmu; Salikhov, Ildar; Petryakov, Sergey; Zweier, Jay L.

    2008-01-01

    A loop resonator was developed for 300-MHz continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy and imaging in live rats. A single-turn loop (55 mm in diameter) was used to provide sufficient space for the rat body. Efficiency for generating a radiofrequency magnetic field of 38 µT/W1/2 was achieved at the center of the loop. For the resonator itself, an unloaded quality factor of 430 was obtained. When a 350 g rat was placed in the resonator at the level of the lower abdomen, the quality factor decreased to 18. The sensitive volume in the loop was visualized with a bottle filled with an aqueous solution of the nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-CP). The resonator was shown to enable EPR imaging in live rats. Imaging was performed for 3-CP that had been infused intravenously into the rat and its distribution was visualized within the lower abdomen. PMID:18006343

  15. Single crystal X- and Q-band EPR spectroscopy of a binuclear Mn(2)(III,IV) complex relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K

    2004-06-23

    The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A

  16. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  17. The role of water in the recovery of microcrack damage, permeability and seismic wave speeds in limestone

    NASA Astrophysics Data System (ADS)

    Brantut, N.

    2015-12-01

    Limestone samples were deformed up to 5% inelastic axial strain at an effective confining pressure P_{eff}=50 MPa, in the cataclastic flow regime, and subsequently maintained under constant static stress conditions for extended periods of time while elastic wave speeds and permeability were continously monitored. During deformation, both seismic wave speeds and permeability decrease with increasing strain, due to the growth of sub-vertical microcracks and inelastic porosity reduction. During the static hold period under water-satured conditions, the seismic wave speeds recovered gradually, typically by around 5% (relative to their initial value) after two days, while permeability remained constant. The recovery in wave speed increases with increasing confining pressure, but decreases with increasing applied differential stress. The recovery is markedly lower when the samples are saturated with an inert fluid as opposed to water. The evolution in wave speed is interpreted quantitatively in terms of microcrack density, which shows that the post-deformation recovery is associated with an decrease in effective microcrack length, typically of the order to 10% after two days. The proposed mechanism for the observed damage recovery is microcrack closure due to a combination of backsliding on wing cracks driven by time-dependent friction and closure due to pressure-solution at contacts between propping particles or asperities and microcrack walls. The recovery rates observed in the experiments, and the proposed underlying mechanisms, are compatible with seismological observations of seismic wave speed recovery along faults following earthquakes.

  18. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    PubMed

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  19. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    PubMed

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  20. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head

    NASA Astrophysics Data System (ADS)

    Sato-Akaba, Hideo; Fujii, Hirotada; Hirata, Hiroshi

    2008-08-01

    This article describes a method for reducing the acquisition time in three-dimensional (3D) continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To visualize nitroxyl spin probes, which have a short lifetime in living organisms, the acquisition time for a data set of spectral projections should be shorter than the lifetime of the spin probes. To decrease the total time required for data acquisition, the duration of magnetic field scanning was reduced to 0.5 s. Moreover, the number of projections was decreased by using the concept of a uniform distribution. To demonstrate this faster data acquisition, two kinds of nitroxyl radicals with different decay rates were measured in mice. 3D EPR imaging of 4-hydroxy-2,2,6,6-tetramethylpiperidine-d 17-1- 15N-1-oxyl in mouse head was successfully carried out. 3D EPR imaging of nitroxyl spin probes with a half-life of a few minutes was achieved for the first time in live animals.

  1. Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect.

    PubMed

    Fang, Jun; Long, Liao; Maeda, Hiroshi

    2016-01-01

    The use of bacteria, about 1 μm in size, is now becoming an attractive strategy for cancer treatment. Solid tumors exhibit the enhanced permeability and retention (EPR) effect for biocompatible macromolecules such as polymer-conjugated anticancer agents, liposomes, and micelles. This phenomenon permits tumor-selective delivery of such macromolecules. We report here that bacteria injected intravenously evidenced a property similar to that can of these macromolecules. Bacteria that can accumulate selectively in tumors may therefore be used in cancer treatment.Facultative or anaerobic bacteria will grow even under the hypoxic conditions present in solid tumors. We found earlier that nitric oxide (NO) was among the most important factors that facilitated the EPR effect via vasodilatation, opening of endothelial cell junction gaps, and increasing the blood flow of hypovascular tumors. Here, we describe the augmentation of the EPR effect by means of nitroglycerin (NG), a commonly used NO donor, using various macromolecular agents in different tumor models. More importantly, we report that NG significantly enhanced the delivery of Lactobacillus casei to tumors after intravenous injection of the bacteria, more than a tenfold increase in bacterial accumulation in tumors after NG treatment. This finding suggests that NG has a potential advantage to enhance bacterial therapy of cancer, and further investigations of this possibility are warranted.

  2. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    PubMed Central

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  3. Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters

    NASA Astrophysics Data System (ADS)

    Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.

    2001-05-01

    Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).

  4. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    PubMed

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2  = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  5. Analysis of Two-Player Quantum Games in an EPR Setting Using Clifford's Geometric Algebra

    PubMed Central

    Chappell, James M.; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist. PMID:22279525

  6. Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.

    2018-05-01

    Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.

  7. Direct-detected rapid-scan EPR at 250 MHz

    NASA Astrophysics Data System (ADS)

    Stoner, James W.; Szymanski, Dennis; Eaton, Sandra S.; Quine, Richard W.; Rinard, George A.; Eaton, Gareth R.

    2004-09-01

    EPR spectra at 250 MHz for a single crystal of lithium phthalocyanine (LiPc) in the absence of oxygen and for a deoxygenated aqueous solution of a Nycomed triarylmethyl (trityl-CD 3) radical were obtained at scan rates between 1.3 × 10 3 and 3.4 × 10 5 G/s. These scan rates are rapid relative to the reciprocals of the electron spin relaxation times (LiPc: T1=3.5 μs and T2=2.5 μs; trityl: T1=12 μs and T2=11.5 μs) and cause characteristic oscillations in the direct-detected absorption spectra. For a given scan rate, shorter values of T2 and increased inhomogeneous broadening cause less deep oscillations that damp out more quickly than for longer T2. There is excellent agreement between experimental and calculated lineshapes and signal amplitudes as a function of radiofrequency magnetic field ( B1) and scan rate. When B1 is adjusted for maximum signal amplitude as a function of scan rate, signal intensity for constant number of scans is enhanced by up to a factor of three relative to slow scans. The number of scans that can be averaged in a defined period of time is proportional to the scan rate, which further enhances signal amplitude per unit time. Longer relaxation times cause the maximum signal intensity to occur at slower scan rates. These experiments provide the first systematic characterization of direct-detected rapid-scan EPR signals.

  8. T1 mapping using saturation recovery single-shot acquisition at 3-tesla magnetic resonance imaging in hypertrophic cardiomyopathy: comparison to late gadolinium enhancement.

    PubMed

    Ogawa, Ryo; Kido, Tomoyuki; Nakamura, Masashi; Kido, Teruhito; Kurata, Akira; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Miyagawa, Masao; Mochizuki, Teruhito

    2017-03-01

    We evaluated the T1 values of segments and slices and the reproducibility in healthy controls, using saturation recovery single-shot acquisition (SASHA) at 3T magnetic resonance imaging. Moreover, we examined the difference in T1 values between hypertrophic cardiomyopathy (HCM) and healthy controls, and compared those with late gadolinium enhancement (LGE). Twenty-one HCM patients and 10 healthy controls underwent T1 mapping before and after contrast administration. T1 values were measured in 12 segments. Native T1 values were significantly longer in HCM than in healthy controls [1373 ms (1312-1452 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Even in HCM segments without LGE, native T1 values were significantly longer than in healthy control segments [1366 ms (1300-1439 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Using a cutoff value of 1327 ms for septal native T1 values, we differentiated between HCM and healthy controls with 95% sensitivity, 90% specificity, 94% accuracy, and an area under the curve of 0.95. Native T1 values using a SASHA at 3T could differentiate HCM from healthy controls. Moreover, native T1 values have the potential to detect abnormal myocardium that cannot be identified adequately by LGE in HCM.

  9. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  10. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  11. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery.

    PubMed

    Park, Jinho; Kadasala, Naveen Reddy; Abouelmagd, Sara A; Castanares, Mark A; Collins, David S; Wei, Alexander; Yeo, Yoon

    2016-09-01

    Nanoparticle (NP)-based approaches to cancer drug delivery are challenged by the heterogeneity of the enhanced permeability and retention (EPR) effect in tumors and the premature attrition of payload from drug carriers during circulation. Here we show that such challenges can be overcome by a magnetophoretic approach to accelerate NP delivery to tumors. Payload-bearing poly(lactic-co-glycolic acid) NPs were converted into polymer-iron-oxide nanocomposites (PINCs) by attaching colloidal Fe3O4 onto the surface, via a simple surface modification method using dopamine polymerization. PINCs formed stable dispersions in serum-supplemented medium and responded quickly to magnetic field gradients above 1 kG/cm. Under the field gradients, PINCs were rapidly transported across physical barriers and into cells and captured under flow conditions similar to those encountered in postcapillary venules, increasing the local concentration by nearly three orders of magnitude. In vivo magnetophoretic delivery enabled PINCs to accumulate in poorly vascularized subcutaneous SKOV3 xenografts that did not support the EPR effect. In vivo magnetic resonance imaging, ex vivo fluorescence imaging, and tissue histology all confirmed that the uptake of PINCs was higher in tumors exposed to magnetic field gradients, relative to negative controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Broken bridges: a counter-example of the ER=EPR conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Wu, Chih-Hung; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: b02202007@ntu.edu.tw, E-mail: innocent.yeom@gmail.com

    In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, these two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the changemore » of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.« less

  13. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    NASA Astrophysics Data System (ADS)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  14. Evidence on the Formation of Singlet Oxygen in the Donor Side Photoinhibition of Photosystem II: EPR Spin-Trapping Study

    PubMed Central

    Yadav, Deepak Kumar; Pospíšil, Pavel

    2012-01-01

    When photosystem II (PSII) is exposed to excess light, singlet oxygen (1O2) formed by the interaction of molecular oxygen with triplet chlorophyll. Triplet chlorophyll is formed by the charge recombination of triplet radical pair 3[P680•+Pheo•−] in the acceptor-side photoinhibition of PSII. Here, we provide evidence on the formation of 1O2 in the donor side photoinhibition of PSII. Light-induced 1O2 production in Tris-treated PSII membranes was studied by electron paramagnetic resonance (EPR) spin-trapping spectroscopy, as monitored by TEMPONE EPR signal. Light-induced formation of carbon-centered radicals (R•) was observed by POBN-R adduct EPR signal. Increased oxidation of organic molecules at high pH enhanced the formation of TEMPONE and POBN-R adduct EPR signals in Tris-treated PSII membranes. Interestingly, the scavenging of R• by propyl gallate significantly suppressed 1O2. Based on our results, it is concluded that 1O2 formation correlates with R• formation on the donor side of PSII due to oxidation of organic molecules (lipids and proteins) by long-lived P680•+/TyrZ•. It is proposed here that the Russell mechanism for the recombination of two peroxyl radicals formed by the interaction of R• with molecular oxygen is a plausible mechanism for 1O2 formation in the donor side photoinhibition of PSII. PMID:23049883

  15. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Kotecha, Mrignayani; Halpern, Howard J.

    2017-07-01

    The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.

  16. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  17. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    PubMed

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  18. A nursing-specific model of EPR documentation: organizational and professional requirements.

    PubMed

    von Krogh, Gunn; Nåden, Dagfinn

    2008-01-01

    To present the Norwegian documentation KPO model (quality assurance, problem solving, and caring). To present the requirements and multiple electronic patient record (EPR) functions the model is designed to address. The model's professional substance, a conceptual framework for nursing practice is developed by examining, reorganizing, and completing existing frameworks. The model's methodology, an information management system, is developed using an expert group. Both model elements were clinically tested over a period of 1 year. The model is designed for nursing documentation in step with statutory, organizational, and professional requirements. Complete documentation is arranged for by incorporating the Nursing Minimum Data Set. A systematic and comprehensive documentation is arranged for by establishing categories as provided in the model's framework domains. Consistent documentation is arranged for by incorporating NANDA-I Nursing Diagnoses, Nursing Intervention Classification, and Nursing Outcome Classification. The model can be used as a tool in cooperation with vendors to ensure the interests of the nursing profession is met when developing EPR solutions in healthcare. The model can provide clinicians with a framework for documentation in step with legal and organizational requirements and at the same time retain the ability to record all aspects of clinical nursing.

  19. Differing Oxygen Concentrations and the Effect on Post-Hypoxia Recovery

    DTIC Science & Technology

    Given the consistent rise in hypoxia-like in-flight emergencies and the negative effects of hypoxia on human performance , it is important to garner a...tracking task and regional oxygen saturation of the frontal lobes of the brain during a hypoxic event and to document differences in performance recovery...measures analysis of variance revealed no significant differences between the speeds at which participants recovered from hypoxic exposure, regardless of

  20. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  1. Recognising Workplace Learning: The Emerging Practices of e-RPL and e-PR

    ERIC Educational Resources Information Center

    Cameron, Roslyn

    2012-01-01

    Purpose: The use of e-portfolios in recognition of prior learning (RPL) processes in workplace and professional practice contexts has attracted little attention in the literature due to its emergent nature. This study seeks to explore the growing incidence of e-portfolio-based RPL (e-RPL) and professional recognition (e-PR) processes in Australia…

  2. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    PubMed

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  3. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  4. Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma (EPR-CAT)

    DTIC Science & Technology

    2014-12-01

    SUBJECT TERMS Trauma, hemorrhagic shock, cardiac arrest, cardiopulmonary resuscitation, hypothermia 16. SECURITY CLASSIFICATION OF: 17...EPR) was developed to rapidly preserve the organism during ischemia, using hypothermia , drugs, and fluids, to “buy time” for transport and...resuscitative surgery. The purpose of this study is to test the feasibility of rapidly inducing profound hypothermia (< 10oC) with an aortic flush in trauma

  5. IN-VIVO RADIATION DOSIMETRY USING PORTABLE L BAND EPR: ON-SITE MEASUREMENT OF VOLUNTEERS IN FUKUSHIMA PREFECTURE, JAPAN

    PubMed Central

    Miyake, Minoru; Nakai, Yasuhiro; Yamaguchi, Ichiro; Hirata, Hiroshi; Kunugita, Naoki; Williams, Benjamin B.; Swartz, Harold M.

    2016-01-01

    The aim of this study was to make direct measurements of the possible radiation-induced EPR signals in the teeth of volunteers who were residents in Fukushima within 80 km distance from the Fukushima Nuclear Power plant at the time of the disaster, and continued to live there for at least 3 month after the disaster. Thirty four volunteers were enrolled in this study. These measurements were made using a portable L-band EPR spectrometer, which was originally developed in the EPR Center at Dartmouth. All measurements were performed using surface loop resonators that have been specifically designed for the upper incisor teeth. Potentially these signals include not only radiation-induced signals induced by the incident but also background signals including those from prior radiation exposure from the environment and medical exposure. We demonstrated that it is feasible to transport the dosimeter to the measurement site and make valid measurements. The intensity of the signals that were obtained was not significantly above those seen in volunteers who had not had potential radiation exposures at Fukushima. PMID:27522046

  6. A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal

    NASA Astrophysics Data System (ADS)

    Liu, Honggang; Zheng, Wenchen

    2018-01-01

    Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.

  7. High-pressure EPR spectroscopy studies of the E. coli lipopolysaccharide transport proteins LptA and LptC.

    PubMed

    Schultz, Kathryn M; Klug, Candice S

    2017-12-01

    The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli , LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

  8. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR.

    PubMed

    Misra, S K; Andronenko, S I; Tipikin, D; Freed, J H; Somani, V; Prakash, Om

    2016-03-01

    Detailed EPR investigations on as-grown and annealed TiO 2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120-300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti 3+ , O - , adsorbed oxygen (O 2 - ) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O 2 - ) and the Fe 3+ ions in both Ti 4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O - and O 2 - ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn 2+ and Mn 4+ ions in anatase.

  9. Saturated fat, carbohydrate, and cardiovascular disease.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-03-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.

  10. Benefits of Oxygen Saturation Targeting Trials: Oximeter Calibration Software Revision and Infant Saturations.

    PubMed

    Whyte, Robin K; Nelson, Harvey; Roberts, Robin S; Schmidt, Barbara

    2017-03-01

    It has been reported in the 3 Benefits of Oxygen Saturation Targeting (BOOST-II) trials that changes in oximeter calibration software resulted in clearer separation between the oxygen saturations in the two trial target groups. A revised analysis of the published BOOST-II data does not support this conclusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. N-Player Quantum Games in an EPR Setting

    PubMed Central

    Chappell, James M.; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The -player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR) experiment, as the underlying physical setup. In this setup, a player’s strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players’ strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for -qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the players’ payoffs and mixed Nash equilibrium are determined. Players’ payoff matrices are then defined using linear functions so that common two-player games can be easily extended to the -player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners’ Dilemma game for general . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors and multivectors, based on Clifford’s geometric algebra (GA), it is shown how the N-player case becomes tractable. The new mathematical approach presented here has wide implications in the areas of quantum information and quantum complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions. PMID:22606258

  12. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  13. Misalignment of disposable pulse oximeter probes results in false saturation readings that influence anesthetic management.

    PubMed

    Guan, Zhonghui; Baker, Keith; Sandberg, Warren S

    2009-11-01

    We report a small case series in which misaligned disposable pulse oximeter sensors gave falsely low saturation readings. In each instance, the sensor performed well during preinduction oxygen administration and the early part of the case, most notably by producing a plethysmographic trace rated as high quality by the oximeter software. The reported pulse oximeter oxygen saturation eventually decreased to concerning levels in each instance, but the anesthesiologists, relying on the reported high-quality signal, initially sought other causes for apparent hypoxia. They undertook maneuvers and diagnostic procedures later deemed unnecessary. When the malpositioned sensors were discovered and repositioned, the apparent hypoxia was quickly relieved in each case. We then undertook a survey of disposable oximeter sensors as patients entered the recovery room, and discovered malposition of more than 1 cm in approximately 20% of all sensors, without apparent consequence. We conclude that the technology is quite robust, but that the diagnosis of apparent hypoxia should include a quick check of oximeter position early on.

  14. EPR and Magnetic Susceptibility Studies of Manganese Ions in Bi2O3·CdO Glass Matrix

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Todor, Ioana; Ciceo-Lucacel, Raluca; Maniu, Dana

    Glasses of the xMnO·(100-x)[Bi2O3·CdO] system with 0EPR and magnetic susceptibility measurements. The EPR investigations indicated the compositional domains favorable to isolated manganese ions or to those magnetically clustered. The magnetic measurements evidenced the presence of both Mn2+ and Mn3+ ions, with their relative content depending on the MnO concentration. The prevalence of the dipolar and respectively the superexchange interactions between the manganese ions can be correlated with the relative content of the Mn2+ and Mn3+ species.

  15. Studies on the effects of gamma radiation on 6-aminopenicillanic acid and its derivatives by the EPR method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziegielewski, J.; Jezowska-Trzebiatowska, B.; Kozlowski, H.

    Commercial samples of 6-aminopenicillanic acid (6-APA), potassium benzyl- penicillin; procaine benzyl-penicillin, procaine hydrochlorides and sodium 3-(o- chlorophenyl)-5-methyl-4-isoxasol penicillin salt were irradiated with 0.5 to 40 Mrad and examined by the EPR method within the temperature range 100 to 300 deg K. No influence of the irradiation dose on powder EPR spectra structure has been stated, except for benzyl-penicillin procaine. In irradiated samples of antibiotics the presence of radicals with unpaired electrons on sulfur atoms and carbon atoms abuttmg on the thioether group has been stated. (auth)

  16. Bridging the Gap Between the Social and the Technical: The Enrolment of Socio-Technical Information Architects to Cope with the Two-Level Model of EPR Systems.

    PubMed

    Pedersen, Rune

    2017-01-01

    This is a project proposal derived from an urge to re-define the governance of ICT in healthcare towards regional and national standardization of the patient pathways. The focus is on a two-levelled approach for governing EPR systems where the clinicians' model structured variables and patient pathways. The overall goal is a patient centric EPR portfolio. This paper define and enlighten the need for establishing the socio- technical architect role necessary to obtain the capabilities of a modern structured EPR system. Clinicians are not capable to moderate between the technical and the clinical.

  17. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    PubMed Central

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  18. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    NASA Astrophysics Data System (ADS)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2012-03-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.

  19. Experimental and theoretical investigations on the EPR parameters and molecular orbital bonding coefficients of VO2+ ions in BTTB glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Hameed, Abdul; Vijaya Kumar, R.; Narasimha Chary, M.; Shareefuddin, Md.

    2018-06-01

    The effect of the spin probe VO2+ in 15BaO-15TeO2-10TiO2-(60-x) B2O3-xV2O5 (x = 0.2, 0.4, 0.6, 0.8 mol %) glasses has been studied by employing Electron Paramagnetic Resonance (EPR) and optical absorption spectroscopic techniques. The observed EPR spectra of VO2+ ions were attributed on the basis of well-known spin-Hamiltonian of C4V symmetry. The simulated EPR spectra for VO2+ ions in the present glass system were drawn using Easy spin software. Both the experimental and simulated spectra were found to be in good agreement with each other. The optical absorption spectra exhibited three d-d transition bands due to crystal and tetragonal fields of VO2+ ions. These bands were assigned to 2B2g→ 2Eg, 2B2g→ 2B1g and 2B2g→ 2A1g transitions. The crystal field parameters Dq, Ds and Dt values are calculated. From the EPR and optical data, the molecular bonding coefficients were evaluated. Employing the higher order perturbation formulae of the g factors for 3d1 ion under tetragonally compressed octahedral fields, theoretical studies were carried out. The spin-Hamiltonian parameters ? and ? obtained from both the experimental and theoretical methods were in good agreement with each other.

  20. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.

  2. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  3. Analysis of the heavy oil production technology effectiveness using natural thermal convection with heat agent recirculation method in reservoirs with varying initial water saturation

    NASA Astrophysics Data System (ADS)

    Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.

    2017-01-01

    The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.

  4. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  5. EPR investigation of Ti2+ in SrCl2 single crystals.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation of 'double quantum' transitions which made it possible to determine the charge state of Ti as 2+ is reported. The EPR spectrum observed at 1.2 K is presented in a graph. The first derivative of the absorption is shown vs the magnetic field. The hyperfine patterns for the Ti-47 and Ti-49 isotopes are identified. Spin-Hamiltonian parameters for Ti(2+) in various cubic hosts are listed.

  6. HyspIRI High-Temperature Saturation Study

    NASA Technical Reports Server (NTRS)

    Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.

    2011-01-01

    As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.

  7. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    PubMed Central

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  8. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.

    PubMed

    Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.

  9. Superhyperfine Structure of the EPR Spectra of Nd3+ Impurity Ions in Fluorite CaF2

    NASA Astrophysics Data System (ADS)

    Aminov, L. K.; Gafurov, M. R.; Kurkin, I. N.; Malkin, B. Z.; Rodionov, A. A.

    2018-05-01

    EPR spectra of a CaF2 single crystal that was grown from melt containing a small addition of NdF3 were studied. Signals corresponding to tetragonal centers of Nd3+ ions and cubic centers of Er3+ and Yb3+ ions were found. Superhyperfine structure (SHFS) in the spectra of the Nd3+ ions was observed for the first time in this crystal; parameters of the superhyperfine interaction of the Nd3+ ions with the nearest nine fluorine ions were determined. The dependence of the resolution of the Nd3+ EPR spectrum SHFS on the incident microwave power at the temperature of T ≈ 6 K was studied. Obtained results are discussed and compared with the literature data.

  10. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    DOE PAGES

    Lu, Qingquan; Zhang, Jian; Peng, Pan; ...

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less

  11. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR

    PubMed Central

    Misra, S.K.; Andronenko, S.I.; Tipikin, D.; Freed, J. H.; Somani, V.; Prakash, Om

    2016-01-01

    Detailed EPR investigations on as-grown and annealed TiO2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120–300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti3+, O−, adsorbed oxygen (O2−) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O2−) and the Fe3+ ions in both Ti4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O− and O2− ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn2+ and Mn4+ ions in anatase. PMID:27041794

  13. LTP saturation and spatial learning disruption: effects of task variables and saturation levels.

    PubMed

    Barnes, C A; Jung, M W; McNaughton, B L; Korol, D L; Andreasson, K; Worley, P F

    1994-10-01

    The prediction that "saturation" of LTP/LTE at hippocampal synapses should impair spatial learning was reinvestigated in the light of a more specific consideration of the theory of Hebbian associative networks, which predicts a nonlinear relationship between LTP "saturation" and memory impairment. This nonlinearity may explain the variable results of studies that have addressed the effects of LTP "saturation" on behavior. The extent of LTP "saturation" in fascia dentata produced by the standard chronic LTP stimulation protocol was assessed both electrophysiologically and through the use of an anatomical marker (activation of the immediate-early gene zif268). Both methods point to the conclusion that the standard protocols used to induce LTP do not "saturate" the process at any dorsoventral level, and leave the ventral half of the hippocampus virtually unaffected. LTP-inducing, bilateral perforant path stimulation led to a significant deficit in the reversal of a well-learned spatial response on the Barnes circular platform task as reported previously, yet in the same animals produced no deficit in learning the Morris water task (for which previous results have been conflicting). The behavioral deficit was not a consequence of any after-discharge in the hippocampal EEG. In contrast, administration of maximal electroconvulsive shock led to robust zif268 activation throughout the hippocampus, enhancement of synaptic responses, occlusion of LTP produced by discrete high-frequency stimulation, and spatial learning deficits in the water task. These data provide further support for the involvement of LTP-like synaptic enhancement in spatial learning.

  14. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    PubMed

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  16. Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy

    PubMed Central

    Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.

    2010-01-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667

  17. ANALYSIS OF EPR AND FISH STUDIES OF RADIATION DOSES IN PERSONS WHO LIVED IN THE UPPER REACHES OF THE TECHA RIVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth

  18. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    PubMed

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed

  19. Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR).

    PubMed

    Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J

    2010-01-13

    Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.

  20. Assessing species saturation: conceptual and methodological challenges.

    PubMed

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  1. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    PubMed Central

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  2. Response of Partially Saturated Non-cohesive Soils

    NASA Astrophysics Data System (ADS)

    Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata

    2017-12-01

    This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.

  3. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  4. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.

    PubMed

    Acharya, Sarbari; Sahoo, Sanjeeb K

    2011-03-18

    As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy. Such PLGA nanoparticles have also been used to develop proteins and peptides for nanomedicine, and nanovaccines, as well as a nanoparticle-based drug- and gene-delivery system for cancer therapy, and nanoantigens and growth factors. These drug-loaded nanoparticles extravasate through the tumour vasculature, delivering their payload into the cells by the enhanced permeability and retention (EPR) effect, thereby increasing their therapeutic effect. Ongoing research about drug-loaded nanoparticles and their delivery by the EPR effect to the tumour tissues has been elucidated in this review with clarity. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    PubMed

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016

  6. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  7. [Missile-Type Tumor-Targeting Polymer Drug, P-THP, Seeks Tumors via Three Different Steps Based on the EPR Effect].

    PubMed

    Maeda, Hiroshi; Fang, Jun; Ulbrich, Karel; Etrych, Tomáš; Nakamura, Hideaki

    2016-05-01

    The enhanced permeability and retention (EPR) effect, a tumor-targeting principle of nanomedicine, serves as a standard for tumor-targeted anticancer drug design. There are 3 key issues in ideal EPR-based antitumor drug design: i) stability in blood circulation; ii) tumor-selective accumulation (EPR effect) and efficient release of the active anticancer moiety in tumor tissues; and iii) the active uptake of the active drug into tumor cells. Using these principles, we developed N-(2- hydroxypropyl)methacrylamide (HPMA) copolymer-conjugated pirarubicin (P-THP), which uses hydrazone bond linkage; it was shown to exhibit prolonged circulation time, thereby resulting in good tumor-selective accumulation. More importantly, the hydrazone bond ensured selective and rapid release of the active drug, pirarubicin (THP), in acidic tumor environments. Further, compared to other anthracycline anticancer drugs (eg, doxorubicin), THP demonstrated more rapid intracellular uptake. Consequently, P-THP showed remarkable antitumor effect with minimal side effects. In a clinical pilot study of a stage IV prostate cancer patient with multiple metastases in the lung and bone, P-THP (50-75 mg administered once every 2-3 weeks) was shown to clear the metastatic nodules in the lung almost completely after 3 treatments where 50-70 mg THP equivalent each was administerd per 70 kg body wt, and bone metastasis disappeared after 6 months. There was no recurrence after 2 years. The patient also retained an excellent quality of life during the treatment without any apparent side effects. Thus, we propose the clinical development of P-THP as an EPR-based tumor-targeted anticancer drug.

  8. [In vitro and ex vivo EPR investigation of metabolic changes in blood under the action of radiotoxins obtained from irradiated potato tubers].

    PubMed

    Ibragimova, M I; Petukhov, V Iu; Zheglov, E P; Koniukhov, G V; Nizamov, R N

    2004-01-01

    The effect of radiotoxin (RT) obtained from y-irradiated potato tubes on blood of sheep and mice has been investigated by using in vitro and ex vivo EPR. In experiments in vitro, the action of different preparations (RT, extract from unirradiated potato tubers, 1%-HCl or 30%-hydrogen peroxide) on sheep blood has been compared. It has been established that RT is an effective oxidant (like 1%-HCl) of haem iron that leads to an increase of the methemoglobin concentration. The specific peculiarity of RT effect on blood in vitro is an appearance of two well-resolved lines from methemoglobin belonging, probably, to different paramagnetic centers. The signal from nonspecific complexes of Fe3+ has been also observed. Ex vivo EPR spectra markedly differ from these obtained in experiments in vitro. An additional line with g approximately 2.005 and width 6 G in 30 minutes after intraperitoneal RT injection in the lethal dose (0.2 ml of preparation containing of 2 mg RT) has been revealed. Subsequent intoxication of mice is accompanied by the appearance of the signal from nitrosyl complexes in EPR spectra. These differences in experimental results of in vitro and ex vivo EPR can be explained by launch of compensatory adaptive response of organism on the action of highly toxic preparation.

  9. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  10. Bioactivity characterization of 45S5 bioglass using TL, OSL and EPR: Comparison with the case of 58S sol-gel bioactive glass.

    PubMed

    Polymeris, G S; Giannoulatou, V; Kyriakidou, A; Sfampa, I K; Theodorou, G S; Şahiner, E; Meriç, N; Kitis, G; Paraskevopoulos, K M

    2017-01-01

    The current work exploits the effective application of thermoluminescence (TL), optically stimulated luminescence (OSL) and the possibility of applying Electron Paramagnetic Resonance (EPR) for the discrimination between different bioactive responses in the case of the 45S5 bioactive glass (SiO 2 45, Na 2 O 24.5, CaO 24.5, P 2 O 5 6 in wt%), which was synthesized through melting process. These techniques are suggested mainly due to their low spectroscopic detection thresholds. The original 45S5 in grain size range of 20-40μm was immersed in the Simulated Body Fluid (SBF) for various different immersion times ranging over one week. In this work the 110°C TL peak, a specific OSL component and the EPR signal at g=2.013 ascribed to oxygen hole center (OHC) are used due to their sensitivity to the different bioactive responses. For all luminescence and EPR components, the intensity plot versus immersion time yields sharp discontinuities, resulting in effective probes regarding the timescale for both the beginning as well as the end of the procedure of the crystalline HCAp formation respectively. On the contrary to the smooth decreasing pattern of both luminescence entities, the peak to peak amplitude of the EPR signal indicates an initial increase for the initial 16min of immersion, followed by a further decrease throughout the immersion time duration. The discontinuities monitored for both sensitivity of TL, OSL and EPR, in conjunction with the discontinuities monitored for the sensitization of TL and OSL, when plotted versus immersion time, provide an individual time scale for each one of the chemical reactions involved in the five steps of the aforementioned procedure. According to the authors' best knowledge, scarce characterization techniques could provide this time scale frame, while it is the first time that such an application of OSL and EPR is attempted. Finally, the bioactive response of the 45S5 bioglass was compared with that of the 58S sol-gel bioactive

  11. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    PubMed

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  12. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  13. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less

  14. Mapping Local Protein Electrostatics by EPR of pH-Sensitive Thiol-Specific Nitroxide† ¶

    PubMed Central

    Voinov, Maxim A.; Ruuge, Andres; Reznikov, Vladimir A.; Grigor’ev, Igor A.; Smirnov, Alex I.

    2013-01-01

    A first thiol-specific pH-sensitive nitroxide spin label of the imidazolidine series -methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL) - has been synthesized and characterized. X- (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. pKa value of protonatable tertiary amino group of the spin label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein - iso-1-cytochrome c from yeast Saccharomyces cerevisiae - giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, giso correlates linearly with Aiso but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the N–O group and on the excitation energy of the oxygen lone-pair orbital. PMID:18426227

  15. Caffeine accelerates recovery from general anesthesia

    PubMed Central

    Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.

    2013-01-01

    General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022

  16. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony R. Kovscek

    2003-04-01

    This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanismsmore » by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.« less

  17. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  18. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  19. Aerobic microbial enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to takemore » place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.« less

  20. - and Frequency-Domain Signatures of Velocity Changing Collisions in Sub-Doppler Saturation Spectra and Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor

    2017-06-01

    We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  1. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.

    PubMed

    Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G

    2014-09-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A DICOM-RT radiation oncology ePR with decision support utilizing a quantified knowledge base from historical data

    NASA Astrophysics Data System (ADS)

    Documet, Jorge R.; Liu, Brent; Le, Anh; Law, Maria

    2008-03-01

    During the last 2 years we have been working on developing a DICOM-RT (Radiation Therapy) ePR (Electronic Patient Record) with decision support that will allow physicists and radiation oncologists during their decision-making process. This ePR allows offline treatment dose calculations and plan evaluation, while at the same time it compares and quantifies treatment planning algorithms using DICOM-RT objects. The ePR framework permits the addition of visualization, processing, and analysis tools, which combined with the core functionality of reporting, importing and exporting of medical studies, creates a very powerful application that can improve the efficiency while planning cancer treatments. Usually a Radiation Oncology department will have disparate and complex data generated by the RT modalities as well as data scattered in RT Information/Management systems, Record & Verify systems, and Treatment Planning Systems (TPS) which can compromise the efficiency of the clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997 [1,2]. However, they are not broadly used yet by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our attempt is to show a proof-of-concept that a DICOM-RT ePR system can be developed as a foundation to perform medical imaging informatics research in developing decision-support tools and knowledge base for future data mining applications.

  3. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    PubMed

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.

  5. Effect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser

    PubMed Central

    Gumenyuk, R.; Melkumov, M. A.; Khopin, V. F.; Dianov, E. M.; Okhotnikov, O. G.

    2014-01-01

    Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity length by variation of the pump power and polarization. Pulse positioning within the ensemble depends on the saturation fluence and the relatively fast recovery dynamics of bismuth fiber. PMID:25391808

  6. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  7. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    PubMed Central

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  8. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE PAGES

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...

    2017-09-13

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  9. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

    PubMed

    Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G

    2017-10-19

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.

  10. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  11. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  12. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  13. Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.

    PubMed

    Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C

    2010-12-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Evaluation of external and internal irradiation on uranium mining enterprise staff by tooth enamel EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhumadilov, Kassym; Ivannikov, Alexander; Khailov, Artem; Orlenko, Sergei; Skvortsov, Valeriy; Stepanenko, Valeriy; Kuterbekov, Kairat; Toyoda, Shin; Kazymbet, Polat; Hoshi, Masaharu

    2017-11-01

    In order to estimate radiation effects on uranium enterprise staff and population teeth samples were collected for EPR tooth enamel dosimetry from population of Stepnogorsk city and staff of uranium mining enterprise in Shantobe settlment (Akmola region, North of Kazakhstan). By measurements of tooth enamel EPR spectra, the total absorbed dose in the enamel samples and added doses after subtraction of the contribution of natural background radiation are determined. For the population of Stepnogorsk city average added dose value of 4 +/- 11 mGy with variation of 51 mGy was obtained. For the staff of uranium mining enterprise in Shantobe settlment average value of added dose 95 +/- 20 mGy, with 85 mGy variation was obtained. Higher doses and the average value and a large variation for the staff, probably is due to the contribution of occupational exposure.

  15. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut

    2015-03-01

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  16. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less

  17. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    PubMed

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  18. Swash saturation: an assessment of available models

    NASA Astrophysics Data System (ADS)

    Hughes, Michael G.; Baldock, Tom E.; Aagaard, Troels

    2018-06-01

    An extensive previously published (Hughes et al. Mar Geol 355, 88-97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.

  19. A mathematical model for calculation of 90Sr absorbed dose in dental tissues: elaboration and comparison to EPR measurements.

    PubMed

    Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V

    2001-09-01

    A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.

  20. Pb-isotopic Features of Primitive Rocks from Hess Deep: Distinguishing between EPR and Cocos-Nazca Mantle Source(s)

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Falloon, T.; Gillis, K. M.

    2014-12-01

    We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be