Science.gov

Sample records for saturation vapor pressure

  1. Improved Magnus` form approximation of saturation vapor pressure

    SciTech Connect

    Alduchov, O.A.; Eskridge, R.E.

    1997-11-01

    Relative humidity is usually measured in aerological observations and dew point depression is usually reported in upper-air reports. These variables must frequently be converted to other moisture variables in meteorological analysis. If relative humidity is converted to vapor pressure, most humidity variables can then be determined. Elliott and Gaffen reviewed the practices and procedures of the US radiosonde system. In their paper, a comparison of the relative errors was made between the saturation vapor pressure formulations of Tetens (1930), Goff-Gratch (1946), Wexler (1976), and Buck (1981). In this paper, the authors will expand the analysis of Elliott and Gaffen by deriving several new saturation vapor pressure formulas, and reviewing the various errors in these formulations. They will show that two of the new formulations of vapor pressure over water and ice are superior to existing formulas. Upper air temperature data are found to vary from about +50 C to {minus}80 C. This large variation requires a saturation vapor pressure equation to be accurate over a large temperature range. While the errors introduced by the use of relatively inaccurate conversion equations are smaller than the errors due to the instruments, dewpoint coding errors, and dewpoint conversion algorithms (Elliott and Gaffen, 1993); they introduce additional systematic errors in humidity data. The most precise formulation of vapor pressure over a plane surface of water was given by Wexler (1976). The relative errors of Tetens` (1930) formula and one due to Buck (1981) (Buck`s equation is recommended in the Federal Meteorological Handbook No. 3, 1991) are shown. The relative errors in this table are the predicted value minus the Wexler value divided by the Wexler value.

  2. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    NASA Astrophysics Data System (ADS)

    Bilde, M.; Zardini, A. A.; Hong, J.; Tschiskale, M.; Emanuelsson, E.

    2014-12-01

    The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using thermodynamic modeling. Results are presented and discussed in context of atmospheric gas to particle partitioning.

  3. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  4. Vapor pressure measurements on low-volatility terpenoid compounds by the concatenated gas saturation method.

    PubMed

    Widegren, Jason A; Bruno, Thomas J

    2010-01-01

    The atmospheric oxidation of monoterpenes plays a central role in the formation of secondary organic aerosols (SOAs), which have important effects on the weather and climate. However, models of SOA formation have large uncertainties. One reason for this is that SOA formation depends directly on the vapor pressures of the monoterpene oxidation products, but few vapor pressures have been reported for these compounds. As a result, models of SOA formation have had to rely on estimated values of vapor pressure. To alleviate this problem, we have developed the concatenated gas saturation method, which is a simple, reliable, high-throughput method for measuring the vapor pressures of low-volatility compounds. The concatenated gas saturation method represents a significant advance over traditional gas saturation methods. Instead of a single saturator and trap, the concatenated method uses several pairs of saturators and traps linked in series. Consequently, several measurements of vapor pressure can be made simultaneously, which greatly increases the rate of data collection. It also allows for the simultaneous measurement of a control compound, which is important for ensuring data quality. In this paper we demonstrate the use of the concatenated gas saturation method by determination of the vapor pressures of five monoterpene oxidation products and n-tetradecane (the control compound) over the temperature range 283.15-313.15 K. Over this temperature range, the vapor pressures ranged from about 0.5 Pa to about 70 Pa. The standard molar enthalpies of vaporization or sublimation were determined by use of the Clausius-Clapeyron equation.

  5. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states. PMID:27525492

  6. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states.

  7. Determination of the quasi-saturated vapor pressure of supercritical gases in the adsorption potential theory application.

    PubMed

    Li, M; Gu, A Z

    2004-05-15

    Equilibrium data on supercritical N(2) and CH(4) adsorption on K02 activated carbon are presented in the temperature range 273-333 K and the pressure range 0-12 MPa. The adsorption potential theory was adopted to predict the adsorption equilibria of N(2) and CH(4) in the whole range utilizing a single experimental isotherm. The methods in literatures for calculating the quasi-saturated vapor pressure and the adsorbate density of supercritical gases have been investigated in detail. It is demonstrated that the predicting accuracy is considerably more sensitive to the quasi-saturated vapor pressure than to the adsorbate density. Moreover, for different adsorbates, the appropriate approach to the important quasi-saturated vapor pressure is various in the same experimental range. A new viewpoint, based on the relationship between the research temperature ranges and the critical temperatures of adsorbates, was proposed to determine the exact method for the quasi-saturated vapor pressure in the application of the adsorption potential theory.

  8. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  9. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region. PMID:26447682

  10. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region.

  11. Electrical conductivity measurements of aqueous boric acid at 25--350{degree}C at saturation vapor pressure. Final report

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-09-01

    Electrical conductance measurements of aqueous boric acid solutions (15-110 g/kg-H{sub 2}O {equivalent_to} 0.251--1.815 mol/kg-H{sub 2}O) were measured over the temperature range 25 to 75 C at saturation vapor pressures in glass cells with parallel platinum electrodes. Sixteen series of measurements were made involving three samples of boric acid from different sources. Conductance measurements were also made at 15.5 and 30.5 g/kg-H{sub 2}O over the temperature range 100 to 350 C at 50 C intervals with a metallic cell fitted with concentric platinum electrodes. The specific conductances of H{sub 3}BO{sub 3} (aq)were calculated after correction for the conductance of the solvent (water) and are tabulated in this report. At the specific conditions requested in the project description, namely a concentration of 110 g/kg-H{sub 2}O and 65 C, the specific conductance of boric acid is 293.2 {+-} 1.8 microSiemens/cm based on duplicate measurements of four independent solutions. The results from these tests will be utilized by the Tokamak Physics Experimental Project (TPX).

  12. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  13. Vapor Saturation as The Cause of Volcanic Eruptions at the Lassen Volcanic Center, California, as Inferred from Crystallization Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    De Los Reyes, A. M. A.; Putirka, K. D.; Clynne, M. A.; Scruggs, M. A.

    2015-12-01

    The last three silicic eruptions at the Lassen Volcanic Center occurred at Lassen Peak (27 ka and 1915-17) and Chaos Crags (1103 yrs BP). Klemetti and Clynne (2014) showed that felsic eruptions at Lassen reflect remobilization of resident rhyodacitic crystal mush by intrusion of mafic magma. To better understand the rejuvenation and eruption triggering process, we calculate crystallization temperatures and pressures from clinopyroxene-liquid equilibria on mafic enclaves that provide our closest approach to the composition of mafic magmas delivered to the shallow system. Our goal is to examine whether and to what extent cooling and crystallization occur after recharge, which bears on whether recharge, mixing, or partial crystallization (and consequent vapor saturation) provide the trigger for eruption. We use results from the cpx-liq barometer (1.7 kbar) as input to calculate T for other phases (plagioclase, olivine and amphibole) found in mafic enclave samples. Cpx crystallizes at 1100-1150 oC and olivine precipitates at similar to slightly higher temperatures. Cpx and ol are followed by plagioclase (1000-1050 oC), amphibole (875-1000 oC), and Fe-Ti oxides (1030-1050 oC). These temperatures indicate that recharge magmas are incompletely crystallized as they enter the shallow reservoir of cooler (~725-750 oC, Quinn et al., 2013) felsic crystal mush, and that significant cooling of the mafic magma occurs during mixing and prior to eruption. Such cooling intervals indicate that recharge is not the proximal cause of eruption, but rather that vapor saturation, following a period of mixing and cooling, leads to increased magma overpressure that causes eruption. Interestingly, the Lassen Peak 27 ka volcanics (at 2.09 km3), have a greater volume than either of Chaos Crags (1.2 km3) and the 1915 (0.03 km3) eruption, but our results indicate that their thermal histories are similar. This suggests that while volumes of mafic recharge may control the degree of interaction with

  14. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  15. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  16. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  17. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  18. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  19. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  20. Vapor pressure of water nanodroplets.

    PubMed

    Factorovich, Matías H; Molinero, Valeria; Scherlis, Damián A

    2014-03-26

    Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other.

  1. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  2. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  3. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  4. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  5. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adsorptivity onto solids, or high solubility in water are less likely to vaporize and become airborne than chemicals with high vapor pressures or with low water solubility or low adsorptivity to solids and sediments... 0 °C. (iv) “Vapor pressure” is the pressure at which a liquid or solid is in equilibrium with...

  6. Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene, ({+-})-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.

    1997-11-01

    Vapor pressures were measured to a pressure limit of 270 kPa or lower decomposition point for eight compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperatures (ambient to a maximum of 548 K). A differential scanning calorimeter (DSC) was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. Where possible, the critical temperature and critical density for each compound were determined experimentally. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization [within the temperature range ({+-}50 K) of the vapor pressures], enthalpies of fusion if solid at ambient temperature, solubility parameter, and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. In addition, the liquid-phase densities were compared with values derived using a four-term power series in either T or [(1 {minus} T{sub r}){sup 1/3}]. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. A Rule-Of-Thumb derived in the 1992 Project Year was used to estimate thermal decomposition temperatures by radical scission from a knowledge of the bond dissociation energy or vice versa.

  7. Saturated Vapour Pressure and Refrigeration - Part I

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1973-01-01

    The first part of a two-part article describes an experimental approach that can be used in teaching the concept of saturated vapour pressure. This leads to a discussion of refrigeration cycles in the second part of the article. (JR)

  8. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  9. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2004-01-01

    The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to generate property tables from existing property packages and a method to facilitate the accurate interpretation of fluid thermodynamic property data from those tables. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package. The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  10. The vapor pressure of iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Gilbert, A. G.; Sulzmann, K. G. P.

    1974-01-01

    Vapor pressure measurements have been made on pure iron pentacarbonyl between +31 and -19 C. The experimental results may be expressed by the logarithm of pressure (mm Hg) to the base 10 equals -(2096.7 K/T) + 8.4959, which corresponds to a heat of vaporization for the liquid carbonyl of delta H ? (9.588 plus or minus 0.12) kcal/mole. This result confirms and extends the earlier measurements made by Trautz and Badstuebner between 0 and 140 C. The need for careful purification of commercially available iron pentacarbonyl is emphasized, particularly for establishing the correct vapor pressure below 45 C.

  11. Melt-vapor phase transition in the lead-selenium system at atmospheric and low pressure

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2016-03-01

    The boiling temperature and the corresponding vapor phase composition in the existence domain of liquid solutions were calculated from the partial pressures of saturated vapor of the components and lead selenide over liquid melts in the lead-selenium system. The phase diagram was complemented with the liquid-vapor phase transition at atmospheric pressure and in vacuum of 100 Pa, which allowed us to judge the behavior of the components during the distillation separation.

  12. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    SciTech Connect

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used in the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results

  13. Droplet vaporization in supercritical pressure environments

    NASA Astrophysics Data System (ADS)

    Farrell, Patrick V.; Peters, Bruce D.

    For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher. This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity.

  14. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2003-01-01

    The availability and proper utilization of fluid properties is of fundamental importance in the process of mathematical modeling of propulsion systems. Real fluid properties provide the bridge between the realm of pure analytiis and empirical reality. The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described, for example, in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to be used to facilitate the accurate interpretation of fluid thermodynamic property data generated by existing property packages. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package (based on fundamental equations of state approach). The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  15. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  16. Vapor pressures of the aqueous desiccants

    SciTech Connect

    Chung, T.W.; Luo, C.M.

    1999-09-01

    The vapor pressures of the aqueous desiccants lithium chloride, lithium bromide, calcium chloride, ethylene glycol, propylene glycol, and their mixtures were measured at their typical operating concentrations and at temperatures from 298 K to 313 K. The experimental data were fitted to an Antoine type of equation, ln[P(kPa)] = A {minus} B/[T(K) + C], where A, B, and C are constants and are concentration dependent. Vapor pressure data were further used to predict the effectiveness of dehumidification in liquid desiccant dehumidifiers.

  17. Clausius-Clapeyron Equation and Saturation Vapour Pressure: Simple Theory Reconciled with Practice

    ERIC Educational Resources Information Center

    Koutsoyiannis, Demetris

    2012-01-01

    While the Clausius-Clapeyron equation is very important as it determines the saturation vapour pressure, in practice it is replaced by empirical, typically Magnus-type, equations which are more accurate. It is shown that the reduced accuracy reflects an inconsistent assumption that the latent heat of vaporization is constant. Not only is this…

  18. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  19. Vapor Pressure Measurement of Supercooled Water.

    NASA Astrophysics Data System (ADS)

    Fukuta, N.; Gramada, C. M.

    2003-08-01

    A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and by application of measured vapor pressure over ice from the Smithsonian Meteorological Table.The measured vapor pressure of supercooled water agreed well with the tables above approximately 20°C, but below that temperature, a significant lowering of the pressure was discovered. An empirical equation to best fit the measured data was obtained. At 30°C, the estimated specific latent heat of condensation became slightly higher than the table value by 3.4%, that of fusion considerably lower by as much as 66%, and the specific heat of supercooled water amounted to as much as 3.7 cal g1 °C1.Possible implications of the new results are pointed out. For example, the latent heat associated with cloud glaciation at temperatures colder than 20°C, and especially colder than 30°C, is found to be less than previously thought.

  20. Simple Method To Measure the Vapor Pressure of Phthalates and Their Alternatives.

    PubMed

    Wu, Yaoxing; Eichler, Clara M A; Chen, Shengyang; Little, John C

    2016-09-20

    Phthalates and alternative plasticizers are semivolatile organic compounds (SVOCs), an important class of indoor pollutants that may have significant adverse effects on human health. Unfortunately, models that predict emissions of and the resulting exposure to SVOCs have substantial uncertainties. One reason is that the characteristics governing emissions, transport, and exposure are usually strongly dependent on vapor pressure. Furthermore, available data for phthalates exhibit significant variability, and vapor pressures for the various alternatives are usually unavailable. For these reasons, a new approach based on modeling of the evaporation process was developed to determine vapor pressures of phthalates and alternate plasticizers. A laminar flow forced convection model was used in the design of a partial saturator (PS) tube. The mass transfer mechanisms in the PS tube are accurately modeled and enable the determination of vapor pressure even when the carrier gas is not completely saturated, avoiding the complicated procedure to establish vapor saturation. The measured vapor pressures ranged from about 10(-2) to 10(-7) Pa. Compared to the traditional gas saturation method, the model-based approach is advantageous in terms of both predictability and simplicity. The knowledge provides new insight into experimental design and a sound basis for further method development.

  1. Simple Method To Measure the Vapor Pressure of Phthalates and Their Alternatives.

    PubMed

    Wu, Yaoxing; Eichler, Clara M A; Chen, Shengyang; Little, John C

    2016-09-20

    Phthalates and alternative plasticizers are semivolatile organic compounds (SVOCs), an important class of indoor pollutants that may have significant adverse effects on human health. Unfortunately, models that predict emissions of and the resulting exposure to SVOCs have substantial uncertainties. One reason is that the characteristics governing emissions, transport, and exposure are usually strongly dependent on vapor pressure. Furthermore, available data for phthalates exhibit significant variability, and vapor pressures for the various alternatives are usually unavailable. For these reasons, a new approach based on modeling of the evaporation process was developed to determine vapor pressures of phthalates and alternate plasticizers. A laminar flow forced convection model was used in the design of a partial saturator (PS) tube. The mass transfer mechanisms in the PS tube are accurately modeled and enable the determination of vapor pressure even when the carrier gas is not completely saturated, avoiding the complicated procedure to establish vapor saturation. The measured vapor pressures ranged from about 10(-2) to 10(-7) Pa. Compared to the traditional gas saturation method, the model-based approach is advantageous in terms of both predictability and simplicity. The knowledge provides new insight into experimental design and a sound basis for further method development. PMID:27571317

  2. Vapor pressures of the polychlorinated naphthalenes

    SciTech Connect

    Lei, Y.D.; Shiu, W.Y.; Wania, F.

    1999-05-01

    The vapor pressures of the supercooled liquid P{sub L} for 17 polychlorinated naphthalene congeners were determined as a function of temperature with a gas chromatographic retention time technique. The method was calibrated with vapor pressure data for polychlorinated biphenyls (PCBs) which had been measured by other techniques. These data were employed to predict temperature-dependent vapor pressures for all polychlorinated naphthalenes (PCNs) from a regression with published retention time indices. Enthalpies of vaporization {Delta}{sub VAP}H and activity coefficients in 1-octanol were calculated for the PCNs and compared with those for polychlorinated biphenyls. Data analysis suggests that the dependence of P{sub L} and {Delta}{sub VAP}H on molecular size, as well as the partitioning behavior into 1-octanol of the PCNs, is very similar to that of coplanar PCBs, i.e., those congeners with no or only one chlorine substitution in the ortho positions. The affinity of these chemicals to 1-octanol increases with the degree of chlorination.

  3. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-10-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Both the gas saturation method and the Knudsen effusion method are being used. Results are presented for anthracene, naphthacene, pentacene, and a mixture of anthracene and perylene obtained using the effusion method.

  4. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  5. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  6. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems. PMID:27463696

  7. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  8. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    USGS Publications Warehouse

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  9. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  10. On the propagation of a coupled saturation and pressure front

    SciTech Connect

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  11. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    NASA Astrophysics Data System (ADS)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  12. Notes on Vapor Pressure Equilibria Measurements

    NASA Astrophysics Data System (ADS)

    Krieger, Albert G.; Henderson, John W.

    1996-11-01

    After reading the article in this Journal (1), we would like to share our experience with a similar experiment based on an earlier article in this Journal (2). Freshman students at our institution use manometers and 24/40 ground-glass distillation apparatus (abandoned by our organic chemistry classes) to measure boiling points at reduced pressures. Distilled water and 2-methyl-1-propanol are typical liquids of interest. Students enter their collected data into an Excel template which generates graphs of P vs. T and log P vs 1/T to demonstrate the nonlinear and linear relationships that exist between vapor pressures and temperatures. The templates use the Clausius-Clapeyron equation to determine the normal boiling point and the enthalpy of vaporization of the liquid studies. The boiling point determined for water is 100 oC and for 2-methyl-1-propanol is 106 oC, within 2 o of the CRC Handbook data. We have found that the availability of state-of-the-art equipment need not limit the ability to teach and demonstrate fundamental principles. The Excel template (Macintosh) is available upon request domestically and for the cost of international postage for others. Literature Cited 1. Kidahl, N.; Berka, L. H. J. Chem. Educ. 1995, 72, 258. 2. Schaber, P. M. J. Chem. Educ. 1985, 62, 345.

  13. Using Monte Carlo simulation to compute liquid-vapor saturation properties of ionic liquids.

    PubMed

    Rane, Kaustubh S; Errington, Jeffrey R

    2013-07-01

    We discuss Monte Carlo (MC) simulation methods for calculating liquid-vapor saturation properties of ionic liquids. We first describe how various simulation tools, including reservoir grand canonical MC, growth-expanded ensemble MC, distance-biasing, and aggregation-volume-biasing, are used to address challenges commonly encountered in simulating realistic models of ionic liquids. We then indicate how these techniques are combined with histogram-based schemes for determining saturation properties. Both direct methods, which enable one to locate saturation points at a given temperature, and temperature expanded ensemble methods, which provide a means to trace saturation lines to low temperature, are discussed. We study the liquid-vapor phase behavior of the restricted primitive model (RPM) and a realistic model for 1,3-dimethylimidazolium tetrafluoroborate ([C1mim][BF4]). Results are presented to show the dependence of saturation properties of the RPM and [C1mim][BF4] on the size of the simulation box and the boundary condition used for the Ewald summation. For [C1mim][BF4] we also demonstrate the ability of our strategy to sample ion clusters that form in the vapor phase. Finally, we provide the liquid-vapor saturation properties of these models over a wide range of temperature. Overall, we observe that the choice of system size and boundary condition have a non-negligible effect on the calculated properties, especially at high temperature. Also, we find that the combination of grand canonical MC simulation and isothermal-isobaric temperature expanded ensemble MC simulation provides a computationally efficient means to calculate liquid-vapor saturation properties of ionic liquids.

  14. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  15. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  16. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  17. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  18. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori. PMID:26132350

  19. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori.

  20. The influence of vapor pressure of chemicals on dermal penetration.

    PubMed

    Gilpin, Sarah

    2014-01-01

    Dermal exposure is an important route of entry for chemicals in occupational and consumer settings. Key to this exposure is the penetration of the skin's barrier, and key to this penetration is a chemical's vapor pressure. Until now, vapor pressure and its effects on the skin have yet to be widely studied. This review aims to provide some historical background on early work on dermal penetration for volatile materials, which has helped form later research into the effects of vapor pressure on chemical risk assessment for dermal exposures. This review should be the start of an investigation into more in-depth coverage of vapor pressure and current prediction models.

  1. Evaluation of vapor intrusion using controlled building pressure.

    PubMed

    McHugh, Thomas E; Beckley, Lila; Bailey, Danielle; Gorder, Kyle; Dettenmaier, Erik; Rivera-Duarte, Ignacio; Brock, Samuel; MacGregor, Ian C

    2012-05-01

    The use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested. For these five buildings, the induced pressure differences were sufficient to control the flow of soil gas through the building foundation. A comparison of VOC concentrations in indoor air measured during the negative and positive pressure test conditions was sufficient to determine whether vapor intrusion was the primary source of VOCs in indoor air at these buildings. The study results indicate that sampling under controlled building pressure can help minimize ambiguity caused by both indoor sources of VOCs and temporal variability in vapor intrusion.

  2. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  3. Heat transfer by condensation of low pressure metal vapors.

    NASA Technical Reports Server (NTRS)

    Huang, Y. S.; Lyman, F. A.; Lick, W. J.

    1972-01-01

    The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are negligible and across which the temperature distribution is linear. The average behavior of the vapor is found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of condensation, a consistent distribution function for the vapor particles at the liquid-vapor interface is necessary and is determined. The result of the analysis is a set of algebraic equations from which one can predict the condensation rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted and calculated.

  4. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  5. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  6. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  7. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  8. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  9. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  10. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  11. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  12. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  13. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  14. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  15. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  16. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  17. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  18. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  19. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  20. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  1. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  2. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  3. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  4. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  5. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  6. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  7. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  8. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  9. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  10. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. PMID:25127637

  11. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  12. On the Way to Determination of the Vapor-Pressure Curve of Pure Water

    NASA Astrophysics Data System (ADS)

    Mokdad, S.; Georgin, E.; Mokbel, I.; Jose, J.; Hermier, Y.; Himbert, M.

    2012-09-01

    The determination of the physical properties of pure water, especially the vapor-pressure curve of water, is one of the major issues identified by the Consultative Committee for Thermometry of the International Committee for Weights and Measures (CIPM) to improve the accuracy of the national references in humidity. At the present time the saturation-pressure data, corresponding to ice or liquid-vapor equilibrium, at low temperature are scarce and unreliable. This study presents new measurements of vapor and sublimation pressures of, respectively, water and ice, using a static apparatus. Prior to saturation-pressure measurements, the temperature and pressure sensors of the static apparatus were calibrated against reference gauges in use at the LNE- CETIAT laboratories. The effect of thermal transpiration has been studied. The explored temperature range lies between 250 K and 374 K, and the pressure range between 70 Pa and 105 Pa. An automatic data acquisition program was developed to monitor the pressure and temperature. The obtained results have been compared with available literature data. The preliminary uncertainty budget took into account several components: pressure measurements, temperature measurements, and environmental error sources such as thermal transpiration and hydrostatic correction.

  13. LOX vaporization in high-pressure, hydrogen-rich gas

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  14. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  15. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  16. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  17. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  18. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  19. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  20. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  1. Vapor pressures of a homologous series of polyethylene glycols as a reference data set for validating vapor pressure measurement techniques.

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska

    2015-04-01

    The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.

  2. Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve

    NASA Astrophysics Data System (ADS)

    Mokdad, S.; Georgin, E.; Hermier, Y.; Sparasci, F.; Himbert, M.

    2012-07-01

    Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.

  3. Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve.

    PubMed

    Mokdad, S; Georgin, E; Hermier, Y; Sparasci, F; Himbert, M

    2012-07-01

    Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.

  4. Evaluation of vapor intrusion using controlled building pressure.

    PubMed

    McHugh, Thomas E; Beckley, Lila; Bailey, Danielle; Gorder, Kyle; Dettenmaier, Erik; Rivera-Duarte, Ignacio; Brock, Samuel; MacGregor, Ian C

    2012-05-01

    The use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested. For these five buildings, the induced pressure differences were sufficient to control the flow of soil gas through the building foundation. A comparison of VOC concentrations in indoor air measured during the negative and positive pressure test conditions was sufficient to determine whether vapor intrusion was the primary source of VOCs in indoor air at these buildings. The study results indicate that sampling under controlled building pressure can help minimize ambiguity caused by both indoor sources of VOCs and temporal variability in vapor intrusion. PMID:22486634

  5. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    PubMed

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  6. A vapor pressure thermometer for use in muscle microcalorimetry.

    PubMed

    Johnston, Callum M; Nielsen, Poul M F; Hunter, Ian W; Taberner, Andrew J

    2011-01-01

    Measurement of the energy consumption of isolated cardiac trabeculae requires highly sensitive temperature sensors. In this paper we describe and characterize an initial prototype of a vapor pressure thermometer being designed and built for application to muscle microcalorimetry. The device exploits the change in vapor pressure with temperature of a solvent and the change in pressure with volume of a gas. The sensor achieves a sensitivity of 86 μm/K and a resolution of 3.6 μK. Predictions from a finite element model of the expected displacement compare favorably with the tests performed.

  7. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  8. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship.

    PubMed

    Van Geel, P J; Roy, S D

    2002-09-01

    A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149]. PMID:12236556

  9. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  10. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  11. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  12. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  13. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-06-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric plutonium dioxide condensed phase have been calculated for the temperature range 1500 less than or equal to T less than or equal to 4000 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model to obtain the partial pressures of O/sub 2/, O, Pu, PuO, and PuO/sub 2/. New thermodynamic functions for the solid oxide were calculated from available information and from new estimates of the heat capacity of the liquid. Thermodynamic functions for the vapor species were calculated previously. A suitable oxygen-potential model has been used previously for the solid hypostoichiometric plutonium dioxide; this model has been extended into the liquid region using several alternative methods. The effects of these alternatives on the calculated oxygen pressures have been examined in detail.

  14. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000/sup 0/K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O/sub 2/, O, Pu, PuO and PuO/sub 2/. The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu/sup 6 +/ from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO/sub 2/ for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed. (DLC)

  15. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at...

  16. Saturated laser fluorescence in turbulent sooting flames at high pressure

    NASA Technical Reports Server (NTRS)

    King, G. B.; Carter, C. D.; Laurendeau, N. M.

    1984-01-01

    The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.

  17. Vapor pressures and gas-film coefficients for ketones

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Comparison of handbook vapor pressures for seven ketones with more recent literature data showed large differences for four of the ketones. Gas-film coefficients for the volatilization of these ketones from water determined by two different methods were in reasonable agreement. ?? 1987.

  18. New class of compounds have very low vapor pressures

    NASA Technical Reports Server (NTRS)

    Angell, C. A.; Gruen, D. M.

    1967-01-01

    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids.

  19. Distillation device supplies cesium vapor at constant pressure

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  20. In situ direct measurement of vapor pressures and thermodynamic parameters of volatile organic materials in the vapor phase: benzoic acid, ferrocene, and naphthalene.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2013-06-24

    We report the direct determination of vapor pressures and optical and thermodynamic parameters of powders of low-volatile materials in their vapor phase using a commercial UV/Vis spectrometer. This methodology is based on the linear proportionality between the density of the saturated gas of the material and the absorbance of the gas at different temperatures. The vapor pressure values determined for benzoic acid and ferrocene are in good agreement with those reported in the literature with ∼2-7 % uncertainty. Thermodynamic parameters of benzoic acid, ferrocene, and naphthalene are determined in situ at temperatures below their melting points. The sublimation enthalpies of the investigated organic molecules are in excellent agreement with the ICTAC recommended values (less than 1 % difference). This method has been used to measure vapor pressures and thermodynamic parameters of organic volatile materials with vapor pressures of ∼0.5-355 Pa in the 50-100 °C temperature range. PMID:23606455

  1. Dynamic response of vaporizing droplet to pressure oscillation

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2016-06-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  2. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    PubMed

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments.

  3. Vapor saturation and accumulation in magmas of the 1989-1990 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Gerlach, Terrance M.; Westrich, Henry R.; Casadevall, Thomas J.; Finnegan, David L.

    1994-01-01

    The 1989–1990 eruption of Redoubt Volcano, Alaska, provided an opportunity to compare petrologic estimates of SO2 and Cl emissions with estimates of SO2 emissions based on remote sensing data and estimates of Cl emissions based on plume sampling. In this study, we measure the sulfur and chlorine contents of melt inclusions and matrix glasses in the eruption products to determine petrologic estimates of SO2 and Cl emissions. We compare the results with emission estimates based on COSPEC and TOMS data for SO2 and data for Cl/SO2 in plume samples. For the explosive vent clearing period (December 14–22, 1989), the petrologic estimate for SO2 emission is 21,000 tons, or ~12% of a TOMS estimate of 175,000 tons. For the dome growth period (December 22, 1989 to mid-June 1990), the petrologic estimate for SO2 emission is 18,000 tons, or ~3% of COSPEC-based estimates of 572,000–680,000 tons. The petrologic estimates give a total SO2 emission of only 39,000 tons compared to an integrated TOMS/COSPEC emission estimate of ~1,000,000 tons for the whole eruption, including quiescent degassing after mid-June 1990. Petrologic estimates also appear to underestimate Cl emissions, but apparent HCl scavenging in the plume complicates Cl emission comparisons. Several potential sources of ‘excess sulfur’ often invoked to explain petrologic SO2 deficits are concluded to be unlikely for the 1989–1990 Redoubt eruption — e.g., breakdown of sulfides, breakdown of anhydrite, release of SO2 from a hydrothermal system, degassing of commingled infusions of basalt in the magma chamber, and syn-eruptive degassing of sulfur from melt present in non-erupted magma. Leakage and/or diffusion of sulfur from melt inclusions do not provide convincing explanations for the petrologic SO2 deficits either. The main cause of low petrologic estimates for SO2 is that melt inclusions do not represent the total sulfur content of the Redoubt magmas, which were vapor-saturated magmas carrying most of

  4. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  5. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  6. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    NASA Astrophysics Data System (ADS)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping

    2007-11-01

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

  7. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  8. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure. PMID:25265908

  9. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  10. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    USGS Publications Warehouse

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  11. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  12. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    The evaluation of cesium diode electrode materials called for braze fillers with very low vapor pressures and a wide range of melting points. Binary alloys of low vapor pressure refractory metals were chosen to fill this need. These alloys of Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W have reported melting point minima or eutectics from 1,510 K to above 3,000 K. Preliminary data are compiled on the use of several of these braze alloys. Melting points and surface wetting on a Ta base are given. Results of brazing Ir, LaB6, Nb, Re, W, and Zr-22 wt % ZrO2 materials into Ta and Nb-1% Zr bases are presented. Current braze usage is summarized.

  13. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    Preliminary results in the use of some low-vapor-pressure braze alloys are reported; these are binary alloys of refractory metals (Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, W) with vapor pressures below 0.1 nanotorr at 1500 K or 10 microtorr at 2000 K. The melting point minima or eutectics of the alloys range from 1510 K to above 3000 K. Melting points and surface wetting on a Ta base are given. Results are presented on brazing of Ir, LaB6, Nb, Re, W, and ZrO2 (with 22 wt % Zr) into a Ta base or a Nb-1% Zr base. The results are applicable in electrode screening programs for thermionic cesium diodes.

  14. A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K

    NASA Technical Reports Server (NTRS)

    Marti, James; Mauersberger, Konrad

    1993-01-01

    New measurements of ice vapor pressures at temperatures between 170 and 250 K are presented and published vapor pressure data are summarized. An empirical vapor pressure equation was derived and allows prediction of vapor pressures between 170 k and the triple point of water with an accuracy of approximately 2 percent. Predictions obtained agree, within experimental uncertainty, with the most reliable equation derived from thermodynamic principles.

  15. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  16. 46 CFR 39.2013 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false High and low vapor pressure protection for tankships-T... CONTROL SYSTEMS Equipment and Installation § 39.2013 High and low vapor pressure protection for tankships—T/ALL. Each tankship with a vapor collection system must be fitted with a pressure-sensing...

  17. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  18. 46 CFR 39.2013 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false High and low vapor pressure protection for tankships-T... CONTROL SYSTEMS Equipment and Installation § 39.2013 High and low vapor pressure protection for tankships—T/ALL. Each tankship with a vapor collection system must be fitted with a pressure-sensing...

  19. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  20. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  1. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  2. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  3. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  4. DEPENDENCE OF THE SATURATION LEVEL OF MAGNETOROTATIONAL INSTABILITY ON GAS PRESSURE AND MAGNETIC PRANDTL NUMBER

    SciTech Connect

    Minoshima, Takashi; Hirose, Shigenobu; Sano, Takayoshi

    2015-07-20

    A large set of numerical simulations of MHD turbulence induced by the magnetorotational instability is presented. Revisiting the previous survey conducted by Sano et al., we investigate the gas pressure dependence of the saturation level. In ideal MHD simulations, the gas pressure dependence is found to be very sensitive to the choice of numerical scheme. This is because the numerical magnetic Prandtl number varies according to the scheme as well as the pressure, which considerably affects the results. The saturation level is more sensitive to the numerical magnetic Prandtl number than the pressure. In MHD simulations with explicit viscosity and resistivity, the saturation level increases with the physical magnetic Prandtl number, and it is almost independent of the gas pressure when the magnetic Prandtl number is constant. This is indicative of the incompressible turbulence saturated by the secondary tearing instability.

  5. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  6. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Pressure relief devices...

  7. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  8. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  12. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Pressure relief devices...

  13. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  15. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  16. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  17. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Pressure relief devices...

  18. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  2. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Pressure relief devices...

  3. Ignitability of DMSO vapors at elevated temperature and reduced pressure

    SciTech Connect

    Bergman, W; Ural, E A; Weisgerber, W

    1999-03-08

    Ignitability of DMSO vapors have been evaluated at 664 mm Hg pressure. The minimum temperature at which the DMSO vapors that are in equilibrium with liquid DMSO has been determined using two types of strong ignition sources. This temperature is 172 F for chemical igniters, and 178 F for spark ignition. Numerous tests have been conducted using controlled intensity sparks to define the shape of the minimum ignition energy curve as a function of temperature. The ignition energies spanned four orders of magnitude (approximately from 20,000 to 2 mJ) while the DMSO vapor mixture temperature varied from 185 to 207 F. The Sandia Generator was used to simulate worst case electrostatic sparks that can be produced by the human body. Although it was not designed for air discharges, this device had been used by LLNL for 1 mm spark gap and the resultant spark energy had been measured to fall within the range from 3.2 to 8.8 mJ. CRC tests using this device showed that the minimum ignition temperature strongly depends on the spark gap. The minimum ignition temperature was 207 F at 1 mm spark gap, 203 F at 3 mm spark gap, and 197 F at 6 mm spark gap. This strong dependence on the spark gap is believed to be partly due to the changes in the spark energy as the spark gap changes.

  4. Laboratory measurements of the microwave opacity and vapor pressure of sulfuric acid vapor under simulated conditions for the middle atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Microwave absorption measurements at wavelengths of 13.4 and 3.6 cm were made in gaseous H2SO4 in a CO2 atmosphere under simulated conditions for the Venus middle atmosphere. The results suggest that abundances of gaseous H2SO4 on the order of 15-30 ppm could account for the absorption observed by radio occultation measurements at these wavelengths. They also imply that such abundances would correspond to saturation vapor pressure existing at or above the 46-48-km range, which correlates with the observed cloud base.

  5. Precision ozone calibration system based on vapor pressures of ozone

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1987-01-01

    A precision ozone calibration system for stratospheric research has been developed and evaluated. Vapor pressures above solid ozone are mixed with a carrier gas (N2) to produce stratospheric ozone mixing ratios at total pressures of 1 to cover 20 torr. The uncertainty in the ozone mixing ratios is approximately + or - 1.5 percent, the stability of ozone is + or - 0.3 percent. Experiments to be calibrated may sample the gas mixture over a wide range of flow rates; the maximum throughput of gas with corrections of less than 1 percent to ozone is about 200 torr 1/min. A mass spectrometer system continuously monitors the purity and stability of the N2-O3 gas mixture.

  6. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Meibom, A.; Ferguson, F. T.; Nuth, J. A., III

    2004-01-01

    Temperatures high enough to vaporize even refractory solids existed in the midplane of the solar nebula during its earliest evolutionary stages and played an important role in the processing of materials that went into the formation of the inner planets and asteroids. A variety of such high-T materials have been identified in primitive chondritic meteorites. These include chemically zoned FeNi metal grains that are generally believed to have formed directly by gas-solid condensation from a gas of approximately solar composition. These FeNi particles provide important information about the times scales of formation and physical transport mechanisms in the nebula, as well as formation temperature, pressure and gas chemistry. Currently, however, the interpretation of the chemical signatures in these FeNi particles rests on less than perfect information about the condensation sequence of siderophile elements. For example much, if not all, of the thermodynamic data for the vapor pressures of moderately refractory metals , such as Fe, Ni and Co, do not cover the desired temperature range. As a result, quite large extrapolations are needed. These extrapolations can be complex and uncertain due to factors such as oxygen fugacity or the presence of hydrogen gas.

  7. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  8. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  9. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  10. Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures

    NASA Astrophysics Data System (ADS)

    Chapman, Samuel; Tisato, Nicola; Quintal, Beatriz; Holliger, Klaus

    2016-03-01

    Using the forced oscillation method, we measure the extensional-mode attenuation and Young's modulus of a Berea sandstone sample at seismic frequencies (0.5-50 Hz) for varying levels of water saturation (~0-100%) and confining pressures (2-25 MPa). Attenuation is negligible for dry conditions and saturation levels <80%. For saturation levels between ~91% and ~100%, attenuation is significant and frequency dependent in the form of distinct bell-shaped curves having their maxima between 1 and 20 Hz. Increasing saturation causes an increase of the overall attenuation magnitude and a shift of its peak to lower frequencies. On the other hand, increasing the confining pressure causes a reduction in the attenuation magnitude and a shift of its peak to higher frequencies. For saturation levels above ~98%, the fluid pressure increases with increasing confining pressure. When the fluid pressure is high enough to ensure full water saturation of the sample, attenuation becomes negligible. A second series of comparable experiments reproduces these results satisfactorily. Based on a qualitative analysis of the data, the frequency-dependent attenuation meets the theoretical predictions of mesoscopic wave-induced fluid flow (WIFF) in response to a heterogeneous water distribution in the pore space, so-called patchy saturation. These results show that mesoscopic WIFF can be an important source of seismic attenuation at reservoir conditions.

  11. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  12. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.

  13. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high. PMID:25068963

  14. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  15. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  16. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  17. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas...

  18. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Pressure relief devices in gas...

  19. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Pressure relief devices in gas...

  20. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Pressure relief devices in gas...

  1. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Pressure relief devices in gas...

  2. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Pressure relief devices in gas...

  3. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  4. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Pressure relief devices in gas...

  5. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  6. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas...

  7. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Pressure relief devices in gas...

  8. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Pressure relief devices in gas...

  9. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  10. Rate of water equilibration in vapor-diffusion crystallization: dependence on the residual pressure of air in the vapor space.

    PubMed

    DeTitta, G T; Luft, J R

    1995-09-01

    The kinetics of water equilibration in vapor-diffusion crystallization experiments are sensitive to the residual pressure of air in the vapor chamber. Experiments with sitting droplets of 10%(w/v) PEG, allowed to equilibrate with reservoirs of 20%(w/v) PEG, were conducted at pressures ranging from 80 to 760 mm Hg. Equilibrations were interrupted after one, four, five and seven days to assess their progress. Even down to the lowest pressures examined it was found that a decrease in pressure leads to an increase in the rate of equilibration. The residual pressure of air in the vapor chamber can be varied to tailor the time course of equilibration in macromolecular crystal growth experiments.

  11. Importance of extracting solvent vapor pressure in headspace liquid-phase microextraction.

    PubMed

    Yan, Xue; Yang, Cui; Ren, Chunyan; Li, Donghao

    2008-09-26

    Of the many parameters that affect the enrichment factors in headspace liquid-phase microextraction, in this study, we systematically investigated the influence of the vapor pressure of the extracting solvent. Seven extracting solvents with different vapor pressures were selected and tested. It was found that the vapor pressure of the extracting solvent dramatically affects the enrichment factor and the factor was increasing by decreasing the extracting solvent vapor pressure under given experimental conditions. The result was validated for volatile organic compounds such as polynuclear aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls.

  12. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  13. The vapor pressures of solid and liquid ozone

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1986-01-01

    Vapor pressures of solid and liquid ozone have been measured over a temperature range 87 to below 66 K. The experiment was performed under flow conditions, and the gas was analyzed by a precision mass spectrometer system. In the range of solid ozone two forms, supercooled and crystalline ozone, were found. A least-square fit of the data for crystalline ozone resulted in the equation log P(torr) = A + B/T, where A = 10.460 and B = -1021.6. The estimated uncertainty of the data is + or - 1.0 percent. A triple-point temperature of 79.6 + or - 0.3 K was found where supercooled and crystalline ozone data intersect.

  14. Measurement of equilibrium elemental vapor pressures using x-ray induced fluorescense.

    SciTech Connect

    Curry, J. J; Henins, A.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2011-04-29

    X-ray induced fluorescence is demonstrated as a novel and fast method for measuring vapor pressures at high temperatures and high pressures. As such, it is an excellent complement to the effusion method, which is limited to lower pressures. High-energy synchrotron radiation was used to measure the total densities of Dy in the equilibrium vapor over condensed DyI{sub 3} and Tm in the equilibrium vapor over condensed TmI{sub 3}. Corresponding vapor pressures were determined with measured vapor cell temperatures across a range of vapor pressures of nearly three orders of magnitude, from less than 10{sup 2} Pa to more than 10{sup 4} Pa. Individual data points were obtained in time periods ranging from 10 to 30 s each.

  15. Interfacial Area per Volume: The link between capillary pressure and saturation

    NASA Astrophysics Data System (ADS)

    Chen, D.; Cheng, J.; Nolte, D. D.; Giordano, N.; Pyrak-Nolte, L. J.

    2004-12-01

    Measurements were performed on micro-models to quantify interfacial area per volume for a known pore geometry as a function of fluid pressure and saturation. The micro-models are completely transparent and measure 600 µm x 600 µm with an aperture of 1.08 µm. Because the micro-models are transparent, full visualization and quantification of the fluid distributions is possible. Initially the micro-models are saturated with decane (wetting phase). Nitrogen (non-wetting phase) is invaded into the system by the application of pressure in increments. At each increment, the system is allowed to equilibrate and then digital images of fluid distributions within the pore structure are acquired. The images are analyzed to determined fluid saturations, interfacial areas per volume and curvature of the interfaces. The curvatures of the interfaces are calculated using level set methods Pressure measurements are also made with pressure transducers during the experiment. From the data, we have established that the interfacial area per volume between non-wetting and wetting fluids lifts the ambiguity associated with the hysteretic relationship between capillary pressure and saturation in porous media. The interface between the non-wetting and wetting phases is composed of two subsets: one with a unique curvature determined by the capillary pressure, and the other with a distribution of curvatures dominated by disjoining pressure. This work provides experimental support for theoretical predictions that the capillary-dominated subset plays a role analogous to a state variable. Any comprehensive description of multiphase flow properties must include this interfacial area with the traditional variables of pressure and fluid saturation. Research is continuing to examine the role of pore structure on the relationship among capillary pressure, saturation and interfacial area per volume. Acknowledgments: Geosciences Research Program, Office of Basic Energy Sciences US Department of

  16. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  17. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  18. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  19. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  20. Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships.

    PubMed

    Ataie-Ashtiani, Behzad; Hassanizadeh, S Majid; Celia, Michael A

    2002-06-01

    In theories of multiphase flow through porous media, capillary pressure-saturation and relative permeability-saturation curves are assumed to be intrinsic properties of the medium. Moreover, relative permeability is assumed to be a scalar property. However, numerous theoretical and experimental works have shown that these basic assumptions may not be valid. For example, relative permeability is known to be affected by the flow velocity (or pressure gradient) at which the measurements are carried out. In this article, it is suggested that the nonuniqueness of capillary pressure-relative permeability-saturation relationships is due to the presence of microheterogeneities within a laboratory sample. In order to investigate this hypothesis, a large number of "numerical experiments" are carried out. A numerical multiphase flow model is used to simulate the procedures that are commonly used in the laboratory for the measurement of capillary pressure and relative permeability curves. The dimensions of the simulation domain are similar to those of a typical laboratory sample (a few centimeters in each direction). Various combinations of boundary conditions and soil heterogeneity are simulated and average capillary pressure, saturation, and relative permeability for the "soil sample" are obtained. It is found that the irreducible water saturation is a function of the capillary number; the smaller the capillary number, the larger the irreducible water saturation. Both drainage and imbibition capillary pressure curves are found to be strongly affected by heterogeneities and boundary conditions. Relative permeability is also found to be affected by the boundary conditions; this is especially true about the nonaqueous phase permeability. Our results reveal that there is much need for laboratory experiments aimed at investigating the interplay of boundary conditions and microheterogeneities and their effect on capillary pressure and relative permeability.

  1. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  2. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect

    Rudeen, David Keith; Lord, David L.

    2005-08-01

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be

  3. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  4. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  5. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    PubMed

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  6. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.

    1994-12-01

    SO2 from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. Total ozone mapping spectrometer (TOMS), correlation spectrometer (COSPEC), and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO2 emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO2 emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of 'excess sulfur' (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO2 emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO2 emissions, together with the H2O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO2. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body.

  7. The hysteretic evapotranspiration—Vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Manzoni, Stefano; Katul, Gabriel; Porporato, Amilcare; Yang, Dawen

    2014-02-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems, but justification for its onset and magnitude remains incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a holistic framework, the occurrence of hysteresis was theoretically assessed along a hierarchy of model systems where both abiotic and biotic components are sequentially added. Lysimeter evaporation (E) measurements and model calculations using the Penman equation were used to investigate the effect of the time lag between net radiation and VPD on the hysteresis in the absence of any biotic effects. Modulations from biotic effects on the ET-VPD hysteresis were then added using soil-plant-atmosphere models of different complexities applied to a grassland ecosystem. The results suggest that the hysteresis magnitude depends on the radiation-VPD lag, while the plant and soil water potentials are both key factors modulating the hysteretic ET-VPD relation as soil moisture declines. In particular, larger hysteresis magnitude is achieved at less negative leaf water potential, root water potential, and soil water potential. While plant hydraulic capacitance affects the leaf water potential-ET relation, it has negligible effects on the ET-VPD hysteresis. Therefore, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both abiotic factors such as soil water availability, biotic factors (leaf and root water potentials, which in turn depend on soil moisture), and the time lag between radiation and VPD.

  8. Correlation of chemical evaporation rate with vapor pressure.

    PubMed

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-01

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  9. A new ozone standard - The vapor pressure of ozone at liquid argon temperatures

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1985-01-01

    The vapor pressure of ozone has been measured at liquid argon temperatures. At the normal boiling point of argon (-185.9 C) an ozone pressure of 0.0405 torr was obtained with an accuracy of + or - 1.5 percent. Increases and decreases in liquid argon temperatures raised and lowered the ozone vapor pressure, respectively. During the vapor pressure measurements the purity of ozone was monitored with a mass spectrometer. The proposed ozone standard will considerably improve the calibration of experiments for atmospheric research, the determination of absorption cross sections and other laboratory ozone studies.

  10. Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation

    SciTech Connect

    Cropper, Clark; Perfect, Edmund; van den Berg, Dr. Elmer; Mayes, Melanie

    2010-01-01

    The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.

  11. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    SciTech Connect

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work.

  12. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  13. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. PMID:24863219

  14. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies.

  15. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    SciTech Connect

    Allen, Ray; Eldredge, Lisa; DeLuca, Charles; Mihalik, Patrick; Maldonado, Julio; Lord, David L.; Rudeen, David Keith; Berndsen, Gerard

    2010-05-01

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  16. Monte Carlo Simulation Methods for Computing Liquid-Vapor Saturation Properties of Model Systems.

    PubMed

    Rane, Kaustubh S; Murali, Sabharish; Errington, Jeffrey R

    2013-06-11

    We discuss molecular simulation methods for computing the phase coexistence properties of complex molecules. The strategies that we pursue are histogram-based approaches in which thermodynamic properties are related to relevant probability distributions. We first outline grand canonical and isothermal-isobaric methods for directly locating a saturation point at a given temperature. In the former case, we show how reservoir and growth expanded ensemble techniques can be used to facilitate the creation and insertion of complex molecules within a grand canonical simulation. We next focus on grand canonical and isothermal-isobaric temperature expanded ensemble techniques that provide a means to trace saturation lines over a wide range of temperatures. To demonstrate the utility of the strategies introduced here, we present phase coexistence data for a series of molecules, including n-octane, cyclohexane, water, 1-propanol, squalane, and pyrene. Overall, we find the direct grand canonical approach to be the most effective means to directly locate a coexistence point at a given temperature and the isothermal-isobaric temperature expanded ensemble scheme to provide the most effective means to follow a saturation curve to low temperature.

  17. Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Moura, M.; Fiorentino, E.-A.; Mâløy, K. J.; Schäfer, G.; Toussaint, R.

    2015-11-01

    In this paper, we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the system's boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.

  18. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  19. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected

  20. International Equations for the Saturation Properties of Ordinary Water Substance

    NASA Astrophysics Data System (ADS)

    Saul, A.; Wagner, W.

    1987-10-01

    Consistent with the latest experimental data and the recent internationally recommended values for the critical parameters, we have developed compact and accurate representative equations for the following properties on the saturation line of ordinary (light) water substance: vapor pressure, density, enthalpy and entropy of both the saturated liquid and the saturated vapor. These equations form the basis of a ``Supplementary Release on Saturation Properties of Ordinary Water Substance'' issued by the International Association for the Properties of Steam (IAPS).

  1. Vapor pressures of the fluorinated telomer alcohols--limitations of estimation methods.

    PubMed

    Stock, Naomi L; Ellis, David A; Deleebeeck, Lisa; Muir, Derek C G; Mabury, Scott A

    2004-03-15

    The influence of the unique, physical properties of poly- and perfluorinated chemicals on vapor pressure was investigated. Vapor pressures of a suite of fluorinated telomer alcohols (FTOHs) (CF3(CF2)nCH2CH2OH, where n = 3, 5, 7, or 9) were measured using the boiling point method and ranged from 144 to 992 Pa. Comparison of experimental and literature values indicate that perfluorocarbons (CF3(CF2)nCF3, where n = 0-6) and fluorinated telomer alcohols have vapor pressures equal to or greater than that of their hydrogen analogues. These chemically counterintuitive results can be explained by the unique geometry of poly- and perfluorinated chemicals--in particular the stiff, helical perfluorinated chain and the significant intramolecular hydrogen bonding of the FTOHs. The majority of models investigated for the estimation of vapor pressure did not compensate for this unique geometry and consistently underpredicted the vapor pressures of the FTOHs. Calculation of partitioning constants using both experimental and estimated vapor pressures indicate that both the Antoine and Modified Grain models, and to a lesser degree the Mackay model, are insufficiently accurate for estimating the vapor pressures of the FTOHs, particularly the longer chain FTOHs. Future models should consider parameters such as geometry, strength, and location of intramolecular hydrogen bonds and otherfunction groups in the molecule in order to improve vapor pressure estimation accuracy. It appears likely that the unique molecular geometry of the FTOHs influences not only their vapor pressure but also other physical properties and hence environmental fate and dissemination.

  2. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    PubMed Central

    Berg, Robert F.

    2016-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures are presented for naphthalene, ferrocene, diethyl phthalate, and TEMAH (tetrakisethylmethylaminohafnium). Also presented are data for the temperature-dependent decomposition rate of TEMAH. PMID:27274567

  3. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  4. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your...

  5. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your...

  6. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your...

  7. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your...

  8. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  9. New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure.

    PubMed

    Fullerton, G D; Zimmerman, R J; Cantu, C; Cameron, I L

    1992-12-01

    New empirical expressions for osmotic pressure, freezing point depression, and vapor pressure are proposed based on the concepts of volume occupancy and (or) hydration force. These expressions are in general inverse relationships in comparison to the standard ideal expressions for the same properties. The slopes of the new equations are determined by the molecular weight of the solute and known constants. The accuracy and precision of the molecular weights calculated from the slope are identical and approximately 1% for the experiments reported here. The nonideality of all three colligative expressions is described by a dimensionless constant called the solute-solvent interaction parameter I. The results on sucrose have the same I = 0.26 for all three solution properties. The nonideality parameter I increased from 0.26 on sucrose to 1.7 on hemoglobin to successfully describe the well-known nonideal response of macromolecules.

  10. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  11. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Suuberg, E.M.

    1994-06-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. Sophisticated general correlative approaches are slowly being developed, based upon group contribution methods, or based upon some key functional features of the molecules. These are as yet difficult to apply to coal tars. The detailed group contribution methods, in which fairly precise structural information is needed, do not lend themselves well for application to very complex, poorly characterized coal tars. The methods based upon more global types of characterizations have not yet dealt much with the question of oxygenated functional groups. In short, only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion.

  12. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  13. Accurate determination of the vapor pressure of potassium using optical absorption

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Wang, C. C.

    1983-01-01

    The vapor pressure of potassium has been measured in absorption using a CW tunable laser and calibrated against the accurate radiative lifetime of the 4s-4p doublet of potassium. An accurate value of 20,850 + or - 30 cal/mol for the heat of vaporization (from the liquid phase) at the melting point was determined.

  14. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines. PMID:26505487

  15. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines.

  16. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  17. Liquid-propellant droplet vaporization and combustion in high pressure environments

    NASA Technical Reports Server (NTRS)

    Yang, Vigor

    1991-01-01

    In order to correct the deficiencies of existing models for high-pressure droplet vaporization and combustion, a fundamental investigation into this matter is essential. The objective of this research are: (1) to acquire basic understanding of physical and chemical mechanisms involved in the vaporization and combustion of isolated liquid-propellant droplets in both stagnant and forced-convective environments; (2) to establish droplet vaporization and combustion correlations for the study of liquid-propellant spray combustion and two-phase flowfields in rocket motors; and (3) to investigate the dynamic responses of multicomponent droplet vaporization and combustion to ambient flow oscillations.

  18. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  19. Capillary pressuresaturation relationships for gas shales measured using a water activity meter

    DOE PAGES

    Donnelly, B.; Perfect, E.; McKay, L. D.; Lemiszki, P. J.; DiStefano, V. H.; Anovitz, L. M.; McFarlane, J.; Hale, R. E.; Cheng, C. -L.

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressuresaturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressuresaturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R2 = 0.93), indicating this may be a viable method for parameterizing capillary pressuresaturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and

  20. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study.

  1. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  2. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  3. Determination of vapor pressure-temperature relationships of current-use pesticides and transformation products.

    PubMed

    Goel, Anubha; McConnell, Laura L; Torrents, Alba

    2007-05-01

    Sub-cooled liquid vapor pressures (P(L)(0)) of current-use organochlorine and organophosphate pesticides (chlorothalonil, chlorpyrifos methyl, diazinon, fipronil) and selected transformation products (chlorpyrifos oxon, heptachlor epoxide, oxychlordane, 3,5,6-trichloro-2-pyridinol) were determined at multiple temperatures using the gas chromatography retention time technique. Results were utilized to determine vapor pressure-temperature relationships and to calculate enthalpies of vaporization (DeltaH(vap)). While results for chlorothalonil and diazinon were comparable with published values, the measured value for fipronil (1.82 x 10(-6) Pa) is almost an order of magnitude higher than the reported literature value (3.7 x 10(-7) Pa). The availability of vapor pressure temperature relationships for these chemicals will aid in pesticide risk assessment development and improve the effectiveness of mitigation and remediation efforts.

  4. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  5. EVAPORISATION: a new vapor pressure model taking into account neighbour effects

    NASA Astrophysics Data System (ADS)

    Compernolle, Steven; Ceulemans, Karl; Muller, Jean-Francois

    2010-05-01

    Secondary organic aerosol (SOA) is a complex mixture of water and organic molecules. The vapor pressure of an organic molecule is one of the most important properties regulating its partitioning to the particulate phase, but as it is unknown for most- typically polyfunctional- organic molecules in Biogenic SOA it has to be estimated by a vapor pressure model fitted to experimental data. While a lot of vapor pressure data is generally available for hydrocarbons and monofunctional compounds, much less data are available for bifunctional compounds. For compounds with more functional groups, data is sparse and relatively inaccurate. We have developed a vapor pressure model, EVAPORISATION (Estimation of VApor Pressure of ORganics, Including effects Such As The Interaction of Neighbours), starting from the group-contribution principle: each functional group gives a contribution to the logarithm of the vapor pressure. On top of that, second order effects -chemically rationalized- are added due to carbon skeleton, nonadditivity of functional groups and -for neighbouring functional groups- intramolecular interactions . These effects can be very significant: eg. when two carbonyl groups are neighbouring, the vapor pressure is about 1 order of magnitude higher than when they are nonneighbouring. Due to the lack of data, some of these effects must be estimated by analogy. The method is compared to several other vapor pressure estimation techniques, such as SIMPOL (Pankow et al. 2008), SPARC (Hilal et al. 2003), and the methods of Myrdal and Yalkowsky (1997), Capouet and Muller (2006), Nannoolal et al. (2008), Moller et al. (2008). We extended some of these methods as they are not able to treat hydroperoxides, peracids, peroxy acyl nitrates. With our model BOREAM, outlined in a previous publication (Capouet et al. 2008), several smog chamber experiments are simulated, and the impact of vapor pressure method choice is elucidated. It turns out that the choice of the vapor

  6. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  7. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  8. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  9. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  10. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  11. Reduction in the Vapor Pressure in Condensation on Cold Droplets of a Liquid

    NASA Astrophysics Data System (ADS)

    Bochkareva, E. M.; Nemtsev, V. A.; Sorokin, V. V.; Terekhov, V. V.; Terekhov, V. I.

    2016-05-01

    A physicomathematical model of the process of depressurization in a pure saturated and superheated vapor due to the injection of monodisperse cold droplets of a liquid has been developed. A cellular model has been developed that is based on solving the equation of heat conduction in a liquid phase and on the integral method for a gas phase in a spherically symmetric one-dimensional formulation. Numerical investigation has been carried out of the influence of the size and concentration of the droplets and of the initial parameters of the steam on the dynamics of depressurization during the vapor condensation on the droplets.

  12. Ice nucleation of Snomax® particles below water vapor saturation: immersion freezing in concentrated solution droplets

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kanji, Zamin A.; Boose, Yvonne; Beyer, Alexander; Henning, Silvia; Augustin-Bauditz, Stefanie

    2015-04-01

    Heterogeneous ice nucleation has received an increasing amount of interest in the past years, as it initiates the ice phase in mixed phase clouds (MPCs) and, to some extent, also in cirrus clouds. The presence of ice influences cloud radiative properties and, for mixed phase clouds, also the formation of precipitation. Immersion freezing is thought to be the most important mechanism through which ice formation could take place in MPCs. Here, we examine the ice nucleation activity of biological ice nucleating particles (INP) derived from bacteria, namely, particles generated from Snomax® suspensions, both above and below water vapor saturation. During a measurement campaign in Leipzig, ice nucleation measurements were conducted with PINC (Portable Ice Nucleus Counter, Chou et al., 2011) and LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014a). Immersion freezing measurements from PINC and LACIS were in agreement in the temperature regime for which both instruments operate reliably. Here, we will show that measurements done below water vapour saturation and above the deliquescence relative humidity of the Snomax® particles follow what would be expected for immersion freezing in concentrated solutions, similar to what was suggested for coated kaolinite particles in Wex et al. (2014b). Additionally, some measurements reported in the literature that were done in the water vapour sub-saturated regime will be evaluated based on the assumption made above, showing that at least some of the ice nucleation which previously was ascribed to deposition ice nucleation rather follows the behavior of immersion freezing in concentrated solutions. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725-4738, doi:10.5194/acp-11-4725-2011. Wex, H. et al. (2014a) Intercomparing different devices

  13. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  14. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  15. Assessment of the accuracy of pharmacy students' compounded solutions using vapor pressure osmometry.

    PubMed

    Kolling, William M; McPherson, Timothy B

    2013-04-12

    OBJECTIVE. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students' compounding skills. DESIGN. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. ASSESSMENT. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. CONCLUSIONS. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians.

  16. Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport

    NASA Astrophysics Data System (ADS)

    Babu, Eadi Sunil; Kim, Sungjin; Song, Jung-Hoon; Hong, Soon-Ku

    2016-08-01

    The effect of growth pressure on the morphology of the ZnO nanostructures in chemical vapor transport by using Zn powder and oxygen as source materials has been investigated. Highly uniform aligned ZnO nanorods or multifaceted tripod structures were grown depending on the growth pressure. The mechanism governing the morphology change was explained by the relative concentration of Zn vapor and supersaturation based on experimental observations. It was concluded that heterogeneous nucleation on the substrate is enhanced at low growth pressure, while homogeneous nucleation from vapor phase is enhanced at high growth pressure. The difference resulted in different morphology of ZnO nanostructures. ZnO nanorods grown at optimized condition were used for the fabrication of gas sensor for the detection of H2 gas.

  17. Assessment of the Accuracy of Pharmacy Students’ Compounded Solutions Using Vapor Pressure Osmometry

    PubMed Central

    McPherson, Timothy B.

    2013-01-01

    Objective. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students’ compounding skills. Design. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. Assessment. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. Conclusions. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians. PMID:23610476

  18. Sulfide saturation of basalt and andesite melts at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Wendlandt, R. F.

    1982-01-01

    When the sulfur content of an Fe-bearing magma exceeds the saturation limit for the bulk composition, an immiscible iron sulfide melt fraction separates. For an understanding of the geochemistry of sulfur-bearing magmatic systems, more information is needed regarding the solubility of metal sulfide in silicate melt at its source and the solubility changes as a function of changing intensive and extensive variables. In the present investigation, the sulfur saturation surface is determined for the pressure range from 12.5 to 30 kbar and the temperature range from 1300 to 1460 C for three silicate melt compositions representing a range of SiO2 and FeO compositions.

  19. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions.

  20. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. PMID:27196963

  1. Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    NASA Astrophysics Data System (ADS)

    Huisman, A. J.; Krieger, U. K.; Zuend, A.; Marcolli, C.; Peter, T.

    2013-07-01

    The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-methylmalonic (isosuccinic) acid, 2-hydroxymalonic (tartronic) acid, 2-methylglutaric acid, 3-hydroxy-3-carboxy-glutaric (citric) acid and DL-2,3-dihydroxysuccinic (DL-tartaric) acid, which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity that was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010). This strongly suggests that empirical correction terms in a recent vapor pressure estimation model to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies.

  2. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method

    PubMed Central

    Suuberg, Eric M.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of 364 K to 454 K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the 5 PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data. PMID:22021935

  3. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2011-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of 364 K to 454 K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the 5 PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  4. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  5. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  6. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    SciTech Connect

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  7. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    PubMed

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness <1 μm) and a measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature. PMID:27425628

  8. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    PubMed

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness <1 μm) and a measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature.

  9. Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits of rainfall

    SciTech Connect

    Haneberg, W.C. )

    1991-11-01

    Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.

  10. Effects of fractional wettability on capillary pressure saturation relative permeability relations of two-fluid systems

    NASA Astrophysics Data System (ADS)

    Hwang, Sang Il; Lee, Kwang Pyo; Lee, Dong Soo; Powers, Susan E.

    2006-02-01

    Capillary pressure ( Pc)-saturation ( S)-relative permeability ( kr) relationships must be quantified to accurately predict non-aqueous phase liquid (NAPL) distribution in the subsurface. Several experimental techniques are presented here for two-fluid Pc- S- kr relationships for various saturation paths to better define the effect of fractional wettability on these relationships. During the primary drainage path of the Pc- S curves, the air-water system showed no distinct trend as a function of the fraction of sand treated by organosilane (S) to render it non-water wetting. In a NAPL-water system, however, a consistent decrease of capillary pressure with increase of the fraction of non-water wetting sands was observed. The much lower contact angle for air-water (a-w) system may result in the observed insensitivity of the a-w Pc- S curves to fractional wettability, at least for the PD pathway. For the main imbibition path of NAPL-water system, capillary pressure decreased as the fraction of the S component increased, requiring forced imbibition (negative capillary pressures) for a certain range of saturations. Systems with an increasing percentage of the S component also exhibited a higher water kr and lower NAPL or air kr at a given saturation for the primary drainage and main imbibition paths in both air-water and NAPL-water systems. The increase of water kr with increase of the fraction of the S component can be explained by the ability of water to occupy larger and highly conductive pores in such a system. Experimental kr- S data for the primary drainage path of NAPL-water system presented here were used to test the Bradford et al. [Bradford SA, Abriola LM, Leij FJ. Wettability effects on two- and three-fluid relative permeabilities. J Contam Hydrol 1997;28:171-91] model and the modified Mualem model for estimating the kr- S curves from measured Pc- S data as a function of fractional wettability. Both models predicted significantly less variation in the kr- S

  11. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  12. Pressure-coupled vaporization and combustion responses of liquid-fuel droplets in high-pressure environments

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Shuen, J. S.; Hsiao, C. C.

    1991-01-01

    The dynamic responses of liquid-fuel droplet vaporization and combustion to ambient pressure oscillations are examined. The analysis is based on the complete sets of conservation equations for both gas and liquid phases, and accommodates detailed treatments of finite-rate chemical kinetics and variable properties. With a full account of thermodynamic phase equilibrium at the droplet surface, the model enables a systematic examination of the effects of ambient flow conditions on the droplet behavior. The responses of hydrocarbon fuel droplets in both sub- and super-critical environments are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  13. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  14. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    SciTech Connect

    Factorovich, Matías H.; Scherlis, Damián A.

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  15. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems.

    PubMed

    Factorovich, Matías H; Molinero, Valeria; Scherlis, Damián A

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  16. Preconcentrator with high volume chiller for high vapor pressure particle detection

    SciTech Connect

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  17. Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules.

    PubMed

    Czilwik, G; Schwarz, I; Keller, M; Wadle, S; Zehnle, S; von Stetten, F; Mark, D; Zengerle, R; Paust, N

    2015-02-21

    Microfluidic systems for polymerase chain reaction (PCR) should be fully closed to avoid vapor loss and to exclude the risk of contaminating the laboratory environment. In closed systems however, the high temperatures of up to 95 °C associated with PCR cause high overpressures up to 100 kPa, dominated by the increase of vapor partial pressure upon evaporation. Such high overpressures pose challenges to the mechanical stability of microfluidic chips as well as to the liquid handling in integrated sample-to-answer systems. In this work, we drastically reduce the pressure increase in fully closed PCR systems by integrating a microchannel that serves as a vapor-diffusion barrier (VDB), separating the liquid-filled PCR chamber from an auxiliary air chamber. In such configurations, propagation of vapor from the PCR chamber into the auxiliary air chamber and as a consequence the increase of pressure is limited by the slow diffusion process of vapor through the VDB. At temperature increase from 23 °C to 95 °C, we demonstrate the reduction of overpressure from more than 80 kPa without the VDB to only 35 kPa with the VDB. We further demonstrate proper function of VDB and its easy integration with downstream processes for PCR based nucleic acid amplification within centrifugal microfluidics. Without integration of the VDB, malfunction due to pressure-induced delamination of the microfluidic chip occurred.

  18. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  19. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  20. Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration.

    PubMed

    Adelman, Jonathan D; Ewers, Brent E; Mackay, D Scott

    2008-04-01

    To quantify the relationship between temporal and spatial variation in tree transpiration, we measured sap flow in 129 trees with constant-heat sap flow sensors in a subalpine forest in southern Wyoming, USA. The forest stand was located along a soil water gradient from a stream side to near the top of a ridge. The stand was dominated by Pinus contorta Dougl. ex Loud. with Picea engelmannii Parry ex Engelm and Abies lasiocarpa (Hook.) Nutt. present near the stream and scattered individuals of Populus tremuloides Michx. throughout the stand. We used a cyclic sampling design that maximized spatial information with a minimum number of samples for semivariogram analyses. All species exhibited previously established responses to environmental variables in which the dominant driver was a saturating response to vapor pressure deficit (D). This response to D is predictable from tree hydraulic theory in which stomatal conductance declines as D increases to prevent excessive cavitation. The degree to which stomatal conductance declines with D is dependent on both species and individual tree physiology and increases the variability in transpiration as D increases. We quantified this variability spatially by calculating the spatial autocorrelation within 0.2-kPa D bins. Across 11 bins of D, spatial autocorrelation in individual tree transpiration was inversely correlated to D and dropped from 45 to 20 m. Spatial autocorrelation was much less for transpiration per unit leaf area and not significant for transpiration per unit sapwood area suggesting that spatial autocorrelation within a particular D bin could be explained by tree size. Future research should focus on the mechanisms underlying tree size spatial variability, and the potentially broad applicability of the inverse relationship between D and spatial autocorrelation in tree transpiration.

  1. The design, construction and three dimensional modeling of a high pressure organometallic chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    McCall, Sonya Denise

    Two high pressure reactors have been designed, built and tested, in order to extend Organometallic Chemical Vapor Deposition (OMCVD) to materials that exhibit large thermal decomposition pressures at their optimum growth temperature. The Differentially Pressure Controlled (DPC) Reactor System was designed and built for use at pressures ≤10 atm. A second generation reactor, the Compact Hard Shell (CHS) Reactor was built in order to extend pressures ≤100 atm. A physico-chemical model of the High Pressure Organometallic Chemical Vapor Deposition (HPOMCVD) process that describes three dimensional transport phenomena as well as gas-phase and surface reactions underlying the growth of compound semiconductors is presented. A reduced-order model of the Organometallic Chemical Vapor Deposition of InN from trimethylindium and ammonia at elevated pressures has been developed and tested. The model describes the flow dynamics coupled to chemical reactions and transport in the flow channel of the Compact Hard Shell Reactor, as a function of substrate temperature, total pressure and centerline flow velocity.

  2. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  3. Communication: Dynamical and structural analyses of solid hydrogen under vapor pressure

    SciTech Connect

    Hyeon-Deuk, Kim; Ando, Koji

    2015-11-07

    Nuclear quantum effects play a dominant role in determining the phase diagram of H{sub 2}. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H{sub 2} under vapor pressure, demonstrating the difference from liquid and high-pressure solid H{sub 2}. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H{sub 2} molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H–H vibrational frequencies as well as H–H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H{sub 2} solid will be useful in monitoring thermodynamic states of condensed hydrogens.

  4. Vapor pressure predictions of multi-functional oxygen-containing organic compounds with COSMO-RS

    NASA Astrophysics Data System (ADS)

    Schröder, Bernd; Fulem, Michal; Martins, Mónia A. R.

    2016-05-01

    Given the recent interest in multi-functional oxygen-containing organic compounds and the need of accurate and consistent data, a complete review and systematic analysis of available experimental vapor pressure data, as published in the original work of (Asher et al., 2002), was performed with the ThermoData Engine (TDE). A revised set of critical evaluated vapor pressure data, including their uncertainties based on the principles of dynamic data evaluation, is here recommended for a total of 58 compounds. COSMO-RS was further used for vapor pressure estimations for these compounds. The quality of the results is discussed in terms of the chemical functionalities of the molecules. To illustrate the partition behaviour of the title compounds under ambient conditions, a simple comparison of volatility binning between estimates and measurements was performed. Since the encountered vapor pressures are rather high, with respect to pressure range of semi-volatile organic compounds (SVOC), a large fraction is expected to stay in the atmosphere rather than to form secondary organic aerosol.

  5. Communication: Dynamical and structural analyses of solid hydrogen under vapor pressure.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2015-11-01

    Nuclear quantum effects play a dominant role in determining the phase diagram of H2. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H2 under vapor pressure, demonstrating the difference from liquid and high-pressure solid H2. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H2 molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H-H vibrational frequencies as well as H-H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H2 solid will be useful in monitoring thermodynamic states of condensed hydrogens.

  6. Scaling Capillary Pressure Head - Saturation Relationships for Saprolite: Correction for Uncertainty Introduced by Pressure Cell Measurements on Tall Columns

    NASA Astrophysics Data System (ADS)

    Perfect, E.; McKay, L.; Driese, S.; Dane, J.; Kammerer, G.

    2002-12-01

    Dense non-aqueous phase liquids (DNAPL's) are important contaminants at many hazardous waste disposal sites. Relatively little information is available on DNAPL behavior in heterogeneous porous media such as fractured saprolite. We measured air-water and FluorinertTM (a non-toxic DNAPL surrogate)-water capillary pressure head (hc)-saturation (S) relationships close to saturation on an 18-cm long by 10-cm diameter undisturbed column of fractured shale saprolite. As hc increased, the pore volume invaded increased gradually rather than stepwise, indicating a range of fracture sizes with no clear division between pores in the fine-grained matrix and the fracture network. Microscopic examination of the pore structure in thin-sections of the saprolite supported this interpretation of the data. A fractal model, equivalent to the empirical Brooks and Corey model with zero residual saturation, was used to parameterize the S(hc) curves. The best-fit parameters were 19.54 and 30.10 cm for the displacement pressure head (hd) and 2.971 and 2.956 for the mass fractal dimension (D), for the air-water and FluorinertTM-water curves respectively. Parameters corrected for the hydrostatic fluid distribution within the column were obtained using the approach of Liu and Dane (1995). The corresponding corrected parameters were 26.45 and 16.23 cm for hc, and 2.966 and 2.966 for D. The correction procedure had a large impact on the form of the FluorinertTM-water curve, and relatively little impact on the form of the air-water curve. The uncorrected and corrected parameters for the air-water curve were then used to predict the corrected FluorinertTM-water curve using Leverett's function. Both sets of parameters produced predicted curves that explained over 99% of the variation in the FluorinertTM-water curve, with the corrected parameters producing a slightly better 1:1 relationship than the uncorrected parameters. Our results indicate that measured S(hc) curves for DNAPL-water systems are

  7. Vapor pressure measurements by mass loss transpiration method with a thermogravimetric apparatus.

    PubMed

    Viswanathan, R; Narasimhan, T S Lakshmi; Nalini, S

    2009-06-18

    Thermobalances are used for equilibrium vapor pressure measurements based on both effusion and transpiration methods. In the case of the transpiration method, however, despite the numerous advantages a thermogravimetric apparatus can offer, it is not as widely used as is the conventional apparatus. In this paper, the difference that can exist in the vapor phase compositions in an effusion cell and in a transpiration cell is shown first with two examples. Subsequently, how a commercial thermobalance was utilized to perform transpiration experiments that conform to the basic principle of the transpiration method and yield vapor pressures consistent with the Knudsen effusion mass spectrometric method is described. The three systems investigated are CsI(s), TeO(2)(s), and Te(s), each known to vaporize congruently, but in different manner. A critical analysis was performed on the information available in the literature on transpiration measurements using thermogravimetric apparatuses, and the salient findings are discussed. Smaller plateau regions than with conventional transpiration apparatuses and the lack of evidence for perfect transpiration conditions in some transpiration thermogravimetric investigations are shown with a few examples. A recommendation is made for the use of the rate of mass loss versus flow rate plot to ascertain that the usual apparent vapor pressure versus flow rate plot corresponds to a meaningful transpiration experiment.

  8. Measurement of partial vapor pressure of ammonia over acid ammonium sulfate solutions by an integral method

    NASA Astrophysics Data System (ADS)

    Koutrakis, P.; Aurian-BlǎJeni, B.

    1993-02-01

    We present a simple, integral, passive method for measuring partial vapor pressure. Integral methods are useful tools when dealing with very low concentrations because collection over extended periods increases the analytical sensitivity. Passive methods have the advantage of not introducing constraints external to the system. The principle of the method used here is to selectively react the substance in the atmosphere over a solution with an immobilized coating on an appropriate support. The reaction product is not volatile, but is soluble and can be extracted in an appropriate solvent and analyzed. The method has been applied to measuring the vapor pressure of ammonia over aqueous solutions. The vapor pressure over ammonium sulfate solutions depends on the acidity of the solutions as well as on the salt concentration. The dependence can be explained with a simple model. Furthermore, using the same model, we calculated the ammonia vapor pressure above different ammonium sulfate/sulfuric acid aqueous solutions as a function of sulfate molarity and percentage of sulfuric acid. The results from the calculations suggest that for ambient ammonia concentrations less than 10 ppb, acid sulfate aerosols are not completely neutralized.

  9. Vapor pressure deficit effects on leaf area expansion and transportation of soybean subjected to soil drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of leaf-to-air vapor pressure difference (VPD) and soil water deficit on transpiration rate (TR) of plants are well understood but their effects on plant leaf area expansion (PLAE) are less defined. Both PLAE and TR are unaffected by soil drying until the fraction transpirable soil water (FT...

  10. Soybean leaf expansion subjected to high and low atmospheric vapor pressure deficits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vapor pressure deficit (VPD) is considered an important environmental factor that might affect leaf expansion and TR in plants. Two slow-wilting soybean genotypes PI 416937 and PI 471938 along with commercial cultivar Hutcheson were subjected to low (1.2 – 1.6 kPa) and high VPD (2.8 – 3 kPa) enviro...

  11. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111...

  12. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111...

  13. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111...

  14. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111...

  15. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111...

  16. Impact of Vapor Pressure Deficit on the Performance of Bemisia tabaci: Adult, Nymphal, and Egg Survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B-biotype sweetpotato whitefly, Bemisia tabaci, is a serious global pest with varying population dynamics among different ecosystems. An experiment was conducted to assess the impact of vapor pressure deficit (VPD) on the survival of adults, nymphs and eggs of B. tabaci. The insects were reared...

  17. Vapor pressures and thermodynamics of oxygen-containing polycyclic aromatic hydrocarbons measured using Knudsen effusion

    SciTech Connect

    Goldfarb, J.L.; Suuberg, E.M.

    2008-06-15

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl, and nitro groups, specifically 2-nitrofluorene, 9-fluorenecarboxylic acid, 2-fluorenecarboxaldehyde, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 9-anthraldehyde, 1-nitropyrene, 1-pyrenecarboxaldehyde, and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 g/mol, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421 K. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, nonoxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of -CHO, -COOH, and -NO{sub 2} groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs.

  18. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.

    PubMed

    Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj

    2011-04-01

    Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration.

  19. Quasi-static vapor pressure measurements on reactive systems in inert atmosphere box

    NASA Technical Reports Server (NTRS)

    Fischer, A. K.

    1968-01-01

    Apparatus makes vapor pressure measurements on air-sensitive systems in an inert atmosphere glove box. Once the apparatus is loaded with the sample and all connections made, all measuring operations may be performed outside the box. The apparatus is a single-tube adaptation of the double-tube quasi-static technique.

  20. Vapor Pressures and Thermodynamics of Oxygen-Containing Polycyclic Aromatic Hydrocarbons Measured Using Knudsen Effusion

    PubMed Central

    Goldfarb, Jillian L.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl and nitro groups, specifically: 2-nitrofluorene; 9-fluorenecarboxylic acid; 2-fluorenecarboxaldehyde; 2-anthracenecarboxylic acid; 9-anthracenecarboxylic acid; 9-anthraldehyde; 1-nitropyrene; 1-pyrenecarboxaldehyde and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 grams per mole, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, non-oxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of –CHO,–COOH, and –NO2 groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs. PMID:18220445

  1. Vapor pressures and thermodynamics of oxygen-containing polycyclic aromatic hydrocarbons measured using Knudsen effusion.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2008-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl, and nitro groups, specifically 2-nitrofluorene, 9-fluorenecarboxylic acid, 2-fluorenecarboxaldehyde, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 9-anthraldehyde, 1-nitropyrene, 1-pyrenecarboxaldehyde, and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 g/mol, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421 K. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, nonoxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of -CHO, -COOH, and -NO(2) groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs. PMID:18220445

  2. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  3. SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Asher, W. E.

    2007-08-01

    The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure pLo (atm) and enthalpy of vaporization ΔHvap (kJ mol-1) of organic compounds as functions of temperature (T). For each compound i, the method assumes log10pL,io(T)=Σkνk,ibk(T) where νk,i is the number of groups of type k, and bk(T) is the contribution to log10 pL,io(T) by each group of type k. A zeroeth group is included that uses b0(T) with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C-C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk(T) is assumed to follow b(T)=B1/T+B2+B3T+B4lnT. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions pL,io=fi(T) are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict pLo values is examined using a test set of 161 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σFIT is defined as the average over all points of the absolute value of the difference between experimental and predicted values of log10pL,io(T). After consideration of σFIT for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, σFIT=0.34: on average, pL,io(T) values are predicted to within a factor of 2. Because d(log10pL,io(T))/d(1/T) is related to the enthalpy of vaporization ΔHvap,i, the fitted B provide predictions of

  4. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Asher, W. E.

    2008-05-01

    The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm) and enthalpy of vaporization Δ Hvap (kJ mol-1) of organic compounds as functions of temperature (T). For each compound i, the method assumes log10poL,i (T)=∑kνk,ibk(T) where νk,i is the number of groups of type k, and bk (T) is the contribution to log10poL,i (T) by each group of type k. A zeroeth group is included that uses b0 (T) with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C-C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T) is assumed to follow b(T)=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T) are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σFIT is defined as the average over all points of the absolute value of the difference between experimental and predicted values of log10poL,i (T). After consideration of σFIT for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, σFIT=0.34: on average, poL,i (T) values are predicted to within a factor of 2. Because d(log10 poL,i (T))d(1/T) is related to the enthalpy of vaporization ΔHvap,i, the fitted B provide

  5. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  6. Nuclear Susceptibility of Normal Liquid ^3He at Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Mikhalchuk, A. G.; White, K. S.; Bozler, H. M.; Gould, C. M.

    2001-03-01

    The authoritative reference for the nuclear susceptibility of liquid ^3He is work done 30 years ago at Duke University.(H. Ramm, P. Pedroni, J.R. Thompson, and H. Meyer, J. Low Temp. Phys.) 2, 539 (1970). However, recent work in Grenoble(S. Triqueneaux, E. Collin, R. Harakaly, C. Bäuerle, Yu.M. Bunkov, and H. Godfrin, QFS 2000 Proceedings (to be published).) and USC(A.G. Mikhalchuk, K.S. White, H.M. Bozler, and C.M. Gould, QFS 2000 Proceedings (to be published).) has called into question the precise temperature dependence of the liquid's susceptibility and its limiting value at zero temperature. This latter quantity directly affects the first antisymmetric Landau parameter of the normal Fermi liquid. We present here our conclusions regarding this problem.

  7. Thermodynamic properties and vapor pressures of polar fluids from a four-parameter corresponding-states method

    SciTech Connect

    Wilding, W.V.; Johnson, J.K.; Rowley, R.L.

    1987-11-01

    A recently proposed extended Lee-Kesler corresponding-states method (ELK) for polar fluids which accurately predicts compressibility factors and departure functions is considered. Tables of polar deviation functions have been generated and values of the shape/size and polar parameters for 52 polar fluids have been calculated, allowing the method to be used for quick hand calculation in addition to the previous, more accurate, computer applications. Additionally, vapor pressures of 44 pure polar fluids were computed using the full version of the ELK and the equality of the Gibbs free energy criterion for phase equilibrium. An ELK vapor pressure correlation is proposed which is essentially numerically equivalent to, but computationally simpler than, the former method. Computed vapor pressures agree with experimental values as well or better than other vapor pressure equations designed exclusively for vapor pressure prediction of polar fluids.

  8. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  9. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-08-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult's law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult's Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa.

  10. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2013-01-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult’s law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult’s law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult’s Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa. PMID:23807818

  11. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    SciTech Connect

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  12. The vapor pressure of 1, 1, 1, 2-tetrafluoroethane (R134a) and chlorodifluoromethane (R22)

    SciTech Connect

    Goodwin, A.R.H.; Defibaugh, D.R.; Weber, L.A. )

    1992-09-01

    The authors measured the vapor pressure of chlorodifluoromethane (commonly known as R22) at temperatures between 217.1 and 248.5 K and of 1,1,1,2-tetrafluoroethane (commonly known as R134a) in the temperature range 214.4 to 264.7 K using a comparative ebulliometer. For 1,1,1,2-tetrafluoroethane at pressures between 220.8 and 1017.7 kPa (corresponding to temperatures in the range 265.6 to 313.2 K), additional measurements were made with a Burnett apparatus. The results have been combined for 1, 1, 1, 2-tetrafluoroethane with those already published from this laboratory at higher pressures to obtain a smoothing equation for the vapor pressure from 215 K to the critical temperature. For chlorodifluoromethane the results have been combined with certain published results to provide an equation for the vapor pressure at temperatures from 217 K to the critical temperature. 58 refs., 6 figs., 2 tabs.

  13. The vapor pressures of supercooled NHO3/H2O solutions. [in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Hanson, David R.

    1990-01-01

    A procedure utilizing the Gibbs-Duhem relation is used to extrapolate vapor pressures of supercooled HNO3 mixtures to 190 K. Values of A and B from the equation logP = A - B/T are presented for solutions between 0.20 and 0.25 mole fraction HNO3. In the stratosphere, if sufficient HNO3 vapor is present because it has not come into equilibrium with the nitric acid trihydrate, supercooled nitric acid solutions could condense at temperatures up to 1.5 + or - 0.8 K above the ice point.

  14. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  15. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  16. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  17. High rate epitaxy of silicon thick films by medium pressure plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kambara, M.; Yagi, H.; Sawayanagi, M.; Yoshida, T.

    2006-04-01

    Homoepitaxial silicon thick films have been produced by medium pressure plasma chemical vapor deposition at rates as fast as 60 nm/s and at a temperature of around 700 °C, with a silane gas partial pressure of 4 mTorr. The continuous transition of the film structures from agglomerated to faceted columnar and to epitaxial planar structure was observed with an increase in the plasma power. The calorimetric analysis during deposition has also confirmed that the thermal boundary layer thickness between the plasma and substrate reduced with the increasing power and became comparable to the mean free path of the vapors when epitaxy was achieved at high rates. In addition, the rate for epitaxial growth was observed to increase linearly with silane gas partial pressure. These potentially indicate that less coagulated silicon atom clusters formed in the reduced boundary thickness have contributed effectively to the high rate epitaxial growth.

  18. Non-invasive Positive Pressure Ventilation during Sleep at 3800m: relationship to Acute Mountain Sickness and sleeping oxyhemoglobin saturation

    PubMed Central

    Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N

    2014-01-01

    Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046

  19. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    NASA Technical Reports Server (NTRS)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  20. Observations on vapor pressure in SPR caverns : sources.

    SciTech Connect

    Munson, Darrell Eugene

    2010-05-01

    considered through computations using the Multimechanism Deformation Coupled Fracture (MDCF) model, suggesting a relative minor, but potentially significant, contribution to the regain process. Apparently, gains in gas content can be generated from the oil itself during storage because the salt dome has been heated by the geothermal gradient of the earth. The heated domal salt transfers heat to the oil stored in the caverns and thereby increases the gas released by the volatile components and raises the boiling point pressure of the oil. The process is essentially a variation on the fractionation of oil, where each of the discrete components of the oil have a discrete temperature range over which that component can be volatized and removed from the remaining components. The most volatile components are methane and ethane, the shortest chain hydrocarbons. Since this fractionation is a fundamental aspect of oil behavior, the volatile component can be removed by degassing, potentially prohibiting the evolution of gas at or below the temperature of the degas process. While this process is well understood, the ability to describe the results of degassing and subsequent regain is not. Trends are not well defined for original gas content, regain, and prescribed effects of degassing. As a result, prediction of cavern response is difficult. As a consequence of this current analysis, it is suggested that solutioning brine of the final fluid exchange of a just completed cavern, immediately prior to the first oil filling, should be analyzed for gas content using existing analysis techniques. This would add important information and clarification to the regain process. It is also proposed that the quantity of volatile components, such as methane, be determined before and after any degasification operation.

  1. Continuum reaction field calculation of dielectric constant and vapor pressures for water and carbon disulfide.

    PubMed

    Nir, S

    1976-01-01

    Continuum reaction field theory is applied to calculations of dielectric constant, contribution of intermolecular interactions to the free energy of a liquid, and heat of vaporization. Introduction of repulsive interactions and the use of one adjustable parameter, the free volume, enables prediction of vapor pressures. The calculations are illustrated for a simple nonpolar liquid, carbon disulfide, and for liquid water. It is shown that when Onsager's equation is rearranged to a quadratic equation, and a recently found value of the polarizability is employed, its solutions for liquid water yield good agreement with experimental values throughout the whole temperature range. The decrease of the dielectric constant with temperature is essentially linear with the inverse of absolute temperature, but there is additional significant decrease due to the decrease of density with temperature. The relatively high value of the heat of vaporization of liquid water is expressed in terms of large dipolar interaction of a water molecule with the environment, which is due to polarization effects.

  2. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    PubMed

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes.

  3. Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure.

    PubMed

    Fuchiwaki, Yusuke; Nagai, Hidenori; Saito, Masato; Tamiya, Eiichi

    2011-09-15

    A novel flow-through polymerase chain reaction (PCR) microfluidic system using vapor pressure was developed that can achieve ultra-rapid, small-volume DNA amplification on a chip. The 40-cycle amplification can be completed in as little as 120 s, making this device the fastest PCR system in the world. The chip device is made of a pressure-sensitive polyolefin (PSP) film and cyclo-olefin polymer (COP) substrate which was processed by cutting-work to fabricate the microchannel. The enclosed structure of the microchannel was fabricated solely by weighing the PSP film on the COP substrate, resulting in superior practical application. The vapor pressure in the denaturation zone of the destabilizing flow source was applied to the flow force, and ultra-rapid, efficient amplification was accomplished with a minimal amount of PCR reagents for detection. The flowing rhythm created by vapor pressure minimized the residual PCR products, leading to highly efficient amplification. For field test analysis, airborne dust was collected from a public place and tested for the presence of anthrax. The PCR chip had sufficient sensitivity for anthrax identification. The fastest time from aerosol sampling to detection was theoretically estimated as 8 min.

  4. Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure.

    PubMed

    Fuchiwaki, Yusuke; Nagai, Hidenori; Saito, Masato; Tamiya, Eiichi

    2011-09-15

    A novel flow-through polymerase chain reaction (PCR) microfluidic system using vapor pressure was developed that can achieve ultra-rapid, small-volume DNA amplification on a chip. The 40-cycle amplification can be completed in as little as 120 s, making this device the fastest PCR system in the world. The chip device is made of a pressure-sensitive polyolefin (PSP) film and cyclo-olefin polymer (COP) substrate which was processed by cutting-work to fabricate the microchannel. The enclosed structure of the microchannel was fabricated solely by weighing the PSP film on the COP substrate, resulting in superior practical application. The vapor pressure in the denaturation zone of the destabilizing flow source was applied to the flow force, and ultra-rapid, efficient amplification was accomplished with a minimal amount of PCR reagents for detection. The flowing rhythm created by vapor pressure minimized the residual PCR products, leading to highly efficient amplification. For field test analysis, airborne dust was collected from a public place and tested for the presence of anthrax. The PCR chip had sufficient sensitivity for anthrax identification. The fastest time from aerosol sampling to detection was theoretically estimated as 8 min. PMID:21778045

  5. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    PubMed

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-01

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  6. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    PubMed

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  7. The relationship between gas hydrate saturation and P-wave velocity of pressure cores obtained in the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Fujii, T.; Nagao, J.

    2014-12-01

    P-wave velocity is an important parameter to estimate gas hydrate saturation in sediments. In this study, the relationship between gas hydrate saturation and P-wave velocity have been analyzed using natural hydrate-bearing-sediments obtained in the Eastern Nankai Trough, Japan. The sediment samples were collected by the Hybrid Pressure Coring System developed by Japan Agency for Marine-Earth Science and Technology during June-July 2012, aboard the deep sea drilling vessel CHIKYU. P-wave velocity was measured on board by the Pressure Core Analysis and Transfer System developed by Geotek Ltd. The samples were maintained at a near in-situ pressure condition during coring and measurement. After the measurement, the samples were stored core storage chambers and transported to MHRC under pressure. The samples were manipulated and cut by the Pressure-core Non-destructive Analysis Tools or PNATs developed by MHRC. The cutting sections were determined on the basis of P-wave velocity and visual observations through an acrylic window equipped in the PNATs. The cut samples were depressurized to measure gas volume for saturation calculations. It was found that P-wave velocity correlates well with hydrate saturation and can be reproduced by the hydrate frame component model. Using pressure cores and pressure core analysis technology, nondestructive and near in-situ correlation between gas hydrate saturation and P-wave velocity can be obtained. This study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan.

  8. Water-vapor pressure in nests of the San Miguel Island Song Sparrow

    USGS Publications Warehouse

    Kern, Michael D.; Sogge, Mark K.; van Riper, Charles, III

    1990-01-01

    The water-vapor pressure (PN) in nests of the San Miguel Island race of Song Sparrows (Melospiza melodia micronyx) averaged 16 torr, but varied considerable between nests and within individual nests during successive days of incubation. Large daily fluctuations occurred throughout the incubation period and did not parallel concurrent changes in ambien vapor pressure (P1). Daily rates of water loss from nest eggs (MH2O) averaged 28 mg day-1, but also varied considerable within and between nests and did not correlate with changes in P1. MH2O increased 6-33% after the third day of incubation. PN was significantly higher and MH2O significantly lower in nests located in sheltered gullies than in nests from a windswept slope. These data suggest that Song Sparrows do not regulate PN to achieve hatching success.

  9. QM/NN QSPR models with error estimation: vapor pressure and logP

    PubMed

    Beck; Breindl; Clark

    2000-07-01

    QSPR models for logP and vapor pressures of organic compounds based on neural net interpretation of descriptors derived from quantum mechanical (semiempirical MO; AM1) calculations are presented. The models are cross-validated by dividing the compound set into several equal portions and training several individual multilayer feedforward neural nets (trained by the back-propagation of errors algorithm), each with a different portion as test set. The results of these nets are combined to give a mean predicted property value and a standard deviation. The performance of two models, for logP and the vapor pressure at room temperature, is analyzed, and the reliability of the predictions is tested.

  10. Initial Measurement of the Vapor Pressures of Simple Refractory Materials: Cu and Fe

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Ferguson, Frank T.; Johnson, Natasha; Martinez, Daniel

    2003-01-01

    It has become increasingly clear over the past decade that high temperature processes played important roles in the Primitive Solar Nebula. Unfortunately, basic data, such as the vapor pressures of iron or SiO have not been measured over the appropriate temperature range (near T approximately equal to 2000K), but must be extrapolated from lower temperature measurements often made more than 50 years ago. The extrapolation of the available data to higher temperatures can be quite complex and can depend on other factors such as the oxygen fugacity or the presence of hydrogen gas. Moreover, modern technology has made possible more accurate measurements of such quantities over a wider temperature range. We recently acquired a commercial Thermo-Cahn Thermogravimetric system capable of vacuum operation to 1700 C and measurement of mass change with microgram accuracy in a 100g sample or smaller. In this paper, we will report our progress in learning to make vapor pressure measurements using this system.

  11. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-01

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  12. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  13. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  14. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water. PMID:16321097

  15. Determining Pore Pressures Along a Slip Surface Within a Saturated Elastic-Plastic Porous Medium

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Rice, J. R.; Dunham, E. M.

    2008-12-01

    Here we consider shear rupture along a slip surface in a fluid-saturated elastic-plastic porous medium, like in landslide and earthquake modeling, and assume that there are different poro-elasto-plastic response properties on the two sides of the slip surface. This different response may be because the fault bordering materials are dissimilar, or just because one side is actively yielding and the other is not, or is yielding but in a different mode. In effect, we are representing a core about a slip surface that divides two similar or contrasting materials. This representation is especially relevant in earthquake rupture dynamics. Studies of mature fault zones have noted a trend of fractured host rock extending 10--100m from the fault, with an ultracataclastic core ~100mm about or to one side of the principal slip surface (e.g., Chester and Chester, Tectonophys, 1998; Chester et al., Columbia Univ Pr, 2004). Furthermore, there is likely to exist a material contrast that may come from accumulating km of slip and a bias in accumulated damage. The local pore pressure at the slip surface influences the rupture dynamics because, through the effective stress concept, it controls the local shear strength along the fault, a feature neglected as a simplification in our preliminary poro-elasto-plastic modeling of dynamic rupture (Viesca et al., JGR, 2008). To determine pore pressures at the slip surface under locally elastic-plastic response, we must consider pore pressure discontinuities about that surface that arise in an undrained treatment of off-fault material and their amelioration within resulting thin diffusive boundary layers, such that pore pressure and fluid mass flux in the normal direction are continuous at the slip surface. Our approach builds on previous work considering the effect of contrasts in poroelastic properties on rupture propagation (Rudnicki and Rice, JGR, 2006; Dunham and Rice, JGR, 2008). Here we find expressions for the undrained pore pressure

  16. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  17. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-06-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams plus sign in circlemol(-1) were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  18. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2010-01-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams⊕mol−1 were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents. PMID:20414454

  19. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  20. Methods of Measuring Vapor Pressures of Lubricants With Their Additives Using TGA and/or Microbalances

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Miller, Michael K.; Montoya, Alex F.

    1996-01-01

    The life of a space system may be critically dependent on the lubrication of some of its moving parts. The vapor pressure, the quantity of the available lubricant, the temperature and the exhaust venting conductance passage are important considerations in the selection and application of a lubricant. In addition, the oil additives employed to provide certain properties of low friction, surface tension, antioxidant and load bearing characteristics, are also very important and need to be known with regard to their amounts and vapor pressures. This paper reports on the measurements and analyses carried out to obtain those parameters for two often employed lubricants, the Apiezon(TM)-C and the Krytox(TM) AB. The measurements were made employing an electronic microbalance and a thermogravimetric analyzer (TGA) modified to operate in a vacuum. The results have been compared to other data on these oils when available. The identification of the mass fractions of the additives in the oil and their vapor pressures as a function of the temperature were carried out. These may be used to estimate the lubricant life given its quantity and the system vent exhaust conductance. It was found that the Apiezon(TM)-C has three main components with different rates of evaporation while the Krytox(TM) did not indicate any measurable additive.

  1. In-Reactor Oxidation of Zircaloy-4 Under Low Water Vapor Pressures

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330° and 370°C). Data from these tests will be used to support fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex- reactor test results were performed to evaluate the influence of irradiation.

  2. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ºC). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  3. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.

    PubMed

    Grattoni, Alessandro; Canavese, Giancarlo; Montevecchi, Franco Maria; Ferrari, Mauro

    2008-04-01

    Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.

  4. Spontaneously breathing anesthetized patients with a laryngeal mask airway: positive end-expiratory pressure does not improve oxygen saturation.

    PubMed

    Froessler, B; Brommundt, J; Anton, J; Khanduja, R; Kuhlen, R; Rossaint, R; Coburn, M

    2010-11-01

    Spontaneous ventilation is a popular mode of ventilation for patients with the laryngeal mask airway (LMA). Studies have shown, however, that spontaneous ventilation impairs gas exchange and that assisting or controlling ventilation results in higher oxygen saturation. Atelectasis during general anesthesia is a well described mechanism which impacts on gas exchange. Positive end-expiratory pressure (PEEP) increases the lung volume available for gas exchange. This study investigated whether the application of PEEP leads to an improvement of oxygen saturation in unassisted spontaneously breathing patients with a LMA. A total of 80 adult patients under general anesthesia were prospectively randomized into two groups. Both groups were left to breathe spontaneously. In group 1 the adjustable pressure limiting (APL) valve was opened resulting in zero end-expiratory pressure. In group 2 the valve was set to a PEEP of +7 cm H₂O. Oxygen saturation was measured by pulse oxymetry at four different phases: pre-induction, after induction and insertion of the LMA, during maintenance and in recovery. The application of PEEP did not improve oxygen saturation. In both groups the mean oxygen saturation was similar (97.2±1.8% in group 1 versus 97.2±1.9% in group 2, p=0.941) during maintenance. No effect on oxygen saturation in recovery could be found either (96.0±1.8% in group 1 versus 96.1±2.0% in group 2, p=0.952) and hemodynamics were unaffected by the application of PEEP. The application of a PEEP of +7 cm H₂O with a LMA under spontaneous ventilation cannot be recommended. Limitations of our study were the selection of healthy patients and omitting pre-oxygenation before induction which might have limited the development of atelectasis. In addition arterial partial pressure of oxygen (p(a)O₂) measurements could have revealed subtle changes in oxygenation.

  5. Analysis based on the diffusion model for saturation silica gel with water vapor at conservation units steam circuit TPP

    NASA Astrophysics Data System (ADS)

    Goldaev, Sergey; Khushvaktov, Alisher

    2015-01-01

    A quantitative analysis of the diffusion model dehumidifying air in the steam circuit of TPP, with a layer of silica gel. Showed that such an approximation, supplemented the experimental value of the coefficient of free diffusion identified by the developed method gives reliable values for the concentration of water vapor absorption over time.

  6. Status of the CNRS-LCSR program on high pressure droplet vaporization and burning

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1993-01-01

    Depending on the surrounding flow and thermodynamic conditions, a single droplet may experience several gasification regimes, ranging from the envelope flame regime to pure vaporization. In practical situations, such as rocket propulsion or diesel combustion, the size distribution of droplets is, at best, bimodal, so that the possibility exists for the simultaneous presence of various regimes. For example, very small droplets are transported by the gas phase with zero relative velocity. This picture validates then the spherical symmetry hypothesis applied to the droplet and to the diffusion flame enveloping it. On the other hand, for larger droplets, a relative velocity exists due to drag forces. The most important influence of forced convection on droplet burning is the possibility to extinguish globally the envelope flame, or to establish a flame stabilized in the wake region. The burning rates of these regimes differ strongly. The characteristic time of droplet gasification is also influenced by the surrounding pressure and temperature. A parametric investigation of single droplet burning regimes is then helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. The CNRS-LCSR experimental program on droplet vaporization and burning deals with these various regimes: stagnant and convective monocomponent droplet burning convective mono and bicomponent droplet vaporization; high temperature convective mono and biocomponent droplet vaporization; burning regimes of hydrazine and hydroxyl-ammonium-nitrate based monopropellant droplets and the vaporization regimes of liquid oxygen droplets. Studies on interacting droplets and on liquid aluminum droplets will start in the near future. The influence of high pressure is a common feature of all these studies. This paper summarizes the status of the CNRS-LCSR program on the effects of high pressure on monocomponent single droplet burning and vaporization, and

  7. Outflow methods for evaluating the soil hydraulic functional relationships between NAPL pressure and saturation in porous media

    SciTech Connect

    Bali, K.M.; Grismer, M.E.; Hopmans, J.W.

    1996-12-31

    Remediation and cleanup of petroleum product contaminated ground water often require modeling of fluid transport processes when immiscible liquid phases are present. Modeling of such multiphase transport systems requires knowledge of the functional relationships between fluid pressures, saturations, and permeabilities. The authors evaluated the applicability of the multistep outflow method used in soil science to determine these functions for two porous media (loam and sand) using Soltrol 130 and water as wetting fluids. The analytical retention and permeability functions of van Genuchten and Mualem were used, with an inverse method that has been shown to be reliable in estimating water retention and unsaturated hydraulic conductivity in soils, to estimate soil hydraulic function parameters for Soltrol 130 and water. The water and Soltrol 130 cumulative drainage as a function of time and the equilibrium saturations were used as input to a numerical model (MLSTPM) to optimize, through an inverse solution of the Richards equation, the parameters needed for the hydraulic functions. Optimizations were carried out for saturation paths corresponding to monotonically decreasing wetting phase saturations only. The functional relationships between oil pressures, saturations, and permeabilities in Oso-Flaco fine sand were accurately predicted from the optimized water retention curve parameters based on scaling by the ratio of interfacial tensions. However, this scaling procedure was inadequate to predict oil hydraulic function parameters from those of water in Yolo loam.

  8. Static Pressure Above 300 GPa Using Chemical Vapor Deposited Two-stage Diamond Micro-anvils

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey; Samudrala, Gopi; Tsoi, Georgiy; Smith, Spencer; Vohra, Yogesh

    Two-stage diamond micro-anvils were grown via chemical vapor deposition (CVD) on beveled diamond anvils with 30 micron central flats. These anvils were used to compress a pre-indented rhenium foil to pressures in excess of 300 Gigapascals (GPa) at relatively small applied loads. Powder diffraction patterns were collected across the high-pressure region using an x-ray beam collimated to 1x2 microns in a grid with a spacing of 1 micron. While multi-megabar pressures were seen across the entire second stage, the highest pressure regions were confined to areas of a few microns in diameter. These were observed at points near the edge of the second stage with nearby pressure gradients as high as 100 GPa/micron. The transmitted x-rays show that the second stage plastically deformed while maintaining multi-megabar pressures. This may have created a second-stage gasket consisting of CVD diamond and rhenium that supported the pressure gradient without substantial external confining pressure. Further improvements in two-stage diamond micro-anvils would require controlling the geometry and microcrystalline/nanocrystalline diamond content during CVD growth process. This work was supported by the Department of Energy (DOE), National Nuclear Security Administration under Grant Number DE-NA0002014.

  9. Thermochemical and Vapor Pressure Behavior of Anthracene and Brominated Anthracene Mixtures.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2013-03-25

    The present work concerns the thermochemical and vapor pressure behavior of the anthracene (1) + 2-bromoanthracene (2) and anthracene (1) + 9-bromoanthracene (3) systems. Solid-liquid equilibrium temperature and differential scanning calorimetry studies indicate the existence of a minimum melting solid state near an equilibrium temperature of 477.65 K at x 1 = 0.74 for the (1) + (2) system. Additionally, solid-vapor equilibrium studies for the (1) + (2) system show that the vapor pressure of the mixtures depends on composition, but does not follow ideal Raoult's law behaviour. The (1) + (3) system behaves differently from the (1) + (2) system. The (1) + (3) system has a solid solution like phase diagram. The system consists of two phases, an anthracene like phase and a 9-bromoanthracene like phase, while (1) + (2) mixtures only form a single phase. Moreover, experimental studies of the two systems suggest that the (1) + (2) system is in a thermodynamically lower energy state than the (1) + (3) system. PMID:24319314

  10. Thermochemical and Vapor Pressure Behavior of Anthracene and Brominated Anthracene Mixtures.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2013-03-25

    The present work concerns the thermochemical and vapor pressure behavior of the anthracene (1) + 2-bromoanthracene (2) and anthracene (1) + 9-bromoanthracene (3) systems. Solid-liquid equilibrium temperature and differential scanning calorimetry studies indicate the existence of a minimum melting solid state near an equilibrium temperature of 477.65 K at x1 = 0.74 for the (1) + (2) system. Additionally, solid-vapor equilibrium studies for the (1) + (2) system show that the vapor pressure of the mixtures depends on composition, but does not follow ideal Raoult's law behaviour. The (1) + (3) system behaves differently from the (1) + (2) system. The (1) + (3) system has a solid solution like phase diagram. The system consists of two phases, an anthracene like phase and a 9-bromoanthracene like phase, while (1) + (2) mixtures only form a single phase. Moreover, experimental studies of the two systems suggest that the (1) + (2) system is in a thermodynamically lower energy state than the (1) + (3) system.

  11. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  12. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase

    SciTech Connect

    Wen, Xiao-Dong; Hoffmann, Roald; Ashcroft, N. W.

    2011-01-01

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 4–7 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 50–80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  13. Influence of change in physical state on elastic nonlinear response in rock: Significance of effective pressure and water saturation

    SciTech Connect

    Zinszner, B.; Johnson, P.A. |; Rasolofosaon, P.N.

    1997-04-01

    We describe Young{close_quote}s mode resonant bar results obtained under effective pressure at two saturation states: dry and water saturated. We monitor primary manifestations of nonlinear response in these experiments: the harmonic content, the source extinction intensity, and fundamental resonant frequency shift. In addition, we describe the hysteretic behavior of the static pressure response, the linear modulus, and Q. Because we currently lack a complete theoretical description of nonlinear behavior under resonance at pressure, we provide relative measures of nonlinear response rather than absolute values. The rocks include Fontainebleau and Meule sandstones and Lavoux limestone. Dynamic strain levels range from 10{sup {minus}8} to 10{sup {minus}5} and frequencies range from 1 to 10 kHz. The elastic nonlinear response of each of the rocks is markedly different over the range of physical property states explored. The different responses are related to differences in mechanical response resulting from rock type, grain cement type, etc. In all of the samples studied, the change in resonant frequency as a function of excitation intensity is not measurable above approximately 10 MPa; however, harmonics are observed at larger effective pressure levels. Hysteresis in velocity and Q versus pressure vary considerably between the rocks. The effect of Q on the experiments is marked. When Q is low ({lt}10) as for some saturated samples, relative excitations must be large in order to induce equivalent dry sample strains.{copyright} 1997 American Geophysical Union

  14. Border control! Capillary pressure / saturation relationships in a diphasic flow in a random medium: Influence of the boundary conditions

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Moura, Marcel; Jankov, Mihailo; Schäfer, Gerhard; Jørgen Måløy, Knut

    2013-04-01

    Solving problems involving biphasic flows in porous media, at a scale larger than the pore one, normally requires the use of relationships between pressure and saturation. These allow the closure of generalized Darcy flow models for two phases, commonly used in hydrology or large scale problems of diphasic flow in porous media. There are mathematical models which approximate experimental records with curve-fitting equations. The two most common models are the Brooks-Corey and van Genüchten ones, they are used to complete a system of generalized Darcy equations. The purpose of the current study is the influence of the boundary conditions on the relationship between pressure and saturation. We perform numerical simulations of drainage experiments. Water is the wetting fluid and air is the non wetting fluid. The results highlight the fact that a filter which allows only water to flow at the exit face of the system modifies both the shape of the curve and the value of the residual saturation. The pressure of the models that are commonly used does not match with the pressure of real flows since there is no filter to cross, to flow from an elementary volume to another. Experiments performed in transparent Hele-Shaw cells exhibit the same features, showing the influence of the semi permeable boundary conditions on the pressure-saturation measures obtained. This effect corresponding to the formation of localized plugging clusters at the boundaries, is obtained in slow flow conditions, and is independent of any dynamic fingering, also known to affect such relations (1,2,3). Modeling flows in open media thus would require to use the central part of the curves pressure saturation where the effect of the boundaries is the least important, or to modify properly these relationships to extract the behavior unaffected by boundaries. References: (1) Two-phase flow: structure, upscaling, and consequences for macroscopic transport properties Renaud Toussaint ; Knut Jørgen M

  15. Partial Pressures of In-Se from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3 and 61 atomic percent and 673 and 1418K has been measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gage measurements for compositions between 50 and 61 atomic percent but significantly higher than those from Knudsen cell and simultaneous Torsion-Knudsen cell measurements. The sequiselenide is found to sublime incongruently. Congruent vaporization occurs for the liquid above 1000 K between 50.08 and 56 at. percent Se. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000 and 1300K is essentially independent of temperature and falls between -36 and -38 kJ per gram atomic weight for 50 and 56 percent Se at 1200 and 1300K.

  16. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.

    PubMed

    Kang, Cheong; Jung, Da Hee; Lee, Jin Seok

    2015-11-01

    Graphene has attracted great attention owing to its unique structural and electrical properties. Among various synthetic approaches of the graphene, metal assisted chemical vapor deposition (CVD) is the most reasonable and proper method to produce large-scale and low-defect graphene films. Until now, CVD from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth, but high growth temperature is required for such growth. A recent work by using liquid benzene precursor has shown that monolayer graphene could be obtained at 300 degrees C by low pressure, required for high vacuum equipment. Here, we report the first successful attempt of atmospheric pressure CVD graphene growth on Cu foil using liquid benzene as a precursor. We investigated the effect of hydrogen partial pressure, growth time, and precursor temperature on the domain size of as-grown graphene. Also, micro-Raman analysis confirmed that these reaction parameters influenced the number of layer and uniformity of the graphene.

  17. High-Pressure Solvent Vapor Annealing with a Benign Solvent To Rapidly Enhance the Performance of Organic Photovoltaics.

    PubMed

    Jung, Buyoung; Kim, Kangmin; Eom, Yoomin; Kim, Woochul

    2015-06-24

    A high-pressure solvent vapor annealing (HPSVA) treatment is suggested as an annealing process to rapidly achieve high-performance organic photovoltaics (OPVs); this process can be compatible with roll-to-roll processing methods and uses a benign solvent: acetone. Solvent vapor annealing can produce an advantageous vertical distribution in the active layer; however, conventional solvent vapor annealing is also time-consuming. To shorten the annealing time, high-pressure solvent vapor is exposed on the active layer of OPVs. Acetone is a nonsolvent for poly(3-hexylthiophene-2,5-diyl) (P3HT), but it can dissolve small amounts of 1-(3-methoxycarbonyl)-propyl-1,1-phenyl-(6,6)C61 (PCBM). Acetone vapor molecules can penetrate into the active layer under high vapor pressure conditions to alter the morphology. HPSVA induces a PCBM-rich phase near the cathode and facilitates the transport of free charge carriers to the electrode. Although P3HT is not soluble in acetone, locally rearranged P3HT crystallites are generated. The performance of OPV films was enhanced after HPSVA; the film treated at 30 kPa for 10 s showed optimum performance. Additionally, this HPSVA method could be adapted for mass production because the temporary exposure of films to high-pressure acetone vapor in ambient conditions also improved performance.

  18. A differential vapor-pressure equipment for investigations of biopolymer interactions.

    PubMed

    Andersen, Kim B; Koga, Yoshikata; Westh, Peter

    2002-01-01

    The design and performance of an equipment for the measurement of vapor pressures over liquid or solid samples is presented. The equilibrium pressure difference, DeltaP, between a sample and a reference of known vapor pressure is recorded as a function of composition and/or temperature. Through the use of high-accuracy capacitance manometers and a leak-tight system of stainless steel pipes, below-sealed valves and metal-gasket fittings, DeltaP can be measured with a resolution of about 0.5 micro bar (0.05 Pa) in some applications. This sensitivity level, along with other features of the equipment, particularly a "gas-phase titration" routine for changing the cell composition, makes it effective for the investigations of several types of biopolymer interactions. These include isothermal studies of net affinities such as the adsorption of water to proteins or membranes, the preferential interaction of biopolymers with the components of a mixed solvent, the partitioning of solutes between a membrane and the aqueous bulk and the weak, specific binding of ligands to macromolecules. Furthermore, a temperature-scanning mode allows real-time elucidation of such interactions at thermally induced conformational changes in biopolymers. Selected examples of these applications are presented and discussed. PMID:11741714

  19. The vapor pressure of 1,1,1,2-tetrafluoroethane (R134a) and chlorodifluoromethane (R22)

    NASA Astrophysics Data System (ADS)

    Goodwin, A. R. H.; Defibaugh, D. R.; Weber, L. A.

    1992-09-01

    We measured the vapor pressure of chlorodifluoromethane (commonly known as R22) at temperatures between 217.1 and 248.5 K and of 1,1,1,2-tetrafluoroethane (commonly known as R134a) in the temperature range 214.4 to 264.7 K using a comparative ebulliometer. For 1,1,1,2-tetrafluoroethane at pressures between 220.8 and 1017.7kPa (corresponding to temperatures in the range 265.6 to 313.2K), additional measurements were made with a Burnett apparatus. We have combined our results for 1,1,1,2-tetrafluoroethane with those already published from this laboratory at higher pressures to obtain a smoothing equation for the vapor pressure from 215 K to the critical temperature. For chlorodifluoromethane our results have been combined with certain published results to provide an equation for the vapor pressure at temperatures from 217 K to the critical temperature.

  20. Calculation of the vapor-saturated liquidus for the NaCl-CO2-H2O system

    USGS Publications Warehouse

    Barton, P.B.; I-Ming, C.

    1993-01-01

    The polybaric liquidus surface for the H2O-rich corner of the NaCl-CO2-H2O ternary is calculated, relying heavily on 1. (1) a Henry's law equation for CO2 in brines (modified from Drummond, 1981), 2. (2) the assumption that the contributions of dissolved NaCl and CO2 in lowering the activity of H2O are additive, and 3. (3) data on the CO2 clathrate solid solution (nominally CO2 ?? 7.3H2O, but ranging from 5.75 to 8 or 9 H2O) from Bozzo et al. (1975). The variation with composition of the activity of CO2??7.3H2O, or any other composition within the clathrate field, is small, thereby simplifying the calculations appreciably. Ternary invariant points are 1. (1) ternary eutectic at -21.5??C, with ice + clathrate + hydrohalite NaCl-??H2O + brine mNaCl = 5.15, mco2 = 0.22 + vapor Ptotal ??? Pco2 = 5.7 atm; 2. (2) peritectic at -9.6??C, with clathrate + hydrohalite + liquid CO2 + brine mNaCl = 5.18, mco2 = 0.55 + vapor (Ptotal ??? Pco2 = 26.47 atm); and 3. (3) peritectic slightly below +0.1 ??C, with halite + hydrohalite + liquid CO2 + brine (mNaCl ??? 5.5, mco2 ??? 0.64) + vapor (Ptotal ??? Pco2 ??? 34 atm). CO2 isobars have been contoured on the ternary liquidus and also on the 25??C isotherm. An important caveat regarding the application of this information to the interpretation of the freezing-thawing behavior of fluid inclusions is that metastable behavior is a common characteristic of the clathrate. ?? 1993.

  1. Track studies in water vapor using a low-pressure cloud chamber. II. Microdosimetric measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    A low-pressure cloud chamber has been adapted to operate with pure water vapor. Photographs were obtained of tracks arising from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Distributions of lineal energy, radial distances around an ion track, and interdroplet distances were measured and compared with the predictions of Monte Carlo calculations. After allowing for diffusion and the limitations of the geometry of the system, the measured and calculated distributions were found to be in good agreement.

  2. The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.

    1995-01-01

    In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).

  3. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    SciTech Connect

    Gray, M.; Nilsson, M.; Zalupski, P.

    2013-07-01

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  4. A vapor-pressure study of the systems formed by polonium with palladium and iridium

    SciTech Connect

    Abakumou, A.S.; Khokhlou, A.D.; Malysheu, M.L.; Reznikova, N.F.

    1985-11-01

    Direct thermal vacuum synthesis shows that polonium vapor does not react with iridium when they are heated together to 1000/sup 0/C. Polonium vapor begins to be absorbed appreciably by palladium at 340-350/sup 0/C. The radiotensimetric method has been used in examining the thermal stabilities of polonium-palladium comounds, which has shown that there are three intermetallides PdPo, Pd/sub 2/Po, and Pd/sub 3/Po, which dissociate to release elemental polonium. The dissociation temperature increases as the polonium content of the compound decreases and is in the range 390-700/sup 0/C. The temperature dependence of the polonium vapor pressure in the dissociation is described by the following: PdPo log P /SUB Pa/ = (7.31 + or - 0.08) -- (4520 + or -40)/T, and at 460580/sup 0/C, ..delta..H = 86.3 + or - 0.7 kJ/mol; Pd/sub 2/Po log P /SUB Pa/ = (7.42 + or - 0.01) -- (6080 + or 10)/T at 725900/sup 0/C, ..delta..H = 116 + or - 0.2 kJ/mol; Pd/sub 3/Po log P /SUB Pa/ = (9.18 + or - 0.01) -- (8620 + or 1000/sup 0/C, ..delta..H = 164 + or - 1 kJ/mol. The properties of these compounds are compared with those of the corresponding tellurides and of the polonium-nickel and poloniumplatinum systems.

  5. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  6. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  7. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Suuberg, E.M.

    1993-12-31

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. Sophisticated general correlative approaches are slowly being developed, based upon group contribution methods, or based upon some key functional features of the molecules. These are as yet difficult to apply to coal tars. The detailed group contribution methods, in which fairly precise structural information is needed, do not lend themselves well for application to very complex, poorly characterized coal tars. The methods based upon more global types of characterizations have not yet dealt much with the question of oxygenated functional groups. In short, only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion.

  8. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1993-12-31

    There is significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from the central role of pyrolysis in all thermally driven coal conversion processes -- gasification, combustion, liquefaction, mild gasification, or thermal benefication. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. Only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Results of the literature survey are compiled. The experimental tasks have been concerned with setup and calibration.

  9. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Archibald, S. M.; Migdisov, A. A.; Williams-Jones, A. E.

    2001-12-01

    The solubility of gold in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 300 to 360°C and pressures up to 144 bars. Results of these experiments show that the solubility of gold in the vapor phase is significant and increases with increasing fHCl and fH 2O . This behavior of gold is attributed to formation of hydrated gold-chloride gas species, interpreted to have a gold-chlorine ratio of 1:1 and a hydration number varying from 5 at 300°C to 3 at 360°C. These complexes are proposed to have formed through the following reaction: Ausolid+ m· HClgas+ n· H2Ogas= AuClm·( H2O) ngas+ m/2· H2gas which was determined to have log K values of -17.28 ± 0.36 at 300°C, -18.73 ± 0.66 at 340°C, and -18.74 ± 0.43 at 360°C. Gold solubility in the vapor was retrograde, i.e., it decreased with increasing temperature, possibly as a result of the inferred decrease in hydration number. Calculations based on our data indicate that at 300°C and fO 2-pH conditions, encountered in high sulfidation epithermal systems, the vapor phase can transport up to 6.6 ppb gold, which would be sufficient to form an economic deposit (e.g., Nansatsu, Japan; 36 tonnes) in ˜ 30,000 yr.

  10. The Vapor Pressure of 1-(2,2,3,3-Tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-prop anol

    SciTech Connect

    Steele, W.V.

    2002-01-29

    The vapor pressure of the compound 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol was measured over the temperature range 62 to 92 C using a Knudsen effusion technique. This compound, known as Cs-7SB, is the modifier component in the caustic-side solvent extraction process solvent. The vapor pressure is related to temperature by the equation ln(p/Pa) = (32.202 {+-} 0.265) - (12154 {+-} 93)/T, where p is the pressure, expressed in pascals; Pa is the reference pressure of 1 pascal; and T is the temperature, expressed in degrees kelvin. The derived heat of vaporization is 101.1 {+-} 0.8{sup kJ{center_dot}mol{sup 1} at 351 K. Because the vapor pressures over the temperature range of 15 to 50 C were lower than the design capabilities of the Knudsen effusion apparatus, the vapor pressures at these temperature limits were obtained by extrapolation. The estimated values are 4.6 {+-} 0.3E-05 (3.5 {+-} 0.2E-07 mm Hg) and 4.5 {+-} 0.1E-03 Pa (3.4 {+-} 0.1E-05 mm Hg) for 15 C and 50 C, respectively.

  11. Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Šafařík, Pavel

    2016-03-01

    The fundamental base for the calculation of the thermodynamic properties of substances is the thermal equation of state and the dependence of some of the basic specific heat capacities on temperature. Dependence of isobaric specific heat capacity on the pressure can already be deduced from these relations. International standards of the properties of water and steam are based on the new scientific formulation IAPWS-95. The equation is in the form of Helmholtz dimensionless function with very much parameters. The aim of this paper is to design the simple dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature in the range in which the steam occurs in the atmospheric moist air.

  12. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  13. Low vapor pressure cryogenic propellant tank design for the Space-Based Orbital Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Torre, C. N.; McCool, R. C.; Rinker, M. W.; Bennett, F. O.; Kerr, J. R.

    1986-06-01

    Orbital Transfer Vehicle concepts are currently being studied by aerospace contractors for NASA Marshall Space Flight Center to identify technology needs for development of these vehicles based at the Space Station in the mid-1990s. The Space-Based Orbital Transfer Vehicle (SBOTV) must be lightweight to minimize propellant mass while having durable structures and systems to minimize propellant mass while having durable structures and systems to minimize refurbishment/maintenance requirements and associated cost. Unlike ground-based vehicles, an SBOTV designed to operate solely in the vacuum environment of space does not require that propellant tank pressures be maintained above atmospheric pressure (14.7 psia). Reducing operating pressures results in a corresponding reduction in a corresponding reduction in vehicle inert weight, propellant weight, and operational costs. The economic and performance advantages of low vapor pressure aluminum tanks for the SBOTV system have been identified. Development of such tanks requires an examination of new low-density aluminum-lithium alloys, assessment of their micrometeoroid protection needs and thermal insulation characteristics, fracture and fatigue analyses of very thin gauges, and design of low-conductivity tank support concepts and low-pressure cryogenic liquid oxygen and hydrogen manufacturing and delivery. This paper describes a structural concept for one of many of the SBOTV cryogenic tank systems and presents the results of analytical models constructed to examine the feasibility of thin gauge tanks.

  14. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  15. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  16. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  17. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  18. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  19. Fungicide volatilization measurements: inverse modeling, role of vapor pressure, and state of foliar residue.

    PubMed

    Bedos, Carole; Rousseau-Djabri, Marie-France; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Briand, Olivier; Barriuso, Enrique

    2010-04-01

    Few data sets of pesticide volatilization from plants at the field scale are available. In this work, we report measurements of fenpropidin and chlorothalonil volatilization on a wheat field using the aerodynamic gradient (AG) method and an inverse dispersion modeling approach (using the FIDES model). Other data necessary to run volatilization models are also reported: measured application dose, crop interception, plant foliage residue, upwind concentrations, and meteorological conditions. The comparison of the AG and inverse modeling methods proved the latter to be reliable and hence suitable for estimating volatilization rates with minimized costs. Different diurnal/nocturnal volatilization patterns were observed: fenpropidin volatilization peaked on the application day and then decreased dramatically, while chlorothalonil volatilization remained fairly stable over a week-long period. Cumulated emissions after 31 h reached 3.5 g ha(-1) and 5 g ha(-1), respectively (0.8% and 0.6% of the theoretical application dose). A larger difference in volatilization rates was expected given differences in vapor pressure, and for fenpropidin, volatilization should have continued given that 80% of the initial amount remained on plant foliage for 6 days. We thus ask if vapor pressure alone can accurately estimate volatilization just after application and then question the state of foliar residue. We identified adsorption, formulation, and extraction techniques as relevant explanations.

  20. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    PubMed

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state.

  1. Fungicide volatilization measurements: inverse modeling, role of vapor pressure, and state of foliar residue.

    PubMed

    Bedos, Carole; Rousseau-Djabri, Marie-France; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Briand, Olivier; Barriuso, Enrique

    2010-04-01

    Few data sets of pesticide volatilization from plants at the field scale are available. In this work, we report measurements of fenpropidin and chlorothalonil volatilization on a wheat field using the aerodynamic gradient (AG) method and an inverse dispersion modeling approach (using the FIDES model). Other data necessary to run volatilization models are also reported: measured application dose, crop interception, plant foliage residue, upwind concentrations, and meteorological conditions. The comparison of the AG and inverse modeling methods proved the latter to be reliable and hence suitable for estimating volatilization rates with minimized costs. Different diurnal/nocturnal volatilization patterns were observed: fenpropidin volatilization peaked on the application day and then decreased dramatically, while chlorothalonil volatilization remained fairly stable over a week-long period. Cumulated emissions after 31 h reached 3.5 g ha(-1) and 5 g ha(-1), respectively (0.8% and 0.6% of the theoretical application dose). A larger difference in volatilization rates was expected given differences in vapor pressure, and for fenpropidin, volatilization should have continued given that 80% of the initial amount remained on plant foliage for 6 days. We thus ask if vapor pressure alone can accurately estimate volatilization just after application and then question the state of foliar residue. We identified adsorption, formulation, and extraction techniques as relevant explanations. PMID:20199019

  2. Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10(-5) and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene.

    PubMed

    Abou-Naccoul, Ramy; Mokbel, Ilham; Bassil, Georgio; Saab, Joseph; Stephan, Khaled; Jose, Jacques

    2014-01-01

    Aqueous solubility and vapor pressures of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene were determined using dynamic saturation methods. For the two isomers, aqueous solubility is in the range between 10(-10) and 10(-2) in molar fraction corresponding to temperature between 298.15 and 338.15K. Vapor pressures of the pure solutes range from 10(-5) to 80 Pa. Prior to the study of the two dibenzanthracenes and in order to check the experimental procedures, solubility of fluoranthene (between 298 and 338 K) and vapor pressures of phenanthrene and fluoranthene (between 300 and 470 K) were measured. From aqueous solubility data coupled with the vapor pressures of the pure solutes, partition coefficient air-water, KAW, and Henry's constant, KH, of environmental relevance were calculated.

  3. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene.

    PubMed

    Bilde, M; Pandis, S N

    2001-08-15

    The semivolatile oxidation products (trans-norpinic acid, pinic acid, cis-pinonic acid, etc.) of the biogenic monoterpenes (alpha-pinene, beta-pinene, etc.) contribute to the atmospheric burden of particulate matter. Using the tandem differential mobility analysis (TDMA) technique evaporation rates of glutaric acid, trans-norpinic acid, and pinic acid particles were measured in a laminar flow reactor. The vapor pressure of glutaric acid was found to be log(p0 glutaric/Pa) = - 3,510 K/T + 8.647 over the temperature range 290-300 K in good agreement with the values previously reported by Tao and McMurry (1989). The measured vapor pressure of trans-norpinic acid over the temperature range 290-312 K is log(p0 norpinic/Pa) = - 2,196.9 K/T + 3.522, and the vapor pressure of pinic acid is log(p0 pinic/ Pa) = - 5,691.7 K/T + 14.73 over the temperature range 290-323 K. The uncertainty on the reported vapor pressures is estimated to be approximately +/- 50%. The vapor pressure of cis-pinonic acid is estimated to be of the order of 7 x 10(-5) Pa at 296 K.

  5. PARAMETER ESTIMATION OF TWO-FLUID CAPILLARY PRESSURE-SATURATION AND PERMEABILITY FUNCTIONS

    EPA Science Inventory

    Capillary pressure and permeability functions are crucial to the quantitative description of subsurface flow and transport. Earlier work has demonstrated the feasibility of using the inverse parameter estimation approach in determining these functions if both capillary pressure ...

  6. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    SciTech Connect

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage of 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.

  7. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  8. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    SciTech Connect

    Akyildiz, Halil I.; Mousa, Moataz Bellah M.; Jur, Jesse S.

    2015-01-28

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.

  9. On the influence of the hysteretic behavior of the capillary pressure on the wave propagation in partially saturated soils

    NASA Astrophysics Data System (ADS)

    Albers, Bettina

    2016-06-01

    It is well known that the capillary pressure curve of partially saturated soils exhibits a hysteresis. For the same degree of saturation it has different values depending on the initial state of the soil, thus for drying of a wet soil or wetting of a dry soil. The influence of these different values of the capillary pressure on the propagation of sound waves is studied by use of a linear hyperbolic model. Even if the model does not contain a hysteresis operator, the effect of hysteresis in the capillary pressure curve is accounted for. In order to obtain the limits of phase speeds and attenuations for the two processes the correspondent values for main drying and main wetting are inserted into the model separately. This is done for two examples of soils, namely for Del Monte sand and for a silt loam both filled by an air-water mixture. The wave analysis reveals four waves: one transversal wave and three longitudinal waves. The waves which are driven by the immiscible pore fluids are influenced by the hysteresis in the capillary pressure curve while the waves which are mainly driven by the solid are not.

  10. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  11. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. PMID:27442970

  12. High-pressure vapor-liquid equilibria of two binary systems: Carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone

    SciTech Connect

    Laugier, S.; Richon, D.

    1997-01-01

    Vapor-liquid equilibria for carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone were measured using an apparatus based on a static-analytic method with in situ samplings. P, T, x, y measurements were made at pressures up to 22 MPa. The carbon dioxide + cyclohexanol system was studied at 433 and 473 K, and carbon dioxide + cyclohexanone, at 433 and 473 K. The results are correlated by the Redlich-Kwong-Soave and Peng and Robinson equations and several mixing rules. The best fittings are obtained with the Peng-Robinson equation of state and a two-parameter mixing rule, i.e., within 1.1% for both pressures and vapor mole fractions on the carbon dioxide + cyclohexanone system and within 1.9% for pressures and 2.9% for vapor mole fractions on the carbon dioxide + cyclohexanol system. More recent equations by Patel and Teja and Salim and Trebble show no significant advantages.

  13. The separation and characterization of a hydrogen getter product mixture: Part 2, measurement of product vapor pressures

    SciTech Connect

    Fircish, D.W.; Shell, T.R.

    1987-06-04

    HCPB is the acronym of an organic hydrogen getter compound used in weapon systems. When this material scavenges hydrogen by reacting with it, a number of compounds are formed, each of which is more volatile than HCPB. It is desirable to know the vapor pressure of these products in order to assess their migration potential within the weapon. In this study, individual compounds from a reacted HCPB mixture were isolated and their vapor pressures were measured. Three of the four fractions examined with a modified capacitance manometer were found to have vapor pressures under 1 mtorr; the fourth was measured at 92 +- 15 mtorr. An attempt was made to obtain boiling point data on the two liquid components of the getter mixture, but they decomposed before reaching their boiling points.

  14. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV). PMID:21315908

  15. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV).

  16. Track studies in water vapor using a low-pressure cloud chamber. I. Macroscopic measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    Techniques have been developed to operate a low-pressure cloud chamber with pure water vapor. Photographs have been obtained of the tracks arising in this medium from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Track lengths of the electrons were similar to those found previously in tissue-equivalent gas. W values of 35.6 +/- 0.4 and 32.6 +/- 0.6 eV per ion pair for carbon and aluminum X rays also compare closely with those in tissue-equivalent gas, but are somewhat higher than the predictions of Monte Carlo calculations. Differential w values were obtained: for alpha particles of energy 5.3 MeV the value was 33.0 +/- 3.0 eV per ion pair; for protons of energy 390, 230, and 85 keV the values were 30.6 +/- 1.9, 31.9 +/- 2.0, and 33.6 +/- 3.4 eV per ion pair. The energy losses of protons in water vapor were measured in a second (dummy) chamber used for energy calibration. Results support Janni's values of stopping power for protons in the energy range 40-480 keV.

  17. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.

  18. Vegetation stress from increased vapor pressure deficit implicated in recent decline in U.S. evaporation

    NASA Astrophysics Data System (ADS)

    Salvucci, Guido, D.; Rigden, Angela

    2016-04-01

    We detect and attribute long-term changes in evapotranspiration (ET) over the contiguous United States from 1961 to 2013 using an approach we refer to as the ETRHEQ method (Evapotranspiration from Relative Humidity at Equilibrium). The ETRHEQ method primarily uses meteorological data collected at common weather stations. Daily ET is inferred by choosing the surface conductance to water vapor transport that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The key advantage of the ETRHEQ method is that it does not require knowledge of the surface state (soil moisture, stomatal conductance, leaf are index, etc.) or site-specific calibration. We estimate daily ET at 229 weather stations for 53 years. Across the U.S., we find a decrease in summertime (JJAS) ET of 0.21 cm/yr/yr from 1961-2013 with recent (1998-2013) declines in summertime ET of 1.08 cm/yr/yr. We decompose the ET trends into the dominant environmental drivers. Our results suggest that the recent decline in ET is due to increased vegetation stress induced by increases in vapor pressure deficit. We will present out results in context of other commonly used, regional ET data products.

  19. Vapor pressure and boiling point elevation of slash pine black liquors: Predictive models with statistical approach

    SciTech Connect

    Zaman, A.A.; McNally, T.W.; Fricke, A.L.

    1998-01-01

    Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 {minus} S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.

  20. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability.

  1. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  2. High-pressure vapor-liquid equilibrium for R-22 + ethanol and R-22 + ethanol + water

    SciTech Connect

    Elbaccouch, M.M.; Raymond, M.B.; Elliott, J.R.

    2000-04-01

    High-pressure vapor-liquid equilibrium (VLE) data for the systems CO{sub 2} + methanol at 313.05 K, CO{sub 2} + ethanol at 323.55, 325.15, and 333.35 K, R-22 (chlorodifluoromethane) + ethanol at 343.25, 361.45, and 382.45 K, and R-22 + ethanol + water at 351.55, 362.65, and 371.85 K are obtained using a circulation-type VLE apparatus. The apparatus is tested with measurements of the CO{sub 2} + methanol and CO{sub 2} + ethanol systems. The experimental data are correlated using the Peng-Robinson and Elliott-Suresh-Donohue equations of state.

  3. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  4. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  5. Vapor Pressure of Solid Polybrominated Diphenyl Ethers Determined via Knudsen Effusion Method

    PubMed Central

    Fu, Jinxia; Suuberg, Eric M.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants used in a variety of consumer products. The solid vapor pressures of BDE15 and BDE209 were determined by use of the Knudsen effusion method, and the values measured extrapolated to 298.15 K are 3.12×10−3 and 9.02×10−13 Pa, respectively. The enthalpies of sublimation for these compounds have also been estimated by using the Clausius-Clapeyron equation and are 102.0 ± 3.5 and 157.1 ± 3.5 kJ/mol, respectively. Additionally, the melting points and enthalpies of fusion were measured by differential scanning calorimetry. PMID:21766320

  6. Vapor Pressure of Three Brominated Flame Retardants Determined via Knudsen Effusion Method

    PubMed Central

    Fu, Jinxia; Suuberg, Eric M.

    2012-01-01

    Brominated flame retardants (BFRs) have been used in a variety of consumer products in the past four decades. The vapor pressures for three widely used BFRs, that is, tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and octabromodiphenyl ethers (octaBDEs) mixtures, were determined using the Knudsen effusion method and compared to those of decabromodiphenyl ether (BDE209). The values measured extrapolated to 298.15 K are 8.47 × 10−9, 7.47 × 10−10, and 2.33 × 10−9 Pa, respectively. The enthalpies of sublimation for these BFRs were estimated using the Clausius-Clapeyron equation and are 143.6 ± 0.4, 153.7 ± 3.1, and 150.8 ± 3.2 kJ/mole, respectively. In addition, the enthalpies of fusion and melting temperatures for these BFRs were also measured in the present study. PMID:22213441

  7. Reid vapor-pressure regulation of gasoline, 1987-1990. Master's thesis

    SciTech Connect

    Butters, R.A.

    1990-09-30

    Although it is generally only a summertime problem, smog, as represented by its criteria pollutant, ozone, is currently the number one air pollution problem in the United States. Major contributors to smog formation are the various Volatile Organic Compounds (VOC's) which react with other chemicals in the atmosphere to form the ozone and other harmful chemicals known as smog. Gasoline is a major source of VOC's, not only as it is burned in car engines, but as it evaporates. Gasoline evaporates in storage tanks, as it is transferred during loading and refueling operations, and in automobiles, both while they are running and while parked in the driveway. In 1987, the United States Environmental Protection Agency began an almost unprecedented effort to reduce the evaporative quality of commercial gasolines by mandating reductions in its Reid Vapor Pressure (RVP).

  8. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  9. Vapor pressure of solid polybrominated diphenyl ethers determined via Knudsen effusion method.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2011-10-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants used in a variety of consumer products. The solid vapor pressures of BDE 15 and BDE 209 were determined by using the Knudsen effusion method, and the values measured extrapolated to 298.15 K are 3.12 × 10(-3) and 9.02 × 10(-13) Pa, respectively. The enthalpies of sublimation for these compounds have also been estimated by using the Clausius-Clapeyron equation and are 102.0 ± 3.5 and 157.1 ± 3.5 kJ/mol, respectively. In addition, the melting points and enthalpies of fusion were measured by differential scanning calorimetry.

  10. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-01

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  11. Partial Pressures for Several In-Se Compositions from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3-60.99 at.% Se and 673-1418 K was measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gauge measurements for compositions between 50-61 at.%, but significantly higher than those from Knudsen cell and simultaneous Knudsen-torsion cell measurements. It is found that 60.99 at.% Se lies outside the sesquiselenide homogeneity range and 59.98 at.% Se lies inside and is the congruently melting composition. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000-1300 K is essentially independent of temperature and falls between -36 to -38 kJ per g atomic weight for 50 and 56% Se at 1200 and 1300 K.

  12. The Vapor Pressure of Palladium at Temperatures up to 1973K

    NASA Technical Reports Server (NTRS)

    Gardner, K. G.; Feguson, F. T.; Nuth, J. A.

    2005-01-01

    Understanding high-temperature processes is imperative for modeling the formation of the solar system. It is unfortunate that since the 1950 s little has been done in the area of thermodynamics to continue gaining information on metals such as iron (Fe), nickel (Ni), cobalt (Co), palladium (Pd) and many others. Although the vapor pressures of these metals can be extrapolated to higher temperatures, the data is often limited to temperature ranges too low to be applicable to processes that occur during the formation of the solar system (T approx. 2000K). Experimental techniques inhibited the data in the past by restricting the testing of metals to temperatures below their melting point. Today, higher temperature testing is possible by using a Thermo- Cahn Thermogravimetric system that is able to reach temperatures up to 1973K in vacuo and measure a 10 gram change in a sample with mass of up to 100 grams.

  13. The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Oguz, N.; Prosperetti, A.

    2001-01-01

    The action of pressure-radiation (or Bjerknes) forces on gas bubbles is well understood. This paper studies the analogous phenomenon for vapor bubbles, about which much less is known. A possible practical application is the removal of boiling bubbles from the neighborhood of a heated surface in the case of a downward facing surface or in the absence of gravity. For this reason, the case of a bubble near a plane rigid surface is considered in detail. It is shown that, when the acoustic wave fronts are parallel to the surface, the bubble remains trapped due to secondary Bjerknes force caused by an "image bubble." When the wave fronts are perpendicular to the surface, on the other hand, the bubble can be made to slide laterally.

  14. Hollow-Cathode Based Electrical Discharge in Atmospheric Pressure Water Vapor at Wide Range of Temperature

    NASA Astrophysics Data System (ADS)

    Koo, Il Gyo; Lee, Woong Moo

    2006-10-01

    Atmospheric pressure water vapor, in the temperature range from 150 to 700 °C, was used as the carrier gas for DC powered electrical discharge in hollow cathode configuration. The electrode assembly was constructed in usual hollow-cathode configuration by sandwiching a dielectric spacer, 200 μm thick, with two thin metal sheets and boring a micro hole of 300 μm diameter. The current-voltage profile of the discharge showed a positive differential resistivity characterizing an abnormal glow discharge. The power consumption for the water discharge at 700 °C was less than 50% the consumption at 150 °C. The reduction of the power for sustaining the discharge with increase of the gas temperature was partly explained by relating the ionic mobility and the distribution of ionic mean free path to the temperature.

  15. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas

    NASA Astrophysics Data System (ADS)

    Kurzeja, Patrick

    2016-05-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.

  16. Bubble pressures and saturated liquid densities of R 22 + R 114 mixtures in the range 310 400 K

    NASA Astrophysics Data System (ADS)

    Fukuizumi, H.; Uematsu, M.

    1991-03-01

    The bubble pressures and saturated liquid densities of mixtures of R 22 and R 114 have been measured with a static and synthetic method with a variable-volume cell. The results for five different compositions (100, 75, 50, 25, and 0 mol% R 22) cover the temperature range from 310 to 400 K. The experimental data for both pure components are compared with literature data, showing the reliability of the present results. The system shows positive deviations from Raoult's law at temperatures below 340 K and the deviations increase with decreasing temperature. The 25 mol % R 22 mixture shows the maximum non-ideality.

  17. Gas chromatographic vapor pressure determination of atmospherically relevant oxidation products of β-caryophyllene and α-pinene

    NASA Astrophysics Data System (ADS)

    Hartonen, Kari; Parshintsev, Jevgeni; Vilja, Vesa-Pekka; Tiala, Heidi; Knuuti, Sinivuokko; Lai, Ching Kwan; Riekkola, Marja-Liisa

    2013-12-01

    Vapor pressures (subcooled liquid, pliquid) of atmospherically relevant oxidation products of β-caryophyllene (β-caryophyllene aldehyde 0.18 ± 0.03 Pa and β-nocaryophyllene aldehyde 0.17 ± 0.03 Pa), and α-pinene (pinonaldehyde 16.8 ± 0.20 Pa, cis-pinic acid 0.12 ± 0.06 Pa, and cis-pinonic acid 0.99 ± 0.19 Pa) at 298 K were obtained by gas chromatography with flame ionization detection (FID) and mass spectrometric (MS) detection. The effects of stationary phase polarity and column film thickness on the vapor pressure values were investigated. Increase in stationary phase polarity provided smaller values, while increase in film thickness gave slightly higher values. Values for vapor pressure were at least two orders of magnitude lower when obtained by a method utilizing vaporization enthalpy (determined by gas chromatography-mass spectrometry) than by retention index method. Finally, the results were compared with values calculated by group contribution theory. For the β-caryophyllene oxidation products, the values measured by gas chromatography were slightly lower than those obtained by theoretical calculations. The opposite trend was observed for the α-pinene oxidation products. The methods based on gas chromatography are concluded to be highly useful for the determination of vapor pressures of semi-volatile compounds. Except for the most polar pinic and pinonic acids, differences between vapor pressure values obtained by GC-FID and GC-MS were small. Since GC-MS provides structural information simultaneously, the use of GC-MS is recommended.

  18. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  19. Pressure-driven gas flow in heated, partially-saturated porous media

    SciTech Connect

    Dodge, F.T.; Green, R.T.

    1994-12-31

    Calculations have been made at the Center for Nuclear Waste Regulatory Analyses (CNWRA) to assess the importance of the various driving mechanisms of heat and mass transport at a high-level nuclear waste (HLW) repository located in the unsaturated zone. Scoping measurements of the relative importance of vapor movement by buoyancy forces and by advective forces have been made for a proposed laboratory-scale experiment to be conducted at CNWRA and for a proposed field-scale heater experiment by U.S. Department of Energy (DOE) at Fran Ridge. These scoping measurements are made using a set of dimensionless terms assembled for this analysis. Numerical simulations of the same laboratory- and field-scale experiments are made using VTOUGH. These calculations will be used to predict (and design in the case of the laboratory-scale experiment) the redistribution of moisture in response to the imposition of heat on the two experiments.

  20. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.

    PubMed

    Blake, E; Allen, J; Thorn, C; Shore, A; Curnow, A

    2013-05-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of precancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength, and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment, localized oxygen depletion occurs and is thought to contribute to decreased efficacy. The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to noninvasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area, respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally, no significant difference in PpIX photobleaching or clinical outcome at 3 months between the groups of patients was observed, although the group that received standard MAL-PDT demonstrated a significant increase (p<0.05) in PpIX fluorescence initially and both groups produced a significant decrease (p<0.05) after light irradiation. In conclusion, with this sample size, this OPI device was not found to be an effective method with which to improve tissue oxygenation during MAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.

  1. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O-NaCl-FeCl2

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, Pilar; Steele-MacInnis, Matthew; Bodnar, Robert J.

    2015-01-01

    Magmatic-hydrothermal fluids associated with felsic to intermediate composition magmas are generally dominated by (Na ± K)Cl, but often the fluids also contain significant concentrations of FeCl2. Previously, fluid inclusions containing such fluids were interpreted using the properties of H2O-NaCl because the effect of FeCl2 on the phase equilibrium and volumetric (PVTx) properties of aqueous fluids was essentially unknown. In this study, synthetic fluid inclusion experiments have been conducted to determine the vapor-saturated liquidus phase relations of the system H2O-NaCl-FeCl2. Microthermometric and microanalytical measurements on synthetic fluid inclusions have been combined with the limited existing data, as well as with predictions based on Pitzer's formalism, to determine the ternary cotectic and peritectic phase boundaries and liquidus fields. The liquidus is qualitatively similar to those of other ternary systems of H2O-NaCl plus divalent-cation chlorides (MgCl2 and CaCl2) and has been characterized through empirical equations that represent the liquid salinity on the ice- and halite-liquidus surfaces. The ice and halite liquidi intersect at a metastable cotectic curve, which can be used to determine fluid compositions in this system if metastable behavior is observed. Furthermore, based on the experimentally determined liquidus, bulk salinities of natural fluid inclusions can be determined from the last dissolution temperatures of ice and/or halite using the new empirical equations.

  2. Temperature influences the ability of tall fescue to control transpiration in response to atmospheric vapor pressure deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability for turfgrass systems is often limited, and likely to become more so in the future. These experiments examined the ability of tall fescue (Festuca arundinacea Schreb.) to control transpiration with increasing vapor pressure deficit and whether control was influenced by temperature...

  3. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  4. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    ERIC Educational Resources Information Center

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  5. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  6. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  7. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    SciTech Connect

    Iversen, G.M.

    2001-10-02

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments.

  8. A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer.

    PubMed

    Chattopadhyay, S; Tobias, H J; Ziemann, P J

    2001-08-15

    A temperature-programmed thermal desorption method for measuring vapor pressures of low-volatility organic aerosol compounds has been developed. The technique employs a thermal desorption particle beam mass spectrometer we have recently developed for real-time composition analysis of organic aerosols. Particles are size selected using a differential mobility analyzer, sampled into a high-vacuum chamber as an aerodynamically focused beam, collected by impaction on a cryogenically cooled surface, slowly vaporized by resistive heating, and analyzed in a quadrupole mass spectrometer. A simple evaporation model developed from the kinetic theory of gases is used to calculate compound vapor pressures over the temperature range of evaporation. The data are fit to a Clausius-Clapeyron equation to obtain a relationship between vapor pressure and temperature and to determine the heat of vaporization. The technique has been evaluated using C13-C18 monocarboxylic and C6-C8 dicarboxylic acids, which have vapor pressures at 25 degrees C of approximately 10(-4) - 10(-6) Pa, but less volatile compounds can also be analyzed. The method is relatively simple and rapid and yields vapor pressures and heats of vaporization that are in good agreement with literature values. The technique will be used to generate a new database of vapor pressures for low-volatility atmospheric organic compounds.

  9. Osmotic virial coefficients of hydroxyethyl starch from aqueous hydroxyethyl starch-sodium chloride vapor pressure osmometry.

    PubMed

    Cheng, Jingjiang; Gier, Martin; Ross-Rodriguez, Lisa U; Prasad, Vinay; Elliott, Janet A W; Sputtek, Andreas

    2013-09-01

    Hydroxyethyl starch (HES) is an important industrial additive in the paper, textile, food, and cosmetic industries and has been shown to be an effective cryoprotectant for red blood cells; however, little is known about its thermodynamic solution properties. In many applications, in particular those in biology, HES is used in an aqueous solution with sodium chloride (NaCl). The osmotic virial solution thermodynamics approach accurately captures the dependence of osmolality on molality for many types of solutes in aqueous systems, including electrolytes, sugars, alcohols, proteins, and starches. Elliott et al. proposed mixing rules for the osmotic virial equation to be used for osmolality of multisolute aqueous solutions [Elliott, J. A. W.; et al. J. Phys. Chem. B 2007, 111, 1775-1785] and recently applied this approach to the fitting of one set of aqueous HES-NaCl solution data reported by Jochem and Körber [Cryobiology 1987, 24, 513-536], indicating that the HES osmotic virial coefficients are dependent on HES-to-NaCl mass ratios. The current study reports new aqueous HES-NaCl vapor pressure osmometry data which are analyzed using the osmotic virial equation. HES modifications were measured after dialysis (membrane cut off: 10,000 g/mol) and freeze-drying using vapor pressure osmometry at different mass ratios of HES to NaCl for HES up to 50% and NaCl up to 25% with three different HES modifications (weight average molecular weights [g/mol]/degree of substitution: 40,000/0.5; 200,000/0.5; 450,000/0.7). Equations were then fit to the data to provide a model for HES osmotic virial coefficient dependence on mass ratio of HES to NaCl. The osmolality data of the three HES modifications were accurately described over a broad range of HES-to-NaCl mass ratios using only four parameters, illustrating the power of the osmotic virial approach in analyzing complex data sets. As expected, the second osmotic virial coefficients increase with molecular weight of the HES and

  10. First experimental determination of the absolute gas-phase rate coefficient for the reaction of OH with 4-hydroxy-2-butanone (4H2B) at 294 K by vapor pressure measurements of 4H2B.

    PubMed

    El Dib, Gisèle; Sleiman, Chantal; Canosa, André; Travers, Daniel; Courbe, Jonathan; Sawaya, Terufat; Mokbel, Ilham; Chakir, Abdelkhaleq

    2013-01-10

    The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

  11. Organic solvents vapor pressure and relative humidity effects on the phase transition rate of α and β forms of tegafur.

    PubMed

    Petkune, Sanita; Bobrovs, Raitis; Actiņš, Andris

    2012-01-01

    The objective of this work was to investigate the relative humidity (RH) and solvent vapor pressure effects on the phase transition dynamics between tegafur polymorphic forms that do not form hydrates and solvates. The commercially available α and β modifications of 5-fluoro-1-(tetrahydro-2-furyl)-uracil, known as the antitumor agent tegafur, were used as model materials for this study. While investigating the phase transitions of α and β tegafur under various partial pressures of methanol, n-propanol, n-butanol, and water vapor, it was determined that the phase transition rate increased in the presence of solvent vapors, even though no solvates were formed. By increasing the relative air humidity from 20% to 80%, the phase transition rate constant of α and β tegafur was increased about 60 times. After increasing the partial pressure of methanol, n-propanol, or n-butanol vapor, the phase transition rate constant did not change, but the extent of phase transformation was increased. In the homologous row of n-alcohols, the phase transition rate constant decreased with increasing carbon chain length. The dependence of phase transformation extent versus the RH corresponded to the polymolecular adsorption isotherm with a possible capillary condensation effect.

  12. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron.

    PubMed

    Schuetze, Jan; Kunth, Daniel; Weissbach, Sven; Koeser, Heinz

    2012-03-01

    Calcium-based scrubbers designed to absorb HCl and SO(2) from flue gases can also remove oxidized mercury. Dissolved mercury halides may have an appreciable partial vapor pressure. Chemical reduction of the dissolved mercury may increase the Hg emission, thereby limiting the coremoval of mercury in the wet scrubbing process. In this paper we evaluate the effects of the pH level, different gypsum qualities, and iron in flue gas desulfurization (FGD) scrubber suspensions. The impact of these parameters on mercury vapor pressure was studied under controlled laboratory conditions in model scrubber suspensions. A major influence is exerted by pH values above 7, considerably amplifying the mercury concentration in the vapor phase above the FGD scrubber suspension. Gypsum also increases the mercury re-emission. Fe(III) decreases and Fe(II) increases the vapor pressure significantly. The consequences of the findings for a reliable coremoval of mercury in FGD scrubbers are discussed. It is shown that there is an increased risk of poor mercury capture in lime-based FGD scrubbers in comparison to limestone FGD scrubbers.

  13. High-pressure thermal oxidation of n-GaAs in an atmosphere of oxygen and water vapor

    NASA Astrophysics Data System (ADS)

    Basu, Nandita; Bhat, K. N.

    1988-06-01

    A low-temperature (˜250 °C) high-pressure oxidation technique is used for the thermal oxidation of gallium arsenide in an ambient of oxygen and water vapor. It is shown that a uniform and chemically stable oxide with high band-gap energy can be grown on GaAs by this process. The role of water vapor and oxygen is studied in detail to obtain information on the oxidation mechanism. The electrical characteristics and the composition of this oxide are presented to demonstrate its suitability for surface passivation and metal-oxide-semiconductor devices.

  14. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  15. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    USGS Publications Warehouse

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  16. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    NASA Astrophysics Data System (ADS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J.; UNICAMP

    2015-08-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data.

  17. An improved method for simultaneous determination of frictional pressure drop and vapor volume fraction in vertical flow boiling

    NASA Technical Reports Server (NTRS)

    Klausner, J. F.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The two-phase frictional pressure drop and vapor volume fraction in the vertical boiling and adiabatic flow of the refrigerant, R11, have been simultaneously measured by a liquid balancing column and differential magnetic reluctance pressure transducers. An account is given of the experimental apparatus and procedure, data acquisition and analysis, and error estimation employed. All values of two-phase multipliers evaluated on the basis of the measured frictional pressure drop data in vertical upflow fall in the range bounded by the predictions of the Chisholm correlation and the homogeneous model.

  18. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality.

  19. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality. PMID:26978897

  20. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  1. Combinatorial atmospheric pressure chemical vapor deposition (cAPCVD): a route to functional property optimization.

    PubMed

    Kafizas, Andreas; Parkin, Ivan P

    2011-12-21

    We demonstrate how combinatorial atmospheric pressure chemical vapor deposition (cAPCVD) can be used as a synthetic tool for rapidly optimizing the functional properties of thin-films, by analyzing the self-cleaning properties of tungsten doped anatase as an example. By introducing reagents at separate points inside the reactor, a tungsten/titanium compositional gradient was formed and a diverse range of film growth conditions were obtained. By partially mixing the metal sources, a combinatorial film with a compositional profile that varied primarily in the lateral plane was synthesized. A combinatorial thin-film of anatase TiO(2) doped with an array of tungsten levels as a solid solution ranging from 0.38-13.8 W/Ti atom % was formed on a single glass substrate. The compositional-functional relationships were understood through comprehensively analyzing combinatorial phase space, with 200 positions investigated by high-throughput methods in this study. Physical and functional properties, and their compositional dependencies, were intercorrelated. It was found that increases in photocatalytic activity and conductivity were most highly dependent on film crystallinity within the 0.38-13.8 atom % W/Ti doping regime. However, enhancements in photoinduced surface wetting were primarily dependent on increases in preferred growth in the (211) crystal plane. PMID:22050427

  2. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2015-01-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  3. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  4. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  5. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  6. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  7. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    SciTech Connect

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  8. High vapor pressure deficit drives salt-stress-induced rice yield losses in India.

    PubMed

    Tack, Jesse; Singh, Rakesh K; Nalley, Lawton L; Viraktamath, Basavaraj C; Krishnamurthy, Saraswathipura L; Lyman, Nate; Jagadish, Krishna S V

    2015-04-01

    Flooded rice is grown across wide geographic boundaries from as far north as Manchuria and as far south as Uruguay and New South Wales, primarily because of its adaptability across diverse agronomic and climatic conditions. Salt-stress damage, a common occurrence in delta and coastal rice production zones, could be heightened by the interactions between high temperature and relative humidity (vapor pressure deficit--VPD). Using temporal and spatial observations spanning 107 seasons and 19 rice-growing locations throughout India with varying electrical conductivity (EC), including coastal saline, inland saline, and alkaline soils, we quantified the proportion of VPD inducing salinity damage in rice. While controlling for time-invariant factors such as trial locations, rice cultivars, and soil types, our regression analysis indicates that EC has a nonlinear detrimental effect on paddy rice yield. Our estimates suggest these yield reductions become larger at higher VPD. A one standard deviation (SD) increase in EC from its mean value is associated with 1.68% and 4.13% yield reductions at median and maximum observed VPD levels, respectively. Yield reductions increase roughly sixfold when the one SD increase is taken from the 75th percentile of EC. In combination, high EC and VPD generate near catastrophic crop loss as predicted yield approaches zero. If higher VPD levels driven by global warming materialize in conjunction with rising sea levels or salinity incursion in groundwater, this interaction becomes an important and necessary predictor of expected yield losses and global food security. PMID:25379616

  9. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results. PMID:26682441

  10. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.

  11. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  12. Vapor pressure of three brominated flame retardants determined by using the Knudsen effusion method.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Brominated flame retardants (BFRs) have been used in a variety of consumer products in the past four decades. The vapor pressures for three widely used BFRs, that is, tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and octabromodiphenyl ethers (octaBDEs) mixtures, were determined using the Knudsen effusion method and compared with those of decabromodiphenyl ether (BDE209). The values measured extrapolated to 298.15 K are 8.47 × 10⁻⁹, 7.47 × 10⁻¹⁰, and 2.33 × 10⁻⁹  Pa, respectively. The enthalpies of sublimation for these BFRs were estimated using the Clausius-Clapeyron equation and are 143.6 ± 0.4, 153.7 ± 3.1, and 150.8 ± 3.2 kJ/mole, respectively. In addition, the enthalpies of fusion and melting temperatures for these BFRs were also measured in the present study.

  13. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage.

  14. High vapor pressure deficit drives salt-stress-induced rice yield losses in India.

    PubMed

    Tack, Jesse; Singh, Rakesh K; Nalley, Lawton L; Viraktamath, Basavaraj C; Krishnamurthy, Saraswathipura L; Lyman, Nate; Jagadish, Krishna S V

    2015-04-01

    Flooded rice is grown across wide geographic boundaries from as far north as Manchuria and as far south as Uruguay and New South Wales, primarily because of its adaptability across diverse agronomic and climatic conditions. Salt-stress damage, a common occurrence in delta and coastal rice production zones, could be heightened by the interactions between high temperature and relative humidity (vapor pressure deficit--VPD). Using temporal and spatial observations spanning 107 seasons and 19 rice-growing locations throughout India with varying electrical conductivity (EC), including coastal saline, inland saline, and alkaline soils, we quantified the proportion of VPD inducing salinity damage in rice. While controlling for time-invariant factors such as trial locations, rice cultivars, and soil types, our regression analysis indicates that EC has a nonlinear detrimental effect on paddy rice yield. Our estimates suggest these yield reductions become larger at higher VPD. A one standard deviation (SD) increase in EC from its mean value is associated with 1.68% and 4.13% yield reductions at median and maximum observed VPD levels, respectively. Yield reductions increase roughly sixfold when the one SD increase is taken from the 75th percentile of EC. In combination, high EC and VPD generate near catastrophic crop loss as predicted yield approaches zero. If higher VPD levels driven by global warming materialize in conjunction with rising sea levels or salinity incursion in groundwater, this interaction becomes an important and necessary predictor of expected yield losses and global food security.

  15. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.

    PubMed

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  16. Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Seiya; Nagamori, Takashi; Matsuoka, Yuki; Yoshimura, Masamichi

    2014-09-01

    Chemical vapor deposition (CVD) is a promising method of producing a large single-crystal graphene on a catalyst, especially on copper (Cu), and a further increase in domain size is desirable for electro/optic applications. Here, we report on threefold atmospheric-pressure (ATM) annealing for suppressing graphene nucleation in atmospheric CVD. Threefold ATM annealing formed a step and terrace surface of the underlying Cu, in contrast to ATM annealing. Atomic force microscopy and Auger electron mapping revealed that Si-containing particles existed on threefold-ATM- and ATM-annealed surfaces; particles on Cu had a lower density after threefold ATM annealing than after ATM annealing. The formation of a step and terrace surface and the lower density of particles following the threefold ATM annealing would play a role in reducing graphene nucleation. By combining threefold ATM annealing and electropolishing of Cu, the nucleation of graphene was effectively suppressed, and a submillimeter-sized hexagonal single-crystal graphene was successfully obtained.

  17. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale

    NASA Astrophysics Data System (ADS)

    Zhou, Sha; Yu, Bofu; Huang, Yuefei; Wang, Guangqian

    2014-07-01

    Water use efficiency is a critical index for describing carbon-water coupling in terrestrial ecosystems. However, the nonlinear effect of vapor pressure deficit (VPD) on carbon-water coupling has not been fully considered. To improve the relationship between gross primary production (GPP) and evapotranspiration (ET) at the subdaily time scale, we propose a new underlying water use efficiency (uWUE = GPP · VPD0.5/ET) and a hysteresis model to minimize time lags among GPP, ET, and VPD. Half-hourly data were used to validate uWUE for seven vegetation types from 42 AmeriFlux sites. Correlation analysis shows that the GPP · VPD0.5 and ET relationship (r = 0.844) is better than that between GPP · VPD and ET (r = 0.802). The hysteresis model supports the GPP · VPD0.5 and ET relationship. As uWUE is related to CO2 concentration, its use can improve estimates of GPP and ET and help understand the effect of CO2 fertilization on carbon storage and water loss.

  18. Effects of variable blast pressures on blood flow and oxygen saturation in rat brain as evidenced using MRI.

    PubMed

    Bir, Cynthia; Vandevord, Pamela; Shen, Yimin; Raza, Waqar; Haacke, E Mark

    2012-05-01

    It has been recognized that primary blast waves may result in neurotrauma in soldiers in theater. A new type of contrast used in magnetic resonance imaging (MRI), susceptibility-weighted imaging (SWI), has been developed that is based on the different susceptibility levels in diverse tissues and can detect decreases in cerebral blood flow (CBF) using inferred oxygen saturation changes in tissue. In addition, a continuous arterial spin-labeled (ASL) MRI sequence was used as a direct measure of regional CBF within the brain tissue. Animals were subjected to whole-body blast exposures of various overpressures within a gas-driven shock tube. When exposed to low levels of overpressure, most rats demonstrated no obvious changes between pre- and postexposure in the conventional MR images. CBF changes measured by SWI and ASL were significantly higher for the overpressure exposed groups as compared to the sham group and tended to increase with pressure increases at the highest two pressures. In the hippocampus, all blast animals had a reduction in the CBF consistently in the range of 0-27%. In summary, low levels of primary blast pressure exposure demonstrated a significant physiologic effect to the brain up to 72 h postexposure. PMID:22285875

  19. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The optical absorption spectra of the vapor phase over HgI2(s,l) were measured for wavelengths between 200 and 600 nm. The spectra show that the sample sublimed congruently into HgI2 with no Hg or I2 absorption spectrum observed. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of H912, P, was established as a function of temperatures for the liquid and the solid Beta-phases. The expressions correspond to the enthalpies of vaporization and sublimation of 15.30 and 20.17 Kcal/mole, respectively, for the liquid and the Beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 Kcal/mole and the intersection of the two expressions gives a melting point of 537 K.

  20. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  1. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.

    PubMed

    Dai, Z; Edwards, G E; Ku, M S

    1992-08-01

    Castor bean (Ricinus communis L.) has a high photosynthetic capacity under high humidity and a pronounced sensitivity of photosynthesis to high water vapor pressure deficit (VPD). The sensitivity of photosynthesis to varying VPD was analyzed by measuring CO(2) assimilation, stomatal conductance (g(s)), quantum yield of photosystem II (phi(II)), and nonphotochemical quenching of chlorophyll fluorescence (q(N)) under different VPD. Under both medium (1000) and high (1800 micromoles quanta per square meter per second) light intensities, CO(2) assimilation decreased as the VPD between the leaf and the air around the leaf increased. The g(s) initially dropped rapidly with increasing VPD and then showed a slower decrease above a VPD of 10 to 20 millibars. Over a temperature range from 20 to 40 degrees C, CO(2) assimilation and g(s) were inhibited by high VPD (20 millibars). However, the rate of transpiration increased with increasing temperature at either low or high VPD due to an increase in g(s). The relative inhibition of photosynthesis under photorespiring (atmospheric levels of CO(2) and O(2)) versus nonphotorespiring (700 microbars CO(2) and 2% O(2)) conditions was greater under high VPD (30 millibars) than under low VPD (3 millibars). Also, with increasing light intensity the relative inhibition of photosynthesis by O(2) increased under high VPD, but decreased under low VPD. The effect of high VPD on photosynthesis under various conditions could not be totally accounted for by the decrease in the intercellular CO(2) in the leaf (C(i)) where C(i) was estimated from gas exchange measurements. However, estimates of C(i) from measurements of phi(II) and q(N) suggest that the decrease in photosynthesis and increase in photorespiration under high VPD can be totally accounted for by stomatal closure and a decrease in C(i). The results also suggest that nonuniform closure of stomata may occur in well-watered plants under high VPD, causing overestimates in the calculation

  2. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  3. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    USGS Publications Warehouse

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  4. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  5. Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes.

    PubMed

    Seversike, Thomas M; Sermons, Shannon M; Sinclair, Thomas R; Carter, Thomas E; Rufty, Thomas W

    2013-05-01

    A key strategy in soybean drought research is increased stomatal sensitivity to high vapor pressure deficit (VPD), which contributes to the 'slow wilting' trait observed in the field. These experiments examined whether temperature of the growth environment affected the ability of plants to respond to VPD, and thus control transpiration rate (TR). Two soybean [Glycine max (L.) Merr.] and four wild soybean [Glycine soja (Sieb. and Zucc.)] genotypes were studied. The TR was measured over a range of VPD when plants were growing at 25 or 30°C, and again after an abrupt increase of 5°C. In G. max, a restriction of TR became evident as VPD increased above 2.0 kPa when temperature was near its growth optimum of 30°C. 'Slow wilting' genotype plant introduction (PI) 416937 exhibited greater TR control at high VPD compared with Hutcheson, and only PI 416937 restrained TR after the shift to 35°C. Three of the four G. soja genotypes exhibited control over TR with increasing VPD when grown at 25°C, which is near their estimated growth optimum. The TR control became engaged at lower VPD than in G. max and was retained to differing degrees after a shift to 30°C. The TR control systems in G. max and G. soja clearly were temperature-sensitive and kinetically definable, and more restrictive in the 'slow wilting' soybean genotype. For the favorable TR control traits observed in G. soja to be useful for soybean breeding in warmer climates, the regulatory linkage with lower temperatures must be uncoupled.

  6. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest.

    PubMed

    Hogg, E. H.; Saugier, B.; Pontailler, J.-Y.; Black, T. A.; Chen, W.; Hurdle, P. A.; Wu, A.

    2000-06-01

    The branch bag method was used to monitor photosynthesis and transpiration of trembling aspen (Populus tremuloides Michx.) and hazelnut (Corylus cornuta Marsh.) over a 42-day midsummer period in 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). During the same period, daytime measurements of stomatal conductance (g(s)) and leaf water potential (Psi(leaf)) were made on these species, and sap flow was monitored in aspen stems by the heat pulse method. Weather conditions during the study period were similar to the long-term average. Despite moist soils, both species showed an inverse relationship between daytime g(s) and vapor pressure deficit (D) when D was > 0.5 kPa. Daytime Psi(leaf) was below -2 MPa in aspen and near -1.5 MPa in hazelnut, except on rainy days. These results are consistent with the hypothesis that stomatal responses are constrained by hydraulic resistance from root to leaf, and by the need to maintain Psi(leaf) above a minimum threshold value. Reductions in g(s) on sunny afternoons with elevated ambient D (maximum 2.3 kPa) were associated with a significant decrease in photosynthetic rates. However, day-to-day variation in mean carbon assimilation rate was small in both species, and appeared to be governed more by solar radiation than D. These results may be generally applicable to healthy aspen stands under normal midsummer conditions in the southern boreal forest. However, strong reductions in carbon uptake may be expected at the more extreme values of D (> 4 kPa) that occur during periods of regional drought, even if soil water is not locally limiting.

  7. Vapor pressure deficit is as important as soil moisture in determining limitations to evapotranspiration during drought

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Williams, C. A.; Phillips, R.; Oishi, A. C.; Sulman, B. N.; Bohrer, G.; Ficklin, D. L.

    2015-12-01

    The decoupling between potential evapotranspiration (PET) and actual evapotranspiration (AET) is a useful metric to characterize ecosystem hydrologic stress. As hydrologic stress evolves, PET increases following increases in incident radiation and vapor pressure deficit (VPD). AET, on the other hand, remains stationary or decreases due to declines in surface conductance imposed by decreasing soil water and stomatal closure under high VPD. Historically, it has been difficult to quantify the extent to which soil moisture as compared to VPD ultimately limits AET during hydrologic stress. Part of this difficulty relates to the strong correlation between soil moisture and VPD at timescales over which hydrologic stress evolves (weekly to monthly). Further, while it is relatively easy to manipulate soil moisture in experimental settings, manipulating VPD is much more difficult. Recently, the proliferation of eddy covariance flux sites has produced a rich collection of AET observations at fine timescales (i.e. hourly to daily) over which VPD and soil moisture are more decoupled. In this study, we leverage such data to quantify the extent to which soil moisture versus VPD constrains AET in more than 25 Ameriflux sites spanning a wide climate gradient. We found that AET was most significantly limited by soil moisture in dry sites where the annual PET was much higher than precipitation. VPD limitations to AET dominated in wetter sites, but even among the driest sites, they were of similar magnitude to soil moisture limitations. Our results highlight the critical, if at time underappreciated, role of VPD in determining ecohydrological functioning during periods of hydrologic stress. We also leverage these results together with future projections for VPD, soil moisture, and other relevant meteorological drivers to explore the extent to which the coherence between VPD and soil moisture, and their relative importance for limiting AET, may shift under future climate conditions.

  8. Effusion Cell Measurements of the Vapor Pressure of Cobalt at Temperatures up to 2000K; Comparisons with Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Ferguson, F. T.; Johnson, N. M.

    2004-01-01

    It has become increasingly clear over the past decade that high temperature processes played important roles in the Primitive Solar Nebula. Unfortunately, basic data, such as the vapor pressures of Fe, Ni, Co or SiO have not been measured over the appropriate temperature range (near T approx. 2000K), but must be extrapolated from lower temperature measurements often made more than 50 years ago. The extrapolation of the available data to higher temperatures can be quite complex (e.g., see [1] for SiO vapor pressures) and can depend on other factors such as the oxygen fugacity or the presence of hydrogen gas not accounted for in the original measurements. Moreover, modern technology has made possible more accurate measurements of such quantities over a wider temperature range. We have acquired a commercial Thermo-Cahn Thermogravimetric system capable of vacuum operation to 1700C and measurement of a 10g change in sample mass using up to a 100g sample, with microgram accuracy. With this new system we have initiated a series of basic vapor pressure measurements on simple metals such as Fe[2] and Ni[3] with the intention to extend such measurements to more complex systems once we gain sufficient experience.

  9. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  10. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  11. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.

  12. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.

    PubMed

    Majsztrik, P W; Bocarsly, A B; Benziger, J B

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250 degrees C while the range of vapor pressure is 0-1 atm. Data are presented for tests conducted on this instrument with Nafion, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  13. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  14. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using Raman spectroscopy.

    PubMed

    Luther, Sebastian K; Stehle, Simon; Weihs, Kristian; Will, Stefan; Braeuer, Andreas

    2015-08-18

    A fast, noninvasive, and efficient analytical measurement strategy for the characterization of vapor-liquid equilibria (VLE) is presented, which is based on phase (state of matter) selective Raman spectroscopy in multiphase flows inside microcapillay systems (MCS). Isothermal VLE data were measured in binary and ternary mixtures composed of acetone, water, carbon dioxide or nitrogen at elevated pressures up to 10 MPa and temperatures up to 333 K. For validation, the obtained data were compared with literature data and reference measurements in a high-pressure variable volume cell. Additionally, the mixtures were investigated at temperatures and pressures where no data is available in literature to extend the high-pressure VLE database. PMID:26171990

  15. Extrapolation of IAPWS-IF97 data: The saturation pressure of H2O in the critical region

    NASA Astrophysics Data System (ADS)

    Ustyuzhanin, E. E.; Ochkov, V. F.; Shishakov, V. V.; Rykov, A. V.

    2015-11-01

    Some literature sources and web sites are analyzed in this report. These sources contain an information about thermophysical properties of H2O including the vapor pressure Ps. (Ps,T)-data have a form of the international standard tables named as “IAPWS-IF97 data”. Our analysis shows that traditional databases represent (Ps,T)-data at t > 0.002, here t = (Tc - T)/Tc is a reduced temperature. It is an interesting task to extrapolate IAPWS-IF97 data in to the critical region and to get (Ps,T)-data at t < 0.002. We have considered some equations Ps(t) and estimated that previous models do not follow to the degree laws of the scaling theory (ST). A combined model (CM) is chosen as a form, F(t,D,B), to express a function ln(Ps/Pc) in the critical region including t < 0.002, here D = (α, Pc,Tc,...) are critical characteristics, B are adjustable coefficients. CM has a combined structure with scaling and regular parts. The degree laws of ST are taken into account to elaborate F(t, D, B). Adjustable coefficients (B) are determined by fitting CM to input (Ps,T)-points those belong to IAPWS-IF97 data. Application results are got with a help of CM in the critical region including values of the first and the second derivatives for Ps(T). Some models Ps(T) are compared with CM.

  16. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  17. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  18. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  19. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  20. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  1. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions

  2. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  3. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces.

    PubMed

    Starr, David E; Wong, Ed K; Worsnop, Douglas R; Wilson, Kevin R; Bluhm, Hendrik

    2008-06-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50-150 mum is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100-1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a chi = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  4. Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs

    SciTech Connect

    Pruess, Karsten; O'Sullivan, Michael

    1992-01-01

    Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating

  5. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S.

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup −5 }Torr) were investigated. The growth of large graphene domains (∼up to 100 μm) at very high rates (up to 3 μm{sup 2} s{sup −1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900 °C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900 °C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6 ± 1 eV for temperatures ranging from 900 °C to 960 °C and 9 ± 1 eV for temperatures above 960 °C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  6. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    SciTech Connect

    Alliss, R.J.; Raman, S.

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  7. The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure

    USGS Publications Warehouse

    Plummer, L. Neil; Wigley, T.M.L.

    1976-01-01

    The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.

  8. Damage-Free Dry Polishing of 4H-SiC Combined with Atmospheric-Pressure Water Vapor Plasma Oxidation

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Takiguchi, Tatsuya; Ueda, Masaki; Hattori, Azusa N.; Zettsu, Nobuyuki; Yamamura, Kazuya

    2011-08-01

    A dry polishing technique combined with the atmospheric-pressure water vapor plasma oxidation has been proposed for the high-integrity smoothing of SiC materials. Optical emission spectra revealed the composition of the plasma, and strong emission from OH, which has a high oxidation-reduction potential (ORP), was observed. X-ray photoelectron spectroscopy (XPS) measurements indicated that the irradiation of water vapor plasma efficiently oxidized the surface of SiC because of the reactive species in plasma such as OH radicals. Swell-like structures were also observed along scratches on the SiC surface. Plasma-assisted polishing using CeO2 abrasive enabled us to reduce the surface roughness of SiC without introducing crystallographical subsurface damage, and an atomically flat scratch-free surface with an rms roughness of less than 0.1 nm was obtained.

  9. Solvent vapor recovery by pressure swing adsorption. 3: Comparison of simulation with experiment for the butane-activated carbon system

    SciTech Connect

    Liu, J.; Holland, C.E.; Ritter, J.A.

    1999-06-01

    A fully predictive (no adjustable parameters), nonisothermal, multicomponent mathematical model was developed and used to simulate a pressure swing adsorption (PSA) process designed for the separation and recovery of concentrated butane vapor from nitrogen using BAX activated carbon. Nearly quantitative agreement with experiment was realized with this model over a wide range of process conditions, and for both the transient and periodic state process dynamics and the periodic state process performance. The model also verified some unique characteristics of this PSA process, and it revealed some of the subtleties associated with accurately simulating a PSA-solvent vapor recovery (SVR) process. These subtleties included the need to account for the adsorbate heat capacity and the temperature dependence of the gas-phase physical properties. No PSA models in the literature have included both of these features, which were critical to the accurate prediction of the heat effects in this PSA-SVR process.

  10. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Archibald, S. M.; Migdisov, A. A.; Williams-Jones, A. E.

    2002-05-01

    The solubility of copper chloride in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 280 to 320°C and pressures up to 103 bars. Results of these experiments show that the solubility of copper in the vapor phase is significant and increases with increasing fH 2O , but is retrograde with respect to temperature. This solubility is attributed to the formation of hydrated copper-chloride gas species, interpreted to have a copper-chlorine ratio of 1:1 (e.g., CuCl, Cu 3Cl 3, etc.) and a hydration number varying from 7.6 at 320°C, to 6.0 at 300°C, and 6.1 at 280°C. Complex formation is proposed to have occurred through the reaction: 3 CuCl solid+nH 2O gas⇋ Cu 3Cl 3·(H 2O) ngas Log K values determined for this reaction are -21.46 ± 0.05 at 280°C (n = 7.6), -19.03 ± 0.10 at 300°C (n = 6.0), and -19.45 ± 0.12 at 320°C (n = 6.1), if it is assumed that the vapor species is the trimer, Cu 3Cl 3(H 2O) 6-8. Calculations based on the above data indicate that at 300°C and HCl fluxes encountered in passively degassing volcanic systems, the vapor phase could transport copper in concentrations as high as 280 ppm. Theoretically, this vapor could form an economic copper deposit (e.g., 50 million tonnes of 0.5% Cu) in as little as ˜20,500 yr.

  11. A new approach to determine vapor pressures of compounds in multicomponent systems by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    PubMed

    Parshintsev, Jevgeni; Lai, Ching Kwan; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    2014-06-01

    A method is described to determine vapor pressures of compounds in multicomponent systems simultaneously. The method is based on temperature-gradient analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS). Vapor pressures are determined with the aid of known vapor pressure values of reference compounds eluting before and after the analytes. Reference compounds with the same functionalities as the analytes are preferred, but when these are not available, the alkane series can be utilized. The number of compounds whose vapor pressures can be determined is limited only by the peak capacity of the chromatographic system. Although the lowest subcooled vapor pressure determined was 0.006 Pa, for tetrahydroaraucarolone in an atmospheric aerosol sample, vapor pressures as low as 10(-6) Pa can be measured with the described set-up. Even lower values can be measured with higher GC temperatures and longer analysis times. Since only a few picograms of compound is required, in a mixture of any complexity, the GCxGC-TOFMS method offers unique sensitivity, rapidity, and comprehensiveness.

  12. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.

    PubMed

    Creese, Chris; Oberbauer, Steve; Rundel, Phil; Sack, Lawren

    2014-10-01

    The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.

  13. Surface vapor conductance derived from the ETRHEQ: Dependence on environmental variables and similarity to Oren's stomatal stress model for vapor pressure deficit

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.

    2015-12-01

    Daily time series of evapotranspiration and surface conductance to water vapor were estimated using the ETRHEQ method (Evapotranspiration from Relative Humidity at Equilibrium). ETRHEQ has been previously compared with ameriflux site-level measurements of ET at daily and seasonal time scales, with watershed water balance estimates, and with various benchmark ET data sets. The ETRHEQ method uses meteorological data collected at common weather stations and estimates the surface conductance by minimizing the vertical variance of the calculated relative humidity profile averaged over the day. The key advantage of the ETRHEQ method is that it does not require knowledge of the surface state (soil moisture, stomatal conductance, leaf are index, etc.) or site-specific calibration. The daily estimates of conductance from 229 weather stations for 53 years were analyzed for dependence on environmental variables known to impact stomatal conductance and soil diffusivity: surface temperature, surface vapor pressure deficit, solar radiation, antecedent precipitation (as a surrogate for soil moisture), and a seasonal vegetation greenness index. At each site the summertime (JJAS) conductance values estimated from ETRHEQ were fitted to a multiplicate Jarvis-type stress model. Functional dependence was not proscribed, but instead fitted using flexible piecewise-linear splines. The resulting stress functions reproduce the time series of conductance across a wide range of ecosystems and climates. The VPD stress term resembles that proposed by Oren (i.e., 1-m*log(VPD) ), with VPD measured in kilopascals. The equivalent value of m derived from our spline-fits at each station varied over a remarkably small range of 0.58 to 0.62, in agreement with Oren's original analysis based on leaf and tree-level measurements.

  14. Review of methods and measurements of selected hydrophobic organic contaminant aqueous solubilities, vapor pressures, and air-water partition coefficients

    SciTech Connect

    Bamford, H.A.; Baker, J.E.; Poster, D.L.

    1998-03-01

    Aqueous solubilities, vapor pressures, and Henry`s law constants for a wide range of organic contaminants of environmental interest are presented. Specifically, a discussion of methods used to measure these physical constants and resulting measurements are provided in an effort to examine the scope of physical constants reported in the scientific literature. Physical constants reviewed include those for 40 PAHs, 14 chlorinated aliphatics, 149 PCBs, 12 chlorinated benzenes, 16 dioxins, 63 furans, and 29 agrochemicals (a total of 323 compounds) and overall a total of 1,605 values are listed.

  15. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    SciTech Connect

    Michael W. Smith; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-11-01

    Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  16. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  17. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    NASA Astrophysics Data System (ADS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-12-01

    A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  18. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Tu; Doan Le, Huu; Chuc Nguyen, Van; Thanh Tam Ngo, Thi; Quang Le, Dinh; Nghia Nguyen, Xuan; Phan, Ngoc Minh

    2013-09-01

    Graphene films were successfully synthesized by atmospheric pressure chemical vapor deposition (APCVD) method. Methane (CH4) gas and copper (Cu) tapes were used as a carbon source and a catalyst, respectively. The CVD temperature and time were in the range of 800-1000 °C and 10 s to 45 min, respectively. The role of the CVD temperature and time on the growth of graphene films was investigated in detail via scanning electron microscopy (SEM) and Raman spectroscopy techniques. The results of SEM images and Raman spectra show that the quality of the graphene films was improved with increasing of CVD temperature due to the increase of catalytic activity.

  19. Extension of Pitzer corresponding states correlations using new vapor pressure measurements of the n-alkanes C sub 10 to C sub 28

    SciTech Connect

    Morgan, D.L.; Kobayashi, R.

    1989-12-31

    Direct vapor pressure measurements of zone-refined n-alkane samples in the carbon number range from C{sub 10} to C{sub 28} (decane, dodecane, tetradecane, hexadecane, octadecane, nonadecane, eicosane, docosane, tetracosane, and octacosane) have been obtained. The overall range of the new measurements are from 0.1 to 1400 kPa and from 323 to 588{degree}K with expected accuracies given by (0.00015P + 0.0048)kPa and 0.03{degree}K. The vapor pressure data have been regressed to Wagner-type equations using critical parameters developed. To extend the range of the Wagner equations toward low reduced temperatures, an alternative set of conformal'' equations were constructed using two real-fluid corresponding states principle (CSP) methods. Using n-alkane vapor pressure data in the range from C{sub 1} to C{sub 36}, the acentric factor ranges of Pitzer-type CSP correlations for vapor pressures and heats of vaporization were extended. In a first approach dubbed PERT2'', a set of conformal'' Wagner equations was generalized by including a second order perturbation term in Pitzer's acentric factor expansion for In(P{sub r}). In a second approach, input parameters (P{sub c},{omega}) were determined from vapor pressure data for accurate pairs of vapor pressure and heat of vaporization reference equations based on methane and octane (C{sub 1}/C{sub 8}). Input parameters (T{sub c},P{sub c},{omega}) for n-alkanes have been correlated and tabulated out to C{sub 36} for both of these approaches. Ratios of the parameters for the two methods can be interpreted in terms of shape factor'' effects. 83 refs., 23 figs., 25 tabs.

  20. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.